code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase__ ( a ) -> str: for param in module.parameters(): _A: Optional[Any] = False def lowerCamelCase__ ( ) -> Optional[int]: _A: Union[str, Any] = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _A: str = """mps""" if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def lowerCamelCase__ ( a ) -> str: _A: Optional[Any] = plt.imshow(__snake_case ) fig.axes.get_xaxis().set_visible(__snake_case ) fig.axes.get_yaxis().set_visible(__snake_case ) plt.show() def lowerCamelCase__ ( ) -> Dict: _A: Optional[int] = datetime.now() _A: Dict = current_time.strftime('''%H:%M:%S''' ) return timestamp
121
'''simple docstring''' def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(__snake_case : int, __snake_case : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 A__ : int =update_area_of_max_square(__snake_case, col + 1 ) A__ : int =update_area_of_max_square(row + 1, col + 1 ) A__ : int =update_area_of_max_square(row + 1, __snake_case ) if mat[row][col]: A__ : Optional[Any] =1 + min([right, diagonal, down] ) A__ : Dict =max(largest_square_area[0], __snake_case ) return sub_problem_sol else: return 0 A__ : List[Any] =[0] update_area_of_max_square(0, 0 ) return largest_square_area[0] def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] A__ : str =update_area_of_max_square_using_dp_array(__snake_case, col + 1, __snake_case ) A__ : Any =update_area_of_max_square_using_dp_array(row + 1, col + 1, __snake_case ) A__ : List[str] =update_area_of_max_square_using_dp_array(row + 1, __snake_case, __snake_case ) if mat[row][col]: A__ : Optional[int] =1 + min([right, diagonal, down] ) A__ : Any =max(largest_square_area[0], __snake_case ) A__ : Union[str, Any] =sub_problem_sol return sub_problem_sol else: return 0 A__ : Any =[0] A__ : Optional[Any] =[[-1] * cols for _ in range(__snake_case )] update_area_of_max_square_using_dp_array(0, 0, __snake_case ) return largest_square_area[0] def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" A__ : Optional[int] =[[0] * (cols + 1) for _ in range(rows + 1 )] A__ : str =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): A__ : List[Any] =dp_array[row][col + 1] A__ : List[str] =dp_array[row + 1][col + 1] A__ : str =dp_array[row + 1][col] if mat[row][col] == 1: A__ : str =1 + min(__snake_case, __snake_case, __snake_case ) A__ : Optional[Any] =max(dp_array[row][col], __snake_case ) else: A__ : Tuple =0 return largest_square_area def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" A__ : Union[str, Any] =[0] * (cols + 1) A__ : int =[0] * (cols + 1) A__ : str =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): A__ : Union[str, Any] =current_row[col + 1] A__ : List[str] =next_row[col + 1] A__ : str =next_row[col] if mat[row][col] == 1: A__ : str =1 + min(__snake_case, __snake_case, __snake_case ) A__ : Dict =max(current_row[col], __snake_case ) else: A__ : str =0 A__ : Optional[Any] =current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
134
0
def snake_case_(_UpperCamelCase ) -> list: """simple docstring""" _snake_case = len(lowerCAmelCase__ ) for i in range(1 , lowerCAmelCase__ ): _snake_case = collection[i] _snake_case = 0 _snake_case = i - 1 while low <= high: _snake_case = (low + high) // 2 if val < collection[mid]: _snake_case = mid - 1 else: _snake_case = mid + 1 for j in range(lowerCAmelCase__ , lowerCAmelCase__ , -1 ): _snake_case = collection[j - 1] _snake_case = val return collection if __name__ == "__main__": __A = input('''Enter numbers separated by a comma:\n''').strip() __A = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
360
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
278
0
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _UpperCAmelCase : Union[str, Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a__ ( datasets.BuilderConfig ): """simple docstring""" __UpperCamelCase : Optional[datasets.Features] = None def __magic_name__( lowerCamelCase, lowerCamelCase, ): import pyspark def generate_fn(): __lowerCAmelCase = df.select('''*''', pyspark.sql.functions.spark_partition_id().alias('''part_id''')) for partition_id in partition_order: __lowerCAmelCase = df_with_partition_id.select('''*''').where(F"""part_id = {partition_id}""").drop('''part_id''') __lowerCAmelCase = partition_df.collect() __lowerCAmelCase = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class a__ ( _BaseExamplesIterable ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , ): __lowerCAmelCase = df __lowerCAmelCase = partition_order or range(self.df.rdd.getNumPartitions() ) __lowerCAmelCase = _generate_iterable_examples(self.df , self.partition_order ) def __iter__(self ): yield from self.generate_examples_fn() def _snake_case (self , __lowercase ): __lowerCAmelCase = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = self.split_shard_indices_by_worker(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) @property def _snake_case (self ): return len(self.partition_order ) class a__ ( datasets.DatasetBuilder ): """simple docstring""" __UpperCamelCase : List[Any] = SparkConfig def __init__(self , __lowercase , __lowercase = None , __lowercase = None , **__lowercase , ): import pyspark __lowerCAmelCase = pyspark.sql.SparkSession.builder.getOrCreate() __lowerCAmelCase = df __lowerCAmelCase = working_dir super().__init__( cache_dir=SCREAMING_SNAKE_CASE__ , config_name=str(self.df.semanticHash() ) , **SCREAMING_SNAKE_CASE__ , ) def _snake_case (self ): def create_cache_and_write_probe(__lowercase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(SCREAMING_SNAKE_CASE__ , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __lowerCAmelCase = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(SCREAMING_SNAKE_CASE__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def _snake_case (self ): return datasets.DatasetInfo(features=self.config.features ) def _snake_case (self , __lowercase ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _snake_case (self , __lowercase ): import pyspark def get_arrow_batch_size(__lowercase ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) __lowerCAmelCase = self.df.count() __lowerCAmelCase = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __lowerCAmelCase = ( self.df.limit(SCREAMING_SNAKE_CASE__ ) .repartition(1 ) .mapInArrow(SCREAMING_SNAKE_CASE__ , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) __lowerCAmelCase = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __lowerCAmelCase = min(SCREAMING_SNAKE_CASE__ , int(approx_total_size / max_shard_size ) ) __lowerCAmelCase = self.df.repartition(SCREAMING_SNAKE_CASE__ ) def _snake_case (self , __lowercase , __lowercase , __lowercase , ): import pyspark __lowerCAmelCase = ParquetWriter if file_format == '''parquet''' else ArrowWriter __lowerCAmelCase = os.path.join(self._working_dir , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) if self._working_dir else fpath __lowerCAmelCase = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __lowerCAmelCase = self.config.features __lowerCAmelCase = self._writer_batch_size __lowerCAmelCase = self._fs.storage_options def write_arrow(__lowercase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __lowerCAmelCase = pyspark.TaskContext().taskAttemptId() __lowerCAmelCase = next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) __lowerCAmelCase = 0 __lowerCAmelCase = writer_class( features=SCREAMING_SNAKE_CASE__ , path=working_fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = pa.Table.from_batches([first_batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __lowerCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 __lowerCAmelCase = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = pa.Table.from_batches([batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) if writer._num_bytes > 0: __lowerCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ): __lowerCAmelCase = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) shutil.move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = ( self.df.mapInArrow(SCREAMING_SNAKE_CASE__ , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _snake_case (self , __lowercase , __lowercase = "arrow" , __lowercase = None , __lowercase = None , **__lowercase , ): self._validate_cache_dir() __lowerCAmelCase = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = not is_remote_filesystem(self._fs ) __lowerCAmelCase = os.path.join if is_local else posixpath.join __lowerCAmelCase = '''-TTTTT-SSSSS-of-NNNNN''' __lowerCAmelCase = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" __lowerCAmelCase = path_join(self._output_dir , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] __lowerCAmelCase = [] for task_id, content in self._prepare_split_single(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ( __lowerCAmelCase ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = total_num_examples __lowerCAmelCase = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: __lowerCAmelCase = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __lowerCAmelCase = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __lowercase , __lowercase , __lowercase , ): rename( SCREAMING_SNAKE_CASE__ , fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , fpath.replace('''TTTTT-SSSSS''' , F"""{global_shard_id:05d}""" ).replace('''NNNNN''' , F"""{total_shards:05d}""" ) , ) __lowerCAmelCase = [] __lowerCAmelCase = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __lowerCAmelCase = task_id_and_num_shards[i] for shard_id in range(SCREAMING_SNAKE_CASE__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ).map(lambda __lowercase : _rename_shard(*SCREAMING_SNAKE_CASE__ ) ).collect() else: # don't use any pattern __lowerCAmelCase = 0 __lowerCAmelCase = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , fpath.replace(SCREAMING_SNAKE_CASE__ , '''''' ) , ) def _snake_case (self , __lowercase , ): return SparkExamplesIterable(self.df )
174
"""simple docstring""" def __lowerCamelCase ( a_ : int ) -> bool: if not isinstance(a_ , a_ ): __SCREAMING_SNAKE_CASE :int = f'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 0: return False __SCREAMING_SNAKE_CASE :Any = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
191
