code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> Any: """simple docstring""" A : Tuple = data A : Optional[Any] = previous A : Union[str, Any] = next_node def __str__( self ) -> str: """simple docstring""" return F'{self.data}' def __lowerCAmelCase ( self ) -> int: """simple docstring""" return self.data def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" return self.next def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return self.previous class A : def __init__( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : List[str] = head def __iter__( self ) -> Any: """simple docstring""" return self def __lowerCAmelCase ( self ) -> int: """simple docstring""" if not self.current: raise StopIteration else: A : List[str] = self.current.get_data() A : Union[str, Any] = self.current.get_next() return value class A : def __init__( self ) -> Optional[Any]: """simple docstring""" A : int = None # First node in list A : str = None # Last node in list def __str__( self ) -> int: """simple docstring""" A : int = self.head A : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) A : List[str] = current.get_next() return " ".join(str(SCREAMING_SNAKE_CASE ) for node in nodes ) def __contains__( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : str = self.head while current: if current.get_data() == value: return True A : Optional[int] = current.get_next() return False def __iter__( self ) -> int: """simple docstring""" return LinkedListIterator(self.head ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" if self.head: return self.head.get_data() return None def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" if self.tail: return self.tail.get_data() return None def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if self.head is None: A : Any = node A : List[Any] = node else: self.insert_before_node(self.head , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if self.head is None: self.set_head(SCREAMING_SNAKE_CASE ) else: self.insert_after_node(self.tail , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : List[Any] = Node(SCREAMING_SNAKE_CASE ) if self.head is None: self.set_head(SCREAMING_SNAKE_CASE ) else: self.set_tail(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : Tuple = node A : int = node.previous if node.get_previous() is None: A : int = node_to_insert else: A : Tuple = node_to_insert A : Optional[int] = node_to_insert def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : Tuple = node A : int = node.next if node.get_next() is None: A : Optional[int] = node_to_insert else: A : Tuple = node_to_insert A : List[str] = node_to_insert def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : int = 1 A : int = Node(SCREAMING_SNAKE_CASE ) A : List[str] = self.head while node: if current_position == position: self.insert_before_node(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return current_position += 1 A : Any = node.next self.insert_after_node(self.tail , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Node: """simple docstring""" A : str = self.head while node: if node.get_data() == item: return node A : int = node.get_next() raise Exception('''Node not found''' ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if (node := self.get_node(SCREAMING_SNAKE_CASE )) is not None: if node == self.head: A : Optional[Any] = self.head.get_next() if node == self.tail: A : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(SCREAMING_SNAKE_CASE ) @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if node.get_next(): A : Union[str, Any] = node.previous if node.get_previous(): A : Optional[int] = node.next A : int = None A : Optional[int] = None def __lowerCAmelCase ( self ) -> int: """simple docstring""" return self.head is None def lowerCAmelCase_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
3
from typing import TYPE_CHECKING from ...utils import _LazyModule _A = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
0
"""simple docstring""" def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int ) -> str: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(lowercase__ , lowercase__ ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowerCamelCase__ : str ="""""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowercase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
356
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : List[Any], lowerCamelCase : Dict="", lowerCamelCase : Tuple="train" )-> Dict: assert os.path.isdir(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =[] lowerCamelCase__ : Dict =os.listdir(lowerCamelCase ) for story_filename in story_filenames_list: if "summary" in story_filename: continue lowerCamelCase__ : Optional[int] =os.path.join(lowerCamelCase, lowerCamelCase ) if not os.path.isfile(lowerCamelCase ): continue self.documents.append(lowerCamelCase ) def __len__( self : Optional[Any] )-> List[str]: return len(self.documents ) def __getitem__( self : List[str], lowerCamelCase : Dict )-> str: lowerCamelCase__ : int =self.documents[idx] lowerCamelCase__ : List[Any] =document_path.split('''/''' )[-1] with open(lowerCamelCase, encoding='''utf-8''' ) as source: lowerCamelCase__ : Optional[int] =source.read() lowerCamelCase__ , lowerCamelCase__ : List[Any] =process_story(lowerCamelCase ) return document_name, story_lines, summary_lines def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[str] =list(filter(lambda __lowerCamelCase : len(__lowerCamelCase ) != 0 , [line.strip() for line in raw_story.split('''\n''' )] ) ) # for some unknown reason some lines miss a period, add it lowerCamelCase__ : Dict =[_add_missing_period(__lowerCamelCase ) for line in nonempty_lines] # gather article lines lowerCamelCase__ : Union[str, Any] =[] lowerCamelCase__ : Optional[Any] =deque(__lowerCamelCase ) while True: try: lowerCamelCase__ : Tuple =lines.popleft() if element.startswith('''@highlight''' ): break story_lines.append(__lowerCamelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines lowerCamelCase__ : Dict =list(filter(lambda __lowerCamelCase : not t.startswith('''@highlight''' ) , __lowerCamelCase ) ) return story_lines, summary_lines def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : Any =['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')'''] if line.startswith('''@highlight''' ): return line if line[-1] in END_TOKENS: return line return line + "." def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): """simple docstring""" if len(__lowerCamelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__lowerCamelCase )) ) return sequence def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : int =torch.ones_like(__lowerCamelCase ) lowerCamelCase__ : Any =sequence == pad_token_id lowerCamelCase__ : List[str] =0 return mask def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] ): """simple docstring""" lowerCamelCase__ : Dict =[tokenizer.encode(__lowerCamelCase ) for line in story_lines] lowerCamelCase__ : List[Any] =[token for sentence in story_lines_token_ids for token in sentence] lowerCamelCase__ : List[Any] =[tokenizer.encode(__lowerCamelCase ) for line in summary_lines] lowerCamelCase__ : Optional[int] =[token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] ): """simple docstring""" lowerCamelCase__ : Any =[] for sequence in batch: lowerCamelCase__ : Optional[int] =-1 lowerCamelCase__ : List[str] =[] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__lowerCamelCase ) return torch.tensor(__lowerCamelCase )
272
0
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness A__: List[str] = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' A__: int = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' A__: str = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' A__: str = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' A__: int = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): """simple docstring""" def UpperCAmelCase_ ( self: int ): '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def UpperCAmelCase_ ( self: Tuple , __lowerCamelCase: str , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any]=[1, 10, 100] , __lowerCamelCase: Dict=4 , __lowerCamelCase: List[str]=3.0 ): '''simple docstring''' if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=__lowerCamelCase ) as executor: UpperCamelCase__: int = [] UpperCamelCase__: List[Any] = Counter() UpperCamelCase__: Tuple = 0 UpperCamelCase__: List[str] = defaultdict(__lowerCamelCase ) for task_id, (candidates, test_case) in enumerate(zip(__lowerCamelCase , __lowerCamelCase ) ): for candidate in candidates: UpperCamelCase__: List[Any] = candidate + "\n" + test_case UpperCamelCase__: Union[str, Any] = (test_program, timeout, task_id, completion_id[task_id]) UpperCamelCase__: Any = executor.submit(__lowerCamelCase , *__lowerCamelCase ) futures.append(__lowerCamelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__lowerCamelCase ): UpperCamelCase__: Any = future.result() results[result["task_id"]].append((result["completion_id"], result) ) UpperCamelCase__ , UpperCamelCase__: int = [], [] for result in results.values(): result.sort() UpperCamelCase__: str = [r[1]["passed"] for r in result] total.append(len(__lowerCamelCase ) ) correct.append(sum(__lowerCamelCase ) ) UpperCamelCase__: List[str] = np.array(__lowerCamelCase ) UpperCamelCase__: int = np.array(__lowerCamelCase ) UpperCamelCase__: Any = k UpperCamelCase__: Any = {F"pass@{k}": estimate_pass_at_k(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowerCAmelCase_ ( A_ ,A_ ,A_): def estimator(A_ ,A_ ,A_) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1)) if isinstance(A_ ,A_): UpperCamelCase__: Union[str, Any] = itertools.repeat(A_ ,len(A_)) else: assert len(A_) == len(A_) UpperCamelCase__: Any = iter(A_) return np.array([estimator(int(A_) ,int(A_) ,A_) for n, c in zip(A_ ,A_)])
149
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__): """simple docstring""" UpperCamelCase__ = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self: Tuple , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 5_0257 , __lowerCamelCase: int = 1024 , __lowerCamelCase: int = 768 , __lowerCamelCase: int = 12 , __lowerCamelCase: int = 12 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: str = "gelu_new" , __lowerCamelCase: float = 0.1 , __lowerCamelCase: float = 0.1 , __lowerCamelCase: float = 0.1 , __lowerCamelCase: float = 1e-5 , __lowerCamelCase: float = 0.02 , __lowerCamelCase: bool = True , __lowerCamelCase: bool = True , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' super().__init__() UpperCamelCase__: Union[str, Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" F" `n_embd`: {n_embd} are not equal." ) UpperCamelCase__: List[str] = prefix_inner_dim UpperCamelCase__: Optional[int] = prefix_hidden_dim UpperCamelCase__: Dict = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCamelCase__: Tuple = ( nn.Linear(self.prefix_hidden_dim , __lowerCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCamelCase__: List[str] = GPTaConfig( vocab_size=__lowerCamelCase , n_positions=__lowerCamelCase , n_embd=__lowerCamelCase , n_layer=__lowerCamelCase , n_head=__lowerCamelCase , n_inner=__lowerCamelCase , activation_function=__lowerCamelCase , resid_pdrop=__lowerCamelCase , embd_pdrop=__lowerCamelCase , attn_pdrop=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , initializer_range=__lowerCamelCase , scale_attn_weights=__lowerCamelCase , use_cache=__lowerCamelCase , scale_attn_by_inverse_layer_idx=__lowerCamelCase , reorder_and_upcast_attn=__lowerCamelCase , ) UpperCamelCase__: Any = GPTaLMHeadModel(__lowerCamelCase ) def UpperCAmelCase_ ( self: int , __lowerCamelCase: torch.Tensor , __lowerCamelCase: torch.Tensor , __lowerCamelCase: Optional[torch.Tensor] = None , __lowerCamelCase: Optional[torch.Tensor] = None , ): '''simple docstring''' UpperCamelCase__: Optional[int] = self.transformer.transformer.wte(__lowerCamelCase ) UpperCamelCase__: Dict = self.encode_prefix(__lowerCamelCase ) UpperCamelCase__: List[Any] = self.decode_prefix(__lowerCamelCase ) UpperCamelCase__: str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: UpperCamelCase__: Union[str, Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) UpperCamelCase__: Any = torch.cat((dummy_token, input_ids) , dim=1 ) UpperCamelCase__: str = self.transformer(inputs_embeds=__lowerCamelCase , labels=__lowerCamelCase , attention_mask=__lowerCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCAmelCase_ ( self: Any , __lowerCamelCase: int , __lowerCamelCase: torch.device ): '''simple docstring''' return torch.zeros(__lowerCamelCase , self.prefix_length , dtype=torch.intaa , device=__lowerCamelCase ) def UpperCAmelCase_ ( self: Union[str, Any] , __lowerCamelCase: List[Any] ): '''simple docstring''' return self.encode_prefix(__lowerCamelCase ) @torch.no_grad() def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: List[str] ): '''simple docstring''' UpperCamelCase__: Any = torch.split(__lowerCamelCase , 1 , dim=0 ) UpperCamelCase__: Dict = [] UpperCamelCase__: Union[str, Any] = [] for feature in features: UpperCamelCase__: Tuple = self.decode_prefix(feature.to(__lowerCamelCase ) ) # back to the clip feature # Only support beam search for now UpperCamelCase__ , UpperCamelCase__: List[Any] = self.generate_beam( input_embeds=__lowerCamelCase , device=__lowerCamelCase , eos_token_id=__lowerCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) UpperCamelCase__: str = torch.stack(__lowerCamelCase ) UpperCamelCase__: str = torch.stack(__lowerCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCAmelCase_ ( self: str , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Dict=None , __lowerCamelCase: int = 5 , __lowerCamelCase: int = 67 , __lowerCamelCase: float = 1.0 , __lowerCamelCase: Optional[int] = None , ): '''simple docstring''' UpperCamelCase__: Tuple = eos_token_id UpperCamelCase__: List[str] = None UpperCamelCase__: Any = None UpperCamelCase__: Optional[int] = torch.ones(__lowerCamelCase , device=__lowerCamelCase , dtype=torch.int ) UpperCamelCase__: Dict = torch.zeros(__lowerCamelCase , device=__lowerCamelCase , dtype=torch.bool ) if input_embeds is not None: UpperCamelCase__: Dict = input_embeds else: UpperCamelCase__: Optional[int] = self.transformer.transformer.wte(__lowerCamelCase ) for i in range(__lowerCamelCase ): UpperCamelCase__: Union[str, Any] = self.transformer(inputs_embeds=__lowerCamelCase ) UpperCamelCase__: Tuple = outputs.logits UpperCamelCase__: Dict = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) UpperCamelCase__: List[str] = logits.softmax(-1 ).log() if scores is None: UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = logits.topk(__lowerCamelCase , -1 ) UpperCamelCase__: str = generated.expand(__lowerCamelCase , *generated.shape[1:] ) UpperCamelCase__ , UpperCamelCase__: Dict = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: UpperCamelCase__: int = next_tokens else: UpperCamelCase__: Optional[int] = tokens.expand(__lowerCamelCase , *tokens.shape[1:] ) UpperCamelCase__: str = torch.cat((tokens, next_tokens) , dim=1 ) else: UpperCamelCase__: Optional[Any] = -float(np.inf ) UpperCamelCase__: Any = 0 UpperCamelCase__: List[str] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 UpperCamelCase__: Any = scores_sum / seq_lengths[:, None] UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = scores_sum_average.view(-1 ).topk(__lowerCamelCase , -1 ) UpperCamelCase__: Dict = next_tokens // scores_sum.shape[1] UpperCamelCase__: Optional[int] = seq_lengths[next_tokens_source] UpperCamelCase__: int = next_tokens % scores_sum.shape[1] UpperCamelCase__: Optional[int] = next_tokens.unsqueeze(1 ) UpperCamelCase__: Tuple = tokens[next_tokens_source] UpperCamelCase__: Tuple = torch.cat((tokens, next_tokens) , dim=1 ) UpperCamelCase__: List[Any] = generated[next_tokens_source] UpperCamelCase__: int = scores_sum_average * seq_lengths UpperCamelCase__: Dict = is_stopped[next_tokens_source] UpperCamelCase__: List[str] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) UpperCamelCase__: Any = torch.cat((generated, next_token_embed) , dim=1 ) UpperCamelCase__: Union[str, Any] = is_stopped + next_tokens.eq(__lowerCamelCase ).squeeze() if is_stopped.all(): break UpperCamelCase__: Optional[Any] = scores / seq_lengths UpperCamelCase__: int = scores.argsort(descending=__lowerCamelCase ) # tokens tensors are already padded to max_seq_length UpperCamelCase__: Dict = [tokens[i] for i in order] UpperCamelCase__: Any = torch.stack(__lowerCamelCase , dim=0 ) UpperCamelCase__: int = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
149
1
"""simple docstring""" import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def a_ ( _lowercase , _lowercase , _lowercase=[] ): _UpperCamelCase : List[str] = size[0] - overlap_pixels * 2 _UpperCamelCase : Optional[int] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _UpperCamelCase : int = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 _UpperCamelCase : Union[str, Any] = np.pad(_lowercase , mode='''linear_ramp''' , pad_width=_lowercase , end_values=0 ) if "l" in remove_borders: _UpperCamelCase : Tuple = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _UpperCamelCase : List[str] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _UpperCamelCase : Union[str, Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _UpperCamelCase : Dict = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def a_ ( _lowercase , _lowercase , _lowercase ): return max(_lowercase , min(_lowercase , _lowercase ) ) def a_ ( _lowercase , _lowercase , _lowercase ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def a_ ( _lowercase , _lowercase , _lowercase ): _UpperCamelCase : List[Any] = list(_lowercase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _UpperCamelCase : Union[str, Any] = clamp_rect(_lowercase , [0, 0] , [image_size[0], image_size[1]] ) return rect def a_ ( _lowercase , _lowercase , _lowercase , _lowercase ): _UpperCamelCase : Any = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(_lowercase , (original_slice, 0) ) return result def a_ ( _lowercase , _lowercase ): _UpperCamelCase : List[Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) _UpperCamelCase : Any = tile.crop(_lowercase ) return tile def a_ ( _lowercase , _lowercase ): _UpperCamelCase : List[str] = n % d return n - divisor class _a ( _lowerCAmelCase ): def __init__( self : Tuple, lowerCAmelCase__ : AutoencoderKL, lowerCAmelCase__ : CLIPTextModel, lowerCAmelCase__ : CLIPTokenizer, lowerCAmelCase__ : UNetaDConditionModel, lowerCAmelCase__ : DDPMScheduler, lowerCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], lowerCAmelCase__ : int = 3_5_0, ) -> Optional[Any]: '''simple docstring''' super().__init__( vae=lowerCAmelCase__, text_encoder=lowerCAmelCase__, tokenizer=lowerCAmelCase__, unet=lowerCAmelCase__, low_res_scheduler=lowerCAmelCase__, scheduler=lowerCAmelCase__, max_noise_level=lowerCAmelCase__, ) def snake_case ( self : Optional[Any], lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : Dict, lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : Union[str, Any], lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[int], **lowerCAmelCase__ : int ) -> Any: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = ( min(image.size[0] - (tile_size + original_image_slice), x * tile_size ), min(image.size[1] - (tile_size + original_image_slice), y * tile_size ), min(image.size[0], (x + 1) * tile_size ), min(image.size[1], (y + 1) * tile_size ), ) _UpperCamelCase : Optional[Any] = add_overlap_rect(lowerCAmelCase__, lowerCAmelCase__, image.size ) _UpperCamelCase : Optional[int] = image.crop(lowerCAmelCase__ ) _UpperCamelCase : List[str] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _UpperCamelCase : Union[str, Any] = translated_slice_x - (original_image_slice / 2) _UpperCamelCase : Optional[Any] = max(0, lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = squeeze_tile(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase : int = to_input.size _UpperCamelCase : int = to_input.resize((tile_size, tile_size), Image.BICUBIC ) _UpperCamelCase : int = super(lowerCAmelCase__, self ).__call__(image=lowerCAmelCase__, **lowerCAmelCase__ ).images[0] _UpperCamelCase : int = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4), Image.BICUBIC ) _UpperCamelCase : str = unsqueeze_tile(lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase : int = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4), Image.BICUBIC ) _UpperCamelCase : str = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) _UpperCamelCase : Tuple = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]), tile_border * 4, remove_borders=lowerCAmelCase__ ), mode='''L''', ) final_image.paste( lowerCAmelCase__, (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4), lowerCAmelCase__ ) @torch.no_grad() def __call__( self : List[Any], lowerCAmelCase__ : Union[str, List[str]], lowerCAmelCase__ : Union[PIL.Image.Image, List[PIL.Image.Image]], lowerCAmelCase__ : int = 7_5, lowerCAmelCase__ : float = 9.0, lowerCAmelCase__ : int = 5_0, lowerCAmelCase__ : Optional[Union[str, List[str]]] = None, lowerCAmelCase__ : Optional[int] = 1, lowerCAmelCase__ : float = 0.0, lowerCAmelCase__ : Optional[torch.Generator] = None, lowerCAmelCase__ : Optional[torch.FloatTensor] = None, lowerCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, lowerCAmelCase__ : int = 1, lowerCAmelCase__ : int = 1_2_8, lowerCAmelCase__ : int = 3_2, lowerCAmelCase__ : int = 3_2, ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = Image.new('''RGB''', (image.size[0] * 4, image.size[1] * 4) ) _UpperCamelCase : int = math.ceil(image.size[0] / tile_size ) _UpperCamelCase : Optional[Any] = math.ceil(image.size[1] / tile_size ) _UpperCamelCase : Union[str, Any] = tcx * tcy _UpperCamelCase : Union[str, Any] = 0 for y in range(lowerCAmelCase__ ): for x in range(lowerCAmelCase__ ): self._process_tile( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, prompt=lowerCAmelCase__, num_inference_steps=lowerCAmelCase__, guidance_scale=lowerCAmelCase__, noise_level=lowerCAmelCase__, negative_prompt=lowerCAmelCase__, num_images_per_prompt=lowerCAmelCase__, eta=lowerCAmelCase__, generator=lowerCAmelCase__, latents=lowerCAmelCase__, ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def a_ ( ): # Run a demo _UpperCamelCase : str = '''stabilityai/stable-diffusion-x4-upscaler''' _UpperCamelCase : Optional[Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(_lowercase , revision='''fp16''' , torch_dtype=torch.floataa ) _UpperCamelCase : Optional[int] = pipe.to('''cuda''' ) _UpperCamelCase : Optional[Any] = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(_lowercase ): print(F"""progress: {obj['progress']:.4f}""" ) obj["image"].save('''diffusers_library_progress.jpg''' ) _UpperCamelCase : Tuple = pipe(image=_lowercase , prompt='''Black font, white background, vector''' , noise_level=40 , callback=_lowercase ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
128
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _a : def __init__( self : Dict, lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : Optional[int]=1_3, lowerCAmelCase__ : Optional[Any]=7, lowerCAmelCase__ : Optional[Any]=True, lowerCAmelCase__ : Any=True, lowerCAmelCase__ : str=True, lowerCAmelCase__ : Any=9_9, lowerCAmelCase__ : Dict=3_2, lowerCAmelCase__ : List[Any]=5, lowerCAmelCase__ : Tuple=4, lowerCAmelCase__ : List[Any]=3_7, lowerCAmelCase__ : Tuple="gelu", lowerCAmelCase__ : Any=0.1, lowerCAmelCase__ : Optional[Any]=0.1, lowerCAmelCase__ : Dict=5_1_2, lowerCAmelCase__ : List[str]=1_6, lowerCAmelCase__ : Tuple=2, lowerCAmelCase__ : int=0.02, lowerCAmelCase__ : int=3, lowerCAmelCase__ : Optional[Any]=4, lowerCAmelCase__ : Dict=None, ) -> int: '''simple docstring''' _UpperCamelCase : Tuple = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Union[str, Any] = seq_length _UpperCamelCase : Tuple = is_training _UpperCamelCase : Tuple = use_token_type_ids _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : Dict = vocab_size _UpperCamelCase : int = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Optional[Any] = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = max_position_embeddings _UpperCamelCase : int = type_vocab_size _UpperCamelCase : List[str] = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : int = num_labels _UpperCamelCase : List[str] = num_choices _UpperCamelCase : str = scope _UpperCamelCase : Optional[int] = self.vocab_size - 1 def snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _UpperCamelCase : List[str] = None if self.use_token_type_ids: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) _UpperCamelCase : Optional[int] = None _UpperCamelCase : str = None _UpperCamelCase : List[str] = None if self.use_labels: _UpperCamelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _UpperCamelCase : Dict = ids_tensor([self.batch_size], self.num_choices ) _UpperCamelCase : str = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) _UpperCamelCase : List[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def snake_case ( self : Union[str, Any], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str], *lowerCAmelCase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Dict = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : List[str] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, head_mask=lowerCAmelCase__ ) _UpperCamelCase : Any = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__ ) _UpperCamelCase : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Any, lowerCAmelCase__ : Tuple, lowerCAmelCase__ : Union[str, Any], lowerCAmelCase__ : Any, lowerCAmelCase__ : Optional[Any], *lowerCAmelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase : Any = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Tuple = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Optional[int], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Any, lowerCAmelCase__ : List[Any], *lowerCAmelCase__ : Any ) -> int: '''simple docstring''' _UpperCamelCase : Tuple = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Optional[int] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : List[str], lowerCAmelCase__ : Dict, lowerCAmelCase__ : Dict, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[Any], *lowerCAmelCase__ : List[str] ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = self.num_labels _UpperCamelCase : Optional[int] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) _UpperCamelCase : Union[str, Any] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Any = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Tuple = config_and_inputs _UpperCamelCase : Tuple = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCamelCase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCamelCase = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def snake_case ( self : Union[str, Any], lowerCAmelCase__ : Any, lowerCAmelCase__ : List[str], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def snake_case ( self : str, lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[int]=False ) -> Tuple: '''simple docstring''' _UpperCamelCase : Optional[Any] = super()._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__, return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _UpperCamelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=lowerCAmelCase__, ) _UpperCamelCase : Tuple = inputs_dict['''labels'''] _UpperCamelCase : List[str] = inputs_dict['''labels'''] _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=lowerCAmelCase__, ) _UpperCamelCase : Dict = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCAmelCase__ ) return inputs_dict def snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = OpenAIGPTModelTester(self ) _UpperCamelCase : int = ConfigTester(self, config_class=lowerCAmelCase__, n_embd=3_7 ) def snake_case ( self : Optional[int] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def snake_case ( self : Any ) -> Dict: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def snake_case ( self : int ) -> Dict: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def snake_case ( self : List[str] ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : int = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _a ( unittest.TestCase ): @slow def snake_case ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : int = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) _UpperCamelCase : str = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]], dtype=torch.long, device=lowerCAmelCase__ ) # the president is _UpperCamelCase : Optional[int] = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the _UpperCamelCase : Union[str, Any] = model.generate(lowerCAmelCase__, do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist(), lowerCAmelCase__ )
128
1
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( A : int ) -> List[Any]: if num <= 0: UpperCAmelCase_ : int = F"{num}: Invalid input, please enter a positive integer." raise ValueError(A ) UpperCAmelCase_ : int = [True] * (num + 1) UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Tuple = 2 UpperCAmelCase_ : List[Any] = int(math.sqrt(A ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(A ) # Set multiples of start be False for i in range(start * start , num + 1 , A ): if sieve[i] is True: UpperCAmelCase_ : int = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(A ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
304
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCamelCase_( snake_case : Any ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def UpperCamelCase_( snake_case : str ): '''simple docstring''' for char in word: snake_case_ = ord(snake_case ) if not _is_chinese_char(snake_case ): return 0 return 1 def UpperCamelCase_( snake_case : List[str] ): '''simple docstring''' snake_case_ = set() for token in tokens: snake_case_ = len(snake_case ) > 1 and is_chinese(snake_case ) if chinese_word: word_set.add(snake_case ) snake_case_ = list(snake_case ) return word_list def UpperCamelCase_( snake_case : List[str] , snake_case : set() ): '''simple docstring''' if not chinese_word_set: return bert_tokens snake_case_ = max([len(snake_case ) for w in chinese_word_set] ) snake_case_ = bert_tokens snake_case_ , snake_case_ = 0, len(snake_case ) while start < end: snake_case_ = True if is_chinese(bert_word[start] ): snake_case_ = min(end - start , snake_case ) for i in range(snake_case , 1 , -1 ): snake_case_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case_ = "##" + bert_word[j] snake_case_ = start + i snake_case_ = False break if single_word: start += 1 return bert_word def UpperCamelCase_( snake_case : List[str] , snake_case : LTP , snake_case : BertTokenizer ): '''simple docstring''' snake_case_ = [] for i in range(0 , len(snake_case ) , 1_0_0 ): snake_case_ = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=["cws"] ).cws snake_case_ = [get_chinese_word(snake_case ) for r in res] ltp_res.extend(snake_case ) assert len(snake_case ) == len(snake_case ) snake_case_ = [] for i in range(0 , len(snake_case ) , 1_0_0 ): snake_case_ = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=snake_case , truncation=snake_case , max_length=5_1_2 ) bert_res.extend(res["input_ids"] ) assert len(snake_case ) == len(snake_case ) snake_case_ = [] for input_ids, chinese_word in zip(snake_case , snake_case ): snake_case_ = [] for id in input_ids: snake_case_ = bert_tokenizer._convert_id_to_token(snake_case ) input_tokens.append(snake_case ) snake_case_ = add_sub_symbol(snake_case , snake_case ) snake_case_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case ): if token[:2] == "##": snake_case_ = token[2:] # save chinese tokens' pos if len(snake_case ) == 1 and _is_chinese_char(ord(snake_case ) ): ref_id.append(snake_case ) ref_ids.append(snake_case ) assert len(snake_case ) == len(snake_case ) return ref_ids def UpperCamelCase_( snake_case : Any ): '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: snake_case_ = f.readlines() snake_case_ = [line.strip() for line in data if len(snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case_ = LTP(args.ltp ) # faster in GPU device snake_case_ = BertTokenizer.from_pretrained(args.bert ) snake_case_ = prepare_ref(snake_case , snake_case , snake_case ) with open(args.save_path , "w" , encoding="utf-8" ) as f: snake_case_ = [json.dumps(snake_case ) + "\n" for ref in ref_ids] f.writelines(snake_case ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() main(args)
85
0
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCAmelCase_ (lowerCAmelCase__: List[Any] ): """simple docstring""" return getitem, k def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[Any] ): """simple docstring""" return setitem, k, v def lowerCAmelCase_ (lowerCAmelCase__: str ): """simple docstring""" return delitem, k def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: Tuple , *lowerCAmelCase__: List[Any] ): """simple docstring""" try: return fun(lowerCAmelCase__ , *lowerCAmelCase__ ), None except Exception as e: return None, e a : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a : Any = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a : List[str] = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a : int = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a : List[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a : List[str] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowerCAmelCase_ (lowerCAmelCase__: Any ): """simple docstring""" UpperCAmelCase_: List[str] = HashMap(initial_block_size=4 ) UpperCAmelCase_: Tuple = {} for _, (fun, *args) in enumerate(lowerCAmelCase__ ): UpperCAmelCase_ , UpperCAmelCase_: int = _run_operation(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = _run_operation(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) assert my_res == py_res assert str(lowerCAmelCase__ ) == str(lowerCAmelCase__ ) assert set(lowerCAmelCase__ ) == set(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) assert set(my.items() ) == set(py.items() ) def lowerCAmelCase_ (): """simple docstring""" def is_public(lowerCAmelCase__: str ) -> bool: return not name.startswith("""_""" ) UpperCAmelCase_: List[str] = {name for name in dir({} ) if is_public(lowerCAmelCase__ )} UpperCAmelCase_: List[str] = {name for name in dir(HashMap() ) if is_public(lowerCAmelCase__ )} assert dict_public_names > hash_public_names
82
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a : Optional[Any] = logging.get_logger(__name__) a : Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a : Dict = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } a : str = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } a : Optional[int] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_INIT_CONFIGURATION A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = SqueezeBertTokenizer def __init__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="[UNK]", SCREAMING_SNAKE_CASE_="[SEP]", SCREAMING_SNAKE_CASE_="[PAD]", SCREAMING_SNAKE_CASE_="[CLS]", SCREAMING_SNAKE_CASE_="[MASK]", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> int: super().__init__( SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, do_lower_case=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, tokenize_chinese_chars=SCREAMING_SNAKE_CASE_, strip_accents=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""", SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get("""strip_accents""", SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""", SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): UpperCAmelCase_: Optional[Any] = getattr(SCREAMING_SNAKE_CASE_, normalizer_state.pop("""type""" ) ) UpperCAmelCase_: Optional[Any] = do_lower_case UpperCAmelCase_: int = strip_accents UpperCAmelCase_: int = tokenize_chinese_chars UpperCAmelCase_: List[Any] = normalizer_class(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = do_lower_case def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]: UpperCAmelCase_: Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCAmelCase_: List[Any] = [self.sep_token_id] UpperCAmelCase_: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCAmelCase_: Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
82
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class lowerCAmelCase_ ( UpperCAmelCase__ ): def __init__( self ) -> List[Any]: self.test() def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = 0 _lowerCAmelCase = False while not completed: if counter == 1: self.reset() _lowerCAmelCase = self.advance() if not self.does_advance(_a ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.update(_a ) counter += 1 if counter > 10000: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def _snake_case ( self ) -> List[Any]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _snake_case ( self , _lowerCAmelCase ) -> Tuple: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _snake_case ( self , _lowerCAmelCase ) -> List[str]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _snake_case ( self ) -> Tuple: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _snake_case ( self ) -> Dict: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def _snake_case ( self , _lowerCAmelCase=False ) -> Tuple: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCAmelCase_ ( UpperCAmelCase__ ): def __init__( self , _lowerCAmelCase ) -> List[str]: super(_a , self ).__init__() if not isinstance(_a , _a ) or len(_a ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_a , _a ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) _lowerCAmelCase = token_ids _lowerCAmelCase = len(self.token_ids ) _lowerCAmelCase = -1 # the index of the currently fulfilled step _lowerCAmelCase = False def _snake_case ( self ) -> List[Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def _snake_case ( self , _lowerCAmelCase ) -> Tuple: if not isinstance(_a , _a ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_a )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def _snake_case ( self , _lowerCAmelCase ) -> Dict: if not isinstance(_a , _a ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_a )}''' ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False if self.does_advance(_a ): self.fulfilled_idx += 1 _lowerCAmelCase = True if self.fulfilled_idx == (self.seqlen - 1): _lowerCAmelCase = True _lowerCAmelCase = completed else: # failed to make progress. _lowerCAmelCase = True self.reset() return stepped, completed, reset def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = False _lowerCAmelCase = 0 def _snake_case ( self ) -> int: return self.seqlen - (self.fulfilled_idx + 1) def _snake_case ( self , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = PhrasalConstraint(self.token_ids ) if stateful: _lowerCAmelCase = self.seqlen _lowerCAmelCase = self.fulfilled_idx _lowerCAmelCase = self.completed return new_constraint class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=True ) -> Dict: _lowerCAmelCase = max([len(_a ) for one in nested_token_ids] ) _lowerCAmelCase = {} for token_ids in nested_token_ids: _lowerCAmelCase = root for tidx, token_id in enumerate(_a ): if token_id not in level: _lowerCAmelCase = {} _lowerCAmelCase = level[token_id] if no_subsets and self.has_subsets(_a , _a ): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" f''' {nested_token_ids}.''' ) _lowerCAmelCase = root def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = self.trie for current_token in current_seq: _lowerCAmelCase = start[current_token] _lowerCAmelCase = list(start.keys() ) return next_tokens def _snake_case ( self , _lowerCAmelCase ) -> Tuple: _lowerCAmelCase = self.next_tokens(_a ) return len(_a ) == 0 def _snake_case ( self , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = list(root.values() ) if len(_a ) == 0: return 1 else: return sum([self.count_leaves(_a ) for nn in next_nodes] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = self.count_leaves(_a ) return len(_a ) != leaf_count class lowerCAmelCase_ ( UpperCAmelCase__ ): def __init__( self , _lowerCAmelCase ) -> Tuple: super(_a , self ).__init__() if not isinstance(_a , _a ) or len(_a ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_a , _a ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_a , _a ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) _lowerCAmelCase = DisjunctiveTrie(_a ) _lowerCAmelCase = nested_token_ids _lowerCAmelCase = self.trie.max_height _lowerCAmelCase = [] _lowerCAmelCase = False def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.trie.next_tokens(self.current_seq ) if len(_a ) == 0: return None else: return token_list def _snake_case ( self , _lowerCAmelCase ) -> Tuple: if not isinstance(_a , _a ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_a )}''' ) _lowerCAmelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def _snake_case ( self , _lowerCAmelCase ) -> str: if not isinstance(_a , _a ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_a )}''' ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False if self.does_advance(_a ): self.current_seq.append(_a ) _lowerCAmelCase = True else: _lowerCAmelCase = True self.reset() _lowerCAmelCase = self.trie.reached_leaf(self.current_seq ) _lowerCAmelCase = completed return stepped, completed, reset def _snake_case ( self ) -> int: _lowerCAmelCase = False _lowerCAmelCase = [] def _snake_case ( self ) -> Union[str, Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def _snake_case ( self , _lowerCAmelCase=False ) -> str: _lowerCAmelCase = DisjunctiveConstraint(self.token_ids ) if stateful: _lowerCAmelCase = self.seqlen _lowerCAmelCase = self.current_seq _lowerCAmelCase = self.completed return new_constraint class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = constraints # max # of steps required to fulfill a given constraint _lowerCAmelCase = max([c.seqlen for c in constraints] ) _lowerCAmelCase = len(_a ) _lowerCAmelCase = False self.init_state() def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = [] _lowerCAmelCase = None _lowerCAmelCase = [constraint.copy(stateful=_a ) for constraint in self.constraints] def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _lowerCAmelCase = constraint.advance() if isinstance(_a , _a ): token_list.append(_a ) elif isinstance(_a , _a ): token_list.extend(_a ) else: _lowerCAmelCase = self.inprogress_constraint.advance() if isinstance(_a , _a ): token_list.append(_a ) elif isinstance(_a , _a ): token_list.extend(_a ) if len(_a ) == 0: return None else: return token_list def _snake_case ( self , _lowerCAmelCase ) -> int: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _lowerCAmelCase , _lowerCAmelCase = self.add(_a ) # the entire list of constraints are fulfilled if self.completed: break def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]: if not isinstance(_a , _a ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) _lowerCAmelCase , _lowerCAmelCase = False, False if self.completed: _lowerCAmelCase = True _lowerCAmelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.inprogress_constraint.update(_a ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_a ) ) _lowerCAmelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _lowerCAmelCase = None if len(self.pending_constraints ) == 0: # we're done! _lowerCAmelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_a ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = pending_constraint.update(_a ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(_a ) _lowerCAmelCase = None if not complete and stepped: _lowerCAmelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _lowerCAmelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _lowerCAmelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def _snake_case ( self , _lowerCAmelCase=True ) -> Union[str, Any]: _lowerCAmelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _lowerCAmelCase = [ constraint.copy(stateful=_a ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _lowerCAmelCase = self.inprogress_constraint.copy(stateful=_a ) _lowerCAmelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
158
"""simple docstring""" from typing import Any def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> list: _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCamelCase = {} lowerCamelCase = {} for state in states_space: lowerCamelCase = observations_space[0] lowerCamelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__ ) ): lowerCamelCase = observations_space[o] lowerCamelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase = """""" lowerCamelCase = -1 for k_state in states_space: lowerCamelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase = probability lowerCamelCase = k_state # Update probabilities and pointers dicts lowerCamelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase = arg_max # The final observation lowerCamelCase = observations_space[len(snake_case__ ) - 1] # argmax for given final observation lowerCamelCase = """""" lowerCamelCase = -1 for k_state in states_space: lowerCamelCase = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase = probability lowerCamelCase = k_state lowerCamelCase = arg_max # Process pointers backwards lowerCamelCase = last_state lowerCamelCase = [] for o in range(len(snake_case__ ) - 1 , -1 , -1 ): result.append(snake_case__ ) lowerCamelCase = pointers[previous, observations_space[o]] result.reverse() return result def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> None: _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__ ) _validate_dicts( snake_case__ , snake_case__ , snake_case__ ) def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def a__ ( snake_case__ , snake_case__ ) -> None: _validate_list(snake_case__ , """observations_space""" ) _validate_list(snake_case__ , """states_space""" ) def a__ ( snake_case__ , snake_case__ ) -> None: if not isinstance(_object , snake_case__ ): lowerCamelCase = F'{var_name} must be a list' raise ValueError(snake_case__ ) else: for x in _object: if not isinstance(snake_case__ , snake_case__ ): lowerCamelCase = F'{var_name} must be a list of strings' raise ValueError(snake_case__ ) def a__ ( snake_case__ , snake_case__ , snake_case__ , ) -> None: _validate_dict(snake_case__ , """initial_probabilities""" , snake_case__ ) _validate_nested_dict(snake_case__ , """transition_probabilities""" ) _validate_nested_dict(snake_case__ , """emission_probabilities""" ) def a__ ( snake_case__ , snake_case__ ) -> None: _validate_dict(_object , snake_case__ , snake_case__ ) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False ) -> None: if not isinstance(_object , snake_case__ ): lowerCamelCase = F'{var_name} must be a dict' raise ValueError(snake_case__ ) if not all(isinstance(snake_case__ , snake_case__ ) for x in _object ): lowerCamelCase = F'{var_name} all keys must be strings' raise ValueError(snake_case__ ) if not all(isinstance(snake_case__ , snake_case__ ) for x in _object.values() ): lowerCamelCase = """nested dictionary """ if nested else """""" lowerCamelCase = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(snake_case__ ) if __name__ == "__main__": from doctest import testmod testmod()
291
0
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _a ( _lowercase): def __init__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int]=None , _SCREAMING_SNAKE_CASE : int=True , _SCREAMING_SNAKE_CASE : Optional[int]=None , **_SCREAMING_SNAKE_CASE : Tuple )-> List[Any]: lowerCAmelCase__ : int = parent lowerCAmelCase__ : Optional[int] = config_class lowerCAmelCase__ : Tuple = has_text_modality lowerCAmelCase__ : Tuple = kwargs lowerCAmelCase__ : Dict = common_properties def UpperCAmelCase__( self : Any )-> int: lowerCAmelCase__ : Union[str, Any] = self.config_class(**self.inputs_dict ) lowerCAmelCase__ : Any = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , msg=F'`{prop}` does not exist' ) # Test that config has the common properties as setter for idx, name in enumerate(_SCREAMING_SNAKE_CASE ): try: setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.parent.assertEqual( getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , msg=F'`{name} value {idx} expected, but was {getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_SCREAMING_SNAKE_CASE ): try: lowerCAmelCase__ : str = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , msg=F'`{name} value {idx} expected, but was {getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase__( self : List[Any] )-> Dict: lowerCAmelCase__ : List[str] = self.config_class(**self.inputs_dict ) lowerCAmelCase__ : Optional[int] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[str] )-> Union[str, Any]: lowerCAmelCase__ : int = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Optional[Any] = os.path.join(_SCREAMING_SNAKE_CASE , '''config.json''' ) config_first.to_json_file(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = self.config_class.from_json_file(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ : List[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = self.config_class.from_pretrained(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase__( self : Any )-> int: lowerCAmelCase__ : Tuple = self.config_class(**self.inputs_dict ) lowerCAmelCase__ : str = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) config_first.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = self.config_class.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase__( self : Union[str, Any] )-> Union[str, Any]: lowerCAmelCase__ : List[str] = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) lowerCAmelCase__ : Any = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase__( self : Optional[Any] )-> str: if self.config_class.is_composition: return lowerCAmelCase__ : Dict = self.config_class() self.parent.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any )-> Dict: lowerCAmelCase__ : Dict = copy.deepcopy(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = self.config_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) != value: wrong_values.append((key, getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), value) ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase__ : Union[str, Any] = '''\n'''.join([F'- {v[0]}: got {v[1]} instead of {v[2]}' for v in wrong_values] ) raise ValueError(F'The following keys were not properly set in the config:\n{errors}' ) def UpperCAmelCase__( self : Union[str, Any] )-> Tuple: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
211
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCamelCase = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''BeitFeatureExtractor'''] lowerCamelCase = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
211
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline snake_case_ : str = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") snake_case_ : Tuple = parser.parse_args() snake_case_ : Dict = "cpu" snake_case_ : Any = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" snake_case_ : Union[str, Any] = "path-to-your-trained-model" snake_case_ : Tuple = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: snake_case_ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) snake_case_ : Dict = pipe.to(device) # to channels last snake_case_ : List[Any] = pipe.unet.to(memory_format=torch.channels_last) snake_case_ : List[Any] = pipe.vae.to(memory_format=torch.channels_last) snake_case_ : Tuple = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: snake_case_ : Union[str, Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex snake_case_ : List[Any] = torch.randn(2, 4, 64, 64) snake_case_ : int = torch.rand(1) * 999 snake_case_ : List[Any] = torch.randn(2, 77, 768) snake_case_ : Optional[Any] = (sample, timestep, encoder_hidden_status) try: snake_case_ : Tuple = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: snake_case_ : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) snake_case_ : Tuple = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) snake_case_ : Dict = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: snake_case_ : Optional[int] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute snake_case_ : str = 666 snake_case_ : List[Any] = torch.Generator(device).manual_seed(seed) snake_case_ : List[str] = {"generator": generator} if args.steps is not None: snake_case_ : List[str] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): snake_case_ : Optional[Any] = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
51