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) __lowercase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' for attribute in key.split('''.''' ): __UpperCamelCase :List[Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: __UpperCamelCase :Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: __UpperCamelCase :int = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __UpperCamelCase :Dict = value elif weight_type == "weight_g": __UpperCamelCase :Optional[Any] = value elif weight_type == "weight_v": __UpperCamelCase :str = value elif weight_type == "bias": __UpperCamelCase :List[Any] = value else: __UpperCamelCase :Any = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Dict = [] __UpperCamelCase :Dict = fairseq_model.state_dict() __UpperCamelCase :Optional[Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase :List[Any] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) __UpperCamelCase :List[Any] = True else: for key, mapped_key in MAPPING.items(): __UpperCamelCase :Tuple = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): __UpperCamelCase :Tuple = True if "*" in mapped_key: __UpperCamelCase :str = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] __UpperCamelCase :Union[str, Any] = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: __UpperCamelCase :List[Any] = '''weight_g''' elif "weight_v" in name: __UpperCamelCase :Any = '''weight_v''' elif "weight" in name: __UpperCamelCase :Optional[int] = '''weight''' elif "bias" in name: __UpperCamelCase :Union[str, Any] = '''bias''' else: __UpperCamelCase :List[Any] = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :int = full_name.split('''conv_layers.''' )[-1] __UpperCamelCase :Union[str, Any] = name.split('''.''' ) __UpperCamelCase :Tuple = int(items[0] ) __UpperCamelCase :Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __UpperCamelCase :Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __UpperCamelCase :Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __UpperCamelCase :int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __UpperCamelCase :Tuple = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ): '''simple docstring''' if config_path is not None: __UpperCamelCase :List[Any] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :str = HubertConfig() if is_finetuned: if dict_path: __UpperCamelCase :str = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase :List[str] = target_dict.pad_index __UpperCamelCase :int = target_dict.bos_index __UpperCamelCase :List[str] = target_dict.eos_index __UpperCamelCase :Any = len(target_dict.symbols ) __UpperCamelCase :str = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=SCREAMING_SNAKE_CASE , ) __UpperCamelCase :Optional[int] = True if config.feat_extract_norm == '''layer''' else False __UpperCamelCase :Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) __UpperCamelCase :Optional[Any] = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Tuple = HubertForCTC(SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :Optional[Any] = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __UpperCamelCase :int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __lowercase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
105
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase :List[str] = emb.weight.shape __UpperCamelCase :str = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = emb.weight.data return lin_layer def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Dict = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) __UpperCamelCase :Tuple = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] __UpperCamelCase :Dict = mam_aaa['''model'''] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = state_dict['''encoder.embed_tokens.weight'''].shape[0] __UpperCamelCase :Dict = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE , max_position_embeddings=1_024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , ) __UpperCamelCase :Tuple = state_dict['''decoder.embed_tokens.weight'''] __UpperCamelCase :int = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE ) model.model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __lowercase = parser.parse_args() __lowercase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
105
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __snake_case ( lowerCamelCase__ ): a__ = """Wav2Vec2FeatureExtractor""" a__ = """AutoTokenizer""" def __init__( self , lowercase , lowercase) -> Optional[int]: '''simple docstring''' super().__init__(lowercase , lowercase) a__: str = self.feature_extractor a__: Any = False @classmethod def lowerCamelCase_ ( cls , lowercase , **lowercase) -> Union[str, Any]: '''simple docstring''' try: return super().from_pretrained(lowercase , **lowercase) except OSError: warnings.warn( f'Loading a tokenizer inside {cls.__name__} from a config that does not' ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , lowercase , ) a__: str = WavaVecaFeatureExtractor.from_pretrained(lowercase , **lowercase) a__: List[Any] = WavaVecaCTCTokenizer.from_pretrained(lowercase , **lowercase) return cls(feature_extractor=lowercase , tokenizer=lowercase) def __call__( self , *lowercase , **lowercase) -> Union[str, Any]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowercase , **lowercase) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.') a__: Union[str, Any] = kwargs.pop('raw_speech') else: a__: Dict = kwargs.pop('audio' , lowercase) a__: List[str] = kwargs.pop('sampling_rate' , lowercase) a__: List[str] = kwargs.pop('text' , lowercase) if len(lowercase) > 0: a__: Tuple = args[0] a__: Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if audio is not None: a__: List[Any] = self.feature_extractor(lowercase , *lowercase , sampling_rate=lowercase , **lowercase) if text is not None: a__: Optional[int] = self.tokenizer(lowercase , **lowercase) if text is None: return inputs elif audio is None: return encodings else: a__: int = encodings["input_ids"] return inputs def lowerCamelCase_ ( self , *lowercase , **lowercase) -> int: '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*lowercase , **lowercase) a__: Optional[Any] = kwargs.pop('input_features' , lowercase) a__: Optional[Any] = kwargs.pop('labels' , lowercase) if len(lowercase) > 0: a__: Any = args[0] a__: Union[str, Any] = args[1:] if input_features is not None: a__: Optional[int] = self.feature_extractor.pad(lowercase , *lowercase , **lowercase) if labels is not None: a__: List[str] = self.tokenizer.pad(lowercase , **lowercase) if labels is None: return input_features elif input_features is None: return labels else: a__: Optional[Any] = labels["input_ids"] return input_features def lowerCamelCase_ ( self , *lowercase , **lowercase) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase) def lowerCamelCase_ ( self , *lowercase , **lowercase) -> Dict: '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase) @contextmanager def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.') a__: Any = True a__: Any = self.tokenizer yield a__: Dict = self.feature_extractor a__: int = False
290
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , snake_case :AutoencoderKL , snake_case :CLIPTextModel , snake_case :CLIPTokenizer , snake_case :UNetaDConditionModel , snake_case :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , snake_case :StableDiffusionSafetyChecker , snake_case :CLIPImageProcessor , ): '''simple docstring''' super().__init__() self.register_modules( vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self.enable_attention_slicing(snake_case ) @torch.no_grad() def __call__( self :Any , snake_case :Union[str, List[str]] , snake_case :int = 512 , snake_case :int = 512 , snake_case :int = 50 , snake_case :float = 7.5 , snake_case :Optional[Union[str, List[str]]] = None , snake_case :Optional[int] = 1 , snake_case :float = 0.0 , snake_case :Optional[torch.Generator] = None , snake_case :Optional[torch.FloatTensor] = None , snake_case :Optional[str] = "pil" , snake_case :bool = True , snake_case :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case :int = 1 , snake_case :Optional[torch.FloatTensor] = None , **snake_case :Optional[Any] , ): '''simple docstring''' if isinstance(snake_case , snake_case ): A_ : Dict = 1 elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = len(snake_case ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case )}." ) # get prompt text embeddings A_ : int = self.tokenizer( snake_case , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) A_ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) A_ : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_ , A_ , A_ : int = text_embeddings.shape A_ : List[str] = text_embeddings.repeat(1 , snake_case , 1 ) A_ : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ : List[str] if negative_prompt is None: A_ : List[str] = [""] elif type(snake_case ) is not type(snake_case ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case )} !=" f" {type(snake_case )}." ) elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = [negative_prompt] elif batch_size != len(snake_case ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: A_ : Any = negative_prompt A_ : Optional[int] = text_input_ids.shape[-1] A_ : Dict = self.tokenizer( snake_case , padding="max_length" , max_length=snake_case , truncation=snake_case , return_tensors="pt" , ) A_ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ : Tuple = uncond_embeddings.shape[1] A_ : Dict = uncond_embeddings.repeat(snake_case , snake_case , 1 ) A_ : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ : Tuple = torch.randn( snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to(self.device ) A_ : Optional[Any] = torch.randn(snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to( self.device ) else: A_ : int = torch.randn( snake_case , generator=snake_case , device=self.device , dtype=snake_case ) A_ : Optional[int] = torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case ) else: if latents_reference.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A_ : Tuple = latents_reference.to(self.device ) A_ : Any = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ : List[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ : Optional[int] = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ : Dict = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ : Optional[Any] = 0 if dx < 0 else dx A_ : Optional[Any] = 0 if dy < 0 else dy A_ : List[str] = max(-dx , 0 ) A_ : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() A_ : Any = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : List[str] = {} if accepts_eta: A_ : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance A_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Any = self.scheduler.scale_model_input(snake_case , snake_case ) # predict the noise residual A_ : List[str] = self.unet(snake_case , snake_case , encoder_hidden_states=snake_case ).sample # perform guidance if do_classifier_free_guidance: A_ , A_ : Dict = noise_pred.chunk(2 ) A_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case ) A_ : List[str] = 1 / 0.18215 * latents A_ : Tuple = self.vae.decode(snake_case ).sample A_ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A_ : int = self.feature_extractor(self.numpy_to_pil(snake_case ) , return_tensors="pt" ).to( self.device ) A_ , A_ : List[str] = self.safety_checker( images=snake_case , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ : List[str] = None if output_type == "pil": A_ : Optional[int] = self.numpy_to_pil(snake_case ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case )