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any]=13 ,_snake_case : Any=32 ,_snake_case : int=2 ,_snake_case : str=3 ,_snake_case : Optional[Any]=16 ,_snake_case : List[Any]=[1, 2, 1] ,_snake_case : Dict=[2, 2, 4] ,_snake_case : List[Any]=2 ,_snake_case : Any=2.0 ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=0.0 ,_snake_case : Union[str, Any]=0.0 ,_snake_case : str=0.1 ,_snake_case : List[Any]="gelu" ,_snake_case : Tuple=False ,_snake_case : Optional[int]=True ,_snake_case : str=0.02 ,_snake_case : List[str]=1e-5 ,_snake_case : int=True ,_snake_case : Dict=None ,_snake_case : str=True ,_snake_case : List[Any]=10 ,_snake_case : Any=8 ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = parent lowercase__ : Any = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Dict = patch_size lowercase__ : int = num_channels lowercase__ : Any = embed_dim lowercase__ : int = depths lowercase__ : Dict = num_heads lowercase__ : List[Any] = window_size lowercase__ : int = mlp_ratio lowercase__ : Optional[int] = qkv_bias lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Dict = drop_path_rate lowercase__ : int = hidden_act lowercase__ : Tuple = use_absolute_embeddings lowercase__ : Tuple = patch_norm lowercase__ : Tuple = layer_norm_eps lowercase__ : Optional[Any] = initializer_range lowercase__ : int = is_training lowercase__ : Optional[int] = scope lowercase__ : str = use_labels lowercase__ : Dict = type_sequence_label_size lowercase__ : Union[str, Any] = encoder_stride def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) lowercase__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ : Optional[int] = 1 lowercase__ : List[Any] = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : str ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Tuple = self.type_sequence_label_size lowercase__ : Dict = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Any = False def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = SwinvaModelTester(self ) lowercase__ : List[str] = ConfigTester(self ,config_class=_snake_case ,embed_dim=37 ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = True for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Dict = outputs.attentions lowercase__ : Any = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ) ,_snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : List[Any] = True lowercase__ : Optional[Any] = config.window_size**2 lowercase__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) lowercase__ : Optional[Any] = len(_snake_case ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : Tuple = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) if hasattr(self.model_tester ,'''num_hidden_states_types''' ): lowercase__ : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase__ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(_snake_case ) ) lowercase__ : Optional[int] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : List[str] ,_snake_case : Optional[int] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) ,_snake_case ) # Swinv2 has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowercase__ : Tuple = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = reshaped_hidden_states[0].shape lowercase__ : int = ( reshaped_hidden_states[0].view(_snake_case ,_snake_case ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _snake_case ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Dict = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits lowercase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Dict = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) )
16
0
from ..utils import DummyObject, requires_backends class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['transformers', 'torch', 'note_seq'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
213
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class A__ ( enum.Enum ): """simple docstring""" __magic_name__ = 0 __magic_name__ = 1 @add_end_docstrings(snake_case__ ) class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'generated' def __init__( self , *__snake_case , **__snake_case ): super().__init__(*__snake_case , **__snake_case ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def a_ ( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case , ): snake_case = {} if truncation is not None: snake_case = truncation snake_case = generate_kwargs snake_case = {} if return_tensors is not None and return_type is None: snake_case = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case = return_type if clean_up_tokenization_spaces is not None: snake_case = clean_up_tokenization_spaces if stop_sequence is not None: snake_case = self.tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) if len(__snake_case ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) snake_case = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a_ ( self , __snake_case , __snake_case , __snake_case ): return True def a_ ( self , *__snake_case , __snake_case ): snake_case = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , __snake_case ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) snake_case = ([prefix + arg for arg in args[0]],) snake_case = True elif isinstance(args[0] , __snake_case ): snake_case = (prefix + args[0],) snake_case = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) snake_case = self.tokenizer(*__snake_case , padding=__snake_case , truncation=__snake_case , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *__snake_case , **__snake_case ): snake_case = super().__call__(*__snake_case , **__snake_case ) if ( isinstance(args[0] , __snake_case ) and all(isinstance(__snake_case , __snake_case ) for el in args[0] ) and all(len(__snake_case ) == 1 for res in result ) ): return [res[0] for res in result] return result def a_ ( self , __snake_case , __snake_case=TruncationStrategy.DO_NOT_TRUNCATE , **__snake_case ): snake_case = self._parse_and_tokenize(__snake_case , truncation=__snake_case , **__snake_case ) return inputs def a_ ( self , __snake_case , **__snake_case ): if self.framework == "pt": snake_case , snake_case = model_inputs['''input_ids'''].shape elif self.framework == "tf": snake_case , snake_case = tf.shape(model_inputs['''input_ids'''] ).numpy() snake_case = generate_kwargs.get('''min_length''' , self.model.config.min_length ) snake_case = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(__snake_case , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) snake_case = self.model.generate(**__snake_case , **__snake_case ) snake_case = output_ids.shape[0] if self.framework == "pt": snake_case = output_ids.reshape(__snake_case , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case = tf.reshape(__snake_case , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def a_ ( self , __snake_case , __snake_case=ReturnType.TEXT , __snake_case=False ): snake_case = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: snake_case = { F'''{self.return_name}_text''': self.tokenizer.decode( __snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case , ) } records.append(__snake_case ) return records @add_end_docstrings(snake_case__ ) class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'summary' def __call__( self , *__snake_case , **__snake_case ): return super().__call__(*__snake_case , **__snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case ): if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(snake_case__ ) class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'translation' def a_ ( self , __snake_case , __snake_case , __snake_case ): if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def a_ ( self , *__snake_case , __snake_case=TruncationStrategy.DO_NOT_TRUNCATE , __snake_case=None , __snake_case=None ): if getattr(self.tokenizer , '''_build_translation_inputs''' , __snake_case ): return self.tokenizer._build_translation_inputs( *__snake_case , return_tensors=self.framework , truncation=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case ) else: return super()._parse_and_tokenize(*__snake_case , truncation=__snake_case ) def a_ ( self , __snake_case=None , __snake_case=None , **__snake_case ): snake_case , snake_case , snake_case = super()._sanitize_parameters(**__snake_case ) if src_lang is not None: snake_case = src_lang if tgt_lang is not None: snake_case = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case = kwargs.get('''task''' , self.task ) snake_case = task.split('''_''' ) if task and len(__snake_case ) == 4: # translation, XX, to YY snake_case = items[1] snake_case = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *__snake_case , **__snake_case ): return super().__call__(*__snake_case , **__snake_case )
213
1
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def A__ ( UpperCAmelCase_ ): for param in module.parameters(): _UpperCamelCase : Dict = False def A__ ( ): _UpperCamelCase : Dict = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCamelCase : Tuple = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Optional[Any] = plt.imshow(UpperCAmelCase_ ) fig.axes.get_xaxis().set_visible(UpperCAmelCase_ ) fig.axes.get_yaxis().set_visible(UpperCAmelCase_ ) plt.show() def A__ ( ): _UpperCamelCase : int = datetime.now() _UpperCamelCase : Tuple = current_time.strftime('%H:%M:%S' ) return timestamp
83
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Any: _lowercase =str(id_ ) _lowercase =None _lowercase =None _lowercase =[] _lowercase ={} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> List[str]: return self.key < other.key def __repr__(self ) -> str: return self.id def __A (self , UpperCAmelCase ) -> Dict: self.neighbors.append(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =weight def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" _lowercase =[] for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =graph[:] while q: _lowercase =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Iterator[tuple]: """simple docstring""" for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =list(__snake_case ) hq.heapify(__snake_case ) while h: _lowercase =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer snake_case : Tuple = logging.get_logger(__name__) snake_case : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} snake_case : Any = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } snake_case : str = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } class _snake_case ( snake_case ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ['input_ids', 'attention_mask'] UpperCamelCase__ = RobertaTokenizer def __init__( self , _a=None , _a=None , _a=None , _a="replace" , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=False , _a=True , **_a , ): super().__init__( _a , _a , tokenizer_file=_a , errors=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , trim_offsets=_a , **_a , ) __magic_name__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _a ) != add_prefix_space: __magic_name__ : Any = getattr(_a , pre_tok_state.pop("type" ) ) __magic_name__ : str = add_prefix_space __magic_name__ : List[Any] = pre_tok_class(**_a ) __magic_name__ : List[Any] = add_prefix_space __magic_name__ : List[str] = "post_processor" __magic_name__ : List[Any] = getattr(self.backend_tokenizer , _a , _a ) if tokenizer_component_instance: __magic_name__ : Optional[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __magic_name__ : Union[str, Any] = tuple(state["sep"] ) if "cls" in state: __magic_name__ : Any = tuple(state["cls"] ) __magic_name__ : Dict = False if state.get("add_prefix_space" , _a ) != add_prefix_space: __magic_name__ : str = add_prefix_space __magic_name__ : int = True if state.get("trim_offsets" , _a ) != trim_offsets: __magic_name__ : Dict = trim_offsets __magic_name__ : Optional[int] = True if changes_to_apply: __magic_name__ : List[str] = getattr(_a , state.pop("type" ) ) __magic_name__ : List[Any] = component_class(**_a ) setattr(self.backend_tokenizer , _a , _a ) @property def SCREAMING_SNAKE_CASE ( self ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : List[str] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else value __magic_name__ : List[str] = value def SCREAMING_SNAKE_CASE ( self , *_a , **_a ): __magic_name__ : Any = kwargs.get("is_split_into_words" , _a ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_a , **_a ) def SCREAMING_SNAKE_CASE ( self , *_a , **_a ): __magic_name__ : List[str] = kwargs.get("is_split_into_words" , _a ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : Optional[int] = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def SCREAMING_SNAKE_CASE ( self , _a , _a=None ): __magic_name__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): __magic_name__ : Optional[int] = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
41
import numpy class _snake_case : def __init__( self , _a , _a ): __magic_name__ : Optional[Any] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __magic_name__ : Any = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __magic_name__ : List[str] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __magic_name__ : Any = numpy.random.rand(3 , 1 ) # Real output values provided. __magic_name__ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __magic_name__ : Tuple = numpy.zeros(output_array.shape ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __magic_name__ : int = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __magic_name__ : Tuple = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __magic_name__ : Optional[int] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __magic_name__ : int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): for iteration in range(1 , iterations + 1 ): __magic_name__ : Any = self.feedforward() self.back_propagation() if give_loss: __magic_name__ : int = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'''Iteration {iteration} Loss: {loss}''' ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : str = input_arr __magic_name__ : Optional[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __magic_name__ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __magic_name__ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCAmelCase_ ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowerCAmelCase_ ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' __magic_name__ : Tuple = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __magic_name__ : List[str] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __magic_name__ : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
41
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCamelCase ( snake_case__): """simple docstring""" @slow @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) _UpperCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) _UpperCAmelCase = bertabert.config.encoder.vocab_size _UpperCAmelCase = tokenizer.sep_token_id _UpperCAmelCase = tokenizer.cls_token_id _UpperCAmelCase = 128 _UpperCAmelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) _UpperCAmelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) _UpperCAmelCase = train_dataset.select(range(32 ) ) _UpperCAmelCase = val_dataset.select(range(16 ) ) _UpperCAmelCase = 4 def _map_to_encoder_decoder_inputs(UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase = tokenizer(batch['article'] , padding='max_length' , truncation=UpperCAmelCase , max_length=512 ) _UpperCAmelCase = tokenizer(batch['highlights'] , padding='max_length' , truncation=UpperCAmelCase , max_length=128 ) _UpperCAmelCase = inputs.input_ids _UpperCAmelCase = inputs.attention_mask _UpperCAmelCase = outputs.input_ids _UpperCAmelCase = outputs.input_ids.copy() _UpperCAmelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] _UpperCAmelCase = outputs.attention_mask assert all(len(UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(UpperCAmelCase ): _UpperCAmelCase = pred.label_ids _UpperCAmelCase = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) _UpperCAmelCase = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) _UpperCAmelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCAmelCase ) )] ) / len(UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase , batch_size=UpperCAmelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset _UpperCAmelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase , batch_size=UpperCAmelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = SeqaSeqTrainingArguments( output_dir=UpperCAmelCase , per_device_train_batch_size=UpperCAmelCase , per_device_eval_batch_size=UpperCAmelCase , predict_with_generate=UpperCAmelCase , evaluation_strategy='steps' , do_train=UpperCAmelCase , do_eval=UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _UpperCAmelCase = SeqaSeqTrainer( model=UpperCAmelCase , args=UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , tokenizer=UpperCAmelCase , ) # start training trainer.train()
39
'''simple docstring''' def __UpperCAmelCase ( a_: str, a_: str ): if len(a_ ) != len(a_ ): raise ValueError("String lengths must match!" ) _UpperCAmelCase : Dict = 0 for chara, chara in zip(a_, a_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
145
0
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: # Load configuration defined in the metadata file with open(_lowerCAmelCase ) as metadata_file: UpperCamelCase : Optional[int] = json.load(_lowerCAmelCase ) UpperCamelCase : Optional[int] = LukeConfig(use_entity_aware_attention=_lowerCAmelCase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path UpperCamelCase : Dict = torch.load(_lowerCAmelCase , map_location="cpu" ) # Load the entity vocab file UpperCamelCase : List[str] = load_entity_vocab(_lowerCAmelCase ) UpperCamelCase : Any = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase : Any = AddedToken("<ent>" , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) UpperCamelCase : Optional[int] = AddedToken("<ent2>" , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : List[Any] = LukeTokenizer.from_pretrained(_lowerCAmelCase ) # Initialize the embeddings of the special tokens UpperCamelCase : Dict = state_dict["embeddings.word_embeddings.weight"] UpperCamelCase : Any = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) UpperCamelCase : List[str] = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) UpperCamelCase : Dict = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase : str = F"""encoder.layer.{layer_index}.attention.self.""" UpperCamelCase : Tuple = state_dict[prefix + matrix_name] UpperCamelCase : Optional[int] = state_dict[prefix + matrix_name] UpperCamelCase : List[str] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase : int = state_dict["entity_embeddings.entity_embeddings.weight"] UpperCamelCase : List[Any] = entity_emb[entity_vocab["[MASK]"]] UpperCamelCase : Optional[int] = LukeModel(config=_lowerCAmelCase ).eval() UpperCamelCase , UpperCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) if not (len(_lowerCAmelCase ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F"""Missing keys {", ".join(_lowerCAmelCase )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F""" {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}""" ) # Check outputs UpperCamelCase : List[str] = LukeTokenizer.from_pretrained(_lowerCAmelCase , task="entity_classification" ) UpperCamelCase : List[Any] = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) UpperCamelCase : Any = (39, 42) UpperCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , entity_spans=[span] , add_prefix_space=_lowerCAmelCase , return_tensors="pt" ) UpperCamelCase : Any = model(**_lowerCAmelCase ) # Verify word hidden states if model_size == "large": UpperCamelCase : Optional[Any] = torch.Size((1, 42, 1024) ) UpperCamelCase : Optional[int] = torch.tensor( [[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]] ) else: # base UpperCamelCase : Any = torch.Size((1, 42, 768) ) UpperCamelCase : List[str] = torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": UpperCamelCase : List[Any] = torch.Size((1, 1, 1024) ) UpperCamelCase : Optional[int] = torch.tensor([[0.0_466, -0.0_106, -0.0_179]] ) else: # base UpperCamelCase : Optional[Any] = torch.Size((1, 1, 768) ) UpperCamelCase : Tuple = torch.tensor([[0.1_457, 0.1_044, 0.0_174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(_lowerCAmelCase ) ) model.save_pretrained(_lowerCAmelCase ) def A_ ( _lowerCAmelCase ) -> Any: UpperCamelCase : Tuple = {} with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: for index, line in enumerate(_lowerCAmelCase ): UpperCamelCase , UpperCamelCase : Optional[Any] = line.rstrip().split("\t" ) UpperCamelCase : Optional[Any] = index return entity_vocab if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
140
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __lowerCamelCase : Dict = logging.get_logger("""transformers.models.speecht5""") def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: hf_model.apply_weight_norm() UpperCamelCase : int = checkpoint["input_conv.weight_g"] UpperCamelCase : Dict = checkpoint["input_conv.weight_v"] UpperCamelCase : List[Any] = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): UpperCamelCase : Any = checkpoint[F"""upsamples.{i}.1.weight_g"""] UpperCamelCase : List[Any] = checkpoint[F"""upsamples.{i}.1.weight_v"""] UpperCamelCase : Optional[Any] = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase : Union[str, Any] = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] UpperCamelCase : int = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] UpperCamelCase : str = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] UpperCamelCase : Union[str, Any] = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] UpperCamelCase : int = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] UpperCamelCase : Optional[Any] = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] UpperCamelCase : Tuple = checkpoint["output_conv.1.weight_g"] UpperCamelCase : Tuple = checkpoint["output_conv.1.weight_v"] UpperCamelCase : int = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , ) -> Tuple: if config_path is not None: UpperCamelCase : List[Any] = SpeechTaHifiGanConfig.from_pretrained(_lowerCAmelCase ) else: UpperCamelCase : Optional[int] = SpeechTaHifiGanConfig() UpperCamelCase : List[str] = SpeechTaHifiGan(_lowerCAmelCase ) UpperCamelCase : str = torch.load(_lowerCAmelCase ) load_weights(orig_checkpoint["model"]["generator"] , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : List[Any] = np.load(_lowerCAmelCase ) UpperCamelCase : List[str] = stats[0].reshape(-1 ) UpperCamelCase : Tuple = stats[1].reshape(-1 ) UpperCamelCase : Any = torch.from_numpy(_lowerCAmelCase ).float() UpperCamelCase : Any = torch.from_numpy(_lowerCAmelCase ).float() model.save_pretrained(_lowerCAmelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __lowerCamelCase : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
140
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a__ : List[Any] = None a__ : Dict = logging.get_logger(__name__) a__ : Any = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} a__ : str = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } a__ : Any = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } a__ : int = '▁' class lowercase_ ( a__ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] __UpperCAmelCase = BarthezTokenizer def __init__( self , a=None , a=None , a="<s>" , a="</s>" , a="</s>" , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , **a , ): # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( a , tokenizer_file=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , **a , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = False if not self.vocab_file else True def __a ( self , a , a = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] UpperCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self , a , a = None ): UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self , a , a = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase__ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
80
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent a__ : Tuple = {'UserAgent': UserAgent().random} def _UpperCamelCase ( __A ) -> dict: '''simple docstring''' UpperCamelCase__ = script.contents[0] UpperCamelCase__ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase_ : def __init__( self , a ): UpperCamelCase__ = f'''https://www.instagram.com/{username}/''' UpperCamelCase__ = self.get_json() def __a ( self ): UpperCamelCase__ = requests.get(self.url , headers=a ).text UpperCamelCase__ = BeautifulSoup(a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def __a ( self ): return self.user_data["username"] @property def __a ( self ): return self.user_data["full_name"] @property def __a ( self ): return self.user_data["biography"] @property def __a ( self ): return self.user_data["business_email"] @property def __a ( self ): return self.user_data["external_url"] @property def __a ( self ): return self.user_data["edge_followed_by"]["count"] @property def __a ( self ): return self.user_data["edge_follow"]["count"] @property def __a ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __a ( self ): return self.user_data["profile_pic_url_hd"] @property def __a ( self ): return self.user_data["is_verified"] @property def __a ( self ): return self.user_data["is_private"] def _UpperCamelCase ( __A = "github" ) -> None: '''simple docstring''' import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase__ = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() a__ : Any = InstagramUser('github') print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
80
1
def a__ ( __UpperCamelCase ): if len(lowerCAmelCase__ ) <= 1: return [tuple(lowerCAmelCase__ )] SCREAMING_SNAKE_CASE_ = [] def generate(__UpperCamelCase , __UpperCamelCase ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCAmelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even SCREAMING_SNAKE_CASE_ = arr[k - 1], arr[i] else: # k is odd SCREAMING_SNAKE_CASE_ = arr[k - 1], arr[0] generate(k - 1 , lowerCAmelCase__ ) generate(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) return res if __name__ == "__main__": A : Dict = input("Enter numbers separated by a comma:\n").strip() A : Optional[Any] = [int(item) for item in user_input.split(",")] print(heaps(arr))
352
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : List[str] = logging.get_logger(__name__) A : int = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''blenderbot-small''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __magic_name__ : Dict=50_265 , __magic_name__ : str=512 , __magic_name__ : List[Any]=8 , __magic_name__ : Any=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Any=8 , __magic_name__ : Optional[int]=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[int]=True , __magic_name__ : Any=True , __magic_name__ : Dict="gelu" , __magic_name__ : Tuple=512 , __magic_name__ : List[str]=0.1 , __magic_name__ : List[Any]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : List[Any]=False , __magic_name__ : str=0 , __magic_name__ : Dict=1 , __magic_name__ : str=2 , __magic_name__ : Union[str, Any]=2 , **__magic_name__ : Optional[Any] , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , decoder_start_token_id=__magic_name__ , forced_eos_token_id=__magic_name__ , **__magic_name__ , ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ = {0: "batch"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super().outputs else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __A ( self : int , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Generate decoder inputs SCREAMING_SNAKE_CASE_ = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE_ = dict(**__magic_name__ , **__magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_ = common_inputs["decoder_input_ids"].shape[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = decoder_seq_length + 3 SCREAMING_SNAKE_CASE_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__magic_name__ , __magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ = min(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = max(__magic_name__ , __magic_name__ ) - min_num_layers SCREAMING_SNAKE_CASE_ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__magic_name__ ): common_inputs["past_key_values"].append( ( torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE_ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__magic_name__ , __magic_name__ ): common_inputs["past_key_values"].append((torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) ) return common_inputs def __A ( self : Union[str, Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ = seqlen + 2 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = common_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["attention_mask"], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(__magic_name__ ) ] return common_inputs def __A ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = tokenizer.num_special_tokens_to_add(__magic_name__ ) SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ = dict(tokenizer(__magic_name__ , return_tensors=__magic_name__ ) ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_causal_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : List[str] ) -> List[str]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super()._flatten_past_key_values_(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self )._flatten_past_key_values_( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
305
0
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def snake_case_ ( _lowerCAmelCase : Optional[Any] ) -> List[str]: UpperCAmelCase : int = FileLock(str(tmpdir / '''foo.lock''' ) ) UpperCAmelCase : int = FileLock(str(tmpdir / '''foo.lock''' ) ) UpperCAmelCase : Tuple = 0.0_1 with locka.acquire(): with pytest.raises(_lowerCAmelCase ): UpperCAmelCase : Tuple = time.time() locka.acquire(_lowerCAmelCase ) assert time.time() - _start > timeout def snake_case_ ( _lowerCAmelCase : Any ) -> List[Any]: UpperCAmelCase : Optional[int] = '''a''' * 1000 + '''.lock''' UpperCAmelCase : str = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(_lowerCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCAmelCase : int = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_lowerCAmelCase ): locka.acquire(0 )
23
from math import sqrt def A ( _SCREAMING_SNAKE_CASE = 100_0000 ) -> int: lowerCamelCase : int = 0 lowerCamelCase : int = 0 lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_SCREAMING_SNAKE_CASE ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
48
0
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def SCREAMING_SNAKE_CASE__( ) -> Dict: '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("--model_ckpt" , type=_UpperCamelCase , default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs" , type=_UpperCamelCase , default=5 ) parser.add_argument("--batch_size" , type=_UpperCamelCase , default=6 ) parser.add_argument("--gradient_accumulation_steps" , type=_UpperCamelCase , default=1 ) parser.add_argument("--freeze" , type=_UpperCamelCase , default=_UpperCamelCase ) parser.add_argument("--learning_rate" , type=_UpperCamelCase , default=5e-4 ) parser.add_argument("--seed" , type=_UpperCamelCase , default=0 ) parser.add_argument("--lr_scheduler_type" , type=_UpperCamelCase , default="cosine" ) parser.add_argument("--num_warmup_steps" , type=_UpperCamelCase , default=10 ) parser.add_argument("--weight_decay" , type=_UpperCamelCase , default=0.0_1 ) parser.add_argument("--output_dir" , type=_UpperCamelCase , default="./results" ) return parser.parse_args() __lowercase: Union[str, Any] = load("accuracy") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[int] ) -> Tuple: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = eval_pred UpperCamelCase__ = np.argmax(_UpperCamelCase , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=_UpperCamelCase ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : List[str], a_ : int ): """simple docstring""" super().__init__() UpperCamelCase__ = trainer def lowercase_ ( self : List[Any], a_ : Union[str, Any], a_ : List[str], a_ : int, **a_ : List[str] ): """simple docstring""" if control.should_evaluate: UpperCamelCase__ = deepcopy(a_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset, metric_key_prefix="train" ) return control_copy def SCREAMING_SNAKE_CASE__( ) -> int: '''simple docstring''' UpperCamelCase__ = get_args() set_seed(args.seed ) UpperCamelCase__ = load_dataset("codeparrot/codecomplex" , split="train" ) UpperCamelCase__ = dataset.train_test_split(test_size=0.2 ) UpperCamelCase__ = train_test["test"].train_test_split(test_size=0.5 ) UpperCamelCase__ = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) UpperCamelCase__ = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCamelCase__ = tokenizer.eos_token UpperCamelCase__ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) UpperCamelCase__ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): UpperCamelCase__ = False UpperCamelCase__ = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(_UpperCamelCase : Tuple ): UpperCamelCase__ = tokenizer(example["src"] , truncation=_UpperCamelCase , max_length=10_24 ) UpperCamelCase__ = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } UpperCamelCase__ = train_test_validation.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=train_test_validation["train"].column_names , ) UpperCamelCase__ = DataCollatorWithPadding(tokenizer=_UpperCamelCase ) UpperCamelCase__ = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.0_1 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , ) UpperCamelCase__ = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , compute_metrics=_UpperCamelCase , ) print("Training..." ) trainer.add_callback(CustomCallback(_UpperCamelCase ) ) trainer.train() if __name__ == "__main__": main()
357
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = CLIPTokenizer _lowerCamelCase : Dict = CLIPTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = False def lowercase_ ( self : Tuple ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowercase_ ( self : Optional[Any], **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : List[Any], a_ : Dict ): """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) @require_ftfy def lowercase_ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )), ) UpperCamelCase__ = f' {text}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )), ) def lowercase_ ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().test_tokenization_python_rust_equals() def lowercase_ ( self : List[str] ): """simple docstring""" pass
31
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 1_0, """max_num_jobs""": 1}, [range(1_0 )]), ({"""num_shards""": 1_0, """max_num_jobs""": 1_0}, [range(lowerCAmelCase__ , i + 1 ) for i in range(1_0 )]), ({"""num_shards""": 1, """max_num_jobs""": 1_0}, [range(1 )]), ({"""num_shards""": 1_0, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 1_0 )]), ({"""num_shards""": 3, """max_num_jobs""": 1_0}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: Optional[int] ): """simple docstring""" UpperCAmelCase_: Optional[Any] = _distribute_shards(**lowerCAmelCase__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 1_0, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: str , lowerCAmelCase__: str ): """simple docstring""" UpperCAmelCase_: Optional[int] = _split_gen_kwargs(lowerCAmelCase__ , lowerCAmelCase__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: Union[str, Any] ): """simple docstring""" if expected is RuntimeError: with pytest.raises(lowerCAmelCase__ ): _number_of_shards_in_gen_kwargs(lowerCAmelCase__ ) else: UpperCAmelCase_: List[str] = _number_of_shards_in_gen_kwargs(lowerCAmelCase__ ) assert out == expected
147
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _a ( unittest.TestCase ): def __snake_case (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __snake_case (self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_: Any = UNetaDModel( sample_size=(32, 64), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("""AttnDownBlock2D""", """DownBlock2D"""), up_block_types=("""UpBlock2D""", """AttnUpBlock2D"""), ) return model @property def __snake_case (self ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase_: Optional[int] = UNetaDConditionModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D"""), up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D"""), cross_attention_dim=10, ) return model @property def __snake_case (self ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase_: Optional[int] = AutoencoderKL( sample_size=(128, 64), in_channels=1, out_channels=1, latent_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D"""), up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D"""), ) UpperCAmelCase_: Optional[Any] = UNetaDModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("""AttnDownBlock2D""", """DownBlock2D"""), up_block_types=("""UpBlock2D""", """AttnUpBlock2D"""), ) return vqvae, unet @slow def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: str = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: str = Mel( x_res=self.dummy_unet.config.sample_size[1], y_res=self.dummy_unet.config.sample_size[0], ) UpperCAmelCase_: Tuple = DDPMScheduler() UpperCAmelCase_: List[Any] = AudioDiffusionPipeline(vqvae=SCREAMING_SNAKE_CASE_, unet=self.dummy_unet, mel=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase_: str = pipe(generator=SCREAMING_SNAKE_CASE_, steps=4 ) UpperCAmelCase_: Optional[Any] = output.audios[0] UpperCAmelCase_: Optional[int] = output.images[0] UpperCAmelCase_: Dict = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase_: Dict = pipe(generator=SCREAMING_SNAKE_CASE_, steps=4, return_dict=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCAmelCase_: Optional[Any] = np.frombuffer(image.tobytes(), dtype="""uint8""" )[:10] UpperCAmelCase_: List[Any] = np.frombuffer(image_from_tuple.tobytes(), dtype="""uint8""" )[:10] UpperCAmelCase_: Dict = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_: int = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1], y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0], ) UpperCAmelCase_: List[str] = DDIMScheduler() UpperCAmelCase_: int = self.dummy_vqvae_and_unet UpperCAmelCase_: Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_vqvae_and_unet[1], mel=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) UpperCAmelCase_: Dict = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCAmelCase_: List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase_: Dict = pipe(raw_audio=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, start_step=5, steps=10 ) UpperCAmelCase_: Any = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCAmelCase_: Union[str, Any] = np.frombuffer(image.tobytes(), dtype="""uint8""" )[:10] UpperCAmelCase_: Union[str, Any] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_: Union[str, Any] = self.dummy_unet_condition UpperCAmelCase_: Union[str, Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=SCREAMING_SNAKE_CASE_, mel=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) UpperCAmelCase_: List[str] = torch.rand((1, 1, 10) ) UpperCAmelCase_: Optional[int] = pipe(generator=SCREAMING_SNAKE_CASE_, encoding=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = output.images[0] UpperCAmelCase_: Any = np.frombuffer(image.tobytes(), dtype="""uint8""" )[:10] UpperCAmelCase_: Any = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _a ( unittest.TestCase ): def __snake_case (self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: str = torch_device UpperCAmelCase_: Any = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) UpperCAmelCase_: Dict = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase_: Union[str, Any] = pipe(generator=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = output.audios[0] UpperCAmelCase_: Optional[Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCAmelCase_: Optional[Any] = np.frombuffer(image.tobytes(), dtype="""uint8""" )[:10] UpperCAmelCase_: Any = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
147
1
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _UpperCAmelCase = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ) -> List[Any]: require_version(deps[pkg] , UpperCamelCase_ )
328
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a__ = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' a__ = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' a__ = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def __lowercase ( self , _a , _a , _a=None , _a=True , _a=False ) -> int: if rouge_types is None: _a : Dict = ["rouge1", "rouge2", "rougeL", "rougeLsum"] _a : List[str] = rouge_scorer.RougeScorer(rouge_types=_a , use_stemmer=_a ) if use_aggregator: _a : Any = scoring.BootstrapAggregator() else: _a : Tuple = [] for ref, pred in zip(_a , _a ): _a : Optional[int] = scorer.score(_a , _a ) if use_aggregator: aggregator.add_scores(_a ) else: scores.append(_a ) if use_aggregator: _a : Union[str, Any] = aggregator.aggregate() else: _a : Optional[Any] = {} for key in scores[0]: _a : Optional[Any] = [score[key] for score in scores] return result
235
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __A = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __A = [ord(letter) for letter in string.ascii_lowercase] __A = {ord(char) for char in VALID_CHARS} __A = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase_ ( _lowerCamelCase: list[int] , _lowerCamelCase: tuple[int, ...] ) -> str | None: '''simple docstring''' __lowerCamelCase : str = "" __lowerCamelCase : int __lowerCamelCase : int __lowerCamelCase : int for keychar, cipherchar in zip(cycle(_lowerCamelCase ) , _lowerCamelCase ): __lowerCamelCase : str = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_lowerCamelCase ) return decoded def lowercase_ ( _lowerCamelCase: list[int] ) -> list[str]: '''simple docstring''' __lowerCamelCase : list[str] = [] for key in product(_lowerCamelCase , repeat=3 ): __lowerCamelCase : Tuple = try_key(_lowerCamelCase , _lowerCamelCase ) if encoded is not None: possibles.append(_lowerCamelCase ) return possibles def lowercase_ ( _lowerCamelCase: list[str] , _lowerCamelCase: str ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def lowercase_ ( _lowerCamelCase: str = "p059_cipher.txt" ) -> int: '''simple docstring''' __lowerCamelCase : list[int] __lowerCamelCase : list[str] __lowerCamelCase : str __lowerCamelCase : str __lowerCamelCase : str = Path(_lowerCamelCase ).parent.joinpath(_lowerCamelCase ).read_text(encoding="utf-8" ) __lowerCamelCase : Any = [int(_lowerCamelCase ) for number in data.strip().split("," )] __lowerCamelCase : Any = filter_valid_chars(_lowerCamelCase ) for common_word in COMMON_WORDS: __lowerCamelCase : Dict = filter_common_word(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) == 1: break __lowerCamelCase : List[Any] = possibles[0] return sum(ord(_lowerCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
135
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( a_ , unittest.TestCase ): snake_case__ : Optional[Any] = KandinskyVaaImgaImgPipeline snake_case__ : int = ['''image_embeds''', '''negative_image_embeds''', '''image'''] snake_case__ : int = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] snake_case__ : Any = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] snake_case__ : Optional[Any] = False @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: return 3_2 @property def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: return 3_2 @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: return self.time_input_dim @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: return 1_0_0 @property def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: torch.manual_seed(0 ) a_ : Tuple = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } a_ : Optional[Any] = UNetaDConditionModel(**lowercase_ ) return model @property def SCREAMING_SNAKE_CASE ( self : str ) -> str: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: torch.manual_seed(0 ) a_ : int = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: a_ : Union[str, Any] = self.dummy_unet a_ : str = self.dummy_movq a_ : Any = { '''num_train_timesteps''': 1_0_0_0, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } a_ : List[str] = DDIMScheduler(**lowercase_ ) a_ : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 ) -> str: a_ : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) a_ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase_ ) # create init_image a_ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) a_ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] a_ : str = Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) if str(lowercase_ ).startswith('mps' ): a_ : int = torch.manual_seed(lowercase_ ) else: a_ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) a_ : str = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 1_0, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE ( self : Any ) -> str: a_ : Optional[Any] = '''cpu''' a_ : Any = self.get_dummy_components() a_ : Any = self.pipeline_class(**lowercase_ ) a_ : Union[str, Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) a_ : Union[str, Any] = pipe(**self.get_dummy_inputs(lowercase_ ) ) a_ : Dict = output.images a_ : Tuple = pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] a_ : Dict = image[0, -3:, -3:, -1] a_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a_ : str = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: a_ : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) a_ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) a_ : Optional[Any] = '''A red cartoon frog, 4k''' a_ : Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase_ ) a_ : List[Any] = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) a_ : List[Any] = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) a_ : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) a_ : Tuple = pipe_prior( lowercase_ , generator=lowercase_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() a_ : Optional[Any] = pipeline( image=lowercase_ , image_embeds=lowercase_ , negative_image_embeds=lowercase_ , generator=lowercase_ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='np' , ) a_ : int = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ )
358
import json import sys def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] , __A : List[str] ) -> Tuple: """simple docstring""" with open(__A , encoding='utf-8' ) as f: a_ : Union[str, Any] = json.load(__A ) a_ : Any = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(__A ): a_ : List[str] = results[benchmark_name] a_ : int = benchmark_name.split('/' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) a_ : Any = '| metric |' a_ : Optional[Any] = '|--------|' a_ : int = '| new / old (diff) |' for metric_name in sorted(__A ): a_ : List[Any] = benchmark_res[metric_name] a_ : int = metric_vals['new'] a_ : Union[str, Any] = metric_vals.get('old' , __A ) a_ : Optional[int] = metric_vals.get('diff' , __A ) a_ : str = F""" {new_val:f}""" if isinstance(__A , (int, float) ) else 'None' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(__A , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(__A , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(__A , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(__A ) ) if __name__ == "__main__": UpperCAmelCase_ : int = sys.argv[1] UpperCAmelCase_ : Any = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
120
0
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCamelCase__ = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' UpperCamelCase__ = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' UpperCamelCase__ = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def lowerCAmelCase_ ( __A, __A ) -> Dict: '''simple docstring''' return float((preds == labels).mean() ) def lowerCAmelCase_ ( __A, __A ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = simple_accuracy(__A, __A ) UpperCAmelCase__ = float(fa_score(y_true=__A, y_pred=__A ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( __A, __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = np.array(__A ) UpperCAmelCase__ = np.array(__A ) UpperCAmelCase__ = en_sentvecs.shape[0] # mean centering UpperCAmelCase__ = en_sentvecs - np.mean(__A, axis=0 ) UpperCAmelCase__ = in_sentvecs - np.mean(__A, axis=0 ) UpperCAmelCase__ = cdist(__A, __A, "cosine" ) UpperCAmelCase__ = np.array(range(__A ) ) UpperCAmelCase__ = sim.argsort(axis=1 )[:, :10] UpperCAmelCase__ = np.any(preds == actual[:, None], axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowercase_ (self : Optional[Any] ) -> List[str]: """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def lowercase_ (self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__UpperCAmelCase , __UpperCAmelCase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__UpperCAmelCase , __UpperCAmelCase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__UpperCAmelCase , __UpperCAmelCase )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
65
import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): if hor == 1_28: __lowerCAmelCase = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") __lowerCAmelCase = (32, 1_28, 2_56) __lowerCAmelCase = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: __lowerCAmelCase = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") __lowerCAmelCase = (32, 64, 1_28, 2_56) __lowerCAmelCase = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") __lowerCAmelCase = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) __lowerCAmelCase = model.state_dict() __lowerCAmelCase = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 6_55_36, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } __lowerCAmelCase = UNetaDModel(**SCREAMING_SNAKE_CASE_ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) __lowerCAmelCase = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowerCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE_ ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE_ ) torch.save(hf_value_function.state_dict() , F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a ( ): __lowerCAmelCase = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 1_28, 2_56), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 6_55_36, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } __lowerCAmelCase = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) __lowerCAmelCase = model __lowerCAmelCase = UNetaDModel(**SCREAMING_SNAKE_CASE_ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) __lowerCAmelCase = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowerCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE_ ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE_ ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
92
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'vocab_file': 'spiece.model'} lowerCamelCase_ = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowercase_ ( A ): """simple docstring""" def __init__( self : str , __lowerCamelCase : int , __lowerCamelCase : Any=False , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Tuple="</s>" , __lowerCamelCase : int="<unk>" , __lowerCamelCase : Optional[int]="<sep>" , __lowerCamelCase : Optional[int]="<pad>" , __lowerCamelCase : Any="<cls>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Dict=["<eop>", "<eod>"] , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Optional[Any] , ): """simple docstring""" _SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token _SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = do_lower_case _SCREAMING_SNAKE_CASE = remove_space _SCREAMING_SNAKE_CASE = keep_accents _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) _SCREAMING_SNAKE_CASE = jieba _SCREAMING_SNAKE_CASE = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowerCAmelCase_ ( self : int ): """simple docstring""" return len(self.sp_model ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.__dict__.copy() _SCREAMING_SNAKE_CASE = None return state def __setstate__( self : Dict , __lowerCamelCase : str ): """simple docstring""" _SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self : str , __lowerCamelCase : int ): """simple docstring""" if self.remove_space: _SCREAMING_SNAKE_CASE = " ".join(inputs.strip().split() ) else: _SCREAMING_SNAKE_CASE = inputs _SCREAMING_SNAKE_CASE = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _SCREAMING_SNAKE_CASE = unicodedata.normalize("NFKD" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: _SCREAMING_SNAKE_CASE = outputs.lower() return outputs def lowerCAmelCase_ ( self : str , __lowerCamelCase : str ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.preprocess_text(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _SCREAMING_SNAKE_CASE = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _SCREAMING_SNAKE_CASE = cur_pieces[1:] else: _SCREAMING_SNAKE_CASE = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def lowerCAmelCase_ ( self : Dict , __lowerCamelCase : Any ): """simple docstring""" return self.sp_model.PieceToId(__lowerCamelCase ) def lowerCAmelCase_ ( self : Dict , __lowerCamelCase : str ): """simple docstring""" return self.sp_model.IdToPiece(__lowerCamelCase ) def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ).replace(__lowerCamelCase , " " ).strip() return out_string def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase_ ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1, 1] return ([0] * len(__lowerCamelCase )) + [1, 1] def lowerCAmelCase_ ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase_ ( self : str , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def lowerCAmelCase_ ( self : int , *__lowerCamelCase : Any , **__lowerCamelCase : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = super()._decode(*__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
351
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : list ) -> list: if len(__A ) <= 1: return lst _SCREAMING_SNAKE_CASE = 1 while i < len(__A ): if lst[i - 1] <= lst[i]: i += 1 else: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = lst[i], lst[i - 1] i -= 1 if i == 0: _SCREAMING_SNAKE_CASE = 1 return lst if __name__ == "__main__": lowerCamelCase_ = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase_ = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
111
0
import random def lowerCAmelCase_ ( __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = a[left_index] UpperCAmelCase__ = left_index + 1 for j in range(left_index + 1, __A ): if a[j] < pivot: UpperCAmelCase__ , UpperCAmelCase__ = a[i], a[j] i += 1 UpperCAmelCase__ , UpperCAmelCase__ = a[i - 1], a[left_index] return i - 1 def lowerCAmelCase_ ( __A, __A, __A ) -> Tuple: '''simple docstring''' if left < right: UpperCAmelCase__ = random.randint(__A, right - 1 ) UpperCAmelCase__ , UpperCAmelCase__ = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCAmelCase__ = partition(__A, __A, __A ) quick_sort_random( __A, __A, __A ) # recursive quicksort to the left of the pivot point quick_sort_random( __A, pivot_index + 1, __A ) # recursive quicksort to the right of the pivot point def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' UpperCAmelCase__ = input("Enter numbers separated by a comma:\n" ).strip() UpperCAmelCase__ = [int(__A ) for item in user_input.split("," )] quick_sort_random(__A, 0, len(__A ) ) print(__A ) if __name__ == "__main__": main()
65