300
0
def snake_case_ (__A : int ) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def snake_case_ (__A : int ) -> bool: __lowerCAmelCase : str = 0 __lowerCAmelCase : Any = number while duplicate > 0: __lowerCAmelCase ,__lowerCAmelCase : Optional[Any] = divmod(__A , 1_0 ) fact_sum += factorial(__A ) return fact_sum == number if __name__ == "__main__": print("""Program to check whether a number is a Krisnamurthy Number or not.""") __UpperCAmelCase = int(input("""Enter number: """).strip()) print( F'{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.' )
355
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict=13 , lowerCAmelCase : int=7 , lowerCAmelCase : Any=True , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : int=64 , lowerCAmelCase : Any=32 , lowerCAmelCase : str=5 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : str=37 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=5_12 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : str=2 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : Dict=3 , lowerCAmelCase : int=4 , lowerCAmelCase : Union[str, Any]=None , ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = parent __lowerCAmelCase : Tuple = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : List[str] = is_training __lowerCAmelCase : Dict = use_input_mask __lowerCAmelCase : Optional[int] = use_token_type_ids __lowerCAmelCase : List[str] = use_labels __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : List[str] = hidden_size __lowerCAmelCase : Optional[int] = embedding_size __lowerCAmelCase : Optional[int] = num_hidden_layers __lowerCAmelCase : Optional[Any] = num_attention_heads __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : Optional[int] = hidden_act __lowerCAmelCase : Any = hidden_dropout_prob __lowerCAmelCase : Optional[int] = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : Optional[Any] = type_vocab_size __lowerCAmelCase : Optional[Any] = type_sequence_label_size __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : Optional[Any] = num_labels __lowerCAmelCase : Union[str, Any] = num_choices __lowerCAmelCase : Union[str, Any] = scope def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Dict = None if self.use_input_mask: __lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : List[str] = None if self.use_token_type_ids: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : List[Any] = None __lowerCAmelCase : Tuple = None __lowerCAmelCase : int = None if self.use_labels: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Any = MobileBertModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase ) __lowerCAmelCase : List[Any] = model(lowerCAmelCase , token_type_ids=lowerCAmelCase ) __lowerCAmelCase : Tuple = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = MobileBertForMaskedLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = MobileBertForNextSentencePrediction(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[Any] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = MobileBertForPreTraining(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[int] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , next_sentence_label=lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = MobileBertForQuestionAnswering(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : int = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.num_labels __lowerCAmelCase : int = MobileBertForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[int] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.num_labels __lowerCAmelCase : Dict = MobileBertForTokenClassification(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Tuple = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = self.num_choices __lowerCAmelCase : List[Any] = MobileBertForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Optional[int] = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) , ) : List[Any] = config_and_inputs __lowerCAmelCase : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : str =( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase : Optional[int] =( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : Union[str, Any] =True def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=False ) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class in get_values(lowerCAmelCase ): __lowerCAmelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = MobileBertModelTester(self ) __lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase ) def snake_case_ (__A : Any ) -> Optional[Any]: return torch.tensor( __A , dtype=torch.long , device=__A , ) __UpperCAmelCase = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCAmelCase ) __lowerCAmelCase : int = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __lowerCAmelCase : List[str] = model(lowerCAmelCase )[0] __lowerCAmelCase : List[Any] = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , lowerCAmelCase ) __lowerCAmelCase : int = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] , device=lowerCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __lowerCAmelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
139
0
'''simple docstring''' def __lowerCamelCase ( A__ ) -> Dict: """simple docstring""" try: UpperCamelCase = float(__UpperCamelCase ) except ValueError: raise ValueError('Please enter a valid number' ) UpperCamelCase = decimal - int(__UpperCamelCase ) if fractional_part == 0: return int(__UpperCamelCase ), 1 else: UpperCamelCase = len(str(__UpperCamelCase ).split('.' )[1] ) UpperCamelCase = int(decimal * (10**number_of_frac_digits) ) UpperCamelCase = 10**number_of_frac_digits UpperCamelCase , UpperCamelCase = denominator, numerator while True: UpperCamelCase = dividend % divisor if remainder == 0: break UpperCamelCase , UpperCamelCase = divisor, remainder UpperCamelCase , UpperCamelCase = numerator / divisor, denominator / divisor return int(__UpperCamelCase ), int(__UpperCamelCase ) if __name__ == "__main__": print(f'''{decimal_to_fraction(2) = }''') print(f'''{decimal_to_fraction(89.0) = }''') print(f'''{decimal_to_fraction('67') = }''') print(f'''{decimal_to_fraction('45.0') = }''') print(f'''{decimal_to_fraction(1.5) = }''') print(f'''{decimal_to_fraction('6.25') = }''') print(f'''{decimal_to_fraction('78td') = }''')
28
"""simple docstring""" import re def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" return [char.split() for char in re.split(r'''[^ a-z A-Z 0-9 \s]''' , str_ )] def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" try: __A = split_input(__UpperCamelCase ) if upper: __A = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __A = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" return to_simple_case(__UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" try: __A = to_simple_case(__UpperCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return to_complex_case(__UpperCamelCase , __UpperCamelCase , '''_''' ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return to_complex_case(__UpperCamelCase , __UpperCamelCase , '''-''' ) if __name__ == "__main__": __import__('doctest').testmod()
266
0
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = XLMTokenizer A__ = False def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowercase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__ = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_UpperCAmelCase ) ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict ) -> Tuple: """simple docstring""" lowercase__ = """lower newer""" lowercase__ = """lower newer""" return input_text, output_text def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = XLMTokenizer(self.vocab_file , self.merges_file ) lowercase__ = """lower""" lowercase__ = ["""low""", """er</w>"""] lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = tokens + ["""<unk>"""] lowercase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) @slow def lowerCamelCase__ (self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" ) lowercase__ = tokenizer.encode("""sequence builders""" , add_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
146
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate A : int = trt.Logger(trt.Logger.WARNING) A : Dict = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) A : Union[str, Any] = logging.getLogger(__name__) A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=3_8_4, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=1_2_8, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=2_0, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=3_0, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=4_2, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) A : List[Any] = parser.parse_args() if args.tokenizer_name: A : Dict = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) A : Optional[Any] = args.per_device_eval_batch_size A : Tuple = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties A : Any = True A : Optional[int] = 'temp_engine/bert-fp32.engine' if args.fpaa: A : Union[str, Any] = 'temp_engine/bert-fp16.engine' if args.inta: A : Optional[int] = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') A : List[str] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network A : List[str] = [network.get_input(i) for i in range(network.num_inputs)] A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: A : Union[str, Any] = 1 << 5_0 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) A : Dict = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) A : int = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) lowercase__ = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) lowercase__ = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __magic_name__ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __magic_name__ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __magic_name__ ) # start time lowercase__ = time.time() # Run inference context.execute_async( bindings=[int(__magic_name__ ) for d_inp in d_inputs] + [int(__magic_name__ ), int(__magic_name__ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__magic_name__ , __magic_name__ , __magic_name__ ) cuda.memcpy_dtoh_async(__magic_name__ , __magic_name__ , __magic_name__ ) # Synchronize the stream and take time stream.synchronize() # end time lowercase__ = time.time() lowercase__ = end_time - start_time lowercase__ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. A : Dict = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. A : str = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. A : str = raw_datasets['validation'].column_names A : Any = 'question' if 'question' in column_names else column_names[0] A : int = 'context' if 'context' in column_names else column_names[1] A : Tuple = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). A : Dict = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) A : str = min(args.max_seq_length, tokenizer.model_max_length) def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowercase__ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=__magic_name__ , stride=args.doc_stride , return_overflowing_tokens=__magic_name__ , return_offsets_mapping=__magic_name__ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowercase__ = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowercase__ = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowercase__ = tokenized_examples.sequence_ids(__magic_name__ ) lowercase__ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowercase__ = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowercase__ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples A : Optional[Any] = raw_datasets['validation'] # Validation Feature Creation A : int = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) A : Dict = default_data_collator A : Union[str, Any] = eval_dataset.remove_columns(['example_id', 'offset_mapping']) A : Optional[Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any]="eval" ) -> List[Any]: """simple docstring""" lowercase__ = postprocess_qa_predictions( examples=__magic_name__ , features=__magic_name__ , predictions=__magic_name__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__magic_name__ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowercase__ = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: lowercase__ = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] lowercase__ = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__magic_name__ , label_ids=__magic_name__ ) A : Union[str, Any] = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" return trt.volume(engine.get_binding_shape(__magic_name__ ) ) * engine.get_binding_dtype(__magic_name__ ).itemsize # Allocate device memory for inputs and outputs. A : Union[str, Any] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) A : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) A : List[str] = cuda.mem_alloc(h_outputa.nbytes) A : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') A : List[Any] = 0.0 A : Any = 0 A : str = timeit.default_timer() A : Tuple = None for step, batch in enumerate(eval_dataloader): A , A : Optional[int] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 A , A : int = outputs A : str = torch.tensor(start_logits) A : int = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0) A : Tuple = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0) A : Any = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) A : str = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0) if all_preds is not None: A : List[str] = nested_truncate(all_preds, len(eval_dataset)) A : List[Any] = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0)) logger.info('Total Number of Inference = %d', niter) A : Dict = post_processing_function(eval_examples, eval_dataset, all_preds) A : Any = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
146
1
'''simple docstring''' A ={ 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } A ={value: key for key, value in encode_dict.items()} def snake_case_ (_a : str ): UpperCAmelCase = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def snake_case_ (_a : str ): if set(_a ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) UpperCAmelCase = '''''' for word in coded.split(): while len(_a ) != 0: decoded += decode_dict[word[:5]] UpperCAmelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
34
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __snake_case : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(lowercase_ ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : List[str] , **lowerCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self : int , lowerCAmelCase_ : Union[np.ndarray, bytes, str] , **lowerCAmelCase_ : Tuple ) -> Dict: '''simple docstring''' return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[Any] ={} if "candidate_labels" in kwargs: A__ : List[Any] =kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: A__ : Optional[Any] =kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str="This is a sound of {}." ) -> Tuple: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png A__ : Any =requests.get(lowerCAmelCase_ ).content else: with open(lowerCAmelCase_ , """rb""" ) as f: A__ : Dict =f.read() if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : str =ffmpeg_read(lowerCAmelCase_ , self.feature_extractor.sampling_rate ) if not isinstance(lowerCAmelCase_ , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) A__ : int =self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) A__ : Union[str, Any] =candidate_labels A__ : Tuple =[hypothesis_template.format(lowerCAmelCase_ ) for x in candidate_labels] A__ : Dict =self.tokenizer(lowerCAmelCase_ , return_tensors=self.framework , padding=lowerCAmelCase_ ) A__ : int =[text_inputs] return inputs def lowercase__ ( self : Tuple , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' A__ : Optional[int] =model_inputs.pop("""candidate_labels""" ) A__ : List[str] =model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , lowerCAmelCase_ ): A__ : List[str] =text_inputs[0] else: # Batching case. A__ : Optional[Any] =text_inputs[0][0] A__ : List[str] =self.model(**lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : List[str] ={ """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def lowercase__ ( self : Any , lowerCAmelCase_ : List[str] ) -> Tuple: '''simple docstring''' A__ : Any =model_outputs.pop("""candidate_labels""" ) A__ : str =model_outputs["""logits"""][0] if self.framework == "pt": A__ : str =logits.softmax(dim=0 ) A__ : List[str] =probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) A__ : List[str] =[ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase_ , lowerCAmelCase_ ) , key=lambda lowerCAmelCase_ : -x[0] ) ] return result
134
0
"""simple docstring""" def snake_case ( ) -> int: return [ a * b * (1_000 - a - b) for a in range(1 , 999) for b in range(__lowerCAmelCase , 999) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'''{solution() = }''')
362
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name _SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Union[PIL.Image.Image, np.ndarray] class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> str: super().__init__() self.register_modules( prior=lowerCAmelCase_ , image_encoder=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , renderer=lowerCAmelCase_ , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: if latents is None: _A = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _A = latents.to(lowerCAmelCase_ ) _A = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase ( self , lowerCAmelCase_=0 ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _A = torch.device(F'''cuda:{gpu_id}''' ) _A = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ , lowerCAmelCase_ ) @property def UpperCAmelCase ( self ) -> Optional[Any]: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowerCAmelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> Optional[int]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(image[0] , torch.Tensor ): _A = torch.cat(lowerCAmelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(lowerCAmelCase_ , axis=0 ) if not isinstance(lowerCAmelCase_ , torch.Tensor ): _A = self.image_processor(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _A = image.to(dtype=self.image_encoder.dtype , device=lowerCAmelCase_ ) _A = self.image_encoder(lowerCAmelCase_ )["""last_hidden_state"""] _A = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _A = image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0 ) if do_classifier_free_guidance: _A = torch.zeros_like(lowerCAmelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 25 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 4.0 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = "pil" , lowerCAmelCase_ = True , ) -> List[str]: if isinstance(lowerCAmelCase_ , PIL.Image.Image ): _A = 1 elif isinstance(lowerCAmelCase_ , torch.Tensor ): _A = image.shape[0] elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _A = len(lowerCAmelCase_ ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowerCAmelCase_ )}''' ) _A = self._execution_device _A = batch_size * num_images_per_prompt _A = guidance_scale > 1.0 _A = self._encode_image(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # prior self.scheduler.set_timesteps(lowerCAmelCase_ , device=lowerCAmelCase_ ) _A = self.scheduler.timesteps _A = self.prior.config.num_embeddings _A = self.prior.config.embedding_dim _A = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _A = latents.reshape(latents.shape[0] , lowerCAmelCase_ , lowerCAmelCase_ ) for i, t in enumerate(self.progress_bar(lowerCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance _A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) _A = self.prior( lowerCAmelCase_ , timestep=lowerCAmelCase_ , proj_embedding=lowerCAmelCase_ , ).predicted_image_embedding # remove the variance _A , _A = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _A , _A = noise_pred.chunk(2 ) _A = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _A = self.scheduler.step( lowerCAmelCase_ , timestep=lowerCAmelCase_ , sample=lowerCAmelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowerCAmelCase_ ) _A = [] for i, latent in enumerate(lowerCAmelCase_ ): print() _A = self.renderer.decode( latent[None, :] , lowerCAmelCase_ , size=lowerCAmelCase_ , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(lowerCAmelCase_ ) _A = torch.stack(lowerCAmelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _A = images.cpu().numpy() if output_type == "pil": _A = [self.numpy_to_pil(lowerCAmelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowerCAmelCase_ )
81