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[torch.FloatTensor] = None __UpperCAmelCase : torch.FloatTensor = None __UpperCAmelCase : Optional[Tuple[torch.FloatTensor]] = None __UpperCAmelCase : Optional[Tuple[torch.FloatTensor]] = None class A ( UpperCAmelCase_ ): def __init__(self : Union[str, Any] , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : str=0 , __UpperCAmelCase : str=2 , __UpperCAmelCase : Union[str, Any]=5_1_2 , __UpperCAmelCase : List[str]="cls" , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : str=True , **__UpperCAmelCase : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase__ = project_dim UpperCAmelCase__ = pooler_fn UpperCAmelCase__ = learn_encoder UpperCAmelCase__ = use_attention_mask class A ( UpperCAmelCase_ ): __UpperCAmelCase : Tuple = [r'pooler', r'logit_scale'] __UpperCAmelCase : int = [r'position_ids', r'predictions.decoder.bias'] __UpperCAmelCase : Any = 'roberta' __UpperCAmelCase : List[str] = RobertaSeriesConfig def __init__(self : Tuple , __UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" super().__init__(__UpperCAmelCase ) UpperCAmelCase__ = XLMRobertaModel(__UpperCAmelCase ) UpperCAmelCase__ = nn.Linear(config.hidden_size , config.project_dim ) UpperCAmelCase__ = getattr(__UpperCAmelCase , "has_pre_transformation" , __UpperCAmelCase ) if self.has_pre_transformation: UpperCAmelCase__ = nn.Linear(config.hidden_size , config.project_dim ) UpperCAmelCase__ = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ = self.base_model( input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , position_ids=__UpperCAmelCase , head_mask=__UpperCAmelCase , inputs_embeds=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_attentions=__UpperCAmelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__UpperCAmelCase , ) if self.has_pre_transformation: UpperCAmelCase__ = outputs["hidden_states"][-2] UpperCAmelCase__ = self.pre_LN(__UpperCAmelCase ) UpperCAmelCase__ = self.transformation_pre(__UpperCAmelCase ) return TransformationModelOutput( projection_state=__UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: UpperCAmelCase__ = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=__UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
65
1
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values SCREAMING_SNAKE_CASE__:Tuple = argparse.ArgumentParser() parser.add_argument("""--user""", type=str, default="""ubuntu""") parser.add_argument("""--host""", type=str, default="""localhost""") parser.add_argument("""--key_path""", type=str, default=None) parser.add_argument("""--instance""", type=str, default="""V100:1""") parser.add_argument("""--provider""", type=str, default="""cheapest""") parser.add_argument("""--use_spot""", type=bool, default=False) parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""") SCREAMING_SNAKE_CASE__:str = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("""Cannot specify both BYO and on-demand cluster args""") SCREAMING_SNAKE_CASE__:str = rh.cluster( name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path} ) else: SCREAMING_SNAKE_CASE__:Any = rh.cluster( name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) SCREAMING_SNAKE_CASE__:int = args.example.rsplit("""/""", 1)[0] # Set up remote environment cluster.install_packages(["""pip:./"""]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
354
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency SCREAMING_SNAKE_CASE__:Any = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } SCREAMING_SNAKE_CASE__:Optional[int] = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" SCREAMING_SNAKE_CASE__:Tuple = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def _lowerCamelCase( a ): __a = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def _lowerCamelCase( a ): return x[0] def _lowerCamelCase( a ): __a = get_letter_count(a ) __a = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(a ) __a = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=a ) __a = "".join(freq_to_letter[freq] ) __a = list(freq_to_letter_str.items() ) freq_pairs.sort(key=a , reverse=a ) __a = [freq_pair[1] for freq_pair in freq_pairs] return "".join(a ) def _lowerCamelCase( a ): __a = get_frequency_order(a ) __a = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
268
0
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def snake_case_ ( A_ : List[str], A_ : int, A_ : Optional[int]=0 ): '''simple docstring''' if name is None: _lowerCamelCase : List[Any] = None else: _lowerCamelCase : List[str] = '''.''' * max(0, spaces - 2 ) + '''# {:''' + str(50 - spaces ) + '''s}''' _lowerCamelCase : Optional[int] = fmt.format(A_ ) # Print and recurse (if needed). if isinstance(A_, A_ ): if msg is not None: print(A_ ) for k in val.keys(): recursive_print(A_, val[k], spaces + 2 ) elif isinstance(A_, torch.Tensor ): print(A_, ''':''', val.size() ) else: print(A_, ''':''', A_ ) def snake_case_ ( A_ : Optional[int], A_ : Union[str, Any], A_ : List[Any], A_ : Optional[Any], A_ : Any ): '''simple docstring''' _lowerCamelCase : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _lowerCamelCase : List[Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _lowerCamelCase : List[Any] = param.view(*A_ ) _lowerCamelCase : Any = param.transpose(0, 2 ) _lowerCamelCase : Union[str, Any] = param.transpose(1, 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _lowerCamelCase : Any = (num_heads, num_splits, hidden_size) + input_shape[1:] _lowerCamelCase : Optional[Any] = param.view(*A_ ) _lowerCamelCase : Any = param.transpose(0, 1 ).contiguous() _lowerCamelCase : Any = param.view(*A_ ) return param def snake_case_ ( A_ : Optional[Any], A_ : Tuple, A_ : List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = {} # old versions did not store training args _lowerCamelCase : Union[str, Any] = input_state_dict.get('''args''', A_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _lowerCamelCase : Optional[Any] = ds_args.padded_vocab_size _lowerCamelCase : List[Any] = ds_args.max_position_embeddings _lowerCamelCase : Dict = ds_args.hidden_size _lowerCamelCase : Union[str, Any] = ds_args.num_layers _lowerCamelCase : Any = ds_args.num_attention_heads _lowerCamelCase : List[str] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _lowerCamelCase : Optional[int] = config.n_head # The hidden_size per head. _lowerCamelCase : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _lowerCamelCase : List[Any] = input_state_dict['''checkpoint_version'''] else: _lowerCamelCase : List[str] = 0.0 # The model. _lowerCamelCase : Tuple = input_state_dict['''model'''] # The language model. _lowerCamelCase : Dict = model['''language_model'''] # The embeddings. _lowerCamelCase : int = lm['''embedding'''] # The word embeddings. _lowerCamelCase : Optional[int] = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. _lowerCamelCase : Dict = word_embeddings[: config.vocab_size, :] _lowerCamelCase : str = word_embeddings # The position embeddings. _lowerCamelCase : Tuple = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _lowerCamelCase : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _lowerCamelCase : List[Any] = pos_embeddings # The transformer. _lowerCamelCase : str = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. _lowerCamelCase : int = re.compile(R'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. _lowerCamelCase : Union[str, Any] = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. _lowerCamelCase : int = layer_re.match(A_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _lowerCamelCase : int = int(m.group(1 ) ) # The name of the operation. _lowerCamelCase : str = m.group(2 ) # Is it a weight or a bias? _lowerCamelCase : Any = m.group(3 ) # The name of the layer. _lowerCamelCase : Tuple = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): _lowerCamelCase : List[str] = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' _lowerCamelCase : Tuple = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _lowerCamelCase : List[Any] = torch.tril(torch.ones((n_positions, n_positions), dtype=torch.floataa ) ).view( 1, 1, A_, A_ ) _lowerCamelCase : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. _lowerCamelCase : int = torch.tensor(-1E4, dtype=torch.floataa ) _lowerCamelCase : List[str] = masked_bias _lowerCamelCase : Tuple = fix_query_key_value_ordering(A_, A_, 3, A_, A_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _lowerCamelCase : Optional[int] = out_val.transpose(0, 1 ).contiguous() # Store. _lowerCamelCase : List[Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _lowerCamelCase : Tuple = fix_query_key_value_ordering(A_, A_, 3, A_, A_ ) # Store. No change of shape. _lowerCamelCase : str = out_val # Transpose the weights. elif weight_or_bias == "weight": _lowerCamelCase : Union[str, Any] = megatron_to_transformers[op_name] _lowerCamelCase : Tuple = val.transpose(0, 1 ) # Copy the bias. elif weight_or_bias == "bias": _lowerCamelCase : Any = megatron_to_transformers[op_name] _lowerCamelCase : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _lowerCamelCase : Optional[Any] = transformer['''final_layernorm.weight'''] _lowerCamelCase : Optional[Any] = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. _lowerCamelCase : Optional[int] = word_embeddings # It should be done! return output_state_dict def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''', action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''', type=A_, help='''Path to the checkpoint file (.zip archive or direct .pt file)''', ) parser.add_argument( '''--config_file''', default='''''', type=A_, help='''An optional config json file describing the pre-trained model.''', ) _lowerCamelCase : Union[str, Any] = parser.parse_args() # Extract the basename. _lowerCamelCase : Optional[int] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint, '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: _lowerCamelCase : Any = torch.load(A_, map_location='''cpu''' ) else: _lowerCamelCase : Dict = torch.load(args.path_to_checkpoint, map_location='''cpu''' ) _lowerCamelCase : Tuple = input_state_dict.get('''args''', A_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _lowerCamelCase : List[str] = '''gelu_fast''' elif ds_args.openai_gelu: _lowerCamelCase : List[Any] = '''gelu_new''' else: _lowerCamelCase : Optional[Any] = '''gelu''' else: # in the very early days this used to be "gelu_new" _lowerCamelCase : List[str] = '''gelu_new''' # Spell out all parameters in case the defaults change. _lowerCamelCase : str = GPTaConfig( vocab_size=5_02_57, n_positions=10_24, n_embd=10_24, n_layer=24, n_head=16, n_inner=40_96, activation_function=A_, resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1E-5, initializer_range=0.02, summary_type='''cls_index''', summary_use_proj=A_, summary_activation=A_, summary_proj_to_labels=A_, summary_first_dropout=0.1, scale_attn_weights=A_, use_cache=A_, bos_token_id=5_02_56, eos_token_id=5_02_56, ) else: _lowerCamelCase : List[Any] = GPTaConfig.from_json_file(args.config_file ) _lowerCamelCase : str = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) _lowerCamelCase : List[Any] = convert_megatron_checkpoint(A_, A_, A_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(A_, A_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _lowerCamelCase : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _lowerCamelCase : str = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": _lowerCamelCase : List[str] = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _lowerCamelCase : Tuple = '''gpt2''' _lowerCamelCase : str = AutoTokenizer.from_pretrained(A_ ) _lowerCamelCase : Union[str, Any] = type(A_ ).__name__ _lowerCamelCase : Tuple = tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(A_ ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(A_ ) # Store the state_dict to file. _lowerCamelCase : Any = os.path.join(A_, '''pytorch_model.bin''' ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(A_, A_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
72
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
0
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _snake_case ( __snake_case ): A__ : Union[List[PIL.Image.Image], np.ndarray] A__ : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
369
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy UpperCamelCase_ = logging.getLogger(__name__) UpperCamelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class _snake_case : '''simple docstring''' A__ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) A__ : Optional[str] = dataclasses.field( default=__snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class _snake_case : '''simple docstring''' A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) A__ : Optional[str] = dataclasses.field( default=__snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) A__ : Optional[str] = dataclasses.field( default=__snake_case , metadata={"help": "The name of the task to train on."} , ) A__ : Optional[List[str]] = dataclasses.field( default=__snake_case , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class _snake_case : '''simple docstring''' A__ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) A__ : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) A__ : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) A__ : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) A__ : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) A__ : Optional[bool] = dataclasses.field( default=__snake_case , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) A__ : Optional[bool] = dataclasses.field( default=__snake_case , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) A__ : Optional[bool] = dataclasses.field( default=__snake_case , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) A__ : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) A__ : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) A__ : Optional[int] = dataclasses.field( default=__snake_case , metadata={"help": "Random seed for initialization."} , ) def lowerCamelCase_ ( _a : str , _a : List[Any] , _a : List[Any] , _a : Dict , _a : int , _a : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: UpperCAmelCase_ : List[str] = dataset.filter(lambda _a : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 UpperCAmelCase_ : List[str] = int(eval_result * len(_a ) ) print(_a ) UpperCAmelCase_ : int = dataset.sort("""probability""" , reverse=_a ) UpperCAmelCase_ : Optional[int] = dataset.select(range(_a ) ) UpperCAmelCase_ : List[str] = dataset.remove_columns(["""label""", """probability"""] ) UpperCAmelCase_ : Optional[Any] = dataset.rename_column("""prediction""" , """label""" ) UpperCAmelCase_ : Union[str, Any] = dataset.map(lambda _a : {"label": idalabel[example["label"]]} ) UpperCAmelCase_ : int = dataset.shuffle(seed=args.seed ) UpperCAmelCase_ : int = os.path.join(_a , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(_a , index=_a ) else: dataset.to_json(_a ) def lowerCamelCase_ ( _a : Any , _a : int , _a : Dict , _a : List[Any] , **_a : int ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() UpperCAmelCase_ : Tuple = STModelArguments(model_name_or_path=_a ) UpperCAmelCase_ : str = STDataArguments(train_file=_a , infer_file=_a ) UpperCAmelCase_ : Optional[Any] = STTrainingArguments(output_dir=_a ) UpperCAmelCase_ : Optional[Any] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_a ).items(): setattr(_a , _a , _a ) for key, value in kwargs.items(): if hasattr(_a , _a ): setattr(_a , _a , _a ) # Sanity checks UpperCAmelCase_ : List[str] = {} UpperCAmelCase_ : Any = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None UpperCAmelCase_ : List[Any] = args.train_file UpperCAmelCase_ : Tuple = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None UpperCAmelCase_ : Dict = args.eval_file for key in data_files: UpperCAmelCase_ : List[str] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: UpperCAmelCase_ : int = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) UpperCAmelCase_ : int = F'''{args.output_dir}/self-train_iter-{{}}'''.format UpperCAmelCase_ : List[Any] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_a ) os.makedirs(_a , exist_ok=_a ) accelerator.wait_for_everyone() UpperCAmelCase_ : Any = None UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : List[Any] = False # Show the progress bar UpperCAmelCase_ : List[str] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): UpperCAmelCase_ : Any = data_dir_format(_a ) assert os.path.exists(_a ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 UpperCAmelCase_ : List[str] = os.path.join(_a , """stage-1""" ) UpperCAmelCase_ : Optional[int] = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_a , _a ): arguments_dict.update({key: value} ) UpperCAmelCase_ : Any = os.path.join(_a , """best-checkpoint""" , _a ) if os.path.exists(_a ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , _a , _a , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , _a ) finetune(**_a ) accelerator.wait_for_everyone() assert os.path.exists(_a ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , _a ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data UpperCAmelCase_ : Dict = os.path.join(_a , """best-checkpoint""" ) UpperCAmelCase_ : str = os.path.join(_a , """stage-2""" ) # Update arguments_dict UpperCAmelCase_ : Union[str, Any] = model_path UpperCAmelCase_ : Dict = data_files["""train"""] UpperCAmelCase_ : List[str] = current_output_dir UpperCAmelCase_ : str = os.path.join(_a , """best-checkpoint""" , _a ) if os.path.exists(_a ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , _a , _a , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , _a ) finetune(**_a ) accelerator.wait_for_everyone() assert os.path.exists(_a ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , _a ) UpperCAmelCase_ : Optional[Any] = iteration UpperCAmelCase_ : List[str] = data_dir_format(iteration + 1 ) UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(os.path.join(_a , """best-checkpoint""" ) ) UpperCAmelCase_ : str = config.idalabel UpperCAmelCase_ : Union[str, Any] = os.path.join(_a , """eval_results_best-checkpoint.json""" ) UpperCAmelCase_ : int = os.path.join(_a , """test_results_best-checkpoint.json""" ) assert os.path.exists(_a ) with open(_a , """r""" ) as f: UpperCAmelCase_ : Optional[int] = float(json.load(_a )[args.eval_metric] ) UpperCAmelCase_ : Dict = os.path.join(_a , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(_a ) # Loading the dataset from local csv or json files. UpperCAmelCase_ : Optional[Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] UpperCAmelCase_ : List[str] = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(_a , exist_ok=_a ) shutil.copy(_a , os.path.join(_a , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(_a ): shutil.copy(_a , os.path.join(_a , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(_a , _a , _a , _a , _a , _a ) accelerator.wait_for_everyone() UpperCAmelCase_ : Tuple = os.path.join(_a , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: UpperCAmelCase_ : Optional[Any] = eval_result if best_iteration is None: UpperCAmelCase_ : Optional[int] = new_iteration UpperCAmelCase_ : Union[str, Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: UpperCAmelCase_ : List[str] = new_iteration UpperCAmelCase_ : Union[str, Any] = new_eval_result UpperCAmelCase_ : int = 0 else: if new_eval_result == best_eval_result: UpperCAmelCase_ : Dict = new_iteration UpperCAmelCase_ : Optional[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: UpperCAmelCase_ : List[Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , _a ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , _a ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_a , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(_a , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , _a ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_a , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(_a , """eval_results_best-iteration.json""" ) , )
59
0
import math def _A ( SCREAMING_SNAKE_CASE__ : int = 100 ): UpperCamelCase :Dict = sum(i * i for i in range(1 , n + 1 ) ) UpperCamelCase :List[str] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
259
from math import factorial __snake_case = {str(digit): factorial(digit) for digit in range(10)} def _A ( SCREAMING_SNAKE_CASE__ : int ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(SCREAMING_SNAKE_CASE__ ) ) def _A ( SCREAMING_SNAKE_CASE__ : int = 60 , SCREAMING_SNAKE_CASE__ : int = 1000000 ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length UpperCamelCase :Any = 0 # the cached sizes of the previous chains UpperCamelCase :dict[int, int] = {} for start_chain_element in range(1 , SCREAMING_SNAKE_CASE__ ): # The temporary set will contain the elements of the chain UpperCamelCase :List[Any] = set() UpperCamelCase :Any = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCamelCase :Optional[Any] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(SCREAMING_SNAKE_CASE__ ) chain_set_length += 1 UpperCamelCase :List[Any] = digit_factorial_sum(SCREAMING_SNAKE_CASE__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCamelCase :Any = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
259
1
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers SCREAMING_SNAKE_CASE__ : Optional[Any] = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any]=None ) -> str: require_version(deps[pkg] , __lowerCAmelCase )
339
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY") SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL") @dataclass(frozen=__lowercase , slots=__lowercase ) class lowerCAmelCase__ ( Generic[KEY, VAL] ): a__ : KEY a__ : VAL class lowerCAmelCase__ ( _Item ): def __init__( self : str ) -> None: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : Tuple ) -> bool: return False SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem() class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None: __lowerCamelCase = initial_block_size __lowerCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowerCamelCase = capacity_factor __lowerCamelCase = 0 def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int: return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int: return (ind + 1) % len(self._buckets ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool: __lowerCamelCase = self._buckets[ind] if not stored: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def __A ( self : Any ) -> bool: __lowerCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCamelCase = self._buckets __lowerCamelCase = [None] * new_size __lowerCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __A ( self : str ) -> None: self._resize(len(self._buckets ) * 2 ) def __A ( self : Dict ) -> None: self._resize(len(self._buckets ) // 2 ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]: __lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind __lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: __lowerCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : int ) -> int: return self._len def __iter__( self : Tuple ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: __lowerCamelCase = ''' ,'''.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
339
1
from __future__ import annotations from cmath import sqrt def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowerCAmelCase__ = b * b - 4 * a * c lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a) lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
340
from collections import defaultdict from math import gcd def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) lowerCAmelCase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ): if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1: continue lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
340
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = CycleDiffusionPipeline A_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } A_ = PipelineTesterMixin.required_optional_params - {"latents"} A_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) A_ = IMAGE_TO_IMAGE_IMAGE_PARAMS A_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __a : Dict = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=1000 , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) __a : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __a : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __a : int = CLIPTextModel(__a ) __a : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCAmelCase ( self , __a , __a=0 ): '''simple docstring''' __a : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) __a : Optional[int] = image / 2 + 0.5 if str(__a ).startswith('mps' ): __a : Dict = torch.manual_seed(__a ) else: __a : Dict = torch.Generator(device=__a ).manual_seed(__a ) __a : Optional[Any] = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = 'cpu' # ensure determinism for the device-dependent torch.Generator __a : Tuple = self.get_dummy_components() __a : int = CycleDiffusionPipeline(**__a ) __a : str = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : int = self.get_dummy_inputs(__a ) __a : Any = pipe(**__a ) __a : List[str] = output.images __a : List[str] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __a : Optional[Any] = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.get_dummy_components() for name, module in components.items(): if hasattr(__a , 'half' ): __a : Dict = module.half() __a : Optional[int] = CycleDiffusionPipeline(**__a ) __a : str = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : Dict = self.get_dummy_inputs(__a ) __a : Any = pipe(**__a ) __a : int = output.images __a : Tuple = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __a : Any = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __UpperCAmelCase ( self ): '''simple docstring''' return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def __UpperCAmelCase ( self ): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def __UpperCAmelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def __UpperCAmelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __UpperCAmelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) __a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) __a : Optional[int] = init_image.resize((512, 512) ) __a : List[Any] = 'CompVis/stable-diffusion-v1-4' __a : List[str] = DDIMScheduler.from_pretrained(__a , subfolder='scheduler' ) __a : Optional[Any] = CycleDiffusionPipeline.from_pretrained( __a , scheduler=__a , safety_checker=__a , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __a : Union[str, Any] = 'A black colored car' __a : int = 'A blue colored car' __a : int = torch.manual_seed(0 ) __a : List[Any] = pipe( prompt=__a , source_prompt=__a , image=__a , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__a , output_type='np' , ) __a : List[Any] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) __a : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) __a : Optional[Any] = init_image.resize((512, 512) ) __a : int = 'CompVis/stable-diffusion-v1-4' __a : Tuple = DDIMScheduler.from_pretrained(__a , subfolder='scheduler' ) __a : Tuple = CycleDiffusionPipeline.from_pretrained(__a , scheduler=__a , safety_checker=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __a : Union[str, Any] = 'A black colored car' __a : Optional[Any] = 'A blue colored car' __a : Optional[int] = torch.manual_seed(0 ) __a : Optional[Any] = pipe( prompt=__a , source_prompt=__a , image=__a , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__a , output_type='np' , ) __a : Tuple = output.images assert np.abs(image - expected_image ).max() < 2E-2
294
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): if is_torch_version('<' , '2.0.0' ) or not hasattr(_SCREAMING_SNAKE_CASE , '_dynamo' ): return False return isinstance(_SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : bool = True ): __a : int = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __a : Any = is_compiled_module(_SCREAMING_SNAKE_CASE ) if is_compiled: __a : List[Any] = model __a : Union[str, Any] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a : Union[str, Any] = model.module if not keep_fpaa_wrapper: __a : Optional[Any] = getattr(_SCREAMING_SNAKE_CASE , 'forward' ) __a : str = model.__dict__.pop('_original_forward' , _SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(_SCREAMING_SNAKE_CASE , '__wrapped__' ): __a : Any = forward.__wrapped__ if forward == original_forward: break __a : str = forward if getattr(_SCREAMING_SNAKE_CASE , '_converted_to_transformer_engine' , _SCREAMING_SNAKE_CASE ): convert_model(_SCREAMING_SNAKE_CASE , to_transformer_engine=_SCREAMING_SNAKE_CASE ) if is_compiled: __a : List[str] = model __a : Optional[int] = compiled_model return model def lowerCamelCase (): PartialState().wait_for_everyone() def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple ): if PartialState().distributed_type == DistributedType.TPU: xm.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @contextmanager def lowerCamelCase (**_SCREAMING_SNAKE_CASE : Tuple ): for key, value in kwargs.items(): __a : Optional[int] = str(_SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): if not hasattr(_SCREAMING_SNAKE_CASE , '__qualname__' ) and not hasattr(_SCREAMING_SNAKE_CASE , '__name__' ): __a : List[Any] = getattr(_SCREAMING_SNAKE_CASE , '__class__' , _SCREAMING_SNAKE_CASE ) if hasattr(_SCREAMING_SNAKE_CASE , '__qualname__' ): return obj.__qualname__ if hasattr(_SCREAMING_SNAKE_CASE , '__name__' ): return obj.__name__ return str(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): for key, value in source.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a : int = destination.setdefault(_SCREAMING_SNAKE_CASE , {} ) merge_dicts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __a : Tuple = value return destination def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = None ): if port is None: __a : List[str] = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
294
1
def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" A_ = -1 A_ = 0 for a in range(1 ,n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c A_ = (n * n - 2 * a * n) // (2 * n - 2 * a) A_ = n - a - b if c * c == (a * a + b * b): A_ = a * b * c if candidate >= product: A_ = candidate return product if __name__ == "__main__": print(F"{solution() = }")
312
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[Any] , A : Dict , A : Optional[Any]=13 , A : Optional[Any]=7 , A : Union[str, Any]=True , A : Optional[Any]=True , A : int=False , A : str=True , A : Optional[Any]=99 , A : Union[str, Any]=32 , A : int=5 , A : Tuple=4 , A : Union[str, Any]=37 , A : Dict="gelu" , A : Union[str, Any]=0.1 , A : str=0.1 , A : Union[str, Any]=512 , A : int=16 , A : List[str]=2 , A : Tuple=0.02 , A : int=3 , A : List[str]=4 , A : str=None , ): _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : int = seq_length _UpperCAmelCase : Union[str, Any] = is_training _UpperCAmelCase : Any = use_input_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : str = use_labels _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : str = type_vocab_size _UpperCAmelCase : str = type_sequence_label_size _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Optional[Any] = num_labels _UpperCAmelCase : List[str] = num_choices _UpperCAmelCase : List[str] = scope def _A ( self : Optional[int] ): _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: _UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Any = None if self.use_token_type_ids: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Any = None _UpperCAmelCase : Optional[int] = None if self.use_labels: _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self : Dict ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def _A ( self : int , A : List[Any] , A : Any , A : int , A : Union[str, Any] , A : Dict , A : List[Any] , A : Dict ): _UpperCAmelCase : List[str] = BioGptModel(config=A ) model.to(A ) model.eval() _UpperCAmelCase : Tuple = model(A , attention_mask=A ) _UpperCAmelCase : int = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self : List[Any] , A : str , A : List[Any] , A : Dict , A : List[Any] , A : List[str] , A : Union[str, Any] , A : int , A : List[str] , A : Dict , ): _UpperCAmelCase : Optional[int] = BioGptForCausalLM(config=A ) model.to(A ) model.eval() _UpperCAmelCase : Optional[int] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : List[Any] , A : str , A : str , A : str , A : Any , A : List[str] , *A : Optional[int] ): _UpperCAmelCase : str = BioGptModel(config=A ) model.to(A ) model.eval() # create attention mask _UpperCAmelCase : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=A ) _UpperCAmelCase : Optional[int] = self.seq_length // 2 _UpperCAmelCase : List[Any] = 0 # first forward pass _UpperCAmelCase , _UpperCAmelCase : List[str] = model(A , attention_mask=A ).to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase : List[str] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids _UpperCAmelCase : List[str] = ids_tensor((1,) , A ).item() + 1 _UpperCAmelCase : str = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) _UpperCAmelCase : Any = random_other_next_tokens # append to next input_ids and attn_mask _UpperCAmelCase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase : Optional[int] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=A )] , dim=1 , ) # get two different outputs _UpperCAmelCase : List[Any] = model(A , attention_mask=A )["last_hidden_state"] _UpperCAmelCase : Optional[Any] = model(A , past_key_values=A , attention_mask=A )["last_hidden_state"] # select random slice _UpperCAmelCase : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def _A ( self : int , A : Dict , A : str , A : Dict , A : Union[str, Any] , A : Any , *A : Union[str, Any] ): _UpperCAmelCase : Optional[Any] = BioGptModel(config=A ).to(A ).eval() _UpperCAmelCase : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=A ) # first forward pass _UpperCAmelCase : Union[str, Any] = model(A , attention_mask=A , use_cache=A ) _UpperCAmelCase , _UpperCAmelCase : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase : Dict = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _UpperCAmelCase : Any = model(A , attention_mask=A )["last_hidden_state"] _UpperCAmelCase : Dict = model(A , attention_mask=A , past_key_values=A )[ "last_hidden_state" ] # select random slice _UpperCAmelCase : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def _A ( self : Optional[Any] , A : Tuple , A : List[str] , A : Tuple , A : Dict , A : List[Any] , *A : Tuple , A : List[str]=False ): _UpperCAmelCase : Optional[int] = BioGptForCausalLM(A ) model.to(A ) if gradient_checkpointing: model.gradient_checkpointing_enable() _UpperCAmelCase : Union[str, Any] = model(A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _A ( self : Optional[Any] , A : Any , *A : Optional[Any] ): _UpperCAmelCase : Tuple = BioGptModel(A ) _UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _A ( self : Optional[int] , A : Dict , A : Tuple , A : Optional[int] , A : int , A : List[str] , *A : Dict ): _UpperCAmelCase : Any = self.num_labels _UpperCAmelCase : Any = BioGptForTokenClassification(A ) model.to(A ) model.eval() _UpperCAmelCase : Optional[int] = model(A , attention_mask=A , token_type_ids=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self : int ): _UpperCAmelCase : Dict = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[str] = config_and_inputs _UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: List[str] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __UpperCamelCase: List[str] = (BioGptForCausalLM,) if is_torch_available() else () __UpperCamelCase: str = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase: Union[str, Any] = False def _A ( self : Optional[Any] ): _UpperCAmelCase : List[Any] = BioGptModelTester(self ) _UpperCAmelCase : str = ConfigTester(self , config_class=A , hidden_size=37 ) def _A ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _A ( self : Any ): _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _A ( self : Any ): _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : Tuple = type self.model_tester.create_and_check_model(*A ) def _A ( self : int ): _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*A ) def _A ( self : Union[str, Any] ): _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*A , gradient_checkpointing=A ) def _A ( self : Union[str, Any] ): _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*A ) def _A ( self : Dict ): _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*A ) def _A ( self : Dict ): _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*A ) @slow def _A ( self : List[str] ): _UpperCAmelCase : Optional[Any] = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(A ) _UpperCAmelCase : Tuple = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) _UpperCAmelCase : str = "left" # Define PAD Token = EOS Token = 50256 _UpperCAmelCase : Any = tokenizer.eos_token _UpperCAmelCase : int = model.config.eos_token_id # use different length sentences to test batching _UpperCAmelCase : Any = [ "Hello, my dog is a little", "Today, I", ] _UpperCAmelCase : Tuple = tokenizer(A , return_tensors="pt" , padding=A ) _UpperCAmelCase : Optional[Any] = inputs["input_ids"].to(A ) _UpperCAmelCase : Any = model.generate( input_ids=A , attention_mask=inputs["attention_mask"].to(A ) , ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="pt" ).input_ids.to(A ) _UpperCAmelCase : List[Any] = model.generate(input_ids=A ) _UpperCAmelCase : List[Any] = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() _UpperCAmelCase : int = tokenizer(sentences[1] , return_tensors="pt" ).input_ids.to(A ) _UpperCAmelCase : int = model.generate(input_ids=A , max_length=model.config.max_length - num_paddings ) _UpperCAmelCase : Dict = tokenizer.batch_decode(A , skip_special_tokens=A ) _UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=A ) _UpperCAmelCase : Optional[int] = tokenizer.decode(output_padded[0] , skip_special_tokens=A ) _UpperCAmelCase : str = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(A , A ) self.assertListEqual(A , [non_padded_sentence, padded_sentence] ) @slow def _A ( self : str ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[Any] = BioGptModel.from_pretrained(A ) self.assertIsNotNone(A ) def _A ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : str = 3 _UpperCAmelCase : List[str] = input_dict["input_ids"] _UpperCAmelCase : Dict = input_ids.ne(1 ).to(A ) _UpperCAmelCase : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase : List[str] = BioGptForSequenceClassification(A ) model.to(A ) model.eval() _UpperCAmelCase : List[str] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _A ( self : int ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : int = 3 _UpperCAmelCase : Dict = "multi_label_classification" _UpperCAmelCase : Optional[Any] = input_dict["input_ids"] _UpperCAmelCase : Optional[int] = input_ids.ne(1 ).to(A ) _UpperCAmelCase : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCAmelCase : Optional[Any] = BioGptForSequenceClassification(A ) model.to(A ) model.eval() _UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' @slow def _A ( self : List[Any] ): _UpperCAmelCase : Optional[Any] = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) _UpperCAmelCase : List[str] = torch.tensor([[2, 4805, 9, 656, 21]] ) _UpperCAmelCase : List[Any] = model(A )[0] _UpperCAmelCase : int = 42384 _UpperCAmelCase : int = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , A ) _UpperCAmelCase : Any = torch.tensor( [[[-9.5_236, -9.8_918, 10.4_557], [-11.0_469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1E-4 ) ) @slow def _A ( self : Any ): _UpperCAmelCase : str = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) _UpperCAmelCase : Tuple = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(A ) torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = tokenizer("COVID-19 is" , return_tensors="pt" ).to(A ) _UpperCAmelCase : Dict = model.generate( **A , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=A , ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=A ) _UpperCAmelCase : List[str] = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(A , A )
31
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer UpperCamelCase_ =logging.get_logger(__name__) UpperCamelCase_ ={"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase_ ={ """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } UpperCamelCase_ ={ """junnyu/roformer_chinese_small""": 1_536, """junnyu/roformer_chinese_base""": 1_536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } UpperCamelCase_ ={ """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class _a ( _lowerCAmelCase ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = PRETRAINED_INIT_CONFIGURATION UpperCamelCase = RoFormerTokenizer def __init__( self : Union[str, Any], lowerCAmelCase__ : Union[str, Any]=None, lowerCAmelCase__ : str=None, lowerCAmelCase__ : Dict=True, lowerCAmelCase__ : str="[UNK]", lowerCAmelCase__ : Optional[int]="[SEP]", lowerCAmelCase__ : List[str]="[PAD]", lowerCAmelCase__ : Optional[int]="[CLS]", lowerCAmelCase__ : int="[MASK]", lowerCAmelCase__ : str=True, lowerCAmelCase__ : Any=None, **lowerCAmelCase__ : Any, ) -> Optional[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, do_lower_case=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, tokenize_chinese_chars=lowerCAmelCase__, strip_accents=lowerCAmelCase__, **lowerCAmelCase__, ) _UpperCamelCase : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''', lowerCAmelCase__ ) != do_lower_case or pre_tok_state.get('''strip_accents''', lowerCAmelCase__ ) != strip_accents ): _UpperCamelCase : Tuple = getattr(lowerCAmelCase__, pre_tok_state.pop('''type''' ) ) _UpperCamelCase : Optional[int] = do_lower_case _UpperCamelCase : List[Any] = strip_accents _UpperCamelCase : Dict = pre_tok_class(**lowerCAmelCase__ ) _UpperCamelCase : Dict = do_lower_case def __getstate__( self : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Any = BertPreTokenizer() return state def __setstate__( self : List[Any], lowerCAmelCase__ : List[str] ) -> Any: '''simple docstring''' _UpperCamelCase : Union[str, Any] = d _UpperCamelCase : List[str] = self.__dict__['''_tokenizer'''].get_vocab() _UpperCamelCase : Tuple = PreTokenizer.custom(JiebaPreTokenizer(lowerCAmelCase__ ) ) def snake_case ( self : Any, lowerCAmelCase__ : Dict, lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' _UpperCamelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self : Union[str, Any], lowerCAmelCase__ : List[int], lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase : Optional[int] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self : str, lowerCAmelCase__ : str, lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def snake_case ( self : Optional[Any], lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : Tuple=None, lowerCAmelCase__ : List[Any]=None, lowerCAmelCase__ : Union[str, Any]=False, **lowerCAmelCase__ : List[Any], ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = BertPreTokenizer() return super().save_pretrained(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__ )
128
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCamelCase_ =0b1_0_1_1_0_0_1_1_1_1_1_0_1_1_0_0_1_0_0_1_0_0_0_0_0_1_1_1_1_0_1_1_1_0_1_1_0_0_0_1_1_0_0_1_1_1_1_0 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCamelCase_ =[int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _a : def __init__( self : str ) -> str: '''simple docstring''' _UpperCamelCase : str = WATERMARK_BITS _UpperCamelCase : Optional[int] = WatermarkEncoder() self.encoder.set_watermark('''bits''', self.watermark ) def snake_case ( self : Dict, lowerCAmelCase__ : torch.FloatTensor ) -> int: '''simple docstring''' if images.shape[-1] < 2_5_6: return images _UpperCamelCase : Union[str, Any] = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0, 2, 3, 1 ).float().numpy() _UpperCamelCase : List[str] = [self.encoder.encode(lowerCAmelCase__, '''dwtDct''' ) for image in images] _UpperCamelCase : Dict = torch.from_numpy(np.array(lowerCAmelCase__ ) ).permute(0, 3, 1, 2 ) _UpperCamelCase : Optional[int] = torch.clamp(2 * (images / 2_5_5 - 0.5), min=-1.0, max=1.0 ) return images
128
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: """simple docstring""" A__ = tmp_path / '''file.csv''' A__ = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = tmp_path / '''malformed_file.csv''' A__ = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = tmp_path / '''csv_with_image.csv''' A__ = textwrap.dedent( f"""\ image {image_file} """ ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = tmp_path / '''csv_with_label.csv''' A__ = textwrap.dedent( '''\ label good bad good ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) @pytest.fixture def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: """simple docstring""" A__ = tmp_path / '''csv_with_int_list.csv''' A__ = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: """simple docstring""" A__ = Csv() A__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowercase_ , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(lowercase_ ) in record.message for record in caplog.records ) @require_pil def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: """simple docstring""" with open(lowercase_ , encoding='''utf-8''' ) as f: A__ = f.read().splitlines()[1] A__ = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) A__ = csv._generate_tables([[csv_file_with_image]] ) A__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() A__ = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: """simple docstring""" with open(lowercase_ , encoding='''utf-8''' ) as f: A__ = f.read().splitlines()[1:] A__ = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) A__ = csv._generate_tables([[csv_file_with_label]] ) A__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() A__ = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(lowercase_ ) for label in labels] def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: """simple docstring""" A__ = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda lowercase_ : [int(lowercase_ ) for i in x.split()]} ) A__ = csv._generate_tables([[csv_file_with_int_list]] ) A__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) A__ = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
14
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = args.pruning_method A__ = args.threshold A__ = args.model_name_or_path.rstrip('''/''' ) A__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) A__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: A__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = TopKBinarizer.apply(lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ , A__ = -0.1, 1.1 A__ = torch.sigmoid(lowercase_ ) A__ = s * (r - l) + l A__ = s_bar.clamp(min=0.0 , max=1.0 ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: A__ = os.path.join( os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ , lowercase_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) _lowerCamelCase : int = parser.parse_args() main(args)
14
1
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A__ : def __init__( self : Optional[int] , a : Dict , a : Tuple=13 , a : Union[str, Any]=30 , a : int=2 , a : Dict=3 , a : Optional[int]=True , a : Dict=True , a : Union[str, Any]=32 , a : List[Any]=5 , a : str=4 , a : Optional[int]=37 , a : Tuple="gelu" , a : Optional[int]=0.1 , a : int=0.1 , a : List[str]=10 , a : str=0.0_2 , a : Union[str, Any]=None , a : Optional[int]=2 , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : List[Any] = patch_size lowerCAmelCase__ : List[str] = num_channels lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : int = use_labels lowerCAmelCase__ : Optional[int] = hidden_size lowerCAmelCase__ : Tuple = num_hidden_layers lowerCAmelCase__ : Optional[int] = num_attention_heads lowerCAmelCase__ : str = intermediate_size lowerCAmelCase__ : Optional[int] = hidden_act lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase__ : List[str] = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Any = scope lowerCAmelCase__ : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Any = (image_size // patch_size) ** 2 lowerCAmelCase__ : Optional[int] = num_patches + 1 def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : List[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Dict ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowerCamelCase ( self : List[Any] , a : int , a : List[Any] , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = ViTModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : List[str] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Optional[int] , a : Any , a : Dict , a : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[str] = ViTForMaskedImageModeling(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Any = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ : Dict = 1 lowerCAmelCase__ : List[str] = ViTForMaskedImageModeling(a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowerCamelCase ( self : Union[str, Any] , a : List[str] , a : Tuple , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.type_sequence_label_size lowerCAmelCase__ : Union[str, Any] = ViTForImageClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : List[str] = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ : int = 1 lowerCAmelCase__ : List[str] = ViTForImageClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : int = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Any = self.prepare_config_and_inputs() ( lowerCAmelCase__ ) : Dict = config_and_inputs lowerCAmelCase__ : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) lowercase = True lowercase = False lowercase = False lowercase = False def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = ViTModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def _lowerCamelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Tuple = model_class(a ) lowerCAmelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : List[Any] = ViTModel.from_pretrained(a ) self.assertIsNotNone(a ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Any ): '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(a ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : List[str] = prepare_img() lowerCAmelCase__ : Dict = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Dict = model(**a ) # verify the logits lowerCAmelCase__ : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , a ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) ) @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = ViTModel.from_pretrained('facebook/dino-vits8' ).to(a ) lowerCAmelCase__ : List[Any] = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480 ) lowerCAmelCase__ : Dict = prepare_img() lowerCAmelCase__ : List[Any] = image_processor(images=a , return_tensors='pt' ) lowerCAmelCase__ : Optional[int] = inputs.pixel_values.to(a ) # forward pass with torch.no_grad(): lowerCAmelCase__ : List[str] = model(a , interpolate_pos_encoding=a ) # verify the logits lowerCAmelCase__ : str = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , a ) lowerCAmelCase__ : int = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : int = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) lowerCAmelCase__ : str = self.default_image_processor lowerCAmelCase__ : Union[str, Any] = prepare_img() lowerCAmelCase__ : Optional[Any] = image_processor(images=a , return_tensors='pt' ) lowerCAmelCase__ : str = inputs.pixel_values.to(a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(a )
353
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" import math def lowerCamelCase__ ( _lowerCamelCase : int ) -> str: lowerCamelCase_ = 0 lowerCamelCase_ = 0 while num > 0: lowerCamelCase_ = num % 8 lowerCamelCase_ = octal + (remainder * math.floor(math.pow(10 , _lowerCamelCase ) )) counter += 1 lowerCamelCase_ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'''0o{int(_lowerCamelCase )}''' def lowerCamelCase__ ( ) -> None: print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(65 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(216 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(512 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
183
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
0
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( lowerCamelCase ): lowercase = (DDPMScheduler,) def A__ ( self , **_SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def A__ ( self ) -> Dict: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Any: """simple docstring""" self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , ) def A__ ( self ) -> int: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ): if i == len(_SCREAMING_SNAKE_CASE ) - 1: UpperCamelCase = -1 else: UpperCamelCase = timesteps[i + 1] UpperCamelCase = scheduler.previous_timestep(_SCREAMING_SNAKE_CASE ) UpperCamelCase = prev_t.item() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 51, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 1, 0] UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
183