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A : List[str] = '▁' A : str = {'vocab_file': 'spiece.model'} A : Dict = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } A : Tuple = { 'google/pegasus-xsum': 5_1_2, } A : Tuple = logging.get_logger(__name__) class __A( a ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , _snake_case , _snake_case="<pad>" , _snake_case="</s>" , _snake_case="<unk>" , _snake_case="<mask_2>" , _snake_case="<mask_1>" , _snake_case=None , _snake_case=103 , _snake_case = None , **_snake_case , ) -> None: '''simple docstring''' __a = offset if additional_special_tokens is not None: if not isinstance(_snake_case , _snake_case ): raise TypeError( F"""additional_special_tokens should be of type {type(_snake_case )}, but is""" F""" {type(_snake_case )}""" ) __a = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_snake_case ) , self.offset - 1 ) ] if len(set(_snake_case ) ) != len(_snake_case ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) __a = additional_special_tokens_extended else: __a = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_snake_case , unk_token=_snake_case , mask_token=_snake_case , pad_token=_snake_case , mask_token_sent=_snake_case , offset=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) __a = mask_token_sent __a = vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # add special tokens to encoder dict __a = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __a = {v: k for k, v in self.encoder.items()} @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return len(self.sp_model ) + self.offset def SCREAMING_SNAKE_CASE_ ( self ) -> Dict[str, int]: '''simple docstring''' __a = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_snake_case , out_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __a = self.sp_model.piece_to_id(_snake_case ) return sp_id + self.offset def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __a = self.sp_model.IdToPiece(index - self.offset ) return token def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Any: '''simple docstring''' __a = [] __a = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_snake_case ) + token __a = [] else: current_sub_tokens.append(_snake_case ) out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=False ) -> Any: '''simple docstring''' return 1 def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(_snake_case ) elif token_ids_a is None: return self._special_token_mask(_snake_case ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __a = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , '''wb''' ) as fi: __a = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
6
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """roberta""" def __init__( self , __lowerCamelCase=5_0265 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=512 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-1_2 , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) __A : str = vocab_size __A : Any = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : List[Any] = hidden_act __A : Any = intermediate_size __A : List[str] = hidden_dropout_prob __A : List[Any] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : str = type_vocab_size __A : int = initializer_range __A : Tuple = layer_norm_eps __A : str = position_embedding_type __A : int = use_cache __A : Optional[int] = classifier_dropout class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCamelCase__( self ): '''simple docstring''' if self.task == "multiple-choice": __A : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __A : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
179
0
def snake_case ( snake_case__ :int , snake_case__ :int) -> str: return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1)) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
81
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case ( ) -> List[Any]: _A = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" )) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=snake_case__ , default=1 , help="""Number of TPU cores to use (1 or 8).""") # positional parser.add_argument( """training_script""" , type=snake_case__ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=snake_case__) return parser.parse_args() def snake_case ( ) -> List[str]: _A = parse_args() # Import training_script as a module. _A = Path(args.training_script) sys.path.append(str(script_fpath.parent.resolve())) _A = script_fpath.stem _A = importlib.import_module(snake_case__) # Patch sys.argv _A = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores)] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores) if __name__ == "__main__": main()
81
1
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
51
def A (__A : list , __A : int , __A : int = 0 , __A : int = 0 ) -> int: """simple docstring""" UpperCAmelCase_ = right or len(__A ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__A , __A , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
51
1
'''simple docstring''' from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _snake_case ( a__ ): lowerCAmelCase :Union[str, Any] = '''openai/whisper-base''' lowerCAmelCase :str = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) lowerCAmelCase :Optional[int] = '''transcriber''' lowerCAmelCase :str = WhisperProcessor lowerCAmelCase :Optional[Any] = WhisperForConditionalGeneration lowerCAmelCase :List[Any] = ['''audio'''] lowerCAmelCase :Optional[int] = ['''text'''] def snake_case__ ( self , _lowerCamelCase): return self.pre_processor(_lowerCamelCase , return_tensors="""pt""").input_features def snake_case__ ( self , _lowerCamelCase): return self.model.generate(inputs=_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase): return self.pre_processor.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase)[0]
354
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ = 1_0 , UpperCamelCase__ = 2_2 ): UpperCAmelCase__ : List[str] = range(1 , UpperCamelCase__ ) UpperCAmelCase__ : int = range(1 , UpperCamelCase__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"""{solution(10, 22) = }""")
283
0
import copy import random from transformers import CLIPTokenizer class UpperCAmelCase ( _UpperCAmelCase ): def __init__(self : Tuple , *snake_case__ : Any , **snake_case__ : str ) -> Optional[int]: '''simple docstring''' super().__init__(*snake_case__ , **snake_case__ ) snake_case : List[str] = {} def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : str , *snake_case__ : List[Any] , **snake_case__ : Union[str, Any] ) -> int: '''simple docstring''' snake_case : int = super().add_tokens(snake_case__ , *snake_case__ , **snake_case__ ) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" " `placeholder_token` that is not already in the tokenizer." ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Union[str, Any] , *snake_case__ : Dict , snake_case__ : Dict=1 , **snake_case__ : Union[str, Any] ) -> str: '''simple docstring''' snake_case : Dict = [] if num_vec_per_token == 1: self.try_adding_tokens(snake_case__ , *snake_case__ , **snake_case__ ) output.append(snake_case__ ) else: snake_case : str = [] for i in range(snake_case__ ): snake_case : Optional[Any] = placeholder_token + f"""_{i}""" self.try_adding_tokens(snake_case__ , *snake_case__ , **snake_case__ ) output.append(snake_case__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""" ) snake_case : List[str] = output def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : str , snake_case__ : Tuple=False , snake_case__ : int=1.0 ) -> List[str]: '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = [] for i in range(len(snake_case__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=snake_case__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: snake_case : Tuple = self.token_map[placeholder_token] snake_case : Any = tokens[: 1 + int(len(snake_case__ ) * prop_tokens_to_load )] if vector_shuffle: snake_case : Optional[Any] = copy.copy(snake_case__ ) random.shuffle(snake_case__ ) snake_case : int = text.replace(snake_case__ , " ".join(snake_case__ ) ) return text def __call__(self : Optional[Any] , snake_case__ : List[Any] , *snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any]=False , snake_case__ : List[Any]=1.0 , **snake_case__ : Tuple ) -> Tuple: '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( snake_case__ , vector_shuffle=snake_case__ , prop_tokens_to_load=snake_case__ ) , *snake_case__ , **snake_case__ , ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : int , *snake_case__ : int , snake_case__ : List[Any]=False , snake_case__ : int=1.0 , **snake_case__ : Optional[Any] ) -> Any: '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( snake_case__ , vector_shuffle=snake_case__ , prop_tokens_to_load=snake_case__ ) , *snake_case__ , **snake_case__ , )
59
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = "▁" SCREAMING_SNAKE_CASE__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = BigBirdTokenizer _SCREAMING_SNAKE_CASE = BigBirdTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True def _snake_case ( self ) -> List[str]: super().setUp() lowerCAmelCase = self.tokenizer_class(lowercase , keep_accents=lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = """<s>""" lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def _snake_case ( self ) -> List[str]: lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """[MASK]""" ) self.assertEqual(len(lowercase ) , 1_004 ) def _snake_case ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def _snake_case ( self ) -> List[str]: if not self.test_rust_tokenizer: return lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = """I was born in 92000, and this is falsé.""" lowerCAmelCase = tokenizer.tokenize(lowercase ) lowerCAmelCase = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) lowerCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) lowerCAmelCase = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = tokenizer.encode(lowercase ) lowerCAmelCase = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) def _snake_case ( self ) -> int: lowerCAmelCase = BigBirdTokenizer(lowercase , keep_accents=lowercase ) lowerCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [285, 46, 10, 170, 382] , ) lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _snake_case ( self ) -> Tuple: return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) @slow def _snake_case ( self ) -> Tuple: lowerCAmelCase = """Hello World!""" lowerCAmelCase = [65, 18_536, 2_260, 101, 66] self.assertListEqual(lowercase , self.big_tokenizer.encode(lowercase ) ) @slow def _snake_case ( self ) -> int: lowerCAmelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off lowerCAmelCase = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231 # fmt: on self.assertListEqual(lowercase , self.big_tokenizer.encode(lowercase ) ) @require_torch @slow def _snake_case ( self ) -> Tuple: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence lowerCAmelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase = """ """.join(lowercase ) lowerCAmelCase = self.big_tokenizer.encode_plus(lowercase , return_tensors="""pt""" , return_token_type_ids=lowercase ) lowerCAmelCase = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=lowercase ) lowerCAmelCase = BigBirdConfig(attention_type="""original_full""" ) lowerCAmelCase = BigBirdModel(lowercase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase ) model(**lowercase ) @slow def _snake_case ( self ) -> List[str]: lowerCAmelCase = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) lowerCAmelCase = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids ) self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" ) @slow def _snake_case ( self ) -> Optional[int]: # fmt: off lowerCAmelCase = {"""input_ids""": [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name="""google/bigbird-roberta-base""" , revision="""215c99f1600e06f83acce68422f2035b2b5c3510""" , )