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger() @dataclass class a_ : lowercase = 42 lowercase = field(default_factory=lowerCamelCase ) lowercase = field(default_factory=lowerCamelCase ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = len(list(m.modules() ) ) == 1 or isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ) or isinstance(_SCREAMING_SNAKE_CASE , nn.BatchNormad ) if has_not_submodules: self.traced.append(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_SCREAMING_SNAKE_CASE ) [x.remove() for x in self.handles] return self @property def A__ ( self ) -> Tuple: """simple docstring""" return list(filter(lambda _SCREAMING_SNAKE_CASE : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a_ : lowercase = 42 lowercase = 42 lowercase = 0 lowercase = field(default_factory=lowerCamelCase ) lowercase = field(default_factory=lowerCamelCase ) def __call__( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = Tracker(self.dest )(_SCREAMING_SNAKE_CASE ).parametrized UpperCamelCase = Tracker(self.src )(_SCREAMING_SNAKE_CASE ).parametrized UpperCamelCase = list(filter(lambda _SCREAMING_SNAKE_CASE : type(_SCREAMING_SNAKE_CASE ) not in self.src_skip , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase = list(filter(lambda _SCREAMING_SNAKE_CASE : type(_SCREAMING_SNAKE_CASE ) not in self.dest_skip , _SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise Exception( F"Numbers of operations are different. Source module has {len(_SCREAMING_SNAKE_CASE )} operations while" F" destination module has {len(_SCREAMING_SNAKE_CASE )}." ) for dest_m, src_m in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"Transfered from={src_m} to={dest_m}" ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True )-> Optional[Any]: print(F"Converting {name}..." ) with torch.no_grad(): UpperCamelCase = timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ).eval() UpperCamelCase = ResNetForImageClassification(__UpperCamelCase ).eval() UpperCamelCase = ModuleTransfer(src=__UpperCamelCase , dest=__UpperCamelCase ) UpperCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCamelCase ) assert torch.allclose(from_model(__UpperCamelCase ) , our_model(__UpperCamelCase ).logits ), "The model logits don't match the original one." UpperCamelCase = F"resnet{'-'.join(name.split('resnet' ) )}" print(__UpperCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=__UpperCamelCase , ) # we can use the convnext one UpperCamelCase = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=__UpperCamelCase , ) print(F"Pushed {checkpoint_name}" ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True )-> str: UpperCamelCase = """imagenet-1k-id2label.json""" UpperCamelCase = 1000 UpperCamelCase = (1, num_labels) UpperCamelCase = """huggingface/label-files""" UpperCamelCase = num_labels UpperCamelCase = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase = {int(__UpperCamelCase ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = partial(__UpperCamelCase , num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) UpperCamelCase = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(__UpperCamelCase , names_to_config[model_name] , __UpperCamelCase , __UpperCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
183
1
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Any ={ 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } SCREAMING_SNAKE_CASE_: Optional[Any] ={ 'b0': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_24, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_40, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 14_08, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_60, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 15_36, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_00, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 17_92, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_80, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 20_48, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_56, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 23_04, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_28, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 25_60, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_00, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = EfficientNetConfig() UpperCAmelCase_ = CONFIG_MAP[model_name]["hidden_dim"] UpperCAmelCase_ = CONFIG_MAP[model_name]["width_coef"] UpperCAmelCase_ = CONFIG_MAP[model_name]["depth_coef"] UpperCAmelCase_ = CONFIG_MAP[model_name]["image_size"] UpperCAmelCase_ = CONFIG_MAP[model_name]["dropout_rate"] UpperCAmelCase_ = CONFIG_MAP[model_name]["dw_padding"] UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "imagenet-1k-id2label.json" UpperCAmelCase_ = 10_00 UpperCAmelCase_ = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(__lowerCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase_ = CONFIG_MAP[model_name]["image_size"] UpperCAmelCase_ = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=__lowerCamelCase , ) return preprocessor def lowerCAmelCase_ ( snake_case_ : Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] UpperCAmelCase_ = sorted(set(__lowerCamelCase ) ) UpperCAmelCase_ = len(__lowerCamelCase ) UpperCAmelCase_ = {b: str(__lowerCamelCase ) for b, i in zip(__lowerCamelCase , range(__lowerCamelCase ) )} UpperCAmelCase_ = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: UpperCAmelCase_ = block_name_mapping[b] rename_keys.append((f"""block{b}_expand_conv/kernel:0""", f"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((f"""block{b}_expand_bn/gamma:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((f"""block{b}_expand_bn/beta:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (f"""block{b}_dwconv/depthwise_kernel:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((f"""block{b}_bn/gamma:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((f"""block{b}_bn/beta:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (f"""block{b}_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (f"""block{b}_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((f"""block{b}_se_reduce/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((f"""block{b}_se_reduce/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((f"""block{b}_se_expand/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((f"""block{b}_se_expand/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (f"""block{b}_project_conv/kernel:0""", f"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((f"""block{b}_project_bn/gamma:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((f"""block{b}_project_bn/beta:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (f"""block{b}_project_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (f"""block{b}_project_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) UpperCAmelCase_ = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase_ = "efficientnet." + item[1] UpperCAmelCase_ = "classifier.weight" UpperCAmelCase_ = "classifier.bias" return key_mapping def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] ) -> Optional[int]: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase_ = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase_ = torch.from_numpy(__lowerCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCAmelCase_ = torch.from_numpy(__lowerCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCAmelCase_ = torch.from_numpy(np.transpose(__lowerCamelCase ) ) else: UpperCAmelCase_ = torch.from_numpy(__lowerCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__lowerCamelCase ) @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : List[str] , snake_case_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = model_classes[model_name]( include_top=__lowerCamelCase , weights="imagenet" , input_tensor=__lowerCamelCase , input_shape=__lowerCamelCase , pooling=__lowerCamelCase , classes=10_00 , classifier_activation="softmax" , ) UpperCAmelCase_ = original_model.trainable_variables UpperCAmelCase_ = original_model.non_trainable_variables UpperCAmelCase_ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase_ = param.numpy() UpperCAmelCase_ = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase_ = get_efficientnet_config(__lowerCamelCase ) UpperCAmelCase_ = EfficientNetForImageClassification(__lowerCamelCase ).eval() UpperCAmelCase_ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) UpperCAmelCase_ = rename_keys(__lowerCamelCase ) replace_params(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Initialize preprocessor and preprocess input image UpperCAmelCase_ = convert_image_processor(__lowerCamelCase ) UpperCAmelCase_ = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase_ = hf_model(**__lowerCamelCase ) UpperCAmelCase_ = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase_ = False UpperCAmelCase_ = CONFIG_MAP[model_name]["image_size"] UpperCAmelCase_ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCAmelCase_ = image.img_to_array(__lowerCamelCase ) UpperCAmelCase_ = np.expand_dims(__lowerCamelCase , axis=0 ) UpperCAmelCase_ = original_model.predict(__lowerCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(__lowerCamelCase ): os.mkdir(__lowerCamelCase ) # Save converted model and image processor hf_model.save_pretrained(__lowerCamelCase ) preprocessor.save_pretrained(__lowerCamelCase ) if push_to_hub: # Push model and image processor to hub print(f"""Pushing converted {model_name} to the hub...""" ) UpperCAmelCase_ = f"""efficientnet-{model_name}""" preprocessor.push_to_hub(__lowerCamelCase ) hf_model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') SCREAMING_SNAKE_CASE_: str =parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
1
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort UpperCAmelCase__ = '1' UpperCAmelCase__ = '0' UpperCAmelCase__ = '1' UpperCAmelCase__ = ort.SessionOptions() UpperCAmelCase__ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') UpperCAmelCase__ = ['TensorrtExecutionProvider', 'CUDAExecutionProvider'] UpperCAmelCase__ = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) UpperCAmelCase__ = ort.RunOptions() UpperCAmelCase__ = 128 UpperCAmelCase__ = 1 UpperCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) UpperCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) UpperCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') UpperCAmelCase__ = time.time() UpperCAmelCase__ = 2000 UpperCAmelCase__ = {} for iter in range(max_iters): UpperCAmelCase__ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 1000 / max_iters))
288
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Tuple = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def SCREAMING_SNAKE_CASE_ ( self : int , a : Optional[Any]=0 )-> Dict: """simple docstring""" lowercase__ = floats_tensor((1, 3, 128, 128) , rng=random.Random(a ) ) lowercase__ = np.random.RandomState(a ) lowercase__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> int: """simple docstring""" lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=a ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**a ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) lowercase__ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Dict: """simple docstring""" lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**a ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase__ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Optional[int]: """simple docstring""" lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) # warmup pass to apply optimizations lowercase__ = pipe(**self.get_dummy_inputs() ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**a ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase__ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : Dict )-> int: """simple docstring""" lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**a ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase__ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**a ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase__ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[Any]: """simple docstring""" lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**a ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase__ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): @property def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[Any]: """simple docstring""" lowercase__ = ort.SessionOptions() lowercase__ = False return options def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[Any]: """simple docstring""" lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowercase__ = init_image.resize((768, 512) ) # using the PNDM scheduler by default lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) lowercase__ = 'A fantasy landscape, trending on artstation' lowercase__ = np.random.RandomState(0 ) lowercase__ = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type='np' , ) lowercase__ = output.images lowercase__ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowercase__ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE_ ( self : str )-> int: """simple docstring""" lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowercase__ = init_image.resize((768, 512) ) lowercase__ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) lowercase__ = 'A fantasy landscape, trending on artstation' lowercase__ = np.random.RandomState(0 ) lowercase__ = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type='np' , ) lowercase__ = output.images lowercase__ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowercase__ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
368
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: lowercase__ = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) lowercase__ = re.match(R'^mobilenet_v1_([^_]*)_([^_]*)$' , _SCREAMING_SNAKE_CASE ) if matches: lowercase__ = float(matches[1] ) lowercase__ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". lowercase__ = 1001 lowercase__ = 'imagenet-1k-id2label.json' lowercase__ = 'huggingface/label-files' lowercase__ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} lowercase__ = 'background' lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase () -> int: lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: lowercase__ = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model lowercase__ = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor lowercase__ = MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 32} , ) lowercase__ = image_processor(images=prepare_img() , return_tensors='pt' ) lowercase__ = model(**_SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": lowercase__ = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": lowercase__ = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: lowercase__ = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print('Pushing to the hub...' ) lowercase__ = 'google/' + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase_ = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
269
0
from __future__ import annotations def UpperCamelCase( __UpperCamelCase : Optional[Any] ): lowerCAmelCase_ : int = [True] * limit lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = True for i in range(3 ,int(limit**0.5 + 1 ) ,2 ): lowerCAmelCase_ : Any = i * 2 while index < limit: lowerCAmelCase_ : str = False lowerCAmelCase_ : Any = index + i lowerCAmelCase_ : str = [2] for i in range(3 ,__lowerCAmelCase ,2 ): if is_prime[i]: primes.append(__lowerCAmelCase ) return primes def UpperCamelCase( __UpperCamelCase : Optional[int] = 1000000 ): lowerCAmelCase_ : Tuple = prime_sieve(__lowerCAmelCase ) lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : List[str] = 0 for i in range(len(__lowerCAmelCase ) ): for j in range(i + length ,len(__lowerCAmelCase ) ): lowerCAmelCase_ : Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowerCAmelCase_ : Optional[Any] = j - i lowerCAmelCase_ : Optional[int] = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
103
'''simple docstring''' def __lowerCAmelCase (): return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __lowerCAmelCase (__lowerCAmelCase ): assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid ) assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Any = 0 _UpperCAmelCase : str = len(__lowerCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _UpperCAmelCase : Union[str, Any] = (left + right) // 2 _UpperCAmelCase : List[str] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _UpperCAmelCase : Tuple = mid + 1 else: _UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = 0 _UpperCAmelCase : int = len(grid[0] ) for i in range(len(__lowerCAmelCase ) ): _UpperCAmelCase : Dict = find_negative_index(grid[i][:bound] ) total += bound return (len(__lowerCAmelCase ) * len(grid[0] )) - total def __lowerCAmelCase (__lowerCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Tuple = 0 for row in grid: for i, number in enumerate(__lowerCAmelCase ): if number < 0: total += len(__lowerCAmelCase ) - i break return total def __lowerCAmelCase (): from timeit import timeit print("Running benchmarks" ) _UpperCAmelCase : Tuple = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _UpperCAmelCase : str = timeit(F"""{func}(grid=grid)""" , setup=__lowerCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
234
0
'''simple docstring''' from ....utils import logging _snake_case : Union[str, Any] = logging.get_logger(__name__) class A ( _a ): def __init__( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : str=20_48 ) -> Dict: """simple docstring""" _a = config.__dict__ _a = modal_hidden_size if num_labels: _a = num_labels
369
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class A ( _a ): lowercase_ = 42 lowercase_ = jnp.floataa lowercase_ = True def __lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setup() _a = nn.Dense(5 , dtype=self.dtype ) def __call__( self : List[Any] , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Dict ) -> List[Any]: """simple docstring""" _a = super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ ) _a = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class A ( _a ): lowercase_ = FlaxBigBirdForNaturalQuestionsModule def snake_case_ (UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : int ): '''simple docstring''' def cross_entropy(UpperCamelCase : int , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str]=None ): _a = logits.shape[-1] _a = (labels[..., None] == jnp.arange(UpperCamelCase )[None]).astype('''f4''' ) _a = jax.nn.log_softmax(UpperCamelCase , axis=-1 ) _a = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _a = reduction(UpperCamelCase ) return loss _a = partial(UpperCamelCase , reduction=jnp.mean ) _a = cross_entropy(UpperCamelCase , UpperCamelCase ) _a = cross_entropy(UpperCamelCase , UpperCamelCase ) _a = cross_entropy(UpperCamelCase , UpperCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class A : lowercase_ = "google/bigbird-roberta-base" lowercase_ = 3000 lowercase_ = 1_0500 lowercase_ = 128 lowercase_ = 3 lowercase_ = 1 lowercase_ = 5 # tx_args lowercase_ = 3e-5 lowercase_ = 0.0 lowercase_ = 2_0000 lowercase_ = 0.0095 lowercase_ = "bigbird-roberta-natural-questions" lowercase_ = "training-expt" lowercase_ = "data/nq-training.jsonl" lowercase_ = "data/nq-validation.jsonl" def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" os.makedirs(self.base_dir , exist_ok=lowerCAmelCase_ ) _a = os.path.join(self.base_dir , self.save_dir ) _a = self.batch_size_per_device * jax.device_count() @dataclass class A : lowercase_ = 42 lowercase_ = 4096 # no dynamic padding on TPUs def __call__( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a = self.collate_fn(lowerCAmelCase_ ) _a = jax.tree_util.tree_map(lowerCAmelCase_ , lowerCAmelCase_ ) return batch def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[Any] ) -> int: """simple docstring""" _a , _a = self.fetch_inputs(features['''input_ids'''] ) _a = { '''input_ids''': jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ), '''attention_mask''': jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : list ) -> List[Any]: """simple docstring""" _a = [self._fetch_inputs(lowerCAmelCase_ ) for ids in input_ids] return zip(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : list ) -> str: """simple docstring""" _a = [1 for _ in range(len(lowerCAmelCase_ ) )] while len(lowerCAmelCase_ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Dict=None ): '''simple docstring''' if seed is not None: _a = dataset.shuffle(seed=UpperCamelCase ) for i in range(len(UpperCamelCase ) // batch_size ): _a = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase ) @partial(jax.pmap , axis_name='''batch''' ) def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , **UpperCamelCase : str ): '''simple docstring''' def loss_fn(UpperCamelCase : List[str] ): _a = model_inputs.pop('''start_labels''' ) _a = model_inputs.pop('''end_labels''' ) _a = model_inputs.pop('''pooled_labels''' ) _a = state.apply_fn(**UpperCamelCase , params=UpperCamelCase , dropout_rng=UpperCamelCase , train=UpperCamelCase ) _a , _a , _a = outputs return state.loss_fn( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) _a , _a = jax.random.split(UpperCamelCase ) _a = jax.value_and_grad(UpperCamelCase ) _a , _a = grad_fn(state.params ) _a = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) _a = jax.lax.pmean(UpperCamelCase , '''batch''' ) _a = state.apply_gradients(grads=UpperCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def snake_case_ (UpperCamelCase : Any , **UpperCamelCase : Optional[int] ): '''simple docstring''' _a = model_inputs.pop('''start_labels''' ) _a = model_inputs.pop('''end_labels''' ) _a = model_inputs.pop('''pooled_labels''' ) _a = state.apply_fn(**UpperCamelCase , params=state.params , train=UpperCamelCase ) _a , _a , _a = outputs _a = state.loss_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) _a = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class A ( train_state.TrainState ): lowercase_ = struct.field(pytree_node=_a ) @dataclass class A : lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = None def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=None ) -> List[str]: """simple docstring""" _a = model.params _a = TrainState.create( apply_fn=model.__call__ , params=lowerCAmelCase_ , tx=lowerCAmelCase_ , loss_fn=lowerCAmelCase_ , ) if ckpt_dir is not None: _a , _a , _a , _a , _a = restore_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ ) _a = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } _a , _a = build_tx(**lowerCAmelCase_ ) _a = train_state.TrainState( step=lowerCAmelCase_ , apply_fn=model.__call__ , params=lowerCAmelCase_ , tx=lowerCAmelCase_ , opt_state=lowerCAmelCase_ , ) _a = args _a = data_collator _a = lr _a = params _a = jax_utils.replicate(lowerCAmelCase_ ) return state def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] ) -> int: """simple docstring""" _a = self.args _a = len(lowerCAmelCase_ ) // args.batch_size _a = jax.random.PRNGKey(0 ) _a = jax.random.split(lowerCAmelCase_ , jax.device_count() ) for epoch in range(args.max_epochs ): _a = jnp.array(0 , dtype=jnp.floataa ) _a = get_batched_dataset(lowerCAmelCase_ , args.batch_size , seed=lowerCAmelCase_ ) _a = 0 for batch in tqdm(lowerCAmelCase_ , total=lowerCAmelCase_ , desc=F'Running EPOCH-{epoch}' ): _a = self.data_collator(lowerCAmelCase_ ) _a , _a , _a = self.train_step_fn(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: _a = jax_utils.unreplicate(state.step ) _a = running_loss.item() / i _a = self.scheduler_fn(state_step - 1 ) _a = self.evaluate(lowerCAmelCase_ , lowerCAmelCase_ ) _a = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(lowerCAmelCase_ ) ) self.logger.log(lowerCAmelCase_ , commit=lowerCAmelCase_ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str ) -> List[str]: """simple docstring""" _a = get_batched_dataset(lowerCAmelCase_ , self.args.batch_size ) _a = len(lowerCAmelCase_ ) // self.args.batch_size _a = jnp.array(0 , dtype=jnp.floataa ) _a = 0 for batch in tqdm(lowerCAmelCase_ , total=lowerCAmelCase_ , desc='''Evaluating ... ''' ): _a = self.data_collator(lowerCAmelCase_ ) _a = self.val_step_fn(lowerCAmelCase_ , **lowerCAmelCase_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def __lowerCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ) -> int: """simple docstring""" _a = jax_utils.unreplicate(lowerCAmelCase_ ) print(F'SAVING CHECKPOINT IN {save_dir}' , end=''' ... ''' ) self.model_save_fn(lowerCAmelCase_ , params=state.params ) with open(os.path.join(lowerCAmelCase_ , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowerCAmelCase_ , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(lowerCAmelCase_ , '''data_collator.joblib''' ) ) with open(os.path.join(lowerCAmelCase_ , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , lowerCAmelCase_ ) print('''DONE''' ) def snake_case_ (UpperCamelCase : int , UpperCamelCase : Dict ): '''simple docstring''' print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=''' ... ''' ) with open(os.path.join(UpperCamelCase , '''flax_model.msgpack''' ) , '''rb''' ) as f: _a = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase , '''opt_state.msgpack''' ) , '''rb''' ) as f: _a = from_bytes(state.opt_state , f.read() ) _a = joblib.load(os.path.join(UpperCamelCase , '''args.joblib''' ) ) _a = joblib.load(os.path.join(UpperCamelCase , '''data_collator.joblib''' ) ) with open(os.path.join(UpperCamelCase , '''training_state.json''' ) , '''r''' ) as f: _a = json.load(UpperCamelCase ) _a = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' _a = num_train_steps - warmup_steps _a = optax.linear_schedule(init_value=UpperCamelCase , end_value=UpperCamelCase , transition_steps=UpperCamelCase ) _a = optax.linear_schedule(init_value=UpperCamelCase , end_value=1e-7 , transition_steps=UpperCamelCase ) _a = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def snake_case_ (UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int ): '''simple docstring''' def weight_decay_mask(UpperCamelCase : Dict ): _a = traverse_util.flatten_dict(UpperCamelCase ) _a = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase ) _a = scheduler_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) _a = optax.adamw(learning_rate=UpperCamelCase , weight_decay=UpperCamelCase , mask=UpperCamelCase ) return tx, lr
179
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case ( snake_case__ :Tuple) -> List[str]: _A = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["""stage2""", """stage3""", """stage4"""] , ) _A = DetaConfig( backbone_config=snake_case__ , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=snake_case__ , with_box_refine=snake_case__ , two_stage=snake_case__ , ) # set labels _A = """huggingface/label-files""" if "o365" in model_name: _A = 366 _A = """object365-id2label.json""" else: _A = 91 _A = """coco-detection-id2label.json""" _A = num_labels _A = json.load(open(cached_download(hf_hub_url(snake_case__ , snake_case__ , repo_type="""dataset""")) , """r""")) _A = {int(snake_case__): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} return config def snake_case ( snake_case__ :Tuple) -> Any: _A = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""")) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""")) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""")) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""")) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''')) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''')) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''')) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''')) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''')) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''')) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''')) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''')) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''')) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''')) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''')) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''')) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''')) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''')) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''')) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""")) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""")) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""")) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""")) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""")) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""")) # transformer encoder for i in range(config.encoder_layers): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''')) # transformer decoder for i in range(config.decoder_layers): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''')) # fmt: on return rename_keys def snake_case ( snake_case__ :Any , snake_case__ :Union[str, Any] , snake_case__ :Dict) -> Any: _A = dct.pop(snake_case__) _A = val def snake_case ( snake_case__ :int , snake_case__ :Union[str, Any]) -> Tuple: _A = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): _A = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _A = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''') _A = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict _A = in_proj_weight[:dim, :] _A = in_proj_bias[: dim] _A = in_proj_weight[ dim : dim * 2, : ] _A = in_proj_bias[ dim : dim * 2 ] _A = in_proj_weight[ -dim :, : ] _A = in_proj_bias[-dim :] # fmt: on def snake_case ( snake_case__ :List[Any] , snake_case__ :int) -> Optional[int]: # transformer decoder self-attention layers _A = config.d_model for i in range(config.decoder_layers): # read in weights + bias of input projection layer of self-attention _A = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''') _A = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''') # next, add query, keys and values (in that order) to the state dict _A = in_proj_weight[:hidden_size, :] _A = in_proj_bias[:hidden_size] _A = in_proj_weight[ hidden_size : hidden_size * 2, : ] _A = in_proj_bias[hidden_size : hidden_size * 2] _A = in_proj_weight[-hidden_size:, :] _A = in_proj_bias[-hidden_size:] def snake_case ( ) -> Union[str, Any]: _A = """http://images.cocodataset.org/val2017/000000039769.jpg""" _A = Image.open(requests.get(snake_case__ , stream=snake_case__).raw) return im @torch.no_grad() def snake_case ( snake_case__ :Dict , snake_case__ :Tuple , snake_case__ :Optional[int]) -> Union[str, Any]: _A = get_deta_config(snake_case__) # load original state dict if model_name == "deta-swin-large": _A = hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""") elif model_name == "deta-swin-large-o365": _A = hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""") else: raise ValueError(F'''Model name {model_name} not supported''') _A = torch.load(snake_case__ , map_location="""cpu""")["""model"""] # original state dict for name, param in state_dict.items(): print(snake_case__ , param.shape) # rename keys _A = create_rename_keys(snake_case__) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__) read_in_swin_q_k_v(snake_case__ , config.backbone_config) read_in_decoder_q_k_v(snake_case__ , snake_case__) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _A = state_dict.pop(snake_case__) _A = val if "input_proj" in key: _A = state_dict.pop(snake_case__) _A = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _A = state_dict.pop(snake_case__) _A = val # finally, create HuggingFace model and load state dict _A = DetaForObjectDetection(snake_case__) model.load_state_dict(snake_case__) model.eval() _A = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(snake_case__) # load image processor _A = DetaImageProcessor(format="""coco_detection""") # verify our conversion on image _A = prepare_img() _A = processor(images=snake_case__ , return_tensors="""pt""") _A = encoding["""pixel_values"""] _A = model(pixel_values.to(snake_case__)) # verify logits print("""Logits:""" , outputs.logits[0, :3, :3]) print("""Boxes:""" , outputs.pred_boxes[0, :3, :3]) if model_name == "deta-swin-large": _A = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]]) _A = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]]) elif model_name == "deta-swin-large-o365": _A = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]]) _A = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]]) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(snake_case__) , atol=1E-4) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(snake_case__) , atol=1E-4) print("""Everything ok!""") if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''') Path(snake_case__).mkdir(exist_ok=snake_case__) model.save_pretrained(snake_case__) processor.save_pretrained(snake_case__) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""") model.push_to_hub(F'''jozhang97/{model_name}''') processor.push_to_hub(F'''jozhang97/{model_name}''') if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
180
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Optional[Any] = '''bridgetower_vision_model''' def __init__( self , lowerCAmelCase_=7_68 , lowerCAmelCase_=12 , lowerCAmelCase_=3 , lowerCAmelCase_=16 , lowerCAmelCase_=2_88 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-05 , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> Any: super().__init__(**lowerCAmelCase_ ) _A = hidden_size _A = num_hidden_layers _A = num_channels _A = patch_size _A = image_size _A = initializer_factor _A = layer_norm_eps _A = stop_gradient _A = share_layernorm _A = remove_last_layer @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ) -> "PretrainedConfig": _A , _A = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("""model_type""" ) == "bridgetower": _A = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = '''bridgetower_text_model''' def __init__( self , lowerCAmelCase_=5_02_65 , lowerCAmelCase_=7_68 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=1 , lowerCAmelCase_=30_72 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_14 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-05 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_="absolute" , lowerCAmelCase_=True , **lowerCAmelCase_ , ) -> Optional[Any]: super().__init__(**lowerCAmelCase_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = initializer_factor _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = pad_token_id _A = bos_token_id _A = eos_token_id @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ) -> "PretrainedConfig": _A , _A = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("""model_type""" ) == "bridgetower": _A = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Optional[int] = '''bridgetower''' def __init__( self , lowerCAmelCase_=True , lowerCAmelCase_="gelu" , lowerCAmelCase_=7_68 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-05 , lowerCAmelCase_=False , lowerCAmelCase_="add" , lowerCAmelCase_=12 , lowerCAmelCase_=6 , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> int: # TODO: remove this once the Hub files are updated. _A = kwargs.pop("""text_config_dict""" , lowerCAmelCase_ ) _A = kwargs.pop("""vision_config_dict""" , lowerCAmelCase_ ) super().__init__(**lowerCAmelCase_ ) _A = share_cross_modal_transformer_layers _A = hidden_act _A = hidden_size _A = initializer_factor _A = layer_norm_eps _A = share_link_tower_layers _A = link_tower_type _A = num_attention_heads _A = num_hidden_layers _A = tie_word_embeddings _A = init_layernorm_from_vision_encoder if text_config is None: _A = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _A = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _A = BridgeTowerTextConfig(**lowerCAmelCase_ ) _A = BridgeTowerVisionConfig(**lowerCAmelCase_ ) @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = copy.deepcopy(self.__dict__ ) _A = self.text_config.to_dict() _A = self.vision_config.to_dict() _A = self.__class__.model_type return output
180
1
from torch import nn class __magic_name__ (nn.Module ): def __init__( self , _a , _a ) -> Tuple: super().__init__() lowerCAmelCase_ = class_size lowerCAmelCase_ = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) lowerCAmelCase_ = nn.Linear(_a , _a ) def __a ( self , _a ) -> Tuple: # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) lowerCAmelCase_ = self.mlp(_a ) return logits
22
def A(__a: Optional[Any] ): lowerCAmelCase_ = len(__a ) lowerCAmelCase_ = sum(__a ) lowerCAmelCase_ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowerCAmelCase_ = True for i in range(1 , s + 1 ): lowerCAmelCase_ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowerCAmelCase_ = dp[i][j - 1] if arr[i - 1] <= j: lowerCAmelCase_ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowerCAmelCase_ = s - 2 * j break return diff
22
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = '''ibert''' def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[Any]=7_6_8 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : List[Any]=1_2 , lowerCAmelCase__ : Optional[int]=3_0_7_2 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Optional[Any]=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-12 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Optional[Any]="absolute" , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Tuple="none" , **lowerCAmelCase__ : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Union[str, Any] = type_vocab_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : Optional[int] = position_embedding_type _UpperCAmelCase : Any = quant_mode _UpperCAmelCase : Optional[Any] = force_dequant class A__ ( UpperCamelCase ): """simple docstring""" @property def _lowerCAmelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
145
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __a = None __a = logging.get_logger(__name__) __a = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __a = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } __a = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } __a = '▁' class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = ['''input_ids''', '''attention_mask'''] UpperCamelCase_ : List[str] = BarthezTokenizer def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : Tuple="</s>" , lowerCAmelCase__ : Dict="</s>" , lowerCAmelCase__ : Tuple="<s>" , lowerCAmelCase__ : Any="<unk>" , lowerCAmelCase__ : Any="<pad>" , lowerCAmelCase__ : List[str]="<mask>" , **lowerCAmelCase__ : Dict , ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : Any = vocab_file _UpperCAmelCase : Optional[Any] = False if not self.vocab_file else True def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Optional[Any] = [self.cls_token_id] _UpperCAmelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _UpperCAmelCase : Any = [self.sep_token_id] _UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
145
1
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters a__ : List[Any] = False a__ : Union[str, Any] = False def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return TrainCommand(lowerCAmelCase_ ) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @staticmethod def UpperCAmelCase_ ( UpperCAmelCase__ : ArgumentParser ) -> List[str]: __SCREAMING_SNAKE_CASE = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=UpperCAmelCase__ , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=UpperCAmelCase__ , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=UpperCAmelCase__ , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=UpperCAmelCase__ , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=UpperCAmelCase__ , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=UpperCAmelCase__ , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=UpperCAmelCase__ , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=UpperCAmelCase__ , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=UpperCAmelCase__ , default=3_2 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=UpperCAmelCase__ , default=6_4 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=UpperCAmelCase__ , default=3E-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=UpperCAmelCase__ , default=1E-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self : Union[str, Any] , UpperCAmelCase__ : Namespace ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = logging.get_logger("transformers-cli/training" ) __SCREAMING_SNAKE_CASE = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = args.output __SCREAMING_SNAKE_CASE = args.column_label __SCREAMING_SNAKE_CASE = args.column_text __SCREAMING_SNAKE_CASE = args.column_id self.logger.info(F"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": __SCREAMING_SNAKE_CASE = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"""Loading dataset from {args.train_data}""" ) __SCREAMING_SNAKE_CASE = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __SCREAMING_SNAKE_CASE = None if args.validation_data: self.logger.info(F"""Loading validation dataset from {args.validation_data}""" ) __SCREAMING_SNAKE_CASE = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __SCREAMING_SNAKE_CASE = args.validation_split __SCREAMING_SNAKE_CASE = args.train_batch_size __SCREAMING_SNAKE_CASE = args.valid_batch_size __SCREAMING_SNAKE_CASE = args.learning_rate __SCREAMING_SNAKE_CASE = args.adam_epsilon def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCAmelCase_ ( self : Tuple ) -> Dict: raise NotImplementedError def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
195
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' print(f"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(lowerCAmelCase_ ): print(f"""{i}\t\t{d}""" ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' for j in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [float("inf" )] * vertex_count __SCREAMING_SNAKE_CASE = 0.0 for _ in range(vertex_count - 1 ): for j in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: __SCREAMING_SNAKE_CASE = distance[u] + w __SCREAMING_SNAKE_CASE = check_negative_cycle(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() a__ : Union[str, Any] = int(input('''Enter number of vertices: ''').strip()) a__ : Any = int(input('''Enter number of edges: ''').strip()) a__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) a__ , a__ , a__ : str = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) a__ : str = {'''src''': src, '''dst''': dest, '''weight''': weight} a__ : str = int(input('''\nEnter shortest path source:''').strip()) a__ : List[Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
195
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _lowerCamelCase =logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCamelCase ="""\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n""" @dataclass class A__ ( __lowerCamelCase): _UpperCAmelCase : Union[PIL.Image.Image, np.ndarray] class A__ ( __lowerCamelCase): def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): super().__init__() self.register_modules( prior=__magic_name__ , image_encoder=__magic_name__ , image_processor=__magic_name__ , scheduler=__magic_name__ , renderer=__magic_name__ , ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): if latents is None: lowerCamelCase : Dict = randn_tensor(__magic_name__ , generator=__magic_name__ , device=__magic_name__ , dtype=__magic_name__ ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) lowerCamelCase : Union[str, Any] = latents.to(__magic_name__ ) lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , __magic_name__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCamelCase : int = torch.device(F'''cuda:{gpu_id}''' ) lowerCamelCase : Any = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__magic_name__ , __magic_name__ ) @property def UpperCamelCase__ ( self ): if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__magic_name__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): if isinstance(__magic_name__ , __magic_name__ ) and isinstance(image[0] , torch.Tensor ): lowerCamelCase : Any = torch.cat(__magic_name__ , axis=0 ) if image[0].ndim == 4 else torch.stack(__magic_name__ , axis=0 ) if not isinstance(__magic_name__ , torch.Tensor ): lowerCamelCase : Union[str, Any] = self.image_processor(__magic_name__ , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) lowerCamelCase : str = image.to(dtype=self.image_encoder.dtype , device=__magic_name__ ) lowerCamelCase : List[Any] = self.image_encoder(__magic_name__ )['''last_hidden_state'''] lowerCamelCase : Optional[int] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase : Optional[int] = image_embeds.repeat_interleave(__magic_name__ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase : int = torch.zeros_like(__magic_name__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__magic_name__ ) def __call__( self , __magic_name__ , __magic_name__ = 1 , __magic_name__ = 2_5 , __magic_name__ = None , __magic_name__ = None , __magic_name__ = 4.0 , __magic_name__ = 6_4 , __magic_name__ = "pil" , __magic_name__ = True , ): if isinstance(__magic_name__ , PIL.Image.Image ): lowerCamelCase : Dict = 1 elif isinstance(__magic_name__ , torch.Tensor ): lowerCamelCase : Tuple = image.shape[0] elif isinstance(__magic_name__ , __magic_name__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCamelCase : Optional[Any] = len(__magic_name__ ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__magic_name__ )}''' ) lowerCamelCase : List[Any] = self._execution_device lowerCamelCase : List[Any] = batch_size * num_images_per_prompt lowerCamelCase : List[Any] = guidance_scale > 1.0 lowerCamelCase : List[str] = self._encode_image(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # prior self.scheduler.set_timesteps(__magic_name__ , device=__magic_name__ ) lowerCamelCase : List[Any] = self.scheduler.timesteps lowerCamelCase : Optional[Any] = self.prior.config.num_embeddings lowerCamelCase : str = self.prior.config.embedding_dim lowerCamelCase : Tuple = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __magic_name__ , __magic_name__ , __magic_name__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase : Dict = latents.reshape(latents.shape[0] , __magic_name__ , __magic_name__ ) for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) lowerCamelCase : Dict = self.prior( __magic_name__ , timestep=__magic_name__ , proj_embedding=__magic_name__ , ).predicted_image_embedding # remove the variance lowerCamelCase : str = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase : Optional[int] = noise_pred.chunk(2 ) lowerCamelCase : Dict = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase : Optional[Any] = self.scheduler.step( __magic_name__ , timestep=__magic_name__ , sample=__magic_name__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__magic_name__ ) lowerCamelCase : int = [] for i, latent in enumerate(__magic_name__ ): print() lowerCamelCase : str = self.renderer.decode( latent[None, :] , __magic_name__ , size=__magic_name__ , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(__magic_name__ ) lowerCamelCase : Dict = torch.stack(__magic_name__ ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) lowerCamelCase : Optional[Any] = images.cpu().numpy() if output_type == "pil": lowerCamelCase : Optional[Any] = [self.numpy_to_pil(__magic_name__ ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__magic_name__ )
287
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__ = "cpu", __magic_name__ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" UpperCamelCase__ : List[str] = device UpperCamelCase__ : Union[str, Any] = CLIPTokenizerFast.from_pretrained(__magic_name__ ) UpperCamelCase__ : Tuple = [0.4814_5466, 0.457_8275, 0.4082_1073] UpperCamelCase__ : Union[str, Any] = [0.2686_2954, 0.2613_0258, 0.2757_7711] UpperCamelCase__ : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std ) UpperCamelCase__ : List[str] = torchvision.transforms.Resize(224 ) UpperCamelCase__ : Union[str, Any] = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase__ ( self, __magic_name__ ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.resize(__magic_name__ ) UpperCamelCase__ : Dict = self.center_crop(__magic_name__ ) UpperCamelCase__ : List[str] = self.normalize(__magic_name__ ) return images def __call__( self, __magic_name__=None, __magic_name__=None, **__magic_name__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.tokenizer(text=__magic_name__, **__magic_name__ ) UpperCamelCase__ : List[Any] = self.preprocess_img(__magic_name__ ) UpperCamelCase__ : Optional[Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self, __magic_name__=10, __magic_name__=0.01, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=False, __magic_name__=True, __magic_name__="image", __magic_name__=True, __magic_name__=False, __magic_name__=False, __magic_name__=False, ) -> None: """simple docstring""" super().__init__() UpperCamelCase__ : Dict = None UpperCamelCase__ : Tuple = device if device else get_device() if vqgan: UpperCamelCase__ : Union[str, Any] = vqgan else: UpperCamelCase__ : Any = load_vqgan(self.device, conf_path=__magic_name__, ckpt_path=__magic_name__ ) self.vqgan.eval() if clip: UpperCamelCase__ : Optional[Any] = clip else: UpperCamelCase__ : Any = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) UpperCamelCase__ : str = ProcessorGradientFlow(device=self.device ) UpperCamelCase__ : Union[str, Any] = iterations UpperCamelCase__ : Tuple = lr UpperCamelCase__ : Optional[int] = log UpperCamelCase__ : List[Any] = make_grid UpperCamelCase__ : Optional[Any] = return_val UpperCamelCase__ : str = quantize UpperCamelCase__ : int = self.vqgan.decoder.z_shape def UpperCamelCase__ ( self, __magic_name__=None, __magic_name__=None, __magic_name__=5, __magic_name__=True ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = [] if output_path is None: UpperCamelCase__ : List[str] = '''./animation.gif''' if input_path is None: UpperCamelCase__ : Union[str, Any] = self.save_path UpperCamelCase__ : Tuple = sorted(glob(input_path + '''/*''' ) ) if not len(__magic_name__ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(__magic_name__ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) UpperCamelCase__ : Dict = total_duration / len(__magic_name__ ) UpperCamelCase__ : List[Any] = [frame_duration] * len(__magic_name__ ) if extend_frames: UpperCamelCase__ : List[Any] = 1.5 UpperCamelCase__ : Any = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(__magic_name__ ) ) imageio.mimsave(__magic_name__, __magic_name__, duration=__magic_name__ ) print(f"gif saved to {output_path}" ) def UpperCamelCase__ ( self, __magic_name__=None, __magic_name__=None ) -> Any: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError UpperCamelCase__ : List[Any] = preprocess(Image.open(__magic_name__ ), target_image_size=256 ).to(self.device ) UpperCamelCase__ : str = preprocess_vqgan(__magic_name__ ) UpperCamelCase__ ,*UpperCamelCase__ : Union[str, Any] = self.vqgan.encode(__magic_name__ ) return z def UpperCamelCase__ ( self, __magic_name__ ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.latent.detach().requires_grad_() UpperCamelCase__ : Any = base_latent + transform_vector if self.quantize: UpperCamelCase__ ,*UpperCamelCase__ : int = self.vqgan.quantize(__magic_name__ ) else: UpperCamelCase__ : Optional[int] = trans_latent return self.vqgan.decode(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__=None ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[int] = self.clip_preprocessor(text=__magic_name__, images=__magic_name__, return_tensors='''pt''', padding=__magic_name__ ) UpperCamelCase__ : Optional[int] = self.clip(**__magic_name__ ) UpperCamelCase__ : Tuple = clip_outputs.logits_per_image if weights is not None: UpperCamelCase__ : List[Any] = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Any: """simple docstring""" UpperCamelCase__ : List[str] = self._get_clip_similarity(pos_prompts['''prompts'''], __magic_name__, weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: UpperCamelCase__ : Tuple = self._get_clip_similarity(neg_prompts['''prompts'''], __magic_name__, weights=neg_prompts['''weights'''] ) else: UpperCamelCase__ : Optional[int] = torch.tensor([1], device=self.device ) UpperCamelCase__ : Tuple = -torch.log(__magic_name__ ) + torch.log(__magic_name__ ) return loss def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = torch.randn_like(self.latent, requires_grad=__magic_name__, device=self.device ) UpperCamelCase__ : Optional[int] = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCamelCase__ : Tuple = self._add_vector(__magic_name__ ) UpperCamelCase__ : Any = loop_post_process(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = self._get_CLIP_loss(__magic_name__, __magic_name__, __magic_name__ ) print('''CLIP loss''', __magic_name__ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=__magic_name__ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> List[str]: """simple docstring""" wandb.init(reinit=__magic_name__, project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: UpperCamelCase__ : List[str] = Image.open(__magic_name__ ) UpperCamelCase__ : List[Any] = image.resize((256, 256) ) wandb.log('''Original Image''', wandb.Image(__magic_name__ ) ) def UpperCamelCase__ ( self, __magic_name__ ) -> Optional[int]: """simple docstring""" if not prompts: return [] UpperCamelCase__ : int = [] UpperCamelCase__ : str = [] if isinstance(__magic_name__, __magic_name__ ): UpperCamelCase__ : Optional[Any] = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(__magic_name__, (tuple, list) ): UpperCamelCase__ : Optional[int] = prompt[0] UpperCamelCase__ : Dict = float(prompt[1] ) elif ":" in prompt: UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = prompt.split(''':''' ) UpperCamelCase__ : List[Any] = float(__magic_name__ ) else: UpperCamelCase__ : List[str] = prompt UpperCamelCase__ : Any = 1.0 processed_prompts.append(__magic_name__ ) weights.append(__magic_name__ ) return { "prompts": processed_prompts, "weights": torch.tensor(__magic_name__, device=self.device ), } def UpperCamelCase__ ( self, __magic_name__, __magic_name__=None, __magic_name__=None, __magic_name__=True, __magic_name__=False, __magic_name__=True, __magic_name__=True, __magic_name__=None, ) -> str: """simple docstring""" if image_path: UpperCamelCase__ : Union[str, Any] = self._get_latent(__magic_name__ ) else: UpperCamelCase__ : Dict = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(__magic_name__, __magic_name__, __magic_name__ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCamelCase__ : Optional[Any] = self.process_prompts(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = self.process_prompts(__magic_name__ ) if save_final and save_path is None: UpperCamelCase__ : str = os.path.join('''./outputs/''', '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(__magic_name__ ): os.makedirs(__magic_name__ ) else: UpperCamelCase__ : int = save_path + '''_''' + get_timestamp() os.makedirs(__magic_name__ ) UpperCamelCase__ : Optional[Any] = save_path UpperCamelCase__ : str = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(__magic_name__ ) ) UpperCamelCase__ : Optional[Any] = loop_post_process(__magic_name__ ) for iter, transformed_img in enumerate(self._optimize_CLIP(__magic_name__, __magic_name__, __magic_name__ ) ): if show_intermediate: show_pil(__magic_name__ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'''Image''': wandb.Image(__magic_name__ )} ) if show_final: show_pil(__magic_name__ ) if save_final: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
201
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor UpperCamelCase : List[str] = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[Any]): """simple docstring""" warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_)
345
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : float | Decimal , snake_case : float = 10**-10 ) -> float: """simple docstring""" a : Dict = a while True: a : Any = Decimal(snake_case ) - ( Decimal(eval(snake_case ) ) / Decimal(eval(str(diff(snake_case ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case ) ) < precision: # noqa: S307 return float(snake_case ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
345
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase__: str = logging.get_logger(__name__) UpperCamelCase__: List[Any] = { "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """detr""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Tuple , __snake_case : Any=True , __snake_case : int=None , __snake_case : Dict=3 , __snake_case : Optional[Any]=100 , __snake_case : str=6 , __snake_case : Tuple=2048 , __snake_case : int=8 , __snake_case : List[Any]=6 , __snake_case : Optional[int]=2048 , __snake_case : Tuple=8 , __snake_case : Tuple=0.0 , __snake_case : Union[str, Any]=0.0 , __snake_case : str=True , __snake_case : Tuple="relu" , __snake_case : Optional[Any]=256 , __snake_case : Optional[Any]=0.1 , __snake_case : Dict=0.0 , __snake_case : Any=0.0 , __snake_case : Union[str, Any]=0.02 , __snake_case : Tuple=1.0 , __snake_case : Optional[int]=False , __snake_case : Union[str, Any]="sine" , __snake_case : Optional[Any]="resnet50" , __snake_case : str=True , __snake_case : List[Any]=False , __snake_case : Tuple=1 , __snake_case : Union[str, Any]=5 , __snake_case : Optional[int]=2 , __snake_case : int=1 , __snake_case : Optional[int]=1 , __snake_case : Union[str, Any]=5 , __snake_case : Any=2 , __snake_case : Optional[int]=0.1 , **__snake_case : Any , ) -> Any: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__snake_case , __snake_case ): UpperCAmelCase : Union[str, Any] = backbone_config.get('''model_type''' ) UpperCAmelCase : List[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : int = config_class.from_dict(__snake_case ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = None, None, None UpperCAmelCase : Optional[Any] = use_timm_backbone UpperCAmelCase : Union[str, Any] = backbone_config UpperCAmelCase : List[str] = num_channels UpperCAmelCase : Optional[Any] = num_queries UpperCAmelCase : str = d_model UpperCAmelCase : List[Any] = encoder_ffn_dim UpperCAmelCase : Tuple = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : List[Any] = decoder_ffn_dim UpperCAmelCase : List[Any] = decoder_layers UpperCAmelCase : List[str] = decoder_attention_heads UpperCAmelCase : List[str] = dropout UpperCAmelCase : Union[str, Any] = attention_dropout UpperCAmelCase : int = activation_dropout UpperCAmelCase : Union[str, Any] = activation_function UpperCAmelCase : Any = init_std UpperCAmelCase : List[str] = init_xavier_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : Optional[int] = decoder_layerdrop UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : Tuple = auxiliary_loss UpperCAmelCase : Union[str, Any] = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : Optional[int] = use_pretrained_backbone UpperCAmelCase : Optional[Any] = dilation # Hungarian matcher UpperCAmelCase : Optional[int] = class_cost UpperCAmelCase : Optional[int] = bbox_cost UpperCAmelCase : Tuple = giou_cost # Loss coefficients UpperCAmelCase : List[str] = mask_loss_coefficient UpperCAmelCase : Union[str, Any] = dice_loss_coefficient UpperCAmelCase : Optional[Any] = bbox_loss_coefficient UpperCAmelCase : Tuple = giou_loss_coefficient UpperCAmelCase : Dict = eos_coefficient super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def A ( self : Optional[Any] ) -> int: return self.encoder_attention_heads @property def A ( self : int ) -> int: return self.d_model @classmethod def A ( cls : List[Any] , __snake_case : PretrainedConfig , **__snake_case : str ) -> str: return cls(backbone_config=__snake_case , **__snake_case ) def A ( self : Union[str, Any] ) -> Dict[str, any]: UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : int = self.__class__.model_type return output class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = version.parse("""1.11""" ) @property def A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def A ( self : List[str] ) -> float: return 1E-5 @property def A ( self : str ) -> int: return 12
23
import math from datetime import datetime, timedelta def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = year % 1_9 SCREAMING_SNAKE_CASE_ = year % 4 SCREAMING_SNAKE_CASE_ = year % 7 SCREAMING_SNAKE_CASE_ = math.floor(year / 1_0_0 ) SCREAMING_SNAKE_CASE_ = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) SCREAMING_SNAKE_CASE_ = leap_day_inhibits / 4 SCREAMING_SNAKE_CASE_ = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 SCREAMING_SNAKE_CASE_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 SCREAMING_SNAKE_CASE_ = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon SCREAMING_SNAKE_CASE_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 1_8 ) else: return datetime(__UpperCamelCase , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): A : Dict = "will be" if year > datetime.now().year else "was" print(f"Easter in {year} {tense} {gauss_easter(year)}")
118
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : Dict = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: UpperCamelCase_ : int = [144, 192, 240] UpperCamelCase_ : int = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: UpperCamelCase_ : List[Any] = [96, 120, 144] UpperCamelCase_ : Dict = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: UpperCamelCase_ : Tuple = [64, 80, 96] UpperCamelCase_ : List[Any] = [16, 16, 24, 48, 64, 80, 320] UpperCamelCase_ : Optional[int] = 0.0_5 UpperCamelCase_ : List[str] = 2.0 if mobilevit_name.startswith('deeplabv3_' ): UpperCamelCase_ : List[str] = 512 UpperCamelCase_ : Union[str, Any] = 16 UpperCamelCase_ : List[str] = 21 UpperCamelCase_ : Optional[int] = 'pascal-voc-id2label.json' else: UpperCamelCase_ : Tuple = 1000 UpperCamelCase_ : str = 'imagenet-1k-id2label.json' UpperCamelCase_ : str = 'huggingface/label-files' UpperCamelCase_ : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type='dataset' ) , 'r' ) ) UpperCamelCase_ : Union[str, Any] = {int(lowerCamelCase ): v for k, v in idalabel.items()} UpperCamelCase_ : List[Any] = idalabel UpperCamelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} return config def __lowercase ( lowerCamelCase : List[str] , lowerCamelCase : Optional[int]=False ): for i in range(1 , 6 ): if F"layer_{i}." in name: UpperCamelCase_ : str = name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: UpperCamelCase_ : Tuple = name.replace('conv_1.' , 'conv_stem.' ) if ".block." in name: UpperCamelCase_ : Optional[int] = name.replace('.block.' , '.' ) if "exp_1x1" in name: UpperCamelCase_ : int = name.replace('exp_1x1' , 'expand_1x1' ) if "red_1x1" in name: UpperCamelCase_ : List[Any] = name.replace('red_1x1' , 'reduce_1x1' ) if ".local_rep.conv_3x3." in name: UpperCamelCase_ : Optional[Any] = name.replace('.local_rep.conv_3x3.' , '.conv_kxk.' ) if ".local_rep.conv_1x1." in name: UpperCamelCase_ : Dict = name.replace('.local_rep.conv_1x1.' , '.conv_1x1.' ) if ".norm." in name: UpperCamelCase_ : Any = name.replace('.norm.' , '.normalization.' ) if ".conv." in name: UpperCamelCase_ : Optional[Any] = name.replace('.conv.' , '.convolution.' ) if ".conv_proj." in name: UpperCamelCase_ : Dict = name.replace('.conv_proj.' , '.conv_projection.' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: UpperCamelCase_ : Tuple = name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: UpperCamelCase_ : List[str] = name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: UpperCamelCase_ : Dict = name.replace('expand_1x1' , 'downsampling_layer.expand_1x1' ) if "conv_3x3" in name: UpperCamelCase_ : Union[str, Any] = name.replace('conv_3x3' , 'downsampling_layer.conv_3x3' ) if "reduce_1x1" in name: UpperCamelCase_ : Optional[Any] = name.replace('reduce_1x1' , 'downsampling_layer.reduce_1x1' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: UpperCamelCase_ : List[Any] = name.replace(F".global_rep.{i}.weight" , '.layernorm.weight' ) if F".global_rep.{i}.bias" in name: UpperCamelCase_ : Dict = name.replace(F".global_rep.{i}.bias" , '.layernorm.bias' ) if ".global_rep." in name: UpperCamelCase_ : Tuple = name.replace('.global_rep.' , '.transformer.' ) if ".pre_norm_mha.0." in name: UpperCamelCase_ : Optional[Any] = name.replace('.pre_norm_mha.0.' , '.layernorm_before.' ) if ".pre_norm_mha.1.out_proj." in name: UpperCamelCase_ : int = name.replace('.pre_norm_mha.1.out_proj.' , '.attention.output.dense.' ) if ".pre_norm_ffn.0." in name: UpperCamelCase_ : Optional[Any] = name.replace('.pre_norm_ffn.0.' , '.layernorm_after.' ) if ".pre_norm_ffn.1." in name: UpperCamelCase_ : Tuple = name.replace('.pre_norm_ffn.1.' , '.intermediate.dense.' ) if ".pre_norm_ffn.4." in name: UpperCamelCase_ : int = name.replace('.pre_norm_ffn.4.' , '.output.dense.' ) if ".transformer." in name: UpperCamelCase_ : Optional[Any] = name.replace('.transformer.' , '.transformer.layer.' ) if ".aspp_layer." in name: UpperCamelCase_ : Tuple = name.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in name: UpperCamelCase_ : Any = name.replace('.aspp_pool.' , '.' ) if "seg_head." in name: UpperCamelCase_ : Union[str, Any] = name.replace('seg_head.' , 'segmentation_head.' ) if "segmentation_head.classifier.classifier." in name: UpperCamelCase_ : str = name.replace('segmentation_head.classifier.classifier.' , 'segmentation_head.classifier.' ) if "classifier.fc." in name: UpperCamelCase_ : Optional[int] = name.replace('classifier.fc.' , 'classifier.' ) elif (not base_model) and ("segmentation_head." not in name): UpperCamelCase_ : List[str] = 'mobilevit.' + name return name def __lowercase ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict=False ): if base_model: UpperCamelCase_ : str = '' else: UpperCamelCase_ : List[Any] = 'mobilevit.' for key in orig_state_dict.copy().keys(): UpperCamelCase_ : int = orig_state_dict.pop(lowerCamelCase ) if key[:8] == "encoder.": UpperCamelCase_ : Dict = key[8:] if "qkv" in key: UpperCamelCase_ : Tuple = key.split('.' ) UpperCamelCase_ : List[str] = int(key_split[0][6:] ) - 1 UpperCamelCase_ : Any = int(key_split[3] ) UpperCamelCase_ : Optional[int] = model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) UpperCamelCase_ : int = layer.transformer.layer[transformer_num].attention.attention.all_head_size UpperCamelCase_ : Dict = ( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: UpperCamelCase_ : Union[str, Any] = val[:dim, :] UpperCamelCase_ : List[Any] = val[dim : dim * 2, :] UpperCamelCase_ : str = val[-dim:, :] else: UpperCamelCase_ : Dict = val[:dim] UpperCamelCase_ : List[Any] = val[dim : dim * 2] UpperCamelCase_ : List[Any] = val[-dim:] else: UpperCamelCase_ : int = val return orig_state_dict def __lowercase ( ): UpperCamelCase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase_ : int = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : int=False ): UpperCamelCase_ : Optional[int] = get_mobilevit_config(lowerCamelCase ) # load original state_dict UpperCamelCase_ : Union[str, Any] = torch.load(lowerCamelCase , map_location='cpu' ) # load 🤗 model if mobilevit_name.startswith('deeplabv3_' ): UpperCamelCase_ : Union[str, Any] = MobileViTForSemanticSegmentation(lowerCamelCase ).eval() else: UpperCamelCase_ : Tuple = MobileViTForImageClassification(lowerCamelCase ).eval() UpperCamelCase_ : int = convert_state_dict(lowerCamelCase , lowerCamelCase ) model.load_state_dict(lowerCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCamelCase_ : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCamelCase_ : int = image_processor(images=prepare_img() , return_tensors='pt' ) UpperCamelCase_ : List[str] = model(**lowerCamelCase ) UpperCamelCase_ : Any = outputs.logits if mobilevit_name.startswith('deeplabv3_' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": UpperCamelCase_ : Tuple = torch.tensor( [ [[6.2_0_6_5, 6.1_2_9_2, 6.2_0_7_0], [6.1_0_7_9, 6.1_2_5_4, 6.1_7_4_7], [6.0_0_4_2, 6.1_0_7_1, 6.1_0_3_4]], [[-6.9_2_5_3, -6.8_6_5_3, -7.0_3_9_8], [-7.3_2_1_8, -7.3_9_8_3, -7.3_6_7_0], [-7.1_9_6_1, -7.2_4_8_2, -7.1_5_6_9]], [[-4.4_7_2_3, -4.4_3_4_8, -4.3_7_6_9], [-5.3_6_2_9, -5.4_6_3_2, -5.4_5_9_8], [-5.1_5_8_7, -5.3_4_0_2, -5.5_0_5_9]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": UpperCamelCase_ : Optional[Any] = torch.tensor( [ [[5.4_4_4_9, 5.5_7_3_3, 5.6_3_1_4], [5.1_8_1_5, 5.3_9_3_0, 5.5_9_6_3], [5.1_6_5_6, 5.4_3_3_3, 5.4_8_5_3]], [[-9.4_4_2_3, -9.7_7_6_6, -9.6_7_1_4], [-9.1_5_8_1, -9.5_7_2_0, -9.5_5_1_9], [-9.1_0_0_6, -9.6_4_5_8, -9.5_7_0_3]], [[-7.7_7_2_1, -7.3_7_1_6, -7.1_5_8_3], [-8.4_5_9_9, -8.0_6_2_4, -7.7_9_4_4], [-8.4_1_7_2, -7.8_3_6_6, -7.5_0_2_5]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": UpperCamelCase_ : Union[str, Any] = torch.tensor( [ [[6.9_8_1_1, 6.9_7_4_3, 7.3_1_2_3], [7.1_7_7_7, 7.1_9_3_1, 7.3_9_3_8], [7.5_6_3_3, 7.8_0_5_0, 7.8_9_0_1]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8_6_2_4, -9.5_9_6_4], [-10.8840, -10.8158, -10.6659]], [[-3.4_9_3_8, -3.0_6_3_1, -2.8_6_2_0], [-3.4_2_0_5, -2.8_1_3_5, -2.6_8_7_5], [-3.4_1_7_9, -2.7_9_4_5, -2.8_7_5_0]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": UpperCamelCase_ : Any = torch.tensor([-0.9_8_6_6, 0.2_3_9_2, -1.1_2_4_1] ) elif mobilevit_name == "mobilevit_xs": UpperCamelCase_ : Optional[Any] = torch.tensor([-2.4_7_6_1, -0.9_3_9_9, -1.9_5_8_7] ) elif mobilevit_name == "mobilevit_xxs": UpperCamelCase_ : List[str] = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , lowerCamelCase , atol=1e-4 ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: UpperCamelCase_ : List[str] = { 'mobilevit_s': 'mobilevit-small', 'mobilevit_xs': 'mobilevit-x-small', 'mobilevit_xxs': 'mobilevit-xx-small', 'deeplabv3_mobilevit_s': 'deeplabv3-mobilevit-small', 'deeplabv3_mobilevit_xs': 'deeplabv3-mobilevit-x-small', 'deeplabv3_mobilevit_xxs': 'deeplabv3-mobilevit-xx-small', } print('Pushing to the hub...' ) UpperCamelCase_ : Optional[int] = model_mapping[mobilevit_name] image_processor.push_to_hub(lowerCamelCase , organization='apple' ) model.push_to_hub(lowerCamelCase , organization='apple' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
358
a_ = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' a_ = [{'type': 'code', 'content': INSTALL_CONTENT}] a_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
50
0
def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" A__ = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] A__ = 6 A__ = 1 A__ = 1_9_0_1 A__ = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 A__ = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 A__ = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 A__ = day - days_per_month[month - 2] if month > 1_2: year += 1 A__ = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
274
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def __lowerCamelCase ( lowerCAmelCase__ = True , *lowerCAmelCase__ , **lowerCAmelCase__ ): if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) lowerCAmelCase__ = False if main_process_only: lowerCAmelCase__ = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase__ , **lowerCAmelCase__ , disable=lowerCAmelCase__ )
350
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
119
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Tuple = GPTSanJapaneseTokenizer UpperCamelCase_ : str = False UpperCamelCase_ : Any = {"""do_clean_text""": False, """add_prefix_space""": False} def _snake_case ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' super().setUp() # fmt: off A: Optional[Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on A: Dict = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 A: str = {'''unk_token''': '''<unk>'''} A: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : Any , **SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: '''simple docstring''' A: List[str] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' A: Any = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Any ) -> str: '''simple docstring''' A , A: List[Any] = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) A: str = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) return text, ids def _snake_case ( self : List[Any] ) -> int: '''simple docstring''' pass # TODO add if relevant def _snake_case ( self : List[Any] ) -> int: '''simple docstring''' pass # TODO add if relevant def _snake_case ( self : int ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def _snake_case ( self : Tuple ) -> str: '''simple docstring''' A: Union[str, Any] = self.get_tokenizer() # Testing tokenization A: str = '''こんにちは、世界。 こんばんは、㔺界。''' A: List[str] = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] A: Tuple = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids without special tokens A: Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] A: str = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids with special tokens A: int = tokens + [tokenizer.unk_token] A: Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] A: int = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' A: Tuple = self.get_tokenizer() # Testing tokenization A: Tuple = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' A: int = '''こんにちは、、、、世界。こんばんは、、、、世界。''' A: int = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Dict ) -> str: '''simple docstring''' A: Any = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization A: List[Any] = '''こんにちは、世界。''' A: List[str] = '''こんばんは、㔺界。😀''' A: Union[str, Any] = '''こんにちは、世界。こんばんは、世界。😀''' A: List[str] = tokenizer.encode(prefix_text + input_text ) A: List[str] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) A: str = tokenizer.encode(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ) A: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Optional[int] ) -> List[Any]: '''simple docstring''' A: Optional[int] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization A: Optional[int] = '''こんにちは、世界。''' A: Optional[Any] = '''こんばんは、㔺界。😀''' A: Dict = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 A: Optional[int] = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 A: str = [1] + [0] * (len_prefix + len_text + 1) A: Tuple = [1] * (len_prefix + len_text + 1) + [0] A: List[str] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) A: Dict = tokenizer(prefix_text + input_text ).token_type_ids A: int = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids A: List[Any] = tokenizer(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ).token_type_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : List[Any] ) -> int: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) A: List[str] = tokenizer.encode('''あンいワ''' ) A: Optional[Any] = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) A: Optional[Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def _snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) A: Optional[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] A: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) A: str = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) # fmt: off A: Optional[int] = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] A: int = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] A: List[str] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.attention_mask , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.attention_mask , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Any ) -> str: '''simple docstring''' pass def _snake_case ( self : str ) -> List[str]: '''simple docstring''' pass
319
'''simple docstring''' from __future__ import annotations import math def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if len(__lowercase ) != 2 or len(a[0] ) != 2 or len(__lowercase ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) A: str = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[list, list, list, list]: if len(__lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) A: Union[str, Any] = len(__lowercase ) A: str = matrix_length // 2 A: Optional[int] = [[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase )] A: Optional[Any] = [ [a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase , __lowercase ) ] A: Union[str, Any] = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase )] A: int = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase , __lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[int, int]: return len(__lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE( __lowercase ) -> None: print('''\n'''.join(str(__lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if matrix_dimensions(__lowercase ) == (2, 2): return default_matrix_multiplication(__lowercase , __lowercase ) A , A , A , A: Union[str, Any] = split_matrix(__lowercase ) A , A , A , A: List[Any] = split_matrix(__lowercase ) A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) A: Any = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: Union[str, Any] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: List[str] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: int = matrix_addition(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) A: Any = matrix_addition(__lowercase , __lowercase ) A: List[Any] = matrix_addition(__lowercase , __lowercase ) A: List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) # construct the new matrix from our 4 quadrants A: Union[str, Any] = [] for i in range(len(__lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if matrix_dimensions(__lowercase )[1] != matrix_dimensions(__lowercase )[0]: A: int = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(__lowercase ) A: str = matrix_dimensions(__lowercase ) A: str = matrix_dimensions(__lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] A: Union[str, Any] = max(*__lowercase , *__lowercase ) A: Optional[int] = int(math.pow(2 , math.ceil(math.loga(__lowercase ) ) ) ) A: List[Any] = matrixa A: Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) A: Any = actual_strassen(__lowercase , __lowercase ) # Removing the additional zeros for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": UpperCamelCase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] UpperCamelCase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
319
1
'''simple docstring''' import functools def _snake_case ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] ) -> int: """simple docstring""" # Validation if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(_SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(_SCREAMING_SNAKE_CASE ) == 0: return 0 if min(_SCREAMING_SNAKE_CASE ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(_SCREAMING_SNAKE_CASE ) >= 366: raise ValueError("""All days elements should be less than 366""" ) lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(_SCREAMING_SNAKE_CASE : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins UpperCAmelCase = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ) -> Optional[int]: """simple docstring""" # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] ) -> Any: """simple docstring""" config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE ) def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict ) -> str: """simple docstring""" # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? lowerCAmelCase = tmp_path_factory.getbasetemp() / """cache""" lowerCAmelCase = test_hf_cache_home / """datasets""" lowerCAmelCase = test_hf_cache_home / """metrics""" lowerCAmelCase = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(_SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(_SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(_SCREAMING_SNAKE_CASE ) ) @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE , scope="""session""" ) def _snake_case ( ) -> Optional[Any]: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE ) def _snake_case ( _SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" # don't take tests into account when counting downloads monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , _SCREAMING_SNAKE_CASE ) @pytest.fixture def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , _SCREAMING_SNAKE_CASE )
187
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def _lowerCamelCase( lowercase__ ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> np.ndarray: '''simple docstring''' __lowercase= np.nan for i in range(lowercase__ ): __lowercase= features[:, labels == i] __lowercase= data.mean(1 ) # Centralize the data of class i __lowercase= data - column_reshape(lowercase__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(lowercase__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) __lowercase= np.dot(lowercase__ , centered_data.T ) return covariance_sum / features.shape[1] def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> np.ndarray: '''simple docstring''' __lowercase= features.mean(1 ) __lowercase= np.nan for i in range(lowercase__ ): __lowercase= features[:, labels == i] __lowercase= data.shape[1] __lowercase= data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(lowercase__ ) - column_reshape(lowercase__ ) , (column_reshape(lowercase__ ) - column_reshape(lowercase__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) __lowercase= device_data * np.dot( column_reshape(lowercase__ ) - column_reshape(lowercase__ ) , (column_reshape(lowercase__ ) - column_reshape(lowercase__ )).T , ) return covariance_sum / features.shape[1] def _lowerCamelCase( lowercase__ , lowercase__ ) -> np.ndarray: '''simple docstring''' if features.any(): __lowercase= features.mean(1 ) # Center the dataset __lowercase= features - np.reshape(lowercase__ , (data_mean.size, 1) ) __lowercase= np.dot(lowercase__ , centered_data.T ) / features.shape[1] __lowercase, __lowercase= np.linalg.eigh(lowercase__ ) # Take all the columns in the reverse order (-1), and then takes only the first __lowercase= eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space __lowercase= np.dot(filtered_eigenvectors.T , lowercase__ ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=lowercase__ ) logging.error('Dataset empty' ) raise AssertionError def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: __lowercase, __lowercase= eigh( covariance_between_classes(lowercase__ , lowercase__ , lowercase__ ) , covariance_within_classes(lowercase__ , lowercase__ , lowercase__ ) , ) __lowercase= eigenvectors[:, ::-1][:, :dimensions] __lowercase, __lowercase, __lowercase= np.linalg.svd(lowercase__ ) __lowercase= svd_matrix[:, 0:dimensions] __lowercase= np.dot(filtered_svd_matrix.T , lowercase__ ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=lowercase__ ) logging.error('Dataset empty' ) raise AssertionError def _lowerCamelCase( ) -> None: '''simple docstring''' __lowercase= np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) __lowercase= np.array([0, 0, 0, 1, 1] ) __lowercase= 2 __lowercase= 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(lowercase__ ) as error_info: __lowercase= linear_discriminant_analysis( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if isinstance(lowercase__ , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def _lowerCamelCase( ) -> None: '''simple docstring''' __lowercase= np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) __lowercase= 2 __lowercase= np.array([[6.9282_0323, 8.6602_5404, 10.3923_0485], [3.0, 3.0, 3.0]] ) with pytest.raises(lowercase__ ) as error_info: __lowercase= principal_component_analysis(lowercase__ , lowercase__ ) if not np.allclose(lowercase__ , lowercase__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
295
def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' if collection == []: return [] # get some information about the collection __lowercase= len(lowercase__ ) __lowercase= max(lowercase__ ) __lowercase= min(lowercase__ ) # create the counting array __lowercase= coll_max + 1 - coll_min __lowercase= [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): __lowercase= counting_arr[i] + counting_arr[i - 1] # create the output collection __lowercase= [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): __lowercase= collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" lowerCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
295
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _A : List[str] = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] = ["""ViTFeatureExtractor"""] _A : List[str] = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
360
import os from pathlib import Path def _a ( ) -> Tuple: """simple docstring""" from torch.utils.cpp_extension import load lowerCamelCase__ : List[Any] = Path(UpperCAmelCase ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' lowerCamelCase__ : Any = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , UpperCAmelCase , with_cuda=UpperCAmelCase , extra_include_paths=[str(UpperCAmelCase )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
265
0
"""simple docstring""" def _snake_case ( lowercase__ ): def merge(lowercase__ , lowercase__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowercase__ ) <= 1: return collection _lowerCamelCase : Dict = len(lowercase__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
96
"""simple docstring""" # Imports import numpy as np class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None ): self.set_matricies(red=lowercase , green=lowercase , blue=lowercase , red_edge=lowercase , nir=lowercase ) def A_ ( self , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None ): if red is not None: _lowerCamelCase : Optional[int] = red if green is not None: _lowerCamelCase : Optional[Any] = green if blue is not None: _lowerCamelCase : Tuple = blue if red_edge is not None: _lowerCamelCase : Optional[Any] = red_edge if nir is not None: _lowerCamelCase : Union[str, Any] = nir return True def A_ ( self , lowercase="" , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None ): self.set_matricies(red=lowercase , green=lowercase , blue=lowercase , red_edge=lowercase , nir=lowercase ) _lowerCamelCase : str = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def A_ ( self ): return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def A_ ( self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def A_ ( self ): return self.nir * (self.red / (self.green**2)) def A_ ( self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def A_ ( self ): return (self.nir - self.red) / (self.nir + self.red) def A_ ( self ): return (self.nir - self.blue) / (self.nir + self.blue) def A_ ( self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def A_ ( self ): return (self.nir - self.green) / (self.nir + self.green) def A_ ( self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def A_ ( self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def A_ ( self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def A_ ( self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def A_ ( self , lowercase=0.08 , lowercase=1.22 , lowercase=0.03 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def A_ ( self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def A_ ( self ): return (self.nir / self.green) - 1 def A_ ( self ): return (self.nir / self.redEdge) - 1 def A_ ( self ): return (self.red - self.blue) / self.red def A_ ( self ): _lowerCamelCase : Any = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def A_ ( self ): return self.nir - self.green def A_ ( self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def A_ ( self ): _lowerCamelCase : Any = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def A_ ( self , lowercase=0.16 ): return (self.nir - self.green) / (self.nir + self.green + y) def A_ ( self , lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def A_ ( self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def A_ ( self , lowercase=None , lowercase=None ): return (self.nir - b) / (a * self.red) def A_ ( self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def A_ ( self ): return (self.red + self.green + self.blue) / 30.5 def A_ ( self ): return self.nir / self.red def A_ ( self ): return (self.rvi() - 1) / (self.rvi() + 1) def A_ ( self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def A_ ( self ): return self.green / (self.nir + self.red + self.green) def A_ ( self ): return self.nir / (self.nir + self.red + self.green) def A_ ( self ): return self.red / (self.nir + self.red + self.green) def A_ ( self ): return (self.green - self.red) / (self.green + self.red) def A_ ( self ): return (self.red - self.green) / (self.red + self.green) def A_ ( self ): _lowerCamelCase : Union[str, Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) _lowerCamelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def A_ ( self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def A_ ( self ): return self.nir / self.red def A_ ( self ): return (self.ndvi() + 0.5) ** (1 / 2) def A_ ( self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
96
1
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase_ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCamelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowerCamelCase_ = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : List[str] , __A : Dict , __A : Dict ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): _SCREAMING_SNAKE_CASE = True # Deal with multi-line cases elif ( re.search( Rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , lowerCAmelCase__ , ) is not None ): _SCREAMING_SNAKE_CASE = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _SCREAMING_SNAKE_CASE = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _SCREAMING_SNAKE_CASE = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] _SCREAMING_SNAKE_CASE = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed _SCREAMING_SNAKE_CASE = True if not attribute_used: _SCREAMING_SNAKE_CASE = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _SCREAMING_SNAKE_CASE = True elif attribute in ["tie_word_embeddings"] and default_value is False: _SCREAMING_SNAKE_CASE = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _SCREAMING_SNAKE_CASE = True elif attribute.endswith("_token_id" ): _SCREAMING_SNAKE_CASE = True # configuration class specific cases if not case_allowed: _SCREAMING_SNAKE_CASE = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _SCREAMING_SNAKE_CASE = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] ) -> str: _SCREAMING_SNAKE_CASE = dict(inspect.signature(config_class.__init__ ).parameters ) _SCREAMING_SNAKE_CASE = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] _SCREAMING_SNAKE_CASE = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _SCREAMING_SNAKE_CASE = {} if len(config_class.attribute_map ) > 0: _SCREAMING_SNAKE_CASE = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _SCREAMING_SNAKE_CASE = inspect.getsourcefile(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE = os.path.dirname(lowerCAmelCase__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _SCREAMING_SNAKE_CASE = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for fn in os.listdir(lowerCAmelCase__ ) if fn.startswith("modeling_" )] # Get the source code strings _SCREAMING_SNAKE_CASE = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as fp: modeling_sources.append(fp.read() ) _SCREAMING_SNAKE_CASE = [] for config_param, default_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): # `attributes` here is all the variant names for `config_param` _SCREAMING_SNAKE_CASE = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: _SCREAMING_SNAKE_CASE = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _SCREAMING_SNAKE_CASE = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(lowerCAmelCase__ ) and issubclass(lowerCAmelCase__ , lowerCAmelCase__ ) and inspect.getmodule(lowerCAmelCase__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _SCREAMING_SNAKE_CASE = check_config_attributes_being_used(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: _SCREAMING_SNAKE_CASE = unused_attributes if len(lowerCAmelCase__ ) > 0: _SCREAMING_SNAKE_CASE = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": check_config_attributes()
366
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCamelCase_ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : int ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE = torchvision.models.resnetaaa(pretrained=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = list(model.children() )[:-2] _SCREAMING_SNAKE_CASE = nn.Sequential(*__lowerCamelCase ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCamelCase : Optional[Any] ): """simple docstring""" # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 _SCREAMING_SNAKE_CASE = self.pool(self.model(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = torch.flatten(__lowerCamelCase , start_dim=2 ) _SCREAMING_SNAKE_CASE = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowercase_ ( A ): """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = [json.loads(__lowerCamelCase ) for l in open(__lowerCamelCase )] _SCREAMING_SNAKE_CASE = os.path.dirname(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer _SCREAMING_SNAKE_CASE = labels _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = max_seq_length _SCREAMING_SNAKE_CASE = transforms def __len__( self : int ): """simple docstring""" return len(self.data ) def __getitem__( self : str , __lowerCamelCase : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = sentence[0], sentence[1:-1], sentence[-1] _SCREAMING_SNAKE_CASE = sentence[: self.max_seq_length] _SCREAMING_SNAKE_CASE = torch.zeros(self.n_classes ) _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) _SCREAMING_SNAKE_CASE = self.transforms(__lowerCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] ) -> Dict: _SCREAMING_SNAKE_CASE = [len(row["sentence"] ) for row in batch] _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = len(__A ), max(__A ) _SCREAMING_SNAKE_CASE = torch.zeros(__A , __A , dtype=torch.long ) _SCREAMING_SNAKE_CASE = torch.zeros(__A , __A , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__A , __A ) ): _SCREAMING_SNAKE_CASE = input_row["sentence"] _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = torch.stack([row["image"] for row in batch] ) _SCREAMING_SNAKE_CASE = torch.stack([row["label"] for row in batch] ) _SCREAMING_SNAKE_CASE = torch.stack([row["image_start_token"] for row in batch] ) _SCREAMING_SNAKE_CASE = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7] , std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9] , ), ] )
111
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCamelCase ( __lowerCamelCase : int ): # A local function to see if a dot lands in the circle. def is_in_circle(__lowerCamelCase : Tuple , __lowerCamelCase : int ) -> bool: snake_case : Union[str, Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case : Optional[Any] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple = 0.0 , __lowerCamelCase : Dict = 1.0 , ): return mean( function_to_integrate(uniform(__lowerCamelCase , __lowerCamelCase ) ) for _ in range(__lowerCamelCase ) ) * (max_value - min_value) def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Any = 0.0 , __lowerCamelCase : List[str] = 1.0 ): def identity_function(__lowerCamelCase : Optional[Any] ) -> float: return x snake_case : List[Any] = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) snake_case : Dict = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def UpperCamelCase ( __lowerCamelCase : List[str] ): def function_to_integrate(__lowerCamelCase : List[Any] ) -> float: return sqrt(4.0 - x * x ) snake_case : int = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
59
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="Translation" ,init=A_ ,repr=A_ ) def __call__( self : List[str] ) -> Any: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[List] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="TranslationVariableLanguages" ,init=A_ ,repr=A_ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = sorted(set(self.languages ) ) if self.languages else None lowercase__ : Dict = len(self.languages ) if self.languages else None def __call__( self : List[Any] ) -> List[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = set(self.languages ) if self.languages and set(_snake_case ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(_snake_case ) - lang_set ) )}) are not in valid set ({", ".join(_snake_case )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase__ : str = [] for lang, text in translation_dict.items(): if isinstance(_snake_case ,_snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase__ , lowercase__ : Optional[Any] = zip(*sorted(_snake_case ) ) return {"language": languages, "translation": translations} def UpperCAmelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
16
0
from __future__ import annotations __UpperCAmelCase = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __UpperCAmelCase = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def _snake_case ( A ) -> list[float]: lowerCAmelCase__ = [] lowerCAmelCase__ = len(A ) for i in range(A ): lowerCAmelCase__ = -1 for j in range(i + 1 , A ): if arr[i] < arr[j]: lowerCAmelCase__ = arr[j] break result.append(A ) return result def _snake_case ( A ) -> list[float]: lowerCAmelCase__ = [] for i, outer in enumerate(A ): lowerCAmelCase__ = -1 for inner in arr[i + 1 :]: if outer < inner: lowerCAmelCase__ = inner break result.append(A ) return result def _snake_case ( A ) -> list[float]: lowerCAmelCase__ = len(A ) lowerCAmelCase__ = [] lowerCAmelCase__ = [-1] * arr_size for index in reversed(range(A ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowerCAmelCase__ = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __UpperCAmelCase = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
361
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class a__ ( a__ ): '''simple docstring''' lowercase__ : torch.FloatTensor class a__ ( a__ , a__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCamelCase_ = 6_55_36 , lowerCamelCase_ = None , lowerCamelCase_ = 2 , lowerCamelCase_ = 2 , lowerCamelCase_ = 0 , lowerCamelCase_ = "fourier" , lowerCamelCase_ = True , lowerCamelCase_ = False , lowerCamelCase_ = 0.0 , lowerCamelCase_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase_ = "UNetMidBlock1D" , lowerCamelCase_ = None , lowerCamelCase_ = (32, 32, 64) , lowerCamelCase_ = None , lowerCamelCase_ = 8 , lowerCamelCase_ = 1 , lowerCamelCase_ = False , ) -> Optional[int]: super().__init__() lowerCAmelCase__ = sample_size # time if time_embedding_type == "fourier": lowerCAmelCase__ = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase_ , log=lowerCamelCase_ , flip_sin_to_cos=lowerCamelCase_ ) lowerCAmelCase__ = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCAmelCase__ = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase_ , downscale_freq_shift=lowerCamelCase_ ) lowerCAmelCase__ = block_out_channels[0] if use_timestep_embedding: lowerCAmelCase__ = block_out_channels[0] * 4 lowerCAmelCase__ = TimestepEmbedding( in_channels=lowerCamelCase_ , time_embed_dim=lowerCamelCase_ , act_fn=lowerCamelCase_ , out_dim=block_out_channels[0] , ) lowerCAmelCase__ = nn.ModuleList([] ) lowerCAmelCase__ = None lowerCAmelCase__ = nn.ModuleList([] ) lowerCAmelCase__ = None # down lowerCAmelCase__ = in_channels for i, down_block_type in enumerate(lowerCamelCase_ ): lowerCAmelCase__ = output_channel lowerCAmelCase__ = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCAmelCase__ = i == len(lowerCamelCase_ ) - 1 lowerCAmelCase__ = get_down_block( lowerCamelCase_ , num_layers=lowerCamelCase_ , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase_ ) # mid lowerCAmelCase__ = get_mid_block( lowerCamelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase_ , add_downsample=lowerCamelCase_ , ) # up lowerCAmelCase__ = list(reversed(lowerCamelCase_ ) ) lowerCAmelCase__ = reversed_block_out_channels[0] if out_block_type is None: lowerCAmelCase__ = out_channels else: lowerCAmelCase__ = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase_ ): lowerCAmelCase__ = output_channel lowerCAmelCase__ = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase_ ) - 1 else final_upsample_channels ) lowerCAmelCase__ = i == len(lowerCamelCase_ ) - 1 lowerCAmelCase__ = get_up_block( lowerCamelCase_ , num_layers=lowerCamelCase_ , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase_ ) lowerCAmelCase__ = output_channel # out lowerCAmelCase__ = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCAmelCase__ = get_out_block( out_block_type=lowerCamelCase_ , num_groups_out=lowerCamelCase_ , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase_ , act_fn=lowerCamelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = True , ) -> Union[UNetaDOutput, Tuple]: lowerCAmelCase__ = timestep if not torch.is_tensor(lowerCamelCase_ ): lowerCAmelCase__ = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase_ ) and len(timesteps.shape ) == 0: lowerCAmelCase__ = timesteps[None].to(sample.device ) lowerCAmelCase__ = self.time_proj(lowerCamelCase_ ) if self.config.use_timestep_embedding: lowerCAmelCase__ = self.time_mlp(lowerCamelCase_ ) else: lowerCAmelCase__ = timestep_embed[..., None] lowerCAmelCase__ = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCAmelCase__ = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCAmelCase__ = () for downsample_block in self.down_blocks: lowerCAmelCase__ , lowerCAmelCase__ = downsample_block(hidden_states=lowerCamelCase_ , temb=lowerCamelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCAmelCase__ = self.mid_block(lowerCamelCase_ , lowerCamelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCAmelCase__ = down_block_res_samples[-1:] lowerCAmelCase__ = down_block_res_samples[:-1] lowerCAmelCase__ = upsample_block(lowerCamelCase_ , res_hidden_states_tuple=lowerCamelCase_ , temb=lowerCamelCase_ ) # 5. post-process if self.out_block: lowerCAmelCase__ = self.out_block(lowerCamelCase_ , lowerCamelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase_ )
228
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding="""utf-8""" ,check=__UpperCAmelCase ,) assert hasattr(self ,"""env""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = F"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings lowerCAmelCase__ : Any = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=__UpperCAmelCase ,instance_count=__UpperCAmelCase ,instance_type=self.instance_type ,debugger_hook_config=__UpperCAmelCase ,hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,distribution=__UpperCAmelCase ,py_version="""py36""" ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: TrainingJobAnalytics(__UpperCAmelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Any: # create estimator lowerCAmelCase__ : List[Any] = self.create_estimator(__UpperCAmelCase ) # run training estimator.fit() # result dataframe lowerCAmelCase__ : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ : int = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" ,99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" ,"""w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} ,__UpperCAmelCase )
37
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): UpperCAmelCase__ : str = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } UpperCAmelCase__ , UpperCAmelCase__ : int = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCAmelCase__ : Union[str, Any] = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) assert base_extractor.is_extractable(UpperCamelCase__ ) UpperCAmelCase__ : int = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ : Union[str, Any] = file_path.read_text(encoding="""utf-8""" ) else: UpperCAmelCase__ : str = output_path.read_text(encoding="""utf-8""" ) UpperCAmelCase__ : Union[str, Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): UpperCAmelCase__ : Dict = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } UpperCAmelCase__ : List[str] = input_paths[compression_format] if input_path is None: UpperCAmelCase__ : Optional[Any] = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) UpperCAmelCase__ : Dict = Extractor.infer_extractor_format(UpperCamelCase__ ) assert extractor_format is not None UpperCAmelCase__ : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ : Dict = file_path.read_text(encoding="""utf-8""" ) else: UpperCAmelCase__ : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) UpperCAmelCase__ : str = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): import tarfile UpperCAmelCase__ : Optional[int] = tmp_path / """data_dot_dot""" directory.mkdir() UpperCAmelCase__ : Optional[Any] = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(UpperCamelCase__ , """w""" ) as f: f.add(UpperCamelCase__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def _UpperCamelCase ( UpperCamelCase__ ): import tarfile UpperCAmelCase__ : List[str] = tmp_path / """data_sym_link""" directory.mkdir() UpperCAmelCase__ : Optional[int] = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=UpperCamelCase__ ) with tarfile.TarFile(UpperCamelCase__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Any = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } UpperCAmelCase__ : str = insecure_tar_files[insecure_tar_file] UpperCAmelCase__ : Union[str, Any] = tmp_path / """extracted""" TarExtractor.extract(UpperCamelCase__ , UpperCamelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _UpperCamelCase ( UpperCamelCase__ ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number UpperCAmelCase__ : Tuple = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 UpperCAmelCase__ : Any = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(UpperCamelCase__ ) assert zipfile.is_zipfile(str(UpperCamelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(UpperCamelCase__ ) # but we're right
163
0
"""simple docstring""" _lowercase : dict[tuple[int, int, int], int] = {} def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowerCamelCase__ : Optional[Any] =(days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowerCamelCase__ : Any =_calculate(days - 1 , __lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowerCamelCase__ : Optional[Any] =_calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowerCamelCase__ : Dict =_calculate(days - 1 , __lowerCamelCase , 0 ) lowerCamelCase__ : List[str] =state_late + state_absent + state_ontime lowerCamelCase__ : Union[str, Any] =prizestrings return prizestrings def snake_case__ ( __lowerCamelCase : int = 30 ): """simple docstring""" return _calculate(__lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
272
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : List[Any], lowerCamelCase : Dict="", lowerCamelCase : Tuple="train" )-> Dict: assert os.path.isdir(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =[] lowerCamelCase__ : Dict =os.listdir(lowerCamelCase ) for story_filename in story_filenames_list: if "summary" in story_filename: continue lowerCamelCase__ : Optional[int] =os.path.join(lowerCamelCase, lowerCamelCase ) if not os.path.isfile(lowerCamelCase ): continue self.documents.append(lowerCamelCase ) def __len__( self : Optional[Any] )-> List[str]: return len(self.documents ) def __getitem__( self : List[str], lowerCamelCase : Dict )-> str: lowerCamelCase__ : int =self.documents[idx] lowerCamelCase__ : List[Any] =document_path.split('''/''' )[-1] with open(lowerCamelCase, encoding='''utf-8''' ) as source: lowerCamelCase__ : Optional[int] =source.read() lowerCamelCase__ , lowerCamelCase__ : List[Any] =process_story(lowerCamelCase ) return document_name, story_lines, summary_lines def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[str] =list(filter(lambda __lowerCamelCase : len(__lowerCamelCase ) != 0 , [line.strip() for line in raw_story.split('''\n''' )] ) ) # for some unknown reason some lines miss a period, add it lowerCamelCase__ : Dict =[_add_missing_period(__lowerCamelCase ) for line in nonempty_lines] # gather article lines lowerCamelCase__ : Union[str, Any] =[] lowerCamelCase__ : Optional[Any] =deque(__lowerCamelCase ) while True: try: lowerCamelCase__ : Tuple =lines.popleft() if element.startswith('''@highlight''' ): break story_lines.append(__lowerCamelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines lowerCamelCase__ : Dict =list(filter(lambda __lowerCamelCase : not t.startswith('''@highlight''' ) , __lowerCamelCase ) ) return story_lines, summary_lines def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : Any =['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')'''] if line.startswith('''@highlight''' ): return line if line[-1] in END_TOKENS: return line return line + "." def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): """simple docstring""" if len(__lowerCamelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__lowerCamelCase )) ) return sequence def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : int =torch.ones_like(__lowerCamelCase ) lowerCamelCase__ : Any =sequence == pad_token_id lowerCamelCase__ : List[str] =0 return mask def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] ): """simple docstring""" lowerCamelCase__ : Dict =[tokenizer.encode(__lowerCamelCase ) for line in story_lines] lowerCamelCase__ : List[Any] =[token for sentence in story_lines_token_ids for token in sentence] lowerCamelCase__ : List[Any] =[tokenizer.encode(__lowerCamelCase ) for line in summary_lines] lowerCamelCase__ : Optional[int] =[token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] ): """simple docstring""" lowerCamelCase__ : Any =[] for sequence in batch: lowerCamelCase__ : Optional[int] =-1 lowerCamelCase__ : List[str] =[] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__lowerCamelCase ) return torch.tensor(__lowerCamelCase )
272
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer UpperCAmelCase__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast UpperCAmelCase__ = TaTokenizerFast UpperCAmelCase__ = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys UpperCAmelCase__ = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase :Tuple = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> Any: super().__init__(*_A , **_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __lowerCAmelCase ( self : str , _A : Any=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None ) -> List[str]: __magic_name__ : Union[str, Any] = {} __magic_name__ : Optional[Any] = {} if prompt is not None: __magic_name__ : Union[str, Any] = prompt if generate_kwargs is not None: __magic_name__ : str = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __magic_name__ : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __magic_name__ : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , _A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_A : List[Any] ) -> int: return super().__call__(_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: __magic_name__ : List[Any] = load_image(_A ) if prompt is not None: if not isinstance(_A , _A ): raise ValueError( F'Received an invalid text input, got - {type(_A )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) __magic_name__ : Any = self.model.config.model_type if model_type == "git": __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(text=_A , add_special_tokens=_A ).input_ids __magic_name__ : str = [self.tokenizer.cls_token_id] + input_ids __magic_name__ : List[Any] = torch.tensor(_A ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __magic_name__ : Dict = self.image_processor(images=_A , header_text=_A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __magic_name__ : int = self.image_processor(images=_A , return_tensors=self.framework ) __magic_name__ : List[str] = self.tokenizer(_A , return_tensors=self.framework ) model_inputs.update(_A ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: __magic_name__ : Optional[Any] = self.image_processor(images=_A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __magic_name__ : int = None return model_inputs def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : List[str]=None ) -> Any: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _A ) and all(x is None for x in model_inputs['input_ids'] ) ): __magic_name__ : str = None if generate_kwargs is None: __magic_name__ : Optional[int] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __magic_name__ : Optional[Any] = model_inputs.pop(self.model.main_input_name ) __magic_name__ : Union[str, Any] = self.model.generate(_A , **_A , **_A ) return model_outputs def __lowerCAmelCase ( self : List[str] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Optional[Any] = [] for output_ids in model_outputs: __magic_name__ : Union[str, Any] = { 'generated_text': self.tokenizer.decode( _A , skip_special_tokens=_A , ) } records.append(_A ) return records
331
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , _a=1_000 , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope __a = range_bbox def __UpperCAmelCase ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment __a = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __a = bbox[i, j, 3] __a = bbox[i, j, 1] __a = t if bbox[i, j, 2] < bbox[i, j, 0]: __a = bbox[i, j, 2] __a = bbox[i, j, 0] __a = t __a = tf.convert_to_tensor(a__ ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a ): __a = TFLayoutLMModel(config=a__ ) __a = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ ) __a = model(a__ , a__ , token_type_ids=a__ ) __a = model(a__ , a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a ): __a = TFLayoutLMForMaskedLM(config=a__ ) __a = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a ): __a = self.num_labels __a = TFLayoutLMForSequenceClassification(config=a__ ) __a = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a ): __a = self.num_labels __a = TFLayoutLMForTokenClassification(config=a__ ) __a = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a ): __a = TFLayoutLMForQuestionAnswering(config=a__ ) __a = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class __lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __UpperCAmelCase : List[Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : int = True __UpperCAmelCase : List[str] = 1_0 def __UpperCAmelCase ( self ): __a = TFLayoutLMModelTester(self ) __a = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def __UpperCAmelCase ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFLayoutLMModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip('''Onnx compliancy broke with TF 2.10''' ) def __UpperCAmelCase ( self ): pass def lowercase ( ) -> Optional[int]: __a = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 __a = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __a = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 __a = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __a = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ): __a = TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''' ) __a , __a , __a , __a , __a = prepare_layoutlm_batch_inputs() # forward pass __a = model(input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) # test the sequence output on [0, :3, :3] __a = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1E-3 ) ) # test the pooled output on [1, :3] __a = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , a__ , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self ): __a = TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=2 ) __a , __a , __a , __a , __a = prepare_layoutlm_batch_inputs() # forward pass __a = model( input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar __a = outputs.loss __a = (2,) self.assertEqual(loss.shape , a__ ) # test the shape of the logits __a = outputs.logits __a = (2, 2) self.assertEqual(logits.shape , a__ ) @slow def __UpperCAmelCase ( self ): __a = TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=13 ) __a , __a , __a , __a , __a = prepare_layoutlm_batch_inputs() # forward pass __a = model( input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) # test the shape of the logits __a = outputs.logits __a = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , a__ ) @slow def __UpperCAmelCase ( self ): __a = TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''' ) __a , __a , __a , __a , __a = prepare_layoutlm_batch_inputs() # forward pass __a = model(input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) # test the shape of the logits __a = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , a__ ) self.assertEqual(outputs.end_logits.shape , a__ )
353
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: __a = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = 1 __a = FrozenDict(_a ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: __a = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = True __a = FrozenDict(_a ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , ) def __UpperCAmelCase ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def __UpperCAmelCase ( self ): self.enable_attention_slicing(_a ) def __UpperCAmelCase ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __a = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ): if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_a , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): __a = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) __a = self.segmentation_model(**_a ) __a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __a = self.numpy_to_pil(_a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __a = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
11
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : str = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( A__ ): A__ = 'time_series_transformer' A__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Optional[int] , _a : Optional[int] = None , _a : Optional[int] = None , _a : str = "student_t" , _a : str = "nll" , _a : int = 1 , _a : List[int] = [1, 2, 3, 4, 5, 6, 7] , _a : Optional[Union[str, bool]] = "mean" , _a : int = 0 , _a : int = 0 , _a : int = 0 , _a : int = 0 , _a : Optional[List[int]] = None , _a : Optional[List[int]] = None , _a : int = 32 , _a : int = 32 , _a : int = 2 , _a : int = 2 , _a : int = 2 , _a : int = 2 , _a : bool = True , _a : str = "gelu" , _a : int = 64 , _a : float = 0.1 , _a : float = 0.1 , _a : float = 0.1 , _a : float = 0.1 , _a : float = 0.1 , _a : int = 100 , _a : float = 0.02 , _a : Union[str, Any]=True , **_a : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =prediction_length _SCREAMING_SNAKE_CASE =context_length or prediction_length _SCREAMING_SNAKE_CASE =distribution_output _SCREAMING_SNAKE_CASE =loss _SCREAMING_SNAKE_CASE =input_size _SCREAMING_SNAKE_CASE =num_time_features _SCREAMING_SNAKE_CASE =lags_sequence _SCREAMING_SNAKE_CASE =scaling _SCREAMING_SNAKE_CASE =num_dynamic_real_features _SCREAMING_SNAKE_CASE =num_static_real_features _SCREAMING_SNAKE_CASE =num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) _SCREAMING_SNAKE_CASE =cardinality else: _SCREAMING_SNAKE_CASE =[0] if embedding_dimension and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) _SCREAMING_SNAKE_CASE =embedding_dimension else: _SCREAMING_SNAKE_CASE =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _SCREAMING_SNAKE_CASE =num_parallel_samples # Transformer architecture configuration _SCREAMING_SNAKE_CASE =input_size * len(_a ) + self._number_of_features _SCREAMING_SNAKE_CASE =d_model _SCREAMING_SNAKE_CASE =encoder_attention_heads _SCREAMING_SNAKE_CASE =decoder_attention_heads _SCREAMING_SNAKE_CASE =encoder_ffn_dim _SCREAMING_SNAKE_CASE =decoder_ffn_dim _SCREAMING_SNAKE_CASE =encoder_layers _SCREAMING_SNAKE_CASE =decoder_layers _SCREAMING_SNAKE_CASE =dropout _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =activation_dropout _SCREAMING_SNAKE_CASE =encoder_layerdrop _SCREAMING_SNAKE_CASE =decoder_layerdrop _SCREAMING_SNAKE_CASE =activation_function _SCREAMING_SNAKE_CASE =init_std _SCREAMING_SNAKE_CASE =use_cache super().__init__(is_encoder_decoder=_a , **_a ) @property def A ( self : List[Any] ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
47
'''simple docstring''' lowerCamelCase : Any = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase : int = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase : str = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
47
1
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __A : Optional[Any] = logging.getLogger() def __UpperCamelCase ( _A : Path , _A : list ) ->Union[str, Any]: """simple docstring""" lowerCamelCase_ ="""\n""".join(_A ) Path(_A ).open("""w""" ).writelines(_A ) __A : List[str] = 'patrickvonplaten/t5-tiny-random' __A : List[Any] = 'sshleifer/bart-tiny-random' __A : List[str] = 'sshleifer/tiny-mbart' __A : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Dict: lowerCamelCase_ =Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" lowerCamelCase_ =input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() lowerCamelCase_ =[""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" ) lowerCamelCase_ ="""translation_en_to_de""" if model == T5_TINY else """summarization""" lowerCamelCase_ =f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(_SCREAMING_SNAKE_CASE , """argv""" , _SCREAMING_SNAKE_CASE ): run_generate() assert Path(_SCREAMING_SNAKE_CASE ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self )-> List[Any]: self.run_eval_tester(_SCREAMING_SNAKE_CASE ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> int: self.run_eval_tester(_SCREAMING_SNAKE_CASE ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: lowerCamelCase_ =Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" lowerCamelCase_ =input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() lowerCamelCase_ ={ """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } lowerCamelCase_ =Path(self.get_auto_remove_tmp_dir() ) lowerCamelCase_ =str(tmp_dir / """scores.json""" ) lowerCamelCase_ =str(tmp_dir / """val.target""" ) _dump_articles(_SCREAMING_SNAKE_CASE , text["""en"""] ) _dump_articles(_SCREAMING_SNAKE_CASE , text["""de"""] ) lowerCamelCase_ ="""translation_en_to_de""" if model == T5_TINY else """summarization""" lowerCamelCase_ =f'\n run_eval_search.py\n {model}\n {str(_SCREAMING_SNAKE_CASE )}\n {str(_SCREAMING_SNAKE_CASE )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] ) with patch.object(_SCREAMING_SNAKE_CASE , """argv""" , _SCREAMING_SNAKE_CASE ): with CaptureStdout() as cs: run_search() lowerCamelCase_ =[""" num_beams | length_penalty""", model, """Best score args"""] lowerCamelCase_ =["""Info"""] if "translation" in task: expected_strings.append("""bleu""" ) else: expected_strings.extend(_SCREAMING_SNAKE_CASE ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_SCREAMING_SNAKE_CASE ).exists() os.remove(Path(_SCREAMING_SNAKE_CASE ) )
49
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A : Any = '▁' __A : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Any = BertGenerationTokenizer _UpperCamelCase:List[str] = False _UpperCamelCase:List[Any] = True def _snake_case ( self )-> Optional[int]: super().setUp() lowerCamelCase_ =BertGenerationTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self )-> Any: lowerCamelCase_ ="""<s>""" lowerCamelCase_ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1002 ) def _snake_case ( self )-> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _snake_case ( self )-> Any: lowerCamelCase_ =BertGenerationTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [285, 46, 10, 170, 382] , ) lowerCamelCase_ =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCamelCase_ =tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase_ =tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _snake_case ( self )-> str: return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def _snake_case ( self )-> Optional[int]: lowerCamelCase_ ="""Hello World!""" lowerCamelCase_ =[1_8536, 2260, 101] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def _snake_case ( self )-> List[str]: lowerCamelCase_ =( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCamelCase_ =[ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @require_torch @slow def _snake_case ( self )-> Any: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase_ =list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase_ =""" """.join(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.big_tokenizer.encode_plus(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , return_token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =BertGenerationConfig() lowerCamelCase_ =BertGenerationEncoder(_SCREAMING_SNAKE_CASE ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_SCREAMING_SNAKE_CASE ) model(**_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> int: # fmt: off lowerCamelCase_ ={"""input_ids""": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
49
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowercase__ : Optional[List[str]] = None lowercase__ : List[str] = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowercase__ : Union[str, Any] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" _snake_case = True _snake_case = None # Automatically constructed _snake_case = "PIL.Image.Image" _snake_case = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) _snake_case = field(default='Image' , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self )-> List[str]: '''simple docstring''' return self.pa_type def A__ ( self , SCREAMING_SNAKE_CASE_ )-> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return {"path": value, "bytes": None} elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return {"path": None, "bytes": value} elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(SCREAMING_SNAKE_CASE_ ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( F"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None )-> "PIL.Image.Image": '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: __UpperCamelCase = {} __UpperCamelCase , __UpperCamelCase = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(F"An image should have one of 'path' or 'bytes' but both are None in {value}." ) else: if is_local_path(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = PIL.Image.open(SCREAMING_SNAKE_CASE_ ) else: __UpperCamelCase = path.split('''::''' )[-1] try: __UpperCamelCase = string_to_dict(SCREAMING_SNAKE_CASE_ , config.HUB_DATASETS_URL )['''repo_id'''] __UpperCamelCase = token_per_repo_id.get(SCREAMING_SNAKE_CASE_ ) except ValueError: __UpperCamelCase = None with xopen(SCREAMING_SNAKE_CASE_ , '''rb''' , use_auth_token=SCREAMING_SNAKE_CASE_ ) as f: __UpperCamelCase = BytesIO(f.read() ) __UpperCamelCase = PIL.Image.open(bytes_ ) else: __UpperCamelCase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def A__ ( self )-> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): __UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.binary() ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.string() ) __UpperCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: __UpperCamelCase = storage.field('''bytes''' ) else: __UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: __UpperCamelCase = storage.field('''path''' ) else: __UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.string() ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __UpperCamelCase = pa.array( [encode_np_array(np.array(SCREAMING_SNAKE_CASE_ ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.string() ) __UpperCamelCase = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_ , self.pa_type ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(SCREAMING_SNAKE_CASE_ ): with xopen(SCREAMING_SNAKE_CASE_ , '''rb''' ) as f: __UpperCamelCase = f.read() return bytes_ __UpperCamelCase = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __UpperCamelCase = pa.array( [os.path.basename(SCREAMING_SNAKE_CASE_ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_ , self.pa_type ) def A_ ( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __UpperCamelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def A_ ( snake_case : "PIL.Image.Image" ) -> bytes: '''simple docstring''' __UpperCamelCase = BytesIO() if image.format in list_image_compression_formats(): __UpperCamelCase = image.format else: __UpperCamelCase = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(snake_case , format=snake_case ) return buffer.getvalue() def A_ ( snake_case : "PIL.Image.Image" ) -> dict: '''simple docstring''' if hasattr(snake_case , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(snake_case )} def A_ ( snake_case : np.ndarray ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) __UpperCamelCase = array.dtype __UpperCamelCase = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER __UpperCamelCase = dtype.kind __UpperCamelCase = dtype.itemsize __UpperCamelCase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __UpperCamelCase = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __UpperCamelCase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __UpperCamelCase = dtype_byteorder + dtype_kind + str(snake_case ) __UpperCamelCase = np.dtype(snake_case ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) __UpperCamelCase = PIL.Image.fromarray(array.astype(snake_case ) ) return {"path": None, "bytes": image_to_bytes(snake_case )} def A_ ( snake_case : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: __UpperCamelCase , __UpperCamelCase = first_non_null_value(snake_case ) if isinstance(snake_case , snake_case ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(snake_case , np.ndarray ): __UpperCamelCase = no_op_if_value_is_null(snake_case ) return [obj_to_image_dict_func(snake_case ) for obj in objs] elif isinstance(snake_case , PIL.Image.Image ): __UpperCamelCase = no_op_if_value_is_null(snake_case ) return [obj_to_image_dict_func(snake_case ) for obj in objs] else: return objs else: return objs
328
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ : Any = parser.parse_args() lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ : List[str] = CLIPImageProcessor() lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
328
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = CycleDiffusionPipeline SCREAMING_SNAKE_CASE_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } SCREAMING_SNAKE_CASE_ : Dict = PipelineTesterMixin.required_optional_params - {"""latents"""} SCREAMING_SNAKE_CASE_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) SCREAMING_SNAKE_CASE_ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS def __A ( self ) -> str: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , num_train_timesteps=1_000 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Dict: SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = image / 2 + 0.5 if str(lowerCAmelCase__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = CycleDiffusionPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array([0.44_59, 0.49_43, 0.45_44, 0.66_43, 0.54_74, 0.43_27, 0.57_01, 0.59_59, 0.51_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.get_dummy_components() for name, module in components.items(): if hasattr(lowerCAmelCase__ , 'half' ): SCREAMING_SNAKE_CASE = module.half() SCREAMING_SNAKE_CASE = CycleDiffusionPipeline(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array([0.35_06, 0.45_43, 0.4_46, 0.45_75, 0.51_95, 0.41_55, 0.52_73, 0.5_18, 0.41_16] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __A ( self ) -> Union[str, Any]: return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def __A ( self ) -> List[Any]: return super().test_inference_batch_single_identical() @skip_mps def __A ( self ) -> int: return super().test_dict_tuple_outputs_equivalent() @skip_mps def __A ( self ) -> int: return super().test_save_load_optional_components() @skip_mps def __A ( self ) -> Optional[int]: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> str: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) SCREAMING_SNAKE_CASE = init_image.resize((512, 512) ) SCREAMING_SNAKE_CASE = 'CompVis/stable-diffusion-v1-4' SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(lowerCAmelCase__ , subfolder='scheduler' ) SCREAMING_SNAKE_CASE = CycleDiffusionPipeline.from_pretrained( lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE = 'A black colored car' SCREAMING_SNAKE_CASE = 'A blue colored car' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=lowerCAmelCase__ , source_prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCAmelCase__ , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) SCREAMING_SNAKE_CASE = init_image.resize((512, 512) ) SCREAMING_SNAKE_CASE = 'CompVis/stable-diffusion-v1-4' SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(lowerCAmelCase__ , subfolder='scheduler' ) SCREAMING_SNAKE_CASE = CycleDiffusionPipeline.from_pretrained(lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE = 'A black colored car' SCREAMING_SNAKE_CASE = 'A blue colored car' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=lowerCAmelCase__ , source_prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCAmelCase__ , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images assert np.abs(image - expected_image ).max() < 2e-2
38
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
1
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def UpperCAmelCase__ (snake_case__ : Iterable[str] , snake_case__ : int ): """simple docstring""" _snake_case : Optional[Any] = iter(snake_case__ ) while True: _snake_case : List[str] = tuple(itertools.islice(snake_case__ , snake_case__ ) ) if not chunk: return yield chunk def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : Union[str, Any] = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) _snake_case : List[str] = """""" if len(snake_case__ ) < 2: return dirty for i in range(len(snake_case__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(snake_case__ ) & 1: clean += "X" return clean def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : Dict = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _snake_case : List[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(snake_case__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(snake_case__ ) return table def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str ): """simple docstring""" _snake_case : Optional[int] = generate_table(snake_case__ ) _snake_case : Tuple = prepare_input(snake_case__ ) _snake_case : int = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(snake_case__ , 2 ): _snake_case , _snake_case : int = divmod(table.index(snake_case__ ) , 5 ) _snake_case , _snake_case : Dict = divmod(table.index(snake_case__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str ): """simple docstring""" _snake_case : Union[str, Any] = generate_table(snake_case__ ) _snake_case : List[Any] = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(snake_case__ , 2 ): _snake_case , _snake_case : Optional[int] = divmod(table.index(snake_case__ ) , 5 ) _snake_case , _snake_case : Tuple = divmod(table.index(snake_case__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
64
"""simple docstring""" from math import ceil def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = list(range(0 , snake_case__ ) ) SCREAMING_SNAKE_CASE__ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check SCREAMING_SNAKE_CASE__ = [] for i in device_map_blocks: if device_map_blocks.count(snake_case__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(snake_case__ ) # Missing blocks SCREAMING_SNAKE_CASE__ = [i for i in blocks if i not in device_map_blocks] SCREAMING_SNAKE_CASE__ = [i for i in device_map_blocks if i not in blocks] if len(snake_case__ ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(snake_case__ ) ) if len(snake_case__ ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(snake_case__ ) ) if len(snake_case__ ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(snake_case__ ) ) def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = list(range(snake_case__ ) ) SCREAMING_SNAKE_CASE__ = int(ceil(n_layers / len(snake_case__ ) ) ) SCREAMING_SNAKE_CASE__ = [layers[i : i + n_blocks] for i in range(0 , snake_case__ , snake_case__ )] return dict(zip(snake_case__ , snake_case__ ) )
165
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : int = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( lowercase_ = "" ) -> dict[str, float]: """simple docstring""" A__ = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' A__ = BeautifulSoup(requests.get(lowercase_ ).text , '''html.parser''' ) A__ = soup.find_all('''td''' , attrs='''titleColumn''' ) A__ = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowercase_ , lowercase_ ) } def SCREAMING_SNAKE_CASE ( lowercase_ = "IMDb_Top_250_Movies.csv" ) -> None: """simple docstring""" A__ = get_imdb_top_aaa_movies() with open(lowercase_ , '''w''' , newline='''''' ) as out_file: A__ = csv.writer(lowercase_ ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
231
0
def A__ ( SCREAMING_SNAKE_CASE__) -> str: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): raise TypeError("""'float' object cannot be interpreted as an integer""") if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): raise TypeError("""'str' object cannot be interpreted as an integer""") if num == 0: return "0b0" __snake_case: Dict = False if num < 0: __snake_case: List[str] = True __snake_case: int = -num __snake_case: list[int] = [] while num > 0: binary.insert(0 , num % 2) num >>= 1 if negative: return "-0b" + "".join(str(SCREAMING_SNAKE_CASE__) for e in binary) return "0b" + "".join(str(SCREAMING_SNAKE_CASE__) for e in binary) if __name__ == "__main__": import doctest doctest.testmod()
111
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Any , A : Dict , A : Any ): return f'''gaussian_noise_s={seed}_shape={'_'.join([str(A ) for s in shape] )}.npy''' def UpperCAmelCase__ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase__ ( self : Optional[Any] , A : Optional[int]=0 , A : Tuple=(4, 4, 64, 64) , A : Tuple=False ): __snake_case: Dict = jnp.bfloataa if fpaa else jnp.floataa __snake_case: str = jnp.array(load_hf_numpy(self.get_file_format(A , A ) ) , dtype=A ) return image def UpperCAmelCase__ ( self : Union[str, Any] , A : Any=False , A : Optional[Any]="CompVis/stable-diffusion-v1-4" ): __snake_case: List[Any] = jnp.bfloataa if fpaa else jnp.floataa __snake_case: Union[str, Any] = """bf16""" if fpaa else None __snake_case , __snake_case: Optional[int] = FlaxUNetaDConditionModel.from_pretrained( A , subfolder="""unet""" , dtype=A , revision=A ) return model, params def UpperCAmelCase__ ( self : Tuple , A : Tuple=0 , A : str=(4, 77, 768) , A : List[str]=False ): __snake_case: Any = jnp.bfloataa if fpaa else jnp.floataa __snake_case: Dict = jnp.array(load_hf_numpy(self.get_file_format(A , A ) ) , dtype=A ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def UpperCAmelCase__ ( self : Optional[Any] , A : Optional[Any] , A : str , A : Any ): __snake_case , __snake_case: Union[str, Any] = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=A ) __snake_case: Tuple = self.get_latents(A , fpaa=A ) __snake_case: int = self.get_encoder_hidden_states(A , fpaa=A ) __snake_case: List[Any] = model.apply( {"""params""": params} , A , jnp.array(A , dtype=jnp.intaa ) , encoder_hidden_states=A , ).sample assert sample.shape == latents.shape __snake_case: str = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __snake_case: Optional[int] = jnp.array(A , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(A , A , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def UpperCAmelCase__ ( self : Optional[Any] , A : int , A : Tuple , A : List[str] ): __snake_case , __snake_case: Union[str, Any] = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=A ) __snake_case: Optional[int] = self.get_latents(A , shape=(4, 4, 96, 96) , fpaa=A ) __snake_case: str = self.get_encoder_hidden_states(A , shape=(4, 77, 1_024) , fpaa=A ) __snake_case: str = model.apply( {"""params""": params} , A , jnp.array(A , dtype=jnp.intaa ) , encoder_hidden_states=A , ).sample assert sample.shape == latents.shape __snake_case: Dict = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __snake_case: Any = jnp.array(A , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(A , A , atol=1E-2 )
111
1
import os import numpy import onnx def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : List[str] ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Any = a.name __magic_name__ : Optional[int] = b.name __magic_name__ : List[Any] = "" __magic_name__ : Optional[Any] = "" __magic_name__ : Dict = a == b __magic_name__ : int = name_a __magic_name__ : Any = name_b return res def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : Optional[int] ) -> Dict: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_snake_case , _snake_case ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _snake_case , _snake_case ) _graph_replace_input_with(node_proto.attribute[1].g , _snake_case , _snake_case ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _snake_case , _snake_case ) def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : Dict , _snake_case : Dict ) -> List[str]: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(_snake_case , _snake_case , _snake_case ) def lowerCAmelCase_ ( _snake_case : Dict , _snake_case : Any , _snake_case : Optional[Any] ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Optional[int] = list(model.graph.initializer ) __magic_name__ : int = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __magic_name__ : List[Any] = inits[i].name __magic_name__ : Any = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _snake_case , _snake_case ) def lowerCAmelCase_ ( _snake_case : Tuple ) -> Dict: '''simple docstring''' __magic_name__ : Optional[Any] = os.path.dirname(_snake_case ) __magic_name__ : Tuple = os.path.basename(_snake_case ) __magic_name__ : Optional[Any] = onnx.load(os.path.join(_snake_case , _snake_case ) ) __magic_name__ : Union[str, Any] = list(model.graph.initializer ) __magic_name__ : List[Any] = set() __magic_name__ : str = {} __magic_name__ : List[Any] = [] __magic_name__ : Union[str, Any] = 0 for i in range(len(_snake_case ) ): if i in dup_set: continue for j in range(i + 1 , len(_snake_case ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_snake_case ) dup_set.add(_snake_case ) __magic_name__ : Optional[int] = inits[j].data_type __magic_name__ : int = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , _snake_case ) total_reduced_size += mem_size __magic_name__ : Optional[Any] = inits[i].name __magic_name__ : str = inits[j].name if name_i in dup_map: dup_map[name_i].append(_snake_case ) else: __magic_name__ : List[str] = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1024 / 1024 / 1024 , "GB" ) __magic_name__ : Optional[Any] = sorted(_snake_case ) _remove_dup_initializers_from_model(_snake_case , _snake_case , _snake_case ) __magic_name__ : Tuple = "optimized_" + model_file_name __magic_name__ : str = os.path.join(_snake_case , _snake_case ) onnx.save(_snake_case , _snake_case ) return new_model
359
import numpy class _snake_case : def __init__( self , _a , _a ): __magic_name__ : Optional[Any] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __magic_name__ : Any = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __magic_name__ : List[str] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __magic_name__ : Any = numpy.random.rand(3 , 1 ) # Real output values provided. __magic_name__ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __magic_name__ : Tuple = numpy.zeros(output_array.shape ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __magic_name__ : int = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __magic_name__ : Tuple = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __magic_name__ : Optional[int] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __magic_name__ : int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): for iteration in range(1 , iterations + 1 ): __magic_name__ : Any = self.feedforward() self.back_propagation() if give_loss: __magic_name__ : int = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'''Iteration {iteration} Loss: {loss}''' ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : str = input_arr __magic_name__ : Optional[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __magic_name__ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __magic_name__ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCAmelCase_ ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowerCAmelCase_ ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' __magic_name__ : Tuple = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __magic_name__ : List[str] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __magic_name__ : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
41
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowerCamelCase ( _UpperCamelCase : Tuple=None ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser(add_help=_UpperCamelCase , allow_abbrev=_UpperCamelCase ) # The main config parser __UpperCAmelCase : Tuple = config_command_parser(_UpperCamelCase ) # The subparser to add commands to __UpperCAmelCase : Tuple = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(_UpperCamelCase , parents=[parent_parser] ) update_command_parser(_UpperCamelCase , parents=[parent_parser] ) return config_parser def lowerCamelCase ( ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = get_config_parser() __UpperCAmelCase : Optional[Any] = config_parser.parse_args() if not hasattr(_UpperCamelCase , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
115
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
115
1
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model SCREAMING_SNAKE_CASE : List[Any] = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None ) -> int: if rng is None: _lowercase : Optional[int] = random.Random() _lowercase : str = 1 for dim in shape: total_dims *= dim _lowercase : int = [] for _ in range(lowerCamelCase_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowercase : List[Any] = np.array(lowerCamelCase_ , dtype=jnp.intaa ).reshape(lowerCamelCase_ ) return output def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=None ) -> Dict: _lowercase : Tuple = ids_tensor(lowerCamelCase_ , vocab_size=2 , rng=lowerCamelCase_ ) # make sure that at least one token is attended to for each batch _lowercase : int = 1 return attn_mask @require_flax class _lowerCamelCase: lowercase_ : Tuple = None lowercase_ : Dict = () def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowercase : Optional[Any] = 2 _lowercase : Optional[int] = inputs['input_ids'].shape[-1] // 2 _lowercase : str = inputs['input_ids'][:max_batch_size, :sequence_length] _lowercase : List[str] = jnp.ones_like(lowerCamelCase) _lowercase : List[Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowercase : Optional[int] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowercase : Tuple = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : str = self._get_input_ids_and_config() _lowercase : List[str] = False _lowercase : Union[str, Any] = max_length _lowercase : List[Any] = 0 for model_class in self.all_generative_model_classes: _lowercase : Any = model_class(lowerCamelCase) _lowercase : List[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowercase : Any = getattr(lowerCamelCase, lowerCamelCase) _lowercase : List[Any] = pt_model_class(lowerCamelCase).eval() _lowercase : List[str] = load_flax_weights_in_pytorch_model(lowerCamelCase, flax_model.params) _lowercase : Tuple = flax_model.generate(lowerCamelCase).sequences _lowercase : Optional[int] = pt_model.generate(torch.tensor(lowerCamelCase, dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowercase : Optional[int] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist(), flax_generation_outputs.tolist()) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[Any] = self._get_input_ids_and_config() _lowercase : Optional[int] = False _lowercase : List[Any] = max_length for model_class in self.all_generative_model_classes: _lowercase : List[str] = model_class(lowerCamelCase) _lowercase : Any = model.generate(lowerCamelCase).sequences self.assertEqual(generation_outputs.shape[-1], lowerCamelCase) _lowercase : Tuple = jit(model.generate) _lowercase : Any = jit_generate(lowerCamelCase).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : List[Any] = self._get_input_ids_and_config() _lowercase : Optional[int] = True _lowercase : Tuple = max_length for model_class in self.all_generative_model_classes: _lowercase : str = model_class(lowerCamelCase) _lowercase : int = model.generate(lowerCamelCase).sequences self.assertEqual(generation_outputs.shape[-1], lowerCamelCase) _lowercase : Optional[int] = jit(model.generate) _lowercase : Optional[Any] = jit_generate(lowerCamelCase).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : str = self._get_input_ids_and_config() _lowercase : Optional[Any] = False _lowercase : Tuple = max_length _lowercase : int = 2 for model_class in self.all_generative_model_classes: _lowercase : List[str] = model_class(lowerCamelCase) _lowercase : Dict = model.generate(lowerCamelCase).sequences self.assertEqual(generation_outputs.shape[-1], lowerCamelCase) _lowercase : Optional[int] = jit(model.generate) _lowercase : Union[str, Any] = jit_generate(lowerCamelCase).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = self._get_input_ids_and_config() _lowercase : Optional[int] = False _lowercase : Union[str, Any] = max_length _lowercase : Optional[Any] = 2 _lowercase : Dict = 2 for model_class in self.all_generative_model_classes: _lowercase : str = model_class(lowerCamelCase) _lowercase : List[Any] = model.generate(lowerCamelCase).sequences self.assertEqual(generation_outputs.shape[0], input_ids.shape[0] * config.num_return_sequences) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = self._get_input_ids_and_config() _lowercase : int = True _lowercase : Dict = max_length _lowercase : Optional[int] = 0.8 _lowercase : Union[str, Any] = 10 _lowercase : List[str] = 0.3 _lowercase : Optional[Any] = 1 _lowercase : str = 8 _lowercase : Union[str, Any] = 9 for model_class in self.all_generative_model_classes: _lowercase : Union[str, Any] = model_class(lowerCamelCase) _lowercase : List[Any] = model.generate(lowerCamelCase).sequences self.assertEqual(generation_outputs.shape[-1], lowerCamelCase) _lowercase : int = jit(model.generate) _lowercase : Dict = jit_generate(lowerCamelCase).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : int = self._get_input_ids_and_config() _lowercase : Optional[Any] = max_length _lowercase : Union[str, Any] = 1 _lowercase : Dict = 8 _lowercase : Optional[Any] = 9 for model_class in self.all_generative_model_classes: _lowercase : Dict = model_class(lowerCamelCase) _lowercase : Optional[Any] = model.generate(lowerCamelCase).sequences self.assertEqual(generation_outputs.shape[-1], lowerCamelCase) _lowercase : Any = jit(model.generate) _lowercase : Dict = jit_generate(lowerCamelCase).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = self._get_input_ids_and_config() _lowercase : List[Any] = max_length _lowercase : Dict = 2 _lowercase : int = 1 _lowercase : str = 8 _lowercase : Optional[Any] = 9 for model_class in self.all_generative_model_classes: _lowercase : Optional[int] = model_class(lowerCamelCase) _lowercase : Any = model.generate(lowerCamelCase).sequences self.assertEqual(generation_outputs.shape[-1], lowerCamelCase) _lowercase : Dict = jit(model.generate) _lowercase : Tuple = jit_generate(lowerCamelCase).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = self._get_input_ids_and_config() # pad attention mask on the left _lowercase : List[Any] = attention_mask.at[(0, 0)].set(0) _lowercase : Tuple = False _lowercase : List[str] = max_length for model_class in self.all_generative_model_classes: _lowercase : str = model_class(lowerCamelCase) _lowercase : Dict = model.generate(lowerCamelCase, attention_mask=lowerCamelCase).sequences self.assertEqual(generation_outputs.shape[-1], lowerCamelCase) _lowercase : Optional[int] = jit(model.generate) _lowercase : Union[str, Any] = jit_generate(lowerCamelCase, attention_mask=lowerCamelCase).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left _lowercase : Tuple = attention_mask.at[(0, 0)].set(0) _lowercase : int = True _lowercase : List[str] = max_length for model_class in self.all_generative_model_classes: _lowercase : List[str] = model_class(lowerCamelCase) _lowercase : Any = model.generate(lowerCamelCase, attention_mask=lowerCamelCase).sequences self.assertEqual(generation_outputs.shape[-1], lowerCamelCase) _lowercase : Any = jit(model.generate) _lowercase : Optional[int] = jit_generate(lowerCamelCase, attention_mask=lowerCamelCase).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left _lowercase : Optional[int] = attention_mask.at[(0, 0)].set(0) _lowercase : Optional[int] = 2 _lowercase : Tuple = max_length for model_class in self.all_generative_model_classes: _lowercase : Tuple = model_class(lowerCamelCase) _lowercase : Optional[int] = model.generate(lowerCamelCase, attention_mask=lowerCamelCase).sequences self.assertEqual(generation_outputs.shape[-1], lowerCamelCase) _lowercase : Union[str, Any] = jit(model.generate) _lowercase : List[Any] = jit_generate(lowerCamelCase, attention_mask=lowerCamelCase).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist()) @require_flax class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert') _lowercase : int = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only') _lowercase : str = 'Hello world' _lowercase : List[str] = tokenizer(lowerCamelCase, return_tensors='np').input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCamelCase, 'do_samples'): model.generate(lowerCamelCase, do_samples=lowerCamelCase) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCamelCase, 'foo'): _lowercase : str = {'foo': 'bar'} model.generate(lowerCamelCase, **lowerCamelCase)
363
def UpperCamelCase_( lowerCamelCase_ = 1000 ) -> int: return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
84
0
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class UpperCamelCase__ ( nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = jnp.floataa def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = hidden_states.shape SCREAMING_SNAKE_CASE : Union[str, Any] = jax.image.resize( lowerCamelCase_ , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) SCREAMING_SNAKE_CASE : List[Any] = self.conv(lowerCamelCase_ ) return hidden_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = jnp.floataa def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , lowerCamelCase_ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.conv(lowerCamelCase_ ) return hidden_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 0.0 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = jnp.floataa def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.in_channels if self.out_channels is None else self.out_channels SCREAMING_SNAKE_CASE : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) SCREAMING_SNAKE_CASE : Dict = nn.Conv( lowerCamelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE : Dict = nn.Dense(lowerCamelCase_ , dtype=self.dtype ) SCREAMING_SNAKE_CASE : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(self.dropout_prob ) SCREAMING_SNAKE_CASE : List[Any] = nn.Conv( lowerCamelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE : Any = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut SCREAMING_SNAKE_CASE : Dict = None if use_nin_shortcut: SCREAMING_SNAKE_CASE : str = nn.Conv( lowerCamelCase_ , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any]=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = hidden_states SCREAMING_SNAKE_CASE : Union[str, Any] = self.norma(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = nn.swish(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = self.conva(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.time_emb_proj(nn.swish(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.expand_dims(jnp.expand_dims(lowerCamelCase_ , 1 ) , 1 ) SCREAMING_SNAKE_CASE : Tuple = hidden_states + temb SCREAMING_SNAKE_CASE : Union[str, Any] = self.norma(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = nn.swish(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = self.dropout(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.conva(lowerCamelCase_ ) if self.conv_shortcut is not None: SCREAMING_SNAKE_CASE : int = self.conv_shortcut(lowerCamelCase_ ) return hidden_states + residual
323
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 5_02_57 , lowerCamelCase_ : int = 10_24 , lowerCamelCase_ : int = 7_68 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : str = "gelu_new" , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 1e-5 , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = prefix_inner_dim SCREAMING_SNAKE_CASE : List[str] = prefix_hidden_dim SCREAMING_SNAKE_CASE : Tuple = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : str = ( nn.Linear(self.prefix_hidden_dim , lowerCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : Any = GPTaConfig( vocab_size=lowerCamelCase_ , n_positions=lowerCamelCase_ , n_embd=lowerCamelCase_ , n_layer=lowerCamelCase_ , n_head=lowerCamelCase_ , n_inner=lowerCamelCase_ , activation_function=lowerCamelCase_ , resid_pdrop=lowerCamelCase_ , embd_pdrop=lowerCamelCase_ , attn_pdrop=lowerCamelCase_ , layer_norm_epsilon=lowerCamelCase_ , initializer_range=lowerCamelCase_ , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , scale_attn_by_inverse_layer_idx=lowerCamelCase_ , reorder_and_upcast_attn=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaLMHeadModel(lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.transformer.transformer.wte(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.encode_prefix(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.decode_prefix(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) SCREAMING_SNAKE_CASE : Dict = torch.cat((dummy_token, input_ids) , dim=1 ) SCREAMING_SNAKE_CASE : str = self.transformer(inputs_embeds=lowerCamelCase_ , labels=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : torch.device ): '''simple docstring''' return torch.zeros(lowerCamelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCamelCase_ ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return self.encode_prefix(lowerCamelCase_ ) @torch.no_grad() def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = torch.split(lowerCamelCase_ , 1 , dim=0 ) SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Tuple = [] for feature in features: SCREAMING_SNAKE_CASE : Optional[int] = self.decode_prefix(feature.to(lowerCamelCase_ ) ) # back to the clip feature # Only support beam search for now SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.generate_beam( input_embeds=lowerCamelCase_ , device=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.stack(lowerCamelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=None , lowerCamelCase_ : int = 5 , lowerCamelCase_ : int = 67 , lowerCamelCase_ : float = 1.0 , lowerCamelCase_ : Optional[int] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = eos_token_id SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.int ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.bool ) if input_embeds is not None: SCREAMING_SNAKE_CASE : Dict = input_embeds else: SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = self.transformer(inputs_embeds=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = outputs.logits SCREAMING_SNAKE_CASE : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) SCREAMING_SNAKE_CASE : Any = logits.softmax(-1 ).log() if scores is None: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = logits.topk(lowerCamelCase_ , -1 ) SCREAMING_SNAKE_CASE : Optional[Any] = generated.expand(lowerCamelCase_ , *generated.shape[1:] ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: SCREAMING_SNAKE_CASE : List[Any] = next_tokens else: SCREAMING_SNAKE_CASE : Dict = tokens.expand(lowerCamelCase_ , *tokens.shape[1:] ) SCREAMING_SNAKE_CASE : str = torch.cat((tokens, next_tokens) , dim=1 ) else: SCREAMING_SNAKE_CASE : Tuple = -float(np.inf ) SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 SCREAMING_SNAKE_CASE : List[str] = scores_sum / seq_lengths[:, None] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average.view(-1 ).topk(lowerCamelCase_ , -1 ) SCREAMING_SNAKE_CASE : str = next_tokens // scores_sum.shape[1] SCREAMING_SNAKE_CASE : Tuple = seq_lengths[next_tokens_source] SCREAMING_SNAKE_CASE : int = next_tokens % scores_sum.shape[1] SCREAMING_SNAKE_CASE : Dict = next_tokens.unsqueeze(1 ) SCREAMING_SNAKE_CASE : Dict = tokens[next_tokens_source] SCREAMING_SNAKE_CASE : Any = torch.cat((tokens, next_tokens) , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = generated[next_tokens_source] SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average * seq_lengths SCREAMING_SNAKE_CASE : Any = is_stopped[next_tokens_source] SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) SCREAMING_SNAKE_CASE : str = torch.cat((generated, next_token_embed) , dim=1 ) SCREAMING_SNAKE_CASE : Dict = is_stopped + next_tokens.eq(lowerCamelCase_ ).squeeze() if is_stopped.all(): break SCREAMING_SNAKE_CASE : int = scores / seq_lengths SCREAMING_SNAKE_CASE : Dict = scores.argsort(descending=lowerCamelCase_ ) # tokens tensors are already padded to max_seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = [tokens[i] for i in order] SCREAMING_SNAKE_CASE : Dict = torch.stack(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
323
1
"""simple docstring""" def _A ( _a : int , _a : int ): """simple docstring""" return abs(_a ) if a == 0 else greatest_common_divisor(b % a , _a ) def _A ( _a : int , _a : int ): """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. A , A = y, x % y return abs(_a ) def _A ( ): """simple docstring""" try: A = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) A = int(nums[0] ) A = int(nums[1] ) print( f'greatest_common_divisor({num_a}, {num_a}) = ' f'{greatest_common_divisor(_a , _a )}' ) print(f'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(_a , _a )}' ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
77
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase =logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Any: super().__init__(*lowerCamelCase_ ,**lowerCamelCase_ ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCamelCase__ ( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=None ) -> int: A = {} A = {} if prompt is not None: A = prompt if generate_kwargs is not None: A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self ,lowerCamelCase_ ,**lowerCamelCase_ ) -> Any: return super().__call__(lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=None ) -> Optional[Any]: A = load_image(lowerCamelCase_ ) if prompt is not None: if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ): raise ValueError( f'Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. ' """Note also that one single text can be provided for conditional image to text generation.""" ) A = self.model.config.model_type if model_type == "git": A = self.image_processor(images=lowerCamelCase_ ,return_tensors=self.framework ) A = self.tokenizer(text=lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ).input_ids A = [self.tokenizer.cls_token_id] + input_ids A = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": A = self.image_processor(images=lowerCamelCase_ ,header_text=lowerCamelCase_ ,return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation A = self.image_processor(images=lowerCamelCase_ ,return_tensors=self.framework ) A = self.tokenizer(lowerCamelCase_ ,return_tensors=self.framework ) model_inputs.update(lowerCamelCase_ ) else: raise ValueError(f'Model type {model_type} does not support conditional text generation' ) else: A = self.image_processor(images=lowerCamelCase_ ,return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: A = None return model_inputs def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=None ) -> Optional[int]: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] ,lowerCamelCase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): A = None if generate_kwargs is None: A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. A = model_inputs.pop(self.model.main_input_name ) A = self.model.generate(lowerCamelCase_ ,**lowerCamelCase_ ,**lowerCamelCase_ ) return model_outputs def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Optional[Any]: A = [] for output_ids in model_outputs: A = { """generated_text""": self.tokenizer.decode( lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ,) } records.append(lowerCamelCase_ ) return records
77
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__A ) class _SCREAMING_SNAKE_CASE ( __A ): lowerCAmelCase__ = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) lowerCAmelCase__ = Features({'audio': Audio()} ) lowerCAmelCase__ = Features({'labels': ClassLabel} ) lowerCAmelCase__ = 'audio' lowerCAmelCase__ = 'labels' def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , lowercase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) lowerCamelCase_ = copy.deepcopy(self ) lowerCamelCase_ = self.label_schema.copy() lowerCamelCase_ = features[self.label_column] lowerCamelCase_ = label_schema return task_template @property def SCREAMING_SNAKE_CASE_( self ) -> int: return { self.audio_column: "audio", self.label_column: "labels", }
19
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Optional[Any] ,__lowercase : Optional[int]=8 ): '''simple docstring''' A_ : Optional[int] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A_ : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase , scheduler=lowercase , movq=lowercase , ) A_ : Optional[int] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" if latents is None: A_ : List[str] = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) A_ : List[str] = latents.to(lowercase ) A_ : int = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self , lowercase=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) A_ : Dict = torch.device(F'''cuda:{gpu_id}''' ) A_ : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) def lowerCAmelCase_ ( self , lowercase=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) A_ : Tuple = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A_ : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: A_ , A_ : int = cpu_offload_with_hook(lowercase , lowercase , prev_module_hook=lowercase ) # We'll offload the last model manually. A_ : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase_ ( self ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase ) def __call__( self , lowercase , lowercase , lowercase , lowercase = 5_1_2 , lowercase = 5_1_2 , lowercase = 1_0_0 , lowercase = 4.0 , lowercase = 1 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , ): """simple docstring""" A_ : Dict = self._execution_device A_ : Dict = guidance_scale > 1.0 if isinstance(lowercase , lowercase ): A_ : Dict = torch.cat(lowercase , dim=0 ) if isinstance(lowercase , lowercase ): A_ : str = torch.cat(lowercase , dim=0 ) if isinstance(lowercase , lowercase ): A_ : Optional[Any] = torch.cat(lowercase , dim=0 ) A_ : str = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: A_ : str = image_embeds.repeat_interleave(lowercase , dim=0 ) A_ : Union[str, Any] = negative_image_embeds.repeat_interleave(lowercase , dim=0 ) A_ : Optional[Any] = hint.repeat_interleave(lowercase , dim=0 ) A_ : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase ) A_ : Optional[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase ) self.scheduler.set_timesteps(lowercase , device=lowercase ) A_ : Any = self.scheduler.timesteps A_ : str = self.movq.config.latent_channels A_ , A_ : List[Any] = downscale_height_and_width(lowercase , lowercase , self.movq_scale_factor ) # create initial latent A_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase , lowercase , lowercase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance A_ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Any = {'image_embeds': image_embeds, 'hint': hint} A_ : Dict = self.unet( sample=lowercase , timestep=lowercase , encoder_hidden_states=lowercase , added_cond_kwargs=lowercase , return_dict=lowercase , )[0] if do_classifier_free_guidance: A_ , A_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) A_ , A_ : List[str] = noise_pred.chunk(2 ) A_ , A_ : List[str] = variance_pred.chunk(2 ) A_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A_ , A_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step( lowercase , lowercase , lowercase , generator=lowercase , )[0] # post-processing A_ : Any = self.movq.decode(lowercase , force_not_quantize=lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: A_ : Optional[Any] = image * 0.5 + 0.5 A_ : int = image.clamp(0 , 1 ) A_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A_ : Optional[int] = self.numpy_to_pil(lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase )
140
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase_ ( ): lowerCamelCase__ : Any = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' lowerCamelCase__ : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert('RGB' ) return image def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : Tuple = dct.pop(_lowerCamelCase ) lowerCamelCase__ : Tuple = val def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCamelCase__ : Optional[int] = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowerCamelCase__ : str = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowerCamelCase__ : Tuple = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) lowerCamelCase__ : List[Any] = qkv_bias def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = 364 if 'coco' in model_name else 224 lowerCamelCase__ : List[str] = InstructBlipVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: lowerCamelCase__ : Any = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCamelCase__ : Tuple = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: lowerCamelCase__ : Dict = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=3_2001 ).to_dict() elif "vicuna-13b" in model_name: lowerCamelCase__ : str = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=3_2001 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 lowerCamelCase__ : Optional[Any] = InstructBlipQFormerConfig(vocab_size=3_0523 ).to_dict() lowerCamelCase__ : Any = InstructBlipConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase , qformer_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False ): lowerCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: lowerCamelCase__ : Optional[Any] = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) lowerCamelCase__ : Optional[int] = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) lowerCamelCase__ , lowerCamelCase__ : Any = get_blipa_config(_lowerCamelCase ) lowerCamelCase__ : Dict = InstructBlipForConditionalGeneration(_lowerCamelCase ).eval() lowerCamelCase__ : int = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = model_name_to_original[model_name] # load original model print('Loading original model...' ) lowerCamelCase__ : str = 'cuda:1' if torch.cuda.is_available() else 'cpu' lowerCamelCase__ : Dict = 'cuda:2' if torch.cuda.is_available() else 'cpu' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print('Done!' ) # update state dict keys lowerCamelCase__ : Union[str, Any] = original_model.state_dict() lowerCamelCase__ : Dict = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCamelCase__ : List[Any] = state_dict.pop(_lowerCamelCase ) if key.startswith('Qformer.bert' ): lowerCamelCase__ : List[str] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: lowerCamelCase__ : Optional[Any] = key.replace('self' , 'attention' ) if "llm_proj" in key: lowerCamelCase__ : str = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: lowerCamelCase__ : Any = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): lowerCamelCase__ : int = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): lowerCamelCase__ : Tuple = key.replace('t5' , 'language' ) lowerCamelCase__ : Any = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) lowerCamelCase__ : List[str] = load_demo_image() lowerCamelCase__ : int = 'What is unusual about this image?' # create processor lowerCamelCase__ : str = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) lowerCamelCase__ : int = InstructBlipProcessor( image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase , qformer_tokenizer=_lowerCamelCase , ) lowerCamelCase__ : Tuple = processor(images=_lowerCamelCase , text=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # make sure processor creates exact same pixel values lowerCamelCase__ : Dict = vis_processors['eval'](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) lowerCamelCase__ : str = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "vicuna" in model_name: lowerCamelCase__ : List[str] = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits lowerCamelCase__ : Tuple = hf_model(**_lowerCamelCase ).logits else: lowerCamelCase__ : List[str] = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits lowerCamelCase__ : Dict = tokenizer('\n' , return_tensors='pt' ).input_ids.to(_lowerCamelCase ) lowerCamelCase__ : Tuple = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) lowerCamelCase__ : List[Any] = hf_model(**_lowerCamelCase , labels=_lowerCamelCase ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape lowerCamelCase__ : Union[str, Any] = 1e-4 if 'vicuna' in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , _lowerCamelCase , atol=_lowerCamelCase ) print('Looks ok!' ) print('Generating with original model...' ) lowerCamelCase__ : List[str] = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) lowerCamelCase__ : str = hf_model.generate( **_lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? lowerCamelCase__ : List[Any] = 2 print('Original generation:' , _lowerCamelCase ) lowerCamelCase__ : List[Any] = processor.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) lowerCamelCase__ : Optional[Any] = [text.strip() for text in output_text] print('HF generation:' , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'''Salesforce/{model_name}''' ) hf_model.push_to_hub(f'''Salesforce/{model_name}''' ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() A_ : Optional[Any] = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) A_ : Optional[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
316
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> int: __UpperCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''') __UpperCamelCase :Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''').to(__lowercase) __UpperCamelCase :Tuple = -1 __UpperCamelCase :Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(__lowercase) __UpperCamelCase :Dict = model.generate(__lowercase , max_new_tokens=10 , do_sample=__lowercase) __UpperCamelCase :Union[str, Any] = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: __UpperCamelCase :Optional[Any] = TextStreamer(__lowercase) model.generate(__lowercase , max_new_tokens=10 , do_sample=__lowercase , streamer=__lowercase) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCamelCase :str = cs.out[:-1] self.assertEqual(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''') __UpperCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''').to(__lowercase) __UpperCamelCase :Optional[int] = -1 __UpperCamelCase :int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(__lowercase) __UpperCamelCase :List[str] = model.generate(__lowercase , max_new_tokens=10 , do_sample=__lowercase) __UpperCamelCase :Any = tokenizer.decode(greedy_ids[0]) __UpperCamelCase :Optional[int] = TextIteratorStreamer(__lowercase) __UpperCamelCase :Tuple = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} __UpperCamelCase :Optional[int] = Thread(target=model.generate , kwargs=__lowercase) thread.start() __UpperCamelCase :List[str] = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''') __UpperCamelCase :Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''').to(__lowercase) __UpperCamelCase :Union[str, Any] = -1 __UpperCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(__lowercase) __UpperCamelCase :Tuple = model.generate(__lowercase , max_new_tokens=10 , do_sample=__lowercase) __UpperCamelCase :Optional[int] = greedy_ids[:, input_ids.shape[1] :] __UpperCamelCase :Dict = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: __UpperCamelCase :Any = TextStreamer(__lowercase , skip_prompt=__lowercase) model.generate(__lowercase , max_new_tokens=10 , do_sample=__lowercase , streamer=__lowercase) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCamelCase :int = cs.out[:-1] self.assertEqual(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Union[str, Any] = AutoTokenizer.from_pretrained('''distilgpt2''') __UpperCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''').to(__lowercase) __UpperCamelCase :List[Any] = -1 __UpperCamelCase :Tuple = torch.ones((1, 5) , device=__lowercase).long() * model.config.bos_token_id with CaptureStdout() as cs: __UpperCamelCase :str = TextStreamer(__lowercase , skip_special_tokens=__lowercase) model.generate(__lowercase , max_new_tokens=1 , do_sample=__lowercase , streamer=__lowercase) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __UpperCamelCase :Dict = cs.out[:-1] # Remove the final "\n" __UpperCamelCase :List[str] = tokenizer(__lowercase , return_tensors='''pt''') self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1)) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''') __UpperCamelCase :Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''').to(__lowercase) __UpperCamelCase :Tuple = -1 __UpperCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(__lowercase) __UpperCamelCase :Tuple = TextIteratorStreamer(__lowercase , timeout=0.0_01) __UpperCamelCase :List[str] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} __UpperCamelCase :int = Thread(target=model.generate , kwargs=__lowercase) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowercase): __UpperCamelCase :str = """""" for new_text in streamer: streamer_text += new_text
43
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase : List[str] = logging.get_logger(__name__) @add_end_docstrings( lowerCAmelCase , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class __snake_case ( lowerCAmelCase ): def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.framework == "tf": lowercase : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowercase : Optional[int] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ) else: raise ValueError("""Unsupported framework""" ) return masked_index def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = self.get_masked_index(snake_case ) lowercase : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,f"No mask_token ({self.tokenizer.mask_token}) found on the input" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if isinstance(snake_case ,snake_case ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' if return_tensors is None: lowercase : int = self.framework lowercase : Optional[Any] = self.tokenizer(snake_case ,return_tensors=snake_case ) self.ensure_exactly_one_mask_token(snake_case ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = self.model(**snake_case ) lowercase : Tuple = model_inputs["""input_ids"""] return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ,snake_case=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: lowercase : str = target_ids.shape[0] lowercase : Optional[Any] = model_outputs["""input_ids"""][0] lowercase : List[str] = model_outputs["""logits"""] if self.framework == "tf": lowercase : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowercase : Tuple = outputs.numpy() lowercase : Tuple = outputs[0, masked_index, :] lowercase : Any = stable_softmax(snake_case ,axis=-1 ) if target_ids is not None: lowercase : Union[str, Any] = tf.gather_nd(tf.squeeze(snake_case ,0 ) ,target_ids.reshape(-1 ,1 ) ) lowercase : int = tf.expand_dims(snake_case ,0 ) lowercase : Tuple = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : int = topk.values.numpy(), topk.indices.numpy() else: lowercase : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=snake_case ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowercase : Union[str, Any] = outputs[0, masked_index, :] lowercase : Tuple = logits.softmax(dim=-1 ) if target_ids is not None: lowercase : List[str] = probs[..., target_ids] lowercase , lowercase : Union[str, Any] = probs.topk(snake_case ) lowercase : Any = [] lowercase : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): lowercase : Dict = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place lowercase : Dict = input_ids.numpy().copy() if target_ids is not None: lowercase : Union[str, Any] = target_ids[p].tolist() lowercase : Tuple = p # Filter padding out: lowercase : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowercase : Tuple = self.tokenizer.decode(snake_case ,skip_special_tokens=snake_case ) lowercase : Optional[Any] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(snake_case ) result.append(snake_case ) if single_mask: return result[0] return result def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' if isinstance(snake_case ,snake_case ): lowercase : List[Any] = [targets] try: lowercase : List[str] = self.tokenizer.get_vocab() except Exception: lowercase : Any = {} lowercase : Dict = [] for target in targets: lowercase : Dict = vocab.get(snake_case ,snake_case ) if id_ is None: lowercase : Optional[int] = self.tokenizer( snake_case ,add_special_tokens=snake_case ,return_attention_mask=snake_case ,return_token_type_ids=snake_case ,max_length=1 ,truncation=snake_case ,)["""input_ids"""] if len(snake_case ) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""" ) continue lowercase : Union[str, Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) lowercase : Optional[Any] = list(set(snake_case ) ) if len(snake_case ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) lowercase : Optional[Any] = np.array(snake_case ) return target_ids def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ,snake_case=None ): '''simple docstring''' lowercase : Dict = {} if targets is not None: lowercase : str = self.get_target_ids(snake_case ,snake_case ) lowercase : List[Any] = target_ids if top_k is not None: lowercase : List[str] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,"""The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self ,snake_case ,*snake_case ,**snake_case ): '''simple docstring''' lowercase : Tuple = super().__call__(snake_case ,**snake_case ) if isinstance(snake_case ,snake_case ) and len(snake_case ) == 1: return outputs[0] return outputs
20
0
"""simple docstring""" import math UpperCamelCase_ = 10 UpperCamelCase_ = 7 UpperCamelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( UpperCAmelCase = 20 ) ->str: """simple docstring""" a_ = math.comb(UpperCAmelCase , UpperCAmelCase ) a_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase ) a_ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
303
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """audio-spectrogram-transformer""" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=16 , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=10 , __UpperCAmelCase=10_24 , __UpperCAmelCase=1_28 , **__UpperCAmelCase , ) ->str: super().__init__(**__UpperCAmelCase) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = patch_size a_ = qkv_bias a_ = frequency_stride a_ = time_stride a_ = max_length a_ = num_mel_bins
303
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __UpperCAmelCase : Tuple = logging.get_logger(__name__) __UpperCAmelCase : Union[str, Any] = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """deberta-v2""" def __init__( self : Optional[int] , A : List[Any]=128_100 , A : int=1_536 , A : Dict=24 , A : List[str]=24 , A : Optional[int]=6_144 , A : List[str]="gelu" , A : Optional[int]=0.1 , A : Any=0.1 , A : Optional[Any]=512 , A : Tuple=0 , A : List[Any]=0.02 , A : Dict=1E-7 , A : Optional[int]=False , A : Dict=-1 , A : int=0 , A : Union[str, Any]=True , A : Tuple=None , A : Optional[Any]=0 , A : Union[str, Any]="gelu" , **A : Tuple , ): super().__init__(**A ) __snake_case: Tuple = hidden_size __snake_case: Dict = num_hidden_layers __snake_case: Any = num_attention_heads __snake_case: Tuple = intermediate_size __snake_case: Tuple = hidden_act __snake_case: List[str] = hidden_dropout_prob __snake_case: str = attention_probs_dropout_prob __snake_case: Optional[Any] = max_position_embeddings __snake_case: str = type_vocab_size __snake_case: Union[str, Any] = initializer_range __snake_case: str = relative_attention __snake_case: List[str] = max_relative_positions __snake_case: List[str] = pad_token_id __snake_case: Optional[int] = position_biased_input # Backwards compatibility if type(A ) == str: __snake_case: str = [x.strip() for x in pos_att_type.lower().split("""|""" )] __snake_case: Dict = pos_att_type __snake_case: List[Any] = vocab_size __snake_case: Optional[Any] = layer_norm_eps __snake_case: str = kwargs.get("""pooler_hidden_size""" , A ) __snake_case: Any = pooler_dropout __snake_case: Optional[Any] = pooler_hidden_act class __snake_case ( __lowerCamelCase ): '''simple docstring''' @property def UpperCAmelCase__ ( self : Union[str, Any] ): if self.task == "multiple-choice": __snake_case: Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case: Optional[int] = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def UpperCAmelCase__ ( self : List[Any] ): return 12 def UpperCAmelCase__ ( self : Dict , A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , A : int = -1 , A : int = -1 , A : int = -1 , A : bool = False , A : Optional["TensorType"] = None , A : int = 3 , A : int = 40 , A : int = 40 , A : "PreTrainedTokenizerBase" = None , ): __snake_case: Union[str, Any] = super().generate_dummy_inputs(preprocessor=A , framework=A ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
111
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """ibert""" def __init__( self : Dict , A : Union[str, Any]=30_522 , A : List[Any]=768 , A : List[Any]=12 , A : Optional[int]=12 , A : Optional[Any]=3_072 , A : int="gelu" , A : str=0.1 , A : List[Any]=0.1 , A : Optional[Any]=512 , A : int=2 , A : Union[str, Any]=0.02 , A : List[str]=1E-12 , A : Optional[int]=1 , A : Optional[int]=0 , A : List[str]=2 , A : str="absolute" , A : Any=False , A : Optional[Any]="none" , **A : Any , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) __snake_case: List[Any] = vocab_size __snake_case: Optional[Any] = hidden_size __snake_case: List[str] = num_hidden_layers __snake_case: Tuple = num_attention_heads __snake_case: List[str] = hidden_act __snake_case: Optional[Any] = intermediate_size __snake_case: Tuple = hidden_dropout_prob __snake_case: List[str] = attention_probs_dropout_prob __snake_case: Any = max_position_embeddings __snake_case: int = type_vocab_size __snake_case: List[str] = initializer_range __snake_case: List[Any] = layer_norm_eps __snake_case: Optional[int] = position_embedding_type __snake_case: str = quant_mode __snake_case: Optional[int] = force_dequant class __snake_case ( __lowerCamelCase ): '''simple docstring''' @property def UpperCAmelCase__ ( self : Tuple ): if self.task == "multiple-choice": __snake_case: List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case: List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
111
1
from __future__ import annotations def __lowercase ( _UpperCamelCase, _UpperCamelCase = None, _UpperCamelCase = None ) ->int: """simple docstring""" if start is None: lowercase : Dict = 0 if end is None: lowercase : Tuple = len(_a ) - 1 if start >= end: return lowercase : Union[str, Any] = (start + end) // 2 slowsort(_a, _a, _a ) slowsort(_a, mid + 1, _a ) if sequence[end] < sequence[mid]: lowercase : Any = sequence[mid], sequence[end] slowsort(_a, _a, end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
364
from maths.prime_factors import prime_factors def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" if not isinstance(_UpperCamelCase, _UpperCamelCase ): lowercase : List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCamelCase ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(_UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
173
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="last" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , )-> Optional[Any]: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_lengths lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =gelu_activation lowerCamelCase_ =sinusoidal_embeddings lowerCamelCase_ =causal lowerCamelCase_ =asm lowerCamelCase_ =n_langs lowerCamelCase_ =vocab_size lowerCamelCase_ =n_special lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =summary_type lowerCamelCase_ =use_proj lowerCamelCase_ =scope def _snake_case ( self )-> Dict: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_input_lengths: lowerCamelCase_ =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size] , 2 ).float() lowerCamelCase_ =ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self )-> List[str]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> str: lowerCamelCase_ =FlaubertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , lengths=_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> List[Any]: lowerCamelCase_ =FlaubertWithLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Optional[Any]: lowerCamelCase_ =FlaubertForQuestionAnsweringSimple(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Optional[int]: lowerCamelCase_ =FlaubertForQuestionAnswering(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , p_mask=_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , ) ((lowerCamelCase_) , ) =result_with_labels.to_tuple() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) ((lowerCamelCase_) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Any: lowerCamelCase_ =FlaubertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> List[Any]: lowerCamelCase_ =self.num_labels lowerCamelCase_ =FlaubertForTokenClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Dict: lowerCamelCase_ =self.num_choices lowerCamelCase_ =FlaubertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self )-> int: lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =config_and_inputs lowerCamelCase_ ={ """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:str = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase:str = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )-> List[Any]: lowerCamelCase_ =super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCamelCase_ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =FlaubertModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , emb_dim=37 ) def _snake_case ( self )-> Optional[Any]: self.config_tester.run_common_tests() def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> int: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[str]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> Optional[Any]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =FlaubertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCamelCase_ =True lowerCamelCase_ =model_class(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """traced_model.pt""" ) ) lowerCamelCase_ =torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , """traced_model.pt""" ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict["""input_ids"""].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["""attention_mask"""].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase): @slow def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowerCamelCase_ =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE )[0] lowerCamelCase_ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
154
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="last" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , )-> Optional[Any]: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_lengths lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =gelu_activation lowerCamelCase_ =sinusoidal_embeddings lowerCamelCase_ =causal lowerCamelCase_ =asm lowerCamelCase_ =n_langs lowerCamelCase_ =vocab_size lowerCamelCase_ =n_special lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =summary_type lowerCamelCase_ =use_proj lowerCamelCase_ =scope def _snake_case ( self )-> Dict: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_input_lengths: lowerCamelCase_ =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size] , 2 ).float() lowerCamelCase_ =ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self )-> List[str]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> str: lowerCamelCase_ =FlaubertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , lengths=_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> List[Any]: lowerCamelCase_ =FlaubertWithLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Optional[Any]: lowerCamelCase_ =FlaubertForQuestionAnsweringSimple(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Optional[int]: lowerCamelCase_ =FlaubertForQuestionAnswering(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , p_mask=_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , ) ((lowerCamelCase_) , ) =result_with_labels.to_tuple() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) ((lowerCamelCase_) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Any: lowerCamelCase_ =FlaubertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> List[Any]: lowerCamelCase_ =self.num_labels lowerCamelCase_ =FlaubertForTokenClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Dict: lowerCamelCase_ =self.num_choices lowerCamelCase_ =FlaubertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self )-> int: lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =config_and_inputs lowerCamelCase_ ={ """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:str = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase:str = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )-> List[Any]: lowerCamelCase_ =super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCamelCase_ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =FlaubertModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , emb_dim=37 ) def _snake_case ( self )-> Optional[Any]: self.config_tester.run_common_tests() def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> int: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[str]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> Optional[Any]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =FlaubertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCamelCase_ =True lowerCamelCase_ =model_class(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """traced_model.pt""" ) ) lowerCamelCase_ =torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , """traced_model.pt""" ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict["""input_ids"""].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["""attention_mask"""].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase): @slow def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowerCamelCase_ =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE )[0] lowerCamelCase_ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
154
1
import functools from typing import Any def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : list[str] ): # Validation if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or len(UpperCAmelCase__ ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not all( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and len(UpperCAmelCase__ ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = "WORD_KEEPER" for word in words: SCREAMING_SNAKE_CASE = trie for c in word: if c not in trie_node: SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = trie_node[c] SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) # Dynamic programming method @functools.cache def is_breakable(UpperCAmelCase__ : int ) -> bool: if index == len_string: return True SCREAMING_SNAKE_CASE = trie for i in range(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = trie_node.get(string[i] , UpperCAmelCase__ ) if trie_node is None: return False if trie_node.get(UpperCAmelCase__ , UpperCAmelCase__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
356
def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : str = " " ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 for index, char in enumerate(UpperCAmelCase__ ): if char == separator: split_words.append(string[last_index:index] ) SCREAMING_SNAKE_CASE = index + 1 elif index + 1 == len(UpperCAmelCase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
206
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=13 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : Any=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Dict=37 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=10 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : List[str]=2 , ) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[Any] =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =patch_size lowerCamelCase__: Optional[int] =max_length lowerCamelCase__: Dict =num_mel_bins lowerCamelCase__: Union[str, Any] =is_training lowerCamelCase__: List[Any] =use_labels lowerCamelCase__: List[Any] =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: str =num_attention_heads lowerCamelCase__: Any =intermediate_size lowerCamelCase__: Optional[int] =hidden_act lowerCamelCase__: int =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Tuple =type_sequence_label_size lowerCamelCase__: Tuple =initializer_range lowerCamelCase__: str =scope lowerCamelCase__: str =frequency_stride lowerCamelCase__: Optional[Any] =time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCamelCase__: Union[str, Any] =(self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowerCamelCase__: Optional[Any] =(self.max_length - self.patch_size) // self.time_stride + 1 lowerCamelCase__: Optional[int] =frequency_out_dimension * time_out_dimension lowerCamelCase__: int =num_patches + 2 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: List[str] =floats_tensor([self.batch_size, self.max_length, self.num_mel_bins]) lowerCamelCase__: str =None if self.use_labels: lowerCamelCase__: int =ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCamelCase__: Optional[int] =self.get_config() return config, input_values, labels def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =ASTModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: str =model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' lowerCamelCase__: List[str] =self.prepare_config_and_inputs() ( lowerCamelCase__ ): List[str] =config_and_inputs lowerCamelCase__: Tuple ={"input_values": input_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' lowercase_ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowercase_ = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->str: '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Any: '''simple docstring''' lowerCamelCase__: str =ASTModelTester(self) lowerCamelCase__: Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def SCREAMING_SNAKE_CASE_ (self : Any) ->Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds") def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: List[Any] =model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowerCamelCase__: Union[str, Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Tuple =model_class(UpperCAmelCase_) lowerCamelCase__: str =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__: Union[str, Any] =[*signature.parameters.keys()] lowerCamelCase__: List[Any] =["input_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->str: '''simple docstring''' lowerCamelCase__: Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: List[Any] =ASTModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def lowerCAmelCase_ ( ) -> int: """simple docstring""" lowerCamelCase__: int =hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) lowerCamelCase__: Optional[int] =torchaudio.load(lowerCamelCase__ ) return audio, sampling_rate @require_torch @require_torchaudio class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593") if is_torchaudio_available() else None ) @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[str]: '''simple docstring''' lowerCamelCase__: Any =self.default_feature_extractor lowerCamelCase__: Tuple =ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593").to(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.default_feature_extractor lowerCamelCase__: Any =prepare_audio() lowerCamelCase__: Tuple =audio.squeeze().numpy() lowerCamelCase__: Dict =feature_extractor(UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , return_tensors="pt").to(UpperCAmelCase_) # forward pass with torch.no_grad(): lowerCamelCase__: Union[str, Any] =model(**UpperCAmelCase_) # verify the logits lowerCamelCase__: int =torch.Size((1, 527)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) lowerCamelCase__: List[Any] =torch.tensor([-0.8760, -7.0042, -8.6602]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4))
10
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Dict = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=lowerCamelCase__ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=lowerCamelCase__ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=lowerCamelCase__ ) return parser.parse_args() def __lowerCamelCase ( ): """simple docstring""" lowercase__ : int = parse_args() # Import training_script as a module. lowercase__ : str = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase__ : Dict = script_fpath.stem lowercase__ : int = importlib.import_module(lowerCamelCase__ ) # Patch sys.argv lowercase__ : Dict = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
130
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
A__ = 256 # Modulus to hash a string A__ = 100_0003 def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: """simple docstring""" snake_case__ : str = len(__lowerCAmelCase ) snake_case__ : Optional[int] = len(__lowerCAmelCase ) if p_len > t_len: return False snake_case__ : str = 0 snake_case__ : Union[str, Any] = 0 snake_case__ : Dict = 1 # Calculating the hash of pattern and substring of text for i in range(__lowerCAmelCase ): snake_case__ : int = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case__ : str = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case__ : str = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case__ : Any = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _lowerCAmelCase ( ) -> None: """simple docstring""" snake_case__ : Optional[int] = '''abc1abc12''' snake_case__ : Dict = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' snake_case__ : int = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) and not rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 2) snake_case__ : int = '''ABABX''' snake_case__ : Any = '''ABABZABABYABABX''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 3) snake_case__ : Dict = '''AAAB''' snake_case__ : Union[str, Any] = '''ABAAAAAB''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 4) snake_case__ : Union[str, Any] = '''abcdabcy''' snake_case__ : Optional[Any] = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) # Test 5) snake_case__ : Dict = '''Lü''' snake_case__ : Optional[Any] = '''Lüsai''' assert rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : str = '''Lue''' assert not rabin_karp(__lowerCAmelCase , __lowerCAmelCase ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
44
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" ,"""False""" ) ) is not True ,reason="""Skipping test because should only be run when releasing minor transformers version""" ,) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class __snake_case ( unittest.TestCase ): def __a ( self ) -> Tuple: '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='utf-8' , check=__UpperCamelCase , ) assert hasattr(self , 'env' ) def __a ( self , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' snake_case__ : Tuple = { 'enabled': True, 'processes_per_host': 8, } snake_case__ : Any = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } snake_case__ : Optional[int] = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} snake_case__ : int = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=__UpperCamelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCamelCase , hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 500, } , metric_definitions=self.env.metric_definitions , distribution=__UpperCamelCase , py_version='py36' , ) def __a ( self , __UpperCamelCase ) -> List[Any]: '''simple docstring''' TrainingJobAnalytics(__UpperCamelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def __a ( self , __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : str = self.create_estimator(__UpperCamelCase ) # run training estimator.fit() # result dataframe snake_case__ : Dict = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis snake_case__ : Any = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) snake_case__ : List[str] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping snake_case__ : Any = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __UpperCamelCase )
143
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __snake_case ( unittest.TestCase ): def __a ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() def __a ( self ) -> Dict: '''simple docstring''' snake_case__ , snake_case__ : List[str] = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) snake_case__ , snake_case__ : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=__UpperCamelCase , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) snake_case__ : Optional[Any] = controlnet_params snake_case__ : Any = 'bird' snake_case__ : Any = jax.device_count() snake_case__ : Any = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) snake_case__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ : Any = jax.random.PRNGKey(0 ) snake_case__ : Dict = jax.random.split(__UpperCamelCase , jax.device_count() ) snake_case__ : Any = replicate(__UpperCamelCase ) snake_case__ : Union[str, Any] = shard(__UpperCamelCase ) snake_case__ : Any = shard(__UpperCamelCase ) snake_case__ : Dict = pipe( prompt_ids=__UpperCamelCase , image=__UpperCamelCase , params=__UpperCamelCase , prng_seed=__UpperCamelCase , num_inference_steps=50 , jit=__UpperCamelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ : Optional[int] = images[0, 253:256, 253:256, -1] snake_case__ : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ : str = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ , snake_case__ : Union[str, Any] = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) snake_case__ , snake_case__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=__UpperCamelCase , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) snake_case__ : List[str] = controlnet_params snake_case__ : Optional[Any] = 'Chef in the kitchen' snake_case__ : List[Any] = jax.device_count() snake_case__ : int = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) snake_case__ : int = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ : Optional[Any] = jax.random.PRNGKey(0 ) snake_case__ : Any = jax.random.split(__UpperCamelCase , jax.device_count() ) snake_case__ : List[Any] = replicate(__UpperCamelCase ) snake_case__ : List[str] = shard(__UpperCamelCase ) snake_case__ : Optional[int] = shard(__UpperCamelCase ) snake_case__ : Any = pipe( prompt_ids=__UpperCamelCase , image=__UpperCamelCase , params=__UpperCamelCase , prng_seed=__UpperCamelCase , num_inference_steps=50 , jit=__UpperCamelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ : Optional[int] = images[0, 253:256, 253:256, -1] snake_case__ : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ : Any = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
143
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase_ = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
59
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase_ = '''true''' def lowerCamelCase_ ( _a : List[Any] , _a : List[str]=82 , _a : Tuple=16 ): '''simple docstring''' set_seed(42 ) UpperCAmelCase_ : int = RegressionModel() UpperCAmelCase_ : List[Any] = deepcopy(_a ) UpperCAmelCase_ : Tuple = RegressionDataset(length=_a ) UpperCAmelCase_ : int = DataLoader(_a , batch_size=_a ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(_a , _a ) return model, ddp_model, dataloader def lowerCamelCase_ ( _a : Accelerator , _a : Optional[int]=False ): '''simple docstring''' UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) UpperCAmelCase_ : int = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(_a : str ): UpperCAmelCase_ : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_a , max_length=_a ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( _a , batched=_a , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) UpperCAmelCase_ : Tuple = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_a : List[str] ): if use_longest: return tokenizer.pad(_a , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(_a , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(_a , shuffle=_a , collate_fn=_a , batch_size=16 ) def lowerCamelCase_ ( _a : Any , _a : int ): '''simple docstring''' UpperCAmelCase_ : int = Accelerator(dispatch_batches=_a , split_batches=_a ) UpperCAmelCase_ : Dict = get_dataloader(_a , not dispatch_batches ) UpperCAmelCase_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=_a ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare(_a , _a ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase_ ( _a : Optional[int] , _a : Optional[Any] , _a : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = batch.values() with torch.no_grad(): UpperCAmelCase_ : str = model(_a ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = [], [] for logit, targ in logits_and_targets: logits.append(_a ) targs.append(_a ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = torch.cat(_a ), torch.cat(_a ) return logits, targs def lowerCamelCase_ ( _a : Accelerator , _a : str=82 , _a : str=False , _a : Dict=False , _a : Dict=16 ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_basic_setup(_a , _a , _a ) UpperCAmelCase_ , UpperCAmelCase_ : Any = generate_predictions(_a , _a , _a ) assert ( len(_a ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_a )}''' def lowerCamelCase_ ( _a : bool = False , _a : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = evaluate.load("""glue""" , """mrpc""" ) UpperCAmelCase_ , UpperCAmelCase_ : str = get_mrpc_setup(_a , _a ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = setup["""no"""] model.to(_a ) model.eval() for batch in dataloader: batch.to(_a ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**_a ) UpperCAmelCase_ : Any = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_a , references=batch["""labels"""] ) UpperCAmelCase_ : str = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : List[str] = model(**_a ) UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Union[str, Any] = batch["""labels"""] UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_a , references=_a ) UpperCAmelCase_ : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : Any = Accelerator(split_batches=_a , dispatch_batches=_a ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(_a , _a ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[int] = Accelerator(split_batches=_a , dispatch_batches=_a ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(_a , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) UpperCAmelCase_ : str = Accelerator() test_torch_metrics(_a , 512 ) accelerator.state._reset_state() def lowerCamelCase_ ( _a : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
59
1
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : Optional[Any] , __snake_case : List[str] , __snake_case : Tuple=13 , __snake_case : Optional[Any]=7 , __snake_case : Optional[int]=True , __snake_case : int=True , __snake_case : Optional[int]=True , __snake_case : str=True , __snake_case : str=99 , __snake_case : Any=32 , __snake_case : Union[str, Any]=5 , __snake_case : Optional[int]=4 , __snake_case : List[str]=37 , __snake_case : Any="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : Dict=0.1 , __snake_case : Dict=512 , __snake_case : List[str]=16 , __snake_case : Any=2 , __snake_case : List[str]=0.02 , __snake_case : str=False , __snake_case : str=True , __snake_case : List[str]="None" , __snake_case : List[Any]=3 , __snake_case : Optional[Any]=4 , __snake_case : Tuple=None , ) -> List[str]: UpperCAmelCase : int = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : int = is_training UpperCAmelCase : Union[str, Any] = use_input_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : List[str] = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : Union[str, Any] = type_vocab_size UpperCAmelCase : int = type_sequence_label_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : int = num_choices UpperCAmelCase : List[Any] = relative_attention UpperCAmelCase : Any = position_biased_input UpperCAmelCase : Any = pos_att_type UpperCAmelCase : Optional[int] = scope def A ( self : Optional[int] ) -> List[str]: UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Any = None if self.use_input_mask: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : List[Any] ) -> Union[str, Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def A ( self : int ) -> List[str]: UpperCAmelCase : Dict = self.get_config() UpperCAmelCase : int = 300 return config def A ( self : Optional[int] , __snake_case : str ) -> List[str]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def A ( self : Optional[int] , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[str] , __snake_case : Dict , __snake_case : str ) -> List[Any]: UpperCAmelCase : Optional[int] = DebertaModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[Any] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case )[0] UpperCAmelCase : Union[str, Any] = model(__snake_case , token_type_ids=__snake_case )[0] UpperCAmelCase : List[Any] = model(__snake_case )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def A ( self : Dict , __snake_case : Dict , __snake_case : str , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : List[Any] ) -> str: UpperCAmelCase : Tuple = DebertaForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : int , __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: UpperCAmelCase : Any = self.num_labels UpperCAmelCase : Optional[int] = DebertaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[Any] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__snake_case ) def A ( self : Tuple , __snake_case : Tuple , __snake_case : List[str] , __snake_case : int , __snake_case : int , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Any ) -> Tuple: UpperCAmelCase : int = self.num_labels UpperCAmelCase : Tuple = DebertaForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> List[Any]: UpperCAmelCase : int = DebertaForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Any ) -> Union[str, Any]: UpperCAmelCase : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A ( self : Optional[int] ) -> int: UpperCAmelCase : Optional[Any] = DebertaModelTester(self ) UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def A ( self : Dict ) -> Any: self.config_tester.run_common_tests() def A ( self : Optional[int] ) -> Tuple: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__snake_case ) def A ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__snake_case ) def A ( self : Tuple ) -> int: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__snake_case ) def A ( self : List[Any] ) -> Dict: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__snake_case ) def A ( self : List[str] ) -> List[str]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__snake_case ) @slow def A ( self : str ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : int = DebertaModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def A ( self : Tuple ) -> str: pass @slow def A ( self : Any ) -> str: UpperCAmelCase : Tuple = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) UpperCAmelCase : Optional[Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) UpperCAmelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase : Any = model(__snake_case , attention_mask=__snake_case )[0] # compare the actual values for a slice. UpperCAmelCase : Optional[int] = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __snake_case , atol=1E-4 ) , F"""{output[:, 1:4, 1:4]}""" )
23
def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = len(_lowerCAmelCase) UpperCamelCase_ = len(matrix[0]) UpperCamelCase_ = min(_lowerCAmelCase , _lowerCAmelCase) for row in range(_lowerCAmelCase): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _lowerCAmelCase): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(_lowerCAmelCase , _lowerCAmelCase): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , _lowerCAmelCase): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(_lowerCAmelCase): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
128
0
def SCREAMING_SNAKE_CASE_ ( __A : List[str] , __A : str ) -> Optional[int]: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(__A ): for j in range(__A ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def SCREAMING_SNAKE_CASE_ ( __A : int , __A : Union[str, Any] ) -> str: """simple docstring""" a_ : Dict = [[float('inf' ) for _ in range(__A )] for _ in range(__A )] for i in range(__A ): for j in range(__A ): a_ : Any = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__A ): # looping through rows of graph array for i in range(__A ): # looping through columns of graph array for j in range(__A ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): a_ : Optional[int] = dist[i][k] + dist[k][j] _print_dist(__A , __A ) return dist, v if __name__ == "__main__": UpperCAmelCase_ : List[Any] = int(input('Enter number of vertices: ')) UpperCAmelCase_ : Any = int(input('Enter number of edges: ')) UpperCAmelCase_ : List[str] = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): UpperCAmelCase_ : Dict = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) UpperCAmelCase_ : List[Any] = int(input('Enter source:')) UpperCAmelCase_ : Optional[int] = int(input('Enter destination:')) UpperCAmelCase_ : Union[str, Any] = float(input('Enter weight:')) UpperCAmelCase_ : Optional[int] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
120
import os from collections import deque import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]="" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="train" ) -> Tuple: assert os.path.isdir(SCREAMING_SNAKE_CASE__ ) a_ : int = [] a_ : Optional[int] = os.listdir(SCREAMING_SNAKE_CASE__ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue a_ : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not os.path.isfile(SCREAMING_SNAKE_CASE__ ): continue self.documents.append(SCREAMING_SNAKE_CASE__ ) def __len__( self : Dict ) -> str: return len(self.documents ) def __getitem__( self : Dict , SCREAMING_SNAKE_CASE__ : str ) -> str: a_ : int = self.documents[idx] a_ : Tuple = document_path.split('/' )[-1] with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as source: a_ : Dict = source.read() a_ , a_ : Optional[Any] = process_story(SCREAMING_SNAKE_CASE__ ) return document_name, story_lines, summary_lines def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] ) -> Any: """simple docstring""" a_ : Optional[Any] = list(filter(lambda __A : len(__A ) != 0 , [line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it a_ : List[Any] = [_add_missing_period(__A ) for line in nonempty_lines] # gather article lines a_ : int = [] a_ : List[Any] = deque(__A ) while True: try: a_ : Dict = lines.popleft() if element.startswith('@highlight' ): break story_lines.append(__A ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines a_ : List[str] = list(filter(lambda __A : not t.startswith('@highlight' ) , __A ) ) return story_lines, summary_lines def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> Any: """simple docstring""" a_ : Any = ['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')'] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Union[str, Any] , __A : List[str] ) -> Union[str, Any]: """simple docstring""" if len(__A ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__A )) ) return sequence def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : str ) -> Any: """simple docstring""" a_ : Optional[int] = torch.ones_like(__A ) a_ : List[str] = sequence == pad_token_id a_ : str = 0 return mask def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : Optional[Any] , __A : Dict ) -> List[str]: """simple docstring""" a_ : Optional[int] = [tokenizer.encode(__A ) for line in story_lines] a_ : int = [token for sentence in story_lines_token_ids for token in sentence] a_ : Dict = [tokenizer.encode(__A ) for line in summary_lines] a_ : int = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : List[str] ) -> Optional[Any]: """simple docstring""" a_ : int = [] for sequence in batch: a_ : int = -1 a_ : Dict = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__A ) return torch.tensor(__A )
120
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A_ ( lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : str = CanineTokenizer _lowerCamelCase : Tuple = False def lowercase ( self : List[Any] ): super().setUp() _UpperCAmelCase = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self : List[str] ): return CanineTokenizer.from_pretrained("google/canine-s" ) def lowercase ( self : Union[str, Any] , **snake_case_ : List[Any] ): _UpperCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) _UpperCAmelCase = 1_0_2_4 return tokenizer @require_torch def lowercase ( self : List[str] ): _UpperCAmelCase = self.canine_tokenizer _UpperCAmelCase = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off _UpperCAmelCase = [5_7_3_4_4, 7_6, 1_0_5, 1_0_2, 1_0_1, 3_2, 1_0_5, 1_1_5, 3_2, 1_0_8, 1_0_5, 1_0_7, 1_0_1, 3_2, 9_7, 3_2, 9_8, 1_1_1, 1_2_0, 3_2, 1_1_1, 1_0_2, 3_2, 9_9, 1_0_4, 1_1_1, 9_9, 1_1_1, 1_0_8, 9_7, 1_1_6, 1_0_1, 1_1_5, 4_6, 5_7_3_4_5, 0, 0, 0, 0] # fmt: on _UpperCAmelCase = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _UpperCAmelCase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 3_9) , batch.input_ids.shape ) self.assertEqual((2, 3_9) , batch.attention_mask.shape ) @require_torch def lowercase ( self : List[Any] ): _UpperCAmelCase = self.canine_tokenizer _UpperCAmelCase = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] _UpperCAmelCase = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , snake_case_ ) self.assertIn("attention_mask" , snake_case_ ) self.assertIn("token_type_ids" , snake_case_ ) @require_torch def lowercase ( self : Optional[int] ): _UpperCAmelCase = self.canine_tokenizer _UpperCAmelCase = [ "What's the weater?", "It's about 25 degrees.", ] _UpperCAmelCase = tokenizer( text_target=snake_case_ , max_length=3_2 , padding="max_length" , truncation=snake_case_ , return_tensors="pt" ) self.assertEqual(3_2 , targets["input_ids"].shape[1] ) def lowercase ( self : Union[str, Any] ): # safety check on max_len default value so we are sure the test works _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = " He is very happy, UNwant\u00E9d,running" _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) tokenizer.save_pretrained(snake_case_ ) _UpperCAmelCase = tokenizer.__class__.from_pretrained(snake_case_ ) _UpperCAmelCase = after_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) shutil.rmtree(snake_case_ ) _UpperCAmelCase = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = " He is very happy, UNwant\u00E9d,running" _UpperCAmelCase = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _UpperCAmelCase = chr(0Xe0_07 ) additional_special_tokens.append(snake_case_ ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) tokenizer.save_pretrained(snake_case_ ) _UpperCAmelCase = tokenizer.__class__.from_pretrained(snake_case_ ) _UpperCAmelCase = after_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertIn(snake_case_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _UpperCAmelCase = tokenizer.__class__.from_pretrained(snake_case_ , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(snake_case_ ) def lowercase ( self : int ): _UpperCAmelCase = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase , _UpperCAmelCase = self.get_clean_sequence(snake_case_ ) # a special token for Canine can be defined as follows: _UpperCAmelCase = 0Xe0_05 _UpperCAmelCase = chr(snake_case_ ) tokenizer.add_special_tokens({"cls_token": special_token} ) _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertEqual(len(snake_case_ ) , 1 ) _UpperCAmelCase = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=snake_case_ ) _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , input_encoded + special_token_id ) _UpperCAmelCase = tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) self.assertTrue(special_token not in decoded ) def lowercase ( self : int ): _UpperCAmelCase = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase = chr(0Xe0_05 ) _UpperCAmelCase = chr(0Xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=snake_case_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) _UpperCAmelCase = tokenizer.tokenize(snake_case_ ) _UpperCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertEqual(len(snake_case_ ) , 1 ) self.assertEqual(len(snake_case_ ) , 1 ) self.assertEqual(token_a[0] , snake_case_ ) self.assertEqual(token_a[0] , snake_case_ ) @require_tokenizers def lowercase ( self : Any ): _UpperCAmelCase = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: _UpperCAmelCase = 0Xe0_06 _UpperCAmelCase = chr(snake_case_ ) _UpperCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(snake_case_ ) tokenizer.from_pretrained(snake_case_ ) def lowercase ( self : List[Any] ): _UpperCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(snake_case_ ) with open(os.path.join(snake_case_ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: _UpperCAmelCase = json.load(snake_case_ ) with open(os.path.join(snake_case_ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: _UpperCAmelCase = json.load(snake_case_ ) # a special token for Canine can be defined as follows: _UpperCAmelCase = 0Xe0_06 _UpperCAmelCase = chr(snake_case_ ) _UpperCAmelCase = [new_token_a] _UpperCAmelCase = [new_token_a] with open(os.path.join(snake_case_ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case_ , snake_case_ ) with open(os.path.join(snake_case_ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case_ , snake_case_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _UpperCAmelCase = tokenizer_class.from_pretrained(snake_case_ , extra_ids=0 ) self.assertIn(snake_case_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _UpperCAmelCase = 0Xe0_07 _UpperCAmelCase = chr(snake_case_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _UpperCAmelCase = [AddedToken(snake_case_ , lstrip=snake_case_ )] _UpperCAmelCase = tokenizer_class.from_pretrained( snake_case_ , additional_special_tokens=snake_case_ , extra_ids=0 ) self.assertIn(snake_case_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase ( self : Tuple ): _UpperCAmelCase = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase = "hello world" if self.space_between_special_tokens: _UpperCAmelCase = "[CLS] hello world [SEP]" else: _UpperCAmelCase = input _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) _UpperCAmelCase = tokenizer.decode(snake_case_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(snake_case_ , [output, output.lower()] ) def lowercase ( self : str ): _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] _UpperCAmelCase = "a" _UpperCAmelCase = ord(snake_case_ ) for attr in attributes_list: setattr(snake_case_ , attr + "_id" , snake_case_ ) self.assertEqual(getattr(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(getattr(snake_case_ , attr + "_id" ) , snake_case_ ) setattr(snake_case_ , attr + "_id" , snake_case_ ) self.assertEqual(getattr(snake_case_ , snake_case_ ) , snake_case_ ) self.assertEqual(getattr(snake_case_ , attr + "_id" ) , snake_case_ ) setattr(snake_case_ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(snake_case_ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(snake_case_ , "additional_special_tokens_ids" ) , [] ) _UpperCAmelCase = 0Xe0_06 _UpperCAmelCase = chr(snake_case_ ) setattr(snake_case_ , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(snake_case_ , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(snake_case_ , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowercase ( self : Any ): pass def lowercase ( self : List[Any] ): pass def lowercase ( self : Union[str, Any] ): pass def lowercase ( self : List[Any] ): pass def lowercase ( self : List[Any] ): pass def lowercase ( self : int ): pass def lowercase ( self : int ): pass def lowercase ( self : Optional[Any] ): pass
22
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : Dict , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=3 , _lowerCamelCase : List[str]=32 , _lowerCamelCase : Optional[int]=3 , _lowerCamelCase : Dict=10 , _lowerCamelCase : Tuple=[10, 20, 30, 40] , _lowerCamelCase : int=[1, 1, 2, 1] , _lowerCamelCase : int=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : Dict=None , ): _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = embeddings_size _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = hidden_act _snake_case = num_labels _snake_case = scope _snake_case = len(_lowerCamelCase ) def lowercase ( self : Optional[int] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase ( self : Tuple ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : List[Any] ): _snake_case = TFResNetModel(config=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self : Dict , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple ): _snake_case = self.num_labels _snake_case = TFResNetForImageClassification(_lowerCamelCase ) _snake_case = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Tuple ): _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __a = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) __a = False __a = False __a = False __a = False __a = False def lowercase ( self : List[Any] ): _snake_case = TFResNetModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : List[Any] ): return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def lowercase ( self : Any ): pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def lowercase ( self : List[str] ): pass def lowercase ( self : int ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def lowercase ( self : List[str] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowercase ( self : Union[str, Any] ): def check_hidden_states_output(_lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : str ): _snake_case = model_class(_lowerCamelCase ) _snake_case = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _snake_case = layer_type _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Union[str, Any] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def lowercase ( self : List[str] ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFResNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _UpperCAmelCase ( ) -> Union[str, Any]: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Dict ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase ( self : List[Any] ): _snake_case = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=_lowerCamelCase , return_tensors='''tf''' ) # forward pass _snake_case = model(**_lowerCamelCase ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) _snake_case = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowerCamelCase , atol=1e-4 ) )
288
0
from __future__ import annotations from collections import deque class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : list[dict] = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []} ) for keyword in keywords: self.add_keyword(_UpperCamelCase ) self.set_fail_transitions() def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Union[str, Any] = 0 for character in keyword: UpperCAmelCase_ : Optional[Any] = self.find_next_state(_UpperCamelCase , _UpperCamelCase ) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase_ : List[Any] = len(self.adlist ) - 1 else: UpperCAmelCase_ : Tuple = next_state self.adlist[current_state]["output"].append(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> None: UpperCAmelCase_ : deque = deque() for node in self.adlist[0]["next_states"]: q.append(_UpperCamelCase ) UpperCAmelCase_ : Tuple = 0 while q: UpperCAmelCase_ : int = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_UpperCamelCase ) UpperCAmelCase_ : Tuple = self.adlist[r]['fail_state'] while ( self.find_next_state(_UpperCamelCase , self.adlist[child]['value'] ) is None and state != 0 ): UpperCAmelCase_ : Dict = self.adlist[state]['fail_state'] UpperCAmelCase_ : Optional[int] = self.find_next_state( _UpperCamelCase , self.adlist[child]['value'] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Tuple = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> dict[str, list[int]]: UpperCAmelCase_ : dict = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase_ : Optional[Any] = 0 for i in range(len(_UpperCamelCase ) ): while ( self.find_next_state(_UpperCamelCase , string[i] ) is None and current_state != 0 ): UpperCAmelCase_ : int = self.adlist[current_state]['fail_state'] UpperCAmelCase_ : Any = self.find_next_state(_UpperCamelCase , string[i] ) if next_state is None: UpperCAmelCase_ : Optional[int] = 0 else: UpperCAmelCase_ : int = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase_ : Dict = [] result[key].append(i - len(_UpperCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
145
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Dict = '''layoutlmv3''' def __init__( self , _UpperCamelCase=5_0_2_6_5 , _UpperCamelCase=7_6_8 , _UpperCamelCase=1_2 , _UpperCamelCase=1_2 , _UpperCamelCase=3_0_7_2 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=5_1_2 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1E-5 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , _UpperCamelCase=1_0_2_4 , _UpperCamelCase=1_2_8 , _UpperCamelCase=1_2_8 , _UpperCamelCase=True , _UpperCamelCase=3_2 , _UpperCamelCase=1_2_8 , _UpperCamelCase=6_4 , _UpperCamelCase=2_5_6 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=2_2_4 , _UpperCamelCase=3 , _UpperCamelCase=1_6 , _UpperCamelCase=None , **_UpperCamelCase , ) -> Optional[Any]: super().__init__( vocab_size=_UpperCamelCase , hidden_size=_UpperCamelCase , num_hidden_layers=_UpperCamelCase , num_attention_heads=_UpperCamelCase , intermediate_size=_UpperCamelCase , hidden_act=_UpperCamelCase , hidden_dropout_prob=_UpperCamelCase , attention_probs_dropout_prob=_UpperCamelCase , max_position_embeddings=_UpperCamelCase , type_vocab_size=_UpperCamelCase , initializer_range=_UpperCamelCase , layer_norm_eps=_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : str = max_ad_position_embeddings UpperCAmelCase_ : Union[str, Any] = coordinate_size UpperCAmelCase_ : Union[str, Any] = shape_size UpperCAmelCase_ : str = has_relative_attention_bias UpperCAmelCase_ : Tuple = rel_pos_bins UpperCAmelCase_ : Dict = max_rel_pos UpperCAmelCase_ : Any = has_spatial_attention_bias UpperCAmelCase_ : Optional[Any] = rel_ad_pos_bins UpperCAmelCase_ : List[str] = max_rel_ad_pos UpperCAmelCase_ : List[str] = text_embed UpperCAmelCase_ : Dict = visual_embed UpperCAmelCase_ : Optional[int] = input_size UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : List[Any] = patch_size UpperCAmelCase_ : Union[str, Any] = classifier_dropout class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Tuple = version.parse('''1.12''' ) @property def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def __UpperCAmelCase ( self ) -> float: return 1E-5 @property def __UpperCAmelCase ( self ) -> int: return 1_2 def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = -1 , _UpperCamelCase = -1 , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = 3 , _UpperCamelCase = 4_0 , _UpperCamelCase = 4_0 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , _UpperCamelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : Optional[int] = compute_effective_axis_dimension( _UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : Any = processor.tokenizer.num_special_tokens_to_add(_UpperCamelCase ) UpperCAmelCase_ : Any = compute_effective_axis_dimension( _UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : Tuple = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase_ : List[str] = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase_ : str = self._generate_dummy_images(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : List[str] = dict( processor( _UpperCamelCase , text=_UpperCamelCase , boxes=_UpperCamelCase , return_tensors=_UpperCamelCase , ) ) return inputs
145
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __lowerCAmelCase = '''true''' def snake_case_ ( snake_case , snake_case=82 , snake_case=16 ) -> Optional[Any]: set_seed(42 ) lowercase__: List[Any] = RegressionModel() lowercase__: Any = deepcopy(__lowercase ) lowercase__: int = RegressionDataset(length=__lowercase ) lowercase__: Optional[int] = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) lowercase__ , lowercase__: Any = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( snake_case , snake_case=False ) -> int: lowercase__: Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) lowercase__: Dict = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(snake_case ): lowercase__: Union[str, Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): lowercase__: Dict = dataset.map( __lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) lowercase__: List[Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case ): if use_longest: return tokenizer.pad(__lowercase , padding='longest' , return_tensors='pt' ) return tokenizer.pad(__lowercase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=16 ) def snake_case_ ( snake_case , snake_case ) -> Optional[int]: lowercase__: Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) lowercase__: List[Any] = get_dataloader(__lowercase , not dispatch_batches ) lowercase__: Any = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=__lowercase ) lowercase__ , lowercase__: Optional[Any] = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( snake_case , snake_case , snake_case ) -> Tuple: lowercase__: Optional[Any] = [] for batch in dataloader: lowercase__ , lowercase__: Optional[int] = batch.values() with torch.no_grad(): lowercase__: Union[str, Any] = model(__lowercase ) lowercase__ , lowercase__: Any = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowercase__ , lowercase__: Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) lowercase__ , lowercase__: int = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( snake_case , snake_case=82 , snake_case=False , snake_case=False , snake_case=16 ) -> List[str]: lowercase__ , lowercase__ , lowercase__: List[Any] = get_basic_setup(__lowercase , __lowercase , __lowercase ) lowercase__ , lowercase__: Tuple = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}' def snake_case_ ( snake_case = False , snake_case = False ) -> str: lowercase__: str = evaluate.load('glue' , 'mrpc' ) lowercase__ , lowercase__: Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline lowercase__ , lowercase__ , lowercase__: Dict = setup['no'] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): lowercase__: str = model(**__lowercase ) lowercase__: Tuple = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['labels'] ) lowercase__: List[Any] = metric.compute() # Then do distributed lowercase__ , lowercase__ , lowercase__: Optional[int] = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): lowercase__: int = model(**__lowercase ) lowercase__: int = outputs.logits.argmax(dim=-1 ) lowercase__: str = batch['labels'] lowercase__ , lowercase__: Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) lowercase__: int = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def snake_case_ ( ) -> int: lowercase__: Dict = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowercase__: Union[str, Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(__lowercase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) lowercase__: Tuple = Accelerator() test_torch_metrics(__lowercase , 5_12 ) accelerator.state._reset_state() def snake_case_ ( snake_case ) -> Any: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
196
def a_ ( __lowercase : str ) -> int: _snake_case = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) _snake_case = hex_num[0] == '-' if is_negative: _snake_case = hex_num[1:] try: _snake_case = int(__lowercase , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) _snake_case = '' while int_num > 0: _snake_case = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
282
0
'''simple docstring''' class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = n _lowerCAmelCase = [None] * self.n _lowerCAmelCase = 0 # index of the first element _lowerCAmelCase = 0 _lowerCAmelCase = 0 def __len__( self ): """simple docstring""" return self.size def _lowercase ( self ): """simple docstring""" return self.size == 0 def _lowercase ( self ): """simple docstring""" return False if self.is_empty() else self.array[self.front] def _lowercase ( self , _lowercase ): """simple docstring""" if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) _lowerCAmelCase = data _lowerCAmelCase = (self.rear + 1) % self.n self.size += 1 return self def _lowercase ( self ): """simple docstring""" if self.size == 0: raise Exception("""UNDERFLOW""" ) _lowerCAmelCase = self.array[self.front] _lowerCAmelCase = None _lowerCAmelCase = (self.front + 1) % self.n self.size -= 1 return temp
369
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _lowercase = datasets.logging.get_logger(__name__) _lowercase = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ _lowercase = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ _lowercase = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def A (__lowerCamelCase :str , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Union[str, Any]=False , __lowerCamelCase :List[Any]=False , __lowerCamelCase :str=True , __lowerCamelCase :str=False , __lowerCamelCase :str="dummy_doc" ): _lowerCAmelCase = {doc: key_lines} _lowerCAmelCase = {doc: sys_lines} _lowerCAmelCase = {} _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase , _lowerCAmelCase = reader.get_doc_mentions(__lowerCamelCase , key_doc_lines[doc] , __lowerCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase = reader.set_annotated_parse_trees(__lowerCamelCase , key_doc_lines[doc] , __lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = reader.get_doc_mentions(__lowerCamelCase , sys_doc_lines[doc] , __lowerCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase = reader.set_annotated_parse_trees(__lowerCamelCase , key_doc_lines[doc] , __lowerCamelCase , __lowerCamelCase ) if remove_nested: _lowerCAmelCase , _lowerCAmelCase = reader.remove_nested_coref_mentions(__lowerCamelCase , __lowerCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _lowerCAmelCase , _lowerCAmelCase = reader.remove_nested_coref_mentions(__lowerCamelCase , __lowerCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _lowerCAmelCase = reader.get_mention_assignments(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = reader.get_mention_assignments(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ f'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( """Number of resulting singleton clusters in the key """ f'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( f'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' """files, respectively""" ) return doc_coref_infos def A (__lowerCamelCase :List[str] , __lowerCamelCase :str , __lowerCamelCase :str , __lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Optional[Any] ): _lowerCAmelCase = get_coref_infos(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = {} _lowerCAmelCase = 0 _lowerCAmelCase = 0 for name, metric in metrics: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = evaluator.evaluate_documents(__lowerCamelCase , __lowerCamelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'{name}/recall': recall, f'{name}/precision': precision, f'{name}/f1': fa} ) logger.info( name.ljust(10 ) , f'Recall: {recall * 100:.2f}' , f' Precision: {precision * 100:.2f}' , f' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _lowerCAmelCase = (conll / 3) * 100 logger.info(f'CoNLL score: {conll:.2f}' ) output_scores.update({"""conll_score""": conll} ) return output_scores def A (__lowerCamelCase :List[str] ): _lowerCAmelCase = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: _lowerCAmelCase = line.split()[5] if not parse_col == "-": _lowerCAmelCase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase=True , _lowercase=False , _lowercase=False , _lowercase=False ): """simple docstring""" _lowerCAmelCase = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: _lowerCAmelCase = util.check_gold_parse_annotation(_lowercase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _lowerCAmelCase = evaluate( key_lines=_lowercase , sys_lines=_lowercase , metrics=_lowercase , NP_only=_lowercase , remove_nested=_lowercase , keep_singletons=_lowercase , min_span=_lowercase , ) return score
229
0
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , a__ , ) class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : str = RobertaConfig __UpperCamelCase : Optional[Any] = '''roberta''' def __init__(self , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = RobertaEmbeddings(SCREAMING_SNAKE_CASE__ ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , a__ , ) class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : List[Any] = RobertaConfig __UpperCamelCase : List[str] = '''roberta''' def __init__(self , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = config.num_labels SCREAMING_SNAKE_CASE__ : Tuple = config.num_hidden_layers SCREAMING_SNAKE_CASE__ : int = DeeRobertaModel(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE__ : Tuple = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=-1 , SCREAMING_SNAKE_CASE__=False , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.num_layers try: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.roberta( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , position_ids=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ , inputs_embeds=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : List[str] = outputs[1] SCREAMING_SNAKE_CASE__ : str = self.dropout(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.classifier(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: SCREAMING_SNAKE_CASE__ : Optional[Any] = e.message SCREAMING_SNAKE_CASE__ : Optional[int] = e.exit_layer SCREAMING_SNAKE_CASE__ : Any = outputs[0] if not self.training: SCREAMING_SNAKE_CASE__ : List[Any] = entropy(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : str = [] if labels is not None: if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ : Union[str, Any] = MSELoss() SCREAMING_SNAKE_CASE__ : Optional[Any] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits SCREAMING_SNAKE_CASE__ : List[Any] = [] for highway_exit in outputs[-1]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = highway_exit[0] if not self.training: highway_logits_all.append(SCREAMING_SNAKE_CASE__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ : Any = MSELoss() SCREAMING_SNAKE_CASE__ : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ : Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ : str = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(SCREAMING_SNAKE_CASE__ ) if train_highway: SCREAMING_SNAKE_CASE__ : str = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: SCREAMING_SNAKE_CASE__ : List[str] = (loss,) + outputs if not self.training: SCREAMING_SNAKE_CASE__ : str = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: SCREAMING_SNAKE_CASE__ : str = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
25
"""simple docstring""" import mpmath # for roots of unity import numpy as np class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(poly_a or [0] )[:] SCREAMING_SNAKE_CASE__ : Tuple = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() SCREAMING_SNAKE_CASE__ : int = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() SCREAMING_SNAKE_CASE__ : List[str] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 SCREAMING_SNAKE_CASE__ : Optional[int] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform SCREAMING_SNAKE_CASE__ : List[str] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product SCREAMING_SNAKE_CASE__ : Tuple = self.__multiply() def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(SCREAMING_SNAKE_CASE__ ) <= 1: return dft[0] # SCREAMING_SNAKE_CASE__ : Optional[Any] = self.c_max_length // 2 while next_ncol > 0: SCREAMING_SNAKE_CASE__ : Any = [[] for i in range(SCREAMING_SNAKE_CASE__ )] SCREAMING_SNAKE_CASE__ : Tuple = self.root**next_ncol # First half of next step SCREAMING_SNAKE_CASE__ : str = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(SCREAMING_SNAKE_CASE__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step SCREAMING_SNAKE_CASE__ : int = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(SCREAMING_SNAKE_CASE__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_dft SCREAMING_SNAKE_CASE__ : Tuple = next_ncol // 2 return dft[0] def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.__dft("""A""" ) SCREAMING_SNAKE_CASE__ : Dict = self.__dft("""B""" ) SCREAMING_SNAKE_CASE__ : List[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 while next_ncol <= self.c_max_length: SCREAMING_SNAKE_CASE__ : List[str] = [[] for i in range(SCREAMING_SNAKE_CASE__ )] SCREAMING_SNAKE_CASE__ : Tuple = self.root ** (next_ncol // 2) SCREAMING_SNAKE_CASE__ : Any = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update SCREAMING_SNAKE_CASE__ : Optional[Any] = new_inverse_c next_ncol *= 2 # Unpack SCREAMING_SNAKE_CASE__ : Optional[Any] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__(self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = """A = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = """B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) SCREAMING_SNAKE_CASE__ : int = """A*B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
25
1
from __future__ import annotations import math _lowerCamelCase = '2020.9.26' _lowerCamelCase = 'xcodz-dot, cclaus, dhruvmanila' def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float ) -> tuple[float, float]: if not all(isinstance(__UpperCamelCase , (float, int) ) for val in locals().values() ): UpperCAmelCase_ = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(__UpperCamelCase ) UpperCAmelCase_ = ((x * distance) / (z + distance)) * scale UpperCAmelCase_ = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : str , __UpperCamelCase : float ) -> tuple[float, float, float]: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('''Axis must be a str''' ) UpperCAmelCase_ = locals() del input_variables["axis"] if not all(isinstance(__UpperCamelCase , (float, int) ) for val in input_variables.values() ): UpperCAmelCase_ = ( '''Input values except axis must either be float or int: ''' f'{list(input_variables.values() )}' ) raise TypeError(__UpperCamelCase ) UpperCAmelCase_ = (angle % 360) / 450 * 180 / math.pi if axis == "z": UpperCAmelCase_ = x * math.cos(__UpperCamelCase ) - y * math.sin(__UpperCamelCase ) UpperCAmelCase_ = y * math.cos(__UpperCamelCase ) + x * math.sin(__UpperCamelCase ) UpperCAmelCase_ = z elif axis == "x": UpperCAmelCase_ = y * math.cos(__UpperCamelCase ) - z * math.sin(__UpperCamelCase ) UpperCAmelCase_ = z * math.cos(__UpperCamelCase ) + y * math.sin(__UpperCamelCase ) UpperCAmelCase_ = x elif axis == "y": UpperCAmelCase_ = x * math.cos(__UpperCamelCase ) - z * math.sin(__UpperCamelCase ) UpperCAmelCase_ = z * math.cos(__UpperCamelCase ) + x * math.sin(__UpperCamelCase ) UpperCAmelCase_ = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }") print(F"{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }")
177
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class a ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , __snake_case : int , __snake_case : List[Any]=7 , __snake_case : Any=3 , __snake_case : Any=18 , __snake_case : str=30 , __snake_case : Any=4_00 , __snake_case : Optional[int]=True , __snake_case : str=None , __snake_case : Any=True , __snake_case : List[Any]=None , ): UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 20} UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size def lowerCamelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class a ( _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Any ): UpperCAmelCase_ = MobileNetVaImageProcessingTester(self ) @property def lowerCamelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Optional[int] ): UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) self.assertTrue(hasattr(__snake_case , '''do_center_crop''' ) ) self.assertTrue(hasattr(__snake_case , '''crop_size''' ) ) def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowerCamelCase_ ( self : Optional[int] ): pass def lowerCamelCase_ ( self : Tuple ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self : str ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self : int ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
177
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Dict = """gpt_neox""" def __init__( self : Optional[int] , a_ : Tuple=5_04_32 , a_ : List[str]=61_44 , a_ : str=44 , a_ : Tuple=64 , a_ : List[Any]=2_45_76 , a_ : Any="gelu" , a_ : Any=0.25 , a_ : Dict=1_00_00 , a_ : Union[str, Any]=0.0 , a_ : Optional[int]=0.0 , a_ : int=0.1 , a_ : int=20_48 , a_ : Union[str, Any]=0.02 , a_ : Optional[Any]=1e-5 , a_ : Optional[int]=True , a_ : Dict=0 , a_ : str=2 , a_ : Tuple=False , a_ : Tuple=True , a_ : Optional[Any]=None , **a_ : List[Any] , ): super().__init__(bos_token_id=a_ , eos_token_id=a_ , **a_ ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : str = rotary_pct lowerCAmelCase_ : Tuple = rotary_emb_base lowerCAmelCase_ : Optional[int] = attention_dropout lowerCAmelCase_ : str = hidden_dropout lowerCAmelCase_ : str = classifier_dropout lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : List[Any] = layer_norm_eps lowerCAmelCase_ : Tuple = use_cache lowerCAmelCase_ : int = tie_word_embeddings lowerCAmelCase_ : str = use_parallel_residual lowerCAmelCase_ : List[str] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def lowerCamelCase ( self : List[Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , a_ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'''got {self.rope_scaling}''' ) lowerCAmelCase_ : List[str] = self.rope_scaling.get("type" , a_ ) lowerCAmelCase_ : Optional[Any] = self.rope_scaling.get("factor" , a_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(a_ , a_ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
241
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Union[str, Any] = ["""flax"""] def __init__( self : Dict , *a_ : Optional[Any] , **a_ : List[str] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[Any] , *a_ : Union[str, Any] , **a_ : Optional[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : Union[str, Any] , **a_ : Any ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[Any] = ["""flax"""] def __init__( self : Dict , *a_ : Optional[Any] , **a_ : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : str , *a_ : Union[str, Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : Optional[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Dict = ["""flax"""] def __init__( self : Any , *a_ : Optional[int] , **a_ : str ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : Tuple , **a_ : Dict ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Union[str, Any] , *a_ : Any , **a_ : Union[str, Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Optional[Any] = ["""flax"""] def __init__( self : str , *a_ : Optional[int] , **a_ : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : Dict , **a_ : str ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : Optional[int] , **a_ : List[str] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Optional[Any] = ["""flax"""] def __init__( self : Optional[Any] , *a_ : Optional[Any] , **a_ : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : str , *a_ : Optional[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : Union[str, Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[Any] = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : Dict , **a_ : Any ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Tuple , *a_ : Optional[Any] , **a_ : Tuple ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[int] , *a_ : List[Any] , **a_ : Any ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[str] = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : str , **a_ : Any ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[Any] , *a_ : Any , **a_ : Tuple ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[Any] , *a_ : Optional[int] , **a_ : str ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : int = ["""flax"""] def __init__( self : Dict , *a_ : str , **a_ : int ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : str , *a_ : List[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : List[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Tuple = ["""flax"""] def __init__( self : Any , *a_ : Any , **a_ : int ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : Tuple , **a_ : Optional[int] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : Dict , **a_ : Dict ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Any = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : Any , **a_ : List[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : List[Any] , **a_ : Optional[int] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : List[Any] , **a_ : Tuple ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Tuple = ["""flax"""] def __init__( self : Tuple , *a_ : Optional[int] , **a_ : Union[str, Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : List[str] , **a_ : Optional[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Union[str, Any] , *a_ : Any , **a_ : Any ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[str] = ["""flax"""] def __init__( self : Optional[Any] , *a_ : Optional[Any] , **a_ : Dict ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : int , **a_ : List[str] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : int , **a_ : str ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Any = ["""flax"""] def __init__( self : List[str] , *a_ : Optional[Any] , **a_ : List[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : Optional[int] , **a_ : Dict ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : Union[str, Any] , **a_ : Union[str, Any] ): requires_backends(cls , ["flax"] )
241
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets UpperCamelCase__ : Union[str, Any] = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' UpperCamelCase__ : List[Any] = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' UpperCamelCase__ : str = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def UpperCAmelCase_ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def UpperCAmelCase_ ( self ) -> Tuple: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase="uniform_average" , _lowerCamelCase=True ) -> Any: A_ : Optional[Any] = mean_squared_error( _lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase , multioutput=_lowerCamelCase , squared=_lowerCamelCase ) return {"mse": mse}
353
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
164
0
import cva import numpy as np class _snake_case : def __init__( self , _a , _a ): if k in (0.04, 0.06): __magic_name__ : Optional[Any] = k __magic_name__ : Any = window_size else: raise ValueError("invalid k value" ) def __str__( self ): return str(self.k ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : List[str] = cva.imread(_a , 0 ) __magic_name__ , __magic_name__ : Union[str, Any] = img.shape __magic_name__ : list[list[int]] = [] __magic_name__ : Optional[int] = img.copy() __magic_name__ : Any = cva.cvtColor(_a , cva.COLOR_GRAY2RGB ) __magic_name__ , __magic_name__ : Tuple = np.gradient(_a ) __magic_name__ : Optional[int] = dx**2 __magic_name__ : List[str] = dy**2 __magic_name__ : List[str] = dx * dy __magic_name__ : Any = 0.04 __magic_name__ : List[str] = self.window_size // 2 for y in range(_a , h - offset ): for x in range(_a , w - offset ): __magic_name__ : List[str] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __magic_name__ : Dict = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __magic_name__ : List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __magic_name__ : Dict = (wxx * wyy) - (wxy**2) __magic_name__ : int = wxx + wyy __magic_name__ : Tuple = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": snake_case : List[Any] = HarrisCorner(0.04, 3) snake_case ,snake_case : Optional[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
281
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case : str = "▁" snake_case : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class _snake_case ( snake_case , unittest.TestCase ): UpperCamelCase__ = BigBirdTokenizer UpperCamelCase__ = BigBirdTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True def SCREAMING_SNAKE_CASE ( self ): super().setUp() __magic_name__ : Optional[Any] = self.tokenizer_class(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = "<s>" __magic_name__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(_a ) , 1_004 ) def SCREAMING_SNAKE_CASE ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def SCREAMING_SNAKE_CASE ( self ): if not self.test_rust_tokenizer: return __magic_name__ : Dict = self.get_tokenizer() __magic_name__ : str = self.get_rust_tokenizer() __magic_name__ : Any = "I was born in 92000, and this is falsé." __magic_name__ : Dict = tokenizer.tokenize(_a ) __magic_name__ : Any = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __magic_name__ : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) __magic_name__ : List[str] = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __magic_name__ : str = self.get_rust_tokenizer() __magic_name__ : Dict = tokenizer.encode(_a ) __magic_name__ : Optional[int] = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = BigBirdTokenizer(_a , keep_accents=_a ) __magic_name__ : str = tokenizer.tokenize("This is a test" ) self.assertListEqual(_a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [285, 46, 10, 170, 382] , ) __magic_name__ : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __magic_name__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __magic_name__ : int = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def SCREAMING_SNAKE_CASE ( self ): return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = "Hello World!" __magic_name__ : Dict = [65, 18_536, 2_260, 101, 66] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off __magic_name__ : List[str] = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231 # fmt: on self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __magic_name__ : Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __magic_name__ : List[Any] = " ".join(_a ) __magic_name__ : Any = self.big_tokenizer.encode_plus(_a , return_tensors="pt" , return_token_type_ids=_a ) __magic_name__ : Union[str, Any] = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=_a ) __magic_name__ : List[str] = BigBirdConfig(attention_type="original_full" ) __magic_name__ : Optional[int] = BigBirdModel(_a ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_a ) model(**_a ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) __magic_name__ : int = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def SCREAMING_SNAKE_CASE ( self ): # fmt: off __magic_name__ : Optional[Any] = {"input_ids": [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
281
1
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset SCREAMING_SNAKE_CASE :Optional[Any] = """bert-base-cased""" SCREAMING_SNAKE_CASE :Optional[int] = """google/pegasus-xsum""" SCREAMING_SNAKE_CASE :Union[str, Any] = [""" Sam ate lunch today.""", """Sams lunch ingredients."""] SCREAMING_SNAKE_CASE :Optional[Any] = ["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] SCREAMING_SNAKE_CASE :List[str] = """patrickvonplaten/t5-tiny-random""" SCREAMING_SNAKE_CASE :Any = """sshleifer/bart-tiny-random""" SCREAMING_SNAKE_CASE :Dict = """sshleifer/tiny-mbart""" SCREAMING_SNAKE_CASE :Union[str, Any] = """sshleifer/tiny-marian-en-de""" def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: """simple docstring""" UpperCamelCase_ = '\n'.join(__a ) Path(__a ).open("w" ).writelines(__a ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Optional[Any]: """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(__a , f"{split}.source" ) , __a ) _dump_articles(os.path.join(__a , f"{split}.target" ) , __a ) return tmp_dir class __magic_name__ ( snake_case_ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCAmelCase_ ( self , _lowercase )-> Optional[int]: UpperCamelCase_ = AutoTokenizer.from_pretrained(_A ) UpperCamelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCamelCase_ = max(len(tokenizer.encode(_A ) ) for a in ARTICLES ) UpperCamelCase_ = max(len(tokenizer.encode(_A ) ) for a in SUMMARIES ) UpperCamelCase_ = 4 UpperCamelCase_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated UpperCamelCase_ = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. UpperCamelCase_ = SeqaSeqDataset( _A , data_dir=_A , type_path="train" , max_source_length=_A , max_target_length=_A , src_lang=_A , tgt_lang=_A , ) UpperCamelCase_ = DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_A , _A ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place UpperCamelCase_ = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def UpperCAmelCase_ ( self , _lowercase )-> Any: UpperCamelCase_ = AutoTokenizer.from_pretrained(_A ) UpperCamelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCamelCase_ = max(len(tokenizer.encode(_A ) ) for a in ARTICLES ) UpperCamelCase_ = max(len(tokenizer.encode(_A ) ) for a in SUMMARIES ) UpperCamelCase_ = 4 UpperCamelCase_ = LegacySeqaSeqDataset( _A , data_dir=_A , type_path="train" , max_source_length=20 , max_target_length=_A , ) UpperCamelCase_ = DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) UpperCamelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) UpperCamelCase_ = tmp_dir.joinpath("train.source" ).open().readlines() UpperCamelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_A , _A , 128 , _A ) UpperCamelCase_ = {x.name for x in tmp_dir.iterdir()} UpperCamelCase_ = {x.name for x in save_dir.iterdir()} UpperCamelCase_ = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_A ) < len(_A ) assert len(_A ) == 1 assert len(packed_examples[0] ) == sum(len(_A ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def UpperCAmelCase_ ( self )-> Any: if not FAIRSEQ_AVAILABLE: return UpperCamelCase_ = self._get_dataset(max_len=64 ) UpperCamelCase_ = 64 UpperCamelCase_ = ds.make_dynamic_sampler(_A , required_batch_size_multiple=_A ) UpperCamelCase_ = [len(_A ) for x in batch_sampler] assert len(set(_A ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_A ) == len(_A ) # no dropped or added examples UpperCamelCase_ = DataLoader(_A , batch_sampler=_A , collate_fn=ds.collate_fn , num_workers=2 ) UpperCamelCase_ = [] UpperCamelCase_ = [] for batch in data_loader: UpperCamelCase_ = batch['input_ids'].shape UpperCamelCase_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple UpperCamelCase_ = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_A ) if num_src_tokens > (max_tokens * 1.1): failures.append(_A ) assert num_src_per_batch[0] == max(_A ) if failures: raise AssertionError(F"too many tokens in {len(_A )} batches" ) def UpperCAmelCase_ ( self )-> Tuple: UpperCamelCase_ = self._get_dataset(max_len=512 ) UpperCamelCase_ = 2 UpperCamelCase_ = ds.make_sortish_sampler(_A , shuffle=_A ) UpperCamelCase_ = DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 ) UpperCamelCase_ = DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 , sampler=_A ) UpperCamelCase_ = tokenizer.pad_token_id def count_pad_tokens(_lowercase , _lowercase="input_ids" ): return [batch[k].eq(_A ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_A , k="labels" ) ) < sum(count_pad_tokens(_A , k="labels" ) ) assert sum(count_pad_tokens(_A ) ) < sum(count_pad_tokens(_A ) ) assert len(_A ) == len(_A ) def UpperCAmelCase_ ( self , _lowercase=1_000 , _lowercase=128 )-> int: if os.getenv("USE_REAL_DATA" , _A ): UpperCamelCase_ = 'examples/seq2seq/wmt_en_ro' UpperCamelCase_ = max_len * 2 * 64 if not Path(_A ).joinpath("train.len" ).exists(): save_len_file(_A , _A ) else: UpperCamelCase_ = 'examples/seq2seq/test_data/wmt_en_ro' UpperCamelCase_ = max_len * 4 save_len_file(_A , _A ) UpperCamelCase_ = AutoTokenizer.from_pretrained(_A ) UpperCamelCase_ = SeqaSeqDataset( _A , data_dir=_A , type_path="train" , max_source_length=_A , max_target_length=_A , n_obs=_A , ) return ds, max_tokens, tokenizer def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = self._get_dataset() UpperCamelCase_ = set(DistributedSortishSampler(_A , 256 , num_replicas=2 , rank=0 , add_extra_examples=_A ) ) UpperCamelCase_ = set(DistributedSortishSampler(_A , 256 , num_replicas=2 , rank=1 , add_extra_examples=_A ) ) assert idsa.intersection(_A ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCAmelCase_ ( self , _lowercase )-> Tuple: UpperCamelCase_ = AutoTokenizer.from_pretrained(_A , use_fast=_A ) if tok_name == MBART_TINY: UpperCamelCase_ = SeqaSeqDataset( _A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) UpperCamelCase_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: UpperCamelCase_ = SeqaSeqDataset( _A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) UpperCamelCase_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_A ) == 1 if tok_name == BART_TINY else len(_A ) == 0
371
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False )-> str: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = f"Expected string as input, found {type(SCREAMING_SNAKE_CASE_ )}" raise ValueError(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = f"Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE_ )}" raise ValueError(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = input_str.split("_" ) UpperCamelCase_ = 0 if use_pascal else 1 UpperCamelCase_ = words[start_index:] UpperCamelCase_ = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCamelCase_ = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
60
0