46
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = split_dict._to_yaml_list() assert len(_A ) == len(_A ) lowerCAmelCase_ = SplitDict._from_yaml_list(_A ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase_ = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase_ = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=_A ), SplitInfo(dataset_name='''my_dataset''' )] ) def __UpperCamelCase ( _A ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCAmelCase_ = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
167
_A = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def __UpperCamelCase ( _A , _A , _A ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCAmelCase_ = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(_A )}" ) raise ValueError(_A ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
167
1
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __lowerCAmelCase = 'src/diffusers' # Matches is_xxx_available() __lowerCAmelCase = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla __lowerCAmelCase = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') __lowerCAmelCase = '\n{0} = None\n' __lowerCAmelCase = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' __lowerCAmelCase = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = _re_backend.findall(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( ): with open(os.path.join(_SCREAMING_SNAKE_CASE , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _snake_case = f.readlines() # Get to the point we do the actual imports for type checking _snake_case = 0 _snake_case = {} # Go through the end of the file while line_index < len(_SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _snake_case = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 _snake_case = [] # Until we unindent, add backend objects to the list while line_index < len(_SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: _snake_case = lines[line_index] _snake_case = _re_single_line_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _snake_case = objects else: line_index += 1 return backend_specific_objects def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if name.isupper(): return DUMMY_CONSTANT.format(_SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE=None ): if backend_specific_objects is None: _snake_case = read_init() # For special correspondence backend to module name as used in the function requires_modulename _snake_case = {} for backend, objects in backend_specific_objects.items(): _snake_case = """[""" + """, """.join(f"""\"{b}\"""" for b in backend.split("""_and_""" ) ) + """]""" _snake_case = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for o in objects] ) _snake_case = dummy_file return dummy_files def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE=False ): _snake_case = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _snake_case = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. _snake_case = os.path.join(_SCREAMING_SNAKE_CASE , """utils""" ) _snake_case = { backend: os.path.join(_SCREAMING_SNAKE_CASE , f"""dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py""" ) for backend in dummy_files.keys() } _snake_case = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _snake_case = f.read() else: _snake_case = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"""Updating diffusers.utils.dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py as the main """ """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ f"""diffusers.utils.dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` """ """to fix this.""" ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __lowerCAmelCase = parser.parse_args() check_dummies(args.fix_and_overwrite)
341
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCAmelCase = TypeVar('T') __lowerCAmelCase = Union[List[T], Tuple[T, ...]] __lowerCAmelCase = Union[T, List[T], Dict[str, T]] __lowerCAmelCase = Union[str, bytes, os.PathLike]
341
1
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Tuple , _lowerCAmelCase : pyspark.sql.DataFrame , _lowerCAmelCase : Optional[NamedSplit] = None , _lowerCAmelCase : Optional[Features] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : str = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : str = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : str = "arrow" , **_lowerCAmelCase : List[str] , ): super().__init__( split=_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase , streaming=_lowerCAmelCase , **_lowerCAmelCase , ) A = load_from_cache_file A = file_format A = Spark( df=_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase , working_dir=_lowerCAmelCase , **_lowerCAmelCase , ) def A (self : Optional[int] ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) A = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
337
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __a ( ) ->str: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=UpperCAmelCase , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=UpperCAmelCase , default=5 ) parser.add_argument("""--batch_size""" , type=UpperCAmelCase , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=UpperCAmelCase , default=1 ) parser.add_argument("""--freeze""" , type=UpperCAmelCase , default=UpperCAmelCase ) parser.add_argument("""--learning_rate""" , type=UpperCAmelCase , default=5E-4 ) parser.add_argument("""--seed""" , type=UpperCAmelCase , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=UpperCAmelCase , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=UpperCAmelCase , default=10 ) parser.add_argument("""--weight_decay""" , type=UpperCAmelCase , default=0.01 ) parser.add_argument("""--output_dir""" , type=UpperCAmelCase , default="""./results""" ) return parser.parse_args() _lowerCamelCase : Optional[Any] = load('accuracy') def __a ( UpperCAmelCase ) ->Any: """simple docstring""" A , A = eval_pred A = np.argmax(UpperCAmelCase , axis=1 ) return metric.compute(predictions=UpperCAmelCase , references=UpperCAmelCase ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : Any ): super().__init__() A = trainer def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , **_lowerCAmelCase : List[Any] ): if control.should_evaluate: A = deepcopy(_lowerCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def __a ( ) ->Optional[int]: """simple docstring""" A = get_args() set_seed(args.seed ) A = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) A = dataset.train_test_split(test_size=0.2 ) A = train_test["""test"""].train_test_split(test_size=0.5 ) A = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) A = AutoTokenizer.from_pretrained(args.model_ckpt ) A = tokenizer.eos_token A = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) A = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): A = False A = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(UpperCAmelCase ): A = tokenizer(example["""src"""] , truncation=UpperCAmelCase , max_length=1024 ) A = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } A = train_test_validation.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=train_test_validation["""train"""].column_names , ) A = DataCollatorWithPadding(tokenizer=UpperCAmelCase ) A = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) A = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , compute_metrics=UpperCAmelCase , ) print("""Training...""" ) trainer.add_callback(CustomCallback(UpperCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
337
1
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __a = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None ) -> int: require_version(deps[pkg] , _lowerCAmelCase )
35
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): _A : Dict = list(range(len(UpperCamelCase__ ) ) ) _A : Any = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )] index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ ) _A : float = 0 _A : list[float] = [0] * len(UpperCamelCase__ ) for i in index: if weight[i] <= capacity: _A : Union[str, Any] = 1 max_value += value[i] capacity -= weight[i] else: _A : Optional[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
11
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCAmelCase : Dict = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
363
def UpperCAmelCase__ ( ): lowercase :List[str] = 0 for i in range(1, 1001 ): total += i**i return str(lowerCamelCase )[-10:] if __name__ == "__main__": print(solution())
158
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
343
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE_ : def __init__( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str=13 , lowerCamelCase_ : Any=7 , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Dict=99 , lowerCamelCase_ : str=24 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : List[str]=6 , lowerCamelCase_ : List[Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any=512 , lowerCamelCase_ : List[Any]=16 , lowerCamelCase_ : List[Any]=2 , lowerCamelCase_ : int=0.0_2 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=1000 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = range_bbox def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase = bbox[i, j, 3] UpperCamelCase = bbox[i, j, 1] UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase = bbox[i, j, 2] UpperCamelCase = bbox[i, j, 0] UpperCamelCase = t UpperCamelCase = None if self.use_input_mask: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = LiltModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = LiltForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model( lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = LiltForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model( lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict ): """simple docstring""" return True def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = LiltModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = LiltModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(lowerCamelCase_ ) UpperCamelCase = torch.tensor([[1, 2]] , device=lowerCamelCase_ ) UpperCamelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(input_ids=lowerCamelCase_ , bbox=lowerCamelCase_ ) UpperCamelCase = torch.Size([1, 2, 768] ) UpperCamelCase = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=lowerCamelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowerCamelCase_ , atol=1E-3 ) )
343
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase): @slow def _snake_case ( self : Tuple ): snake_case_ : Tuple = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) snake_case_ : List[Any] = { '''input_ids''': tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } snake_case_ : List[Any] = model(lowercase_ )['''last_hidden_state'''] snake_case_ : Tuple = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , lowercase_ ) # compare the actual values for a slice. snake_case_ : List[str] = tf.convert_to_tensor( [ [ [0.0_68_17_62, 0.10_89_44_51, 0.06_77_25_04], [-0.06_42_36_68, 0.02_36_66_15, 0.04_32_93_44], [-0.06_05_72_95, 0.09_97_41_35, -0.00_07_05_84], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
155
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
155
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class UpperCAmelCase_ ( _lowercase , _lowercase): snake_case__ = '''resnet''' snake_case__ = ['''basic''', '''bottleneck'''] def __init__( self : int , __UpperCamelCase : int=3 , __UpperCamelCase : int=64 , __UpperCamelCase : Any=[256, 512, 1024, 2048] , __UpperCamelCase : Dict=[3, 4, 6, 3] , __UpperCamelCase : Dict="bottleneck" , __UpperCamelCase : Optional[Any]="relu" , __UpperCamelCase : List[str]=False , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[str]=None , **__UpperCamelCase : Dict , ) -> Union[str, Any]: super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) _UpperCamelCase = num_channels _UpperCamelCase = embedding_size _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = layer_type _UpperCamelCase = hidden_act _UpperCamelCase = downsample_in_first_stage _UpperCamelCase = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(__UpperCamelCase ) + 1 )] _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names ) class UpperCAmelCase_ ( _lowercase): snake_case__ = version.parse('''1.11''') @property def _UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _UpperCamelCase ( self : Optional[int] ) -> float: return 1E-3
256
"""simple docstring""" def lowercase ( a__ : str ) -> list[int]: _UpperCamelCase = [0 for i in range(len(a__ ) )] # initialize interval's left pointer and right pointer _UpperCamelCase , _UpperCamelCase = 0, 0 for i in range(1 , len(a__ ) ): # case when current index is inside the interval if i <= right_pointer: _UpperCamelCase = min(right_pointer - i + 1 , z_result[i - left_pointer] ) _UpperCamelCase = min_edge while go_next(a__ , a__ , a__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: _UpperCamelCase , _UpperCamelCase = i, i + z_result[i] - 1 return z_result def lowercase ( a__ : int , a__ : list[int] , a__ : str ) -> bool: return i + z_result[i] < len(a__ ) and s[z_result[i]] == s[i + z_result[i]] def lowercase ( a__ : str , a__ : str ) -> int: _UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string _UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(a__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
256
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class SCREAMING_SNAKE_CASE__ (A_ , unittest.TestCase ): __lowerCamelCase : Tuple = BartphoTokenizer __lowerCamelCase : str = False __lowerCamelCase : Any = True def snake_case_ ( self): super().setUp() lowercase__ : Optional[int] = ["▁This", "▁is", "▁a", "▁t", "est"] lowercase__ : Optional[int] = dict(zip(snake_case__ , range(len(snake_case__)))) lowercase__ : List[Any] = {"unk_token": "<unk>"} lowercase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file']) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8') as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""") lowercase__ : Optional[int] = BartphoTokenizer(snake_case__ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def snake_case_ ( self , **a): kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **snake_case__) def snake_case_ ( self , a): lowercase__ : Optional[Any] = "This is a là test" lowercase__ : List[Any] = "This is a<unk><unk> test" return input_text, output_text def snake_case_ ( self): lowercase__ : List[Any] = BartphoTokenizer(snake_case__ , self.monolingual_vocab_file , **self.special_tokens_map) lowercase__ : int = "This is a là test" lowercase__ : Tuple = "▁This ▁is ▁a ▁l à ▁t est".split() lowercase__ : Union[str, Any] = tokenizer.tokenize(snake_case__) self.assertListEqual(snake_case__ , snake_case__) lowercase__ : Optional[int] = tokens + [tokenizer.unk_token] lowercase__ : List[Any] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__) , snake_case__)
360
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } snake_case_ = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } snake_case_ = '''</w>''' snake_case_ = '''@@ ''' def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[Any] = set() lowercase__ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ : Optional[int] = char return pairs # Speech2Text2 has no max input length snake_case_ = {'''facebook/s2t-wav2vec2-large-en-de''': 1_024} class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : List[str] = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , a , a="<s>" , a="<pad>" , a="</s>" , a="<unk>" , a=False , a=None , **a , ): super().__init__( unk_token=a , bos_token=a , eos_token=a , pad_token=a , do_lower_case=a , **a , ) lowercase__ : str = do_lower_case with open(a , encoding='utf-8') as vocab_handle: lowercase__ : Tuple = json.load(a) lowercase__ : Union[str, Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""") lowercase__ : int = None lowercase__ : List[Any] = None else: with open(a , encoding='utf-8') as merges_handle: lowercase__ : List[Any] = merges_handle.read().split('\n')[:-1] lowercase__ : Optional[int] = [tuple(merge.split()[:2]) for merge in merges] lowercase__ : Tuple = dict(zip(a , range(len(a)))) lowercase__ : List[str] = {} @property def snake_case_ ( self): return len(self.decoder) def snake_case_ ( self): return dict(self.encoder , **self.added_tokens_encoder) def snake_case_ ( self , a): lowercase__ : int = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowercase__ : Any = get_pairs(a) if not pairs: return token while True: lowercase__ : List[str] = min(a , key=lambda a: self.bpe_ranks.get(a , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ : Dict = bigram lowercase__ : Union[str, Any] = [] lowercase__ : int = 0 while i < len(a): try: lowercase__ : Dict = word.index(a , a) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) lowercase__ : Optional[int] = j if word[i] == first and i < len(a) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ : str = tuple(a) lowercase__ : Union[str, Any] = new_word if len(a) == 1: break else: lowercase__ : Optional[Any] = get_pairs(a) lowercase__ : List[str] = ' '.join(a) if word == "\n " + BPE_TOKEN_MERGES: lowercase__ : Optional[int] = '\n' + BPE_TOKEN_MERGES if word.endswith(a): lowercase__ : Dict = word.replace(a , '') lowercase__ : int = word.replace(' ' , a) lowercase__ : List[str] = word return word def snake_case_ ( self , a): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.') if self.do_lower_case: lowercase__ : int = text.lower() lowercase__ : Optional[int] = text.split() lowercase__ : Optional[int] = [] for token in text: if token: split_tokens.extend(list(self.bpe(a).split(' '))) return split_tokens def snake_case_ ( self , a): return self.encoder.get(a , self.encoder.get(self.unk_token)) def snake_case_ ( self , a): lowercase__ : Union[str, Any] = self.decoder.get(a , self.unk_token) return result def snake_case_ ( self , a): lowercase__ : Union[str, Any] = ' '.join(a) # make sure @@ tokens are concatenated lowercase__ : Optional[int] = ''.join(string.split(a)) return string def snake_case_ ( self , a , a = None): if not os.path.isdir(a): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return lowercase__ : Optional[Any] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ : List[Any] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(a , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a) + '\n') lowercase__ : Optional[Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(a , 'w' , encoding='utf-8') as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a: kv[1]): if index != token_index: logger.warning( f"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!') lowercase__ : Dict = token_index writer.write(' '.join(a) + '\n') index += 1 return (vocab_file, merges_file)
216
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = '''ResNetConfig''' # Base docstring __UpperCAmelCase = '''microsoft/resnet-50''' __UpperCAmelCase = [1, 2_048, 7, 7] # Image classification docstring __UpperCAmelCase = '''microsoft/resnet-50''' __UpperCAmelCase = '''tiger cat''' __UpperCAmelCase = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class lowerCAmelCase_ ( nn.Module ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 3, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = "relu" ) -> List[Any]: super().__init__() UpperCamelCase : Optional[Any] = nn.Convad( __a, __a, kernel_size=__a, stride=__a, padding=kernel_size // 2, bias=__a ) UpperCamelCase : List[Any] = nn.BatchNormad(__a ) UpperCamelCase : Optional[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : List[Any] = self.convolution(__a ) UpperCamelCase : Dict = self.normalization(__a ) UpperCamelCase : List[Any] = self.activation(__a ) return hidden_state class lowerCAmelCase_ ( nn.Module ): def __init__( self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: super().__init__() UpperCamelCase : Optional[int] = ResNetConvLayer( config.num_channels, config.embedding_size, kernel_size=7, stride=2, activation=config.hidden_act ) UpperCamelCase : Dict = nn.MaxPoolad(kernel_size=3, stride=2, padding=1 ) UpperCamelCase : Tuple = config.num_channels def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : Optional[Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) UpperCamelCase : int = self.embedder(__a ) UpperCamelCase : Tuple = self.pooler(__a ) return embedding class lowerCAmelCase_ ( nn.Module ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 2 ) -> List[str]: super().__init__() UpperCamelCase : Union[str, Any] = nn.Convad(__a, __a, kernel_size=1, stride=__a, bias=__a ) UpperCamelCase : int = nn.BatchNormad(__a ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase : Optional[Any] = self.convolution(__a ) UpperCamelCase : Dict = self.normalization(__a ) return hidden_state class lowerCAmelCase_ ( nn.Module ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = "relu" ) -> str: super().__init__() UpperCamelCase : Tuple = in_channels != out_channels or stride != 1 UpperCamelCase : Tuple = ( ResNetShortCut(__a, __a, stride=__a ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase : str = nn.Sequential( ResNetConvLayer(__a, __a, stride=__a ), ResNetConvLayer(__a, __a, activation=__a ), ) UpperCamelCase : Union[str, Any] = ACTaFN[activation] def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : int = hidden_state UpperCamelCase : Dict = self.layer(__a ) UpperCamelCase : Optional[int] = self.shortcut(__a ) hidden_state += residual UpperCamelCase : Tuple = self.activation(__a ) return hidden_state class lowerCAmelCase_ ( nn.Module ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = "relu", SCREAMING_SNAKE_CASE_ = 4 ) -> List[str]: super().__init__() UpperCamelCase : int = in_channels != out_channels or stride != 1 UpperCamelCase : str = out_channels // reduction UpperCamelCase : Optional[int] = ( ResNetShortCut(__a, __a, stride=__a ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase : Tuple = nn.Sequential( ResNetConvLayer(__a, __a, kernel_size=1 ), ResNetConvLayer(__a, __a, stride=__a ), ResNetConvLayer(__a, __a, kernel_size=1, activation=__a ), ) UpperCamelCase : Optional[int] = ACTaFN[activation] def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Any = hidden_state UpperCamelCase : Any = self.layer(__a ) UpperCamelCase : str = self.shortcut(__a ) hidden_state += residual UpperCamelCase : int = self.activation(__a ) return hidden_state class lowerCAmelCase_ ( nn.Module ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 2, SCREAMING_SNAKE_CASE_ = 2, ) -> Any: super().__init__() UpperCamelCase : List[str] = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer UpperCamelCase : Dict = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__a, __a, stride=__a, activation=config.hidden_act ), *[layer(__a, __a, activation=config.hidden_act ) for _ in range(depth - 1 )], ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Tuple = input for layer in self.layers: UpperCamelCase : Tuple = layer(__a ) return hidden_state class lowerCAmelCase_ ( nn.Module ): def __init__( self, SCREAMING_SNAKE_CASE_ ) -> Tuple: super().__init__() UpperCamelCase : Any = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __a, config.embedding_size, config.hidden_sizes[0], stride=2 if config.downsample_in_first_stage else 1, depth=config.depths[0], ) ) UpperCamelCase : Union[str, Any] = zip(config.hidden_sizes, config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__a, config.depths[1:] ): self.stages.append(ResNetStage(__a, __a, __a, depth=__a ) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = True ) -> Any: UpperCamelCase : Optional[int] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase : Optional[Any] = hidden_states + (hidden_state,) UpperCamelCase : List[str] = stage_module(__a ) if output_hidden_states: UpperCamelCase : str = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=__a, hidden_states=__a, ) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Dict = ResNetConfig UpperCAmelCase__ : Union[str, Any] = "resnet" UpperCAmelCase__ : Dict = "pixel_values" UpperCAmelCase__ : Tuple = True def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any: if isinstance(__a, nn.Convad ): nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu' ) elif isinstance(__a, (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight, 1 ) nn.init.constant_(module.bias, 0 ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False ) -> Optional[Any]: if isinstance(__a, __a ): UpperCamelCase : Tuple = value __UpperCAmelCase = r'''\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n''' __UpperCAmelCase = r'''\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , a__ , ) class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_ ) -> int: super().__init__(__a ) UpperCamelCase : Tuple = config UpperCamelCase : List[str] = ResNetEmbeddings(__a ) UpperCamelCase : List[str] = ResNetEncoder(__a ) UpperCamelCase : Any = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=__a, config_class=_CONFIG_FOR_DOC, modality='vision', expected_output=_EXPECTED_OUTPUT_SHAPE, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None ) -> Optional[int]: UpperCamelCase : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase : List[str] = self.embedder(__a ) UpperCamelCase : int = self.encoder( __a, output_hidden_states=__a, return_dict=__a ) UpperCamelCase : int = encoder_outputs[0] UpperCamelCase : List[Any] = self.pooler(__a ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__a, pooler_output=__a, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , a__ , ) class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super().__init__(__a ) UpperCamelCase : Tuple = config.num_labels UpperCamelCase : str = ResNetModel(__a ) # classification head UpperCamelCase : str = nn.Sequential( nn.Flatten(), nn.Linear(config.hidden_sizes[-1], config.num_labels ) if config.num_labels > 0 else nn.Identity(), ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=__a, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, ) -> Optional[int]: UpperCamelCase : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase : List[Any] = self.resnet(__a, output_hidden_states=__a, return_dict=__a ) UpperCamelCase : Tuple = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase : int = self.classifier(__a ) UpperCamelCase : Optional[Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase : Optional[int] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase : Optional[Any] = "single_label_classification" else: UpperCamelCase : Tuple = "multi_label_classification" if self.config.problem_type == "regression": UpperCamelCase : Optional[int] = MSELoss() if self.num_labels == 1: UpperCamelCase : int = loss_fct(logits.squeeze(), labels.squeeze() ) else: UpperCamelCase : Optional[Any] = loss_fct(__a, __a ) elif self.config.problem_type == "single_label_classification": UpperCamelCase : List[str] = CrossEntropyLoss() UpperCamelCase : Any = loss_fct(logits.view(-1, self.num_labels ), labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase : Any = BCEWithLogitsLoss() UpperCamelCase : str = loss_fct(__a, __a ) if not return_dict: UpperCamelCase : Dict = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__a, logits=__a, hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , a__ , ) class lowerCAmelCase_ ( a__ , a__ ): def __init__( self, SCREAMING_SNAKE_CASE_ ) -> int: super().__init__(__a ) super()._init_backbone(__a ) UpperCamelCase : Dict = [config.embedding_size] + config.hidden_sizes UpperCamelCase : List[Any] = ResNetEmbeddings(__a ) UpperCamelCase : Union[str, Any] = ResNetEncoder(__a ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @replace_return_docstrings(output_type=__a, config_class=_CONFIG_FOR_DOC ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None ) -> str: UpperCamelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase : Union[str, Any] = self.embedder(__a ) UpperCamelCase : Union[str, Any] = self.encoder(__a, output_hidden_states=__a, return_dict=__a ) UpperCamelCase : Tuple = outputs.hidden_states UpperCamelCase : Dict = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: UpperCamelCase : str = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__a, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=__a, )
119
from PIL import Image def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = image.size _lowerCAmelCase : Any = 0 _lowerCAmelCase : Tuple = image.load() for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = pixels[j, i] mean += pixel mean //= width * height for j in range(_lowerCamelCase ): for i in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _snake_case = mean_threshold(Image.open("path_to_image").convert("L")) image.save("output_image_path")
36
0
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge a_ : List[str] = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] a_ : List[str] = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , bootstrap_aggregation=_UpperCAmelCase , rouge_keys=['rouge2', 'rougeL']) assert isinstance(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , bootstrap_aggregation=_UpperCAmelCase , rouge_keys=['rouge2']) assert ( pd.DataFrame(no_aggregation['rouge2']).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['rouge2']).fmeasure.mean() ) def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = 'rougeLsum' SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=[k])[k] SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=[k])[k] assert score > score_no_sep def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = ['rouge1', 'rouge2', 'rougeL'] SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=_UpperCAmelCase) SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=_UpperCAmelCase) assert score_sep == score_no_sep def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = [ 'Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.', 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .', ] SCREAMING_SNAKE_CASE = [ 'Margot Frank, died in 1945, a month earlier than previously thought.', 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of' ' the final seconds on board Flight 9525.', ] assert calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase) == calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase) def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = [ '" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ' ] SCREAMING_SNAKE_CASE = [ ' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .' ] SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , rouge_keys=['rougeLsum'] , newline_sep=_UpperCAmelCase)['rougeLsum'] SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , rouge_keys=['rougeLsum'])['rougeLsum'] assert new_score > prev_score def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = Path('examples/seq2seq/test_data/wmt_en_ro') SCREAMING_SNAKE_CASE = calculate_rouge_path(data_dir.joinpath('test.source') , data_dir.joinpath('test.target')) assert isinstance(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = calculate_rouge_path( data_dir.joinpath('test.source') , data_dir.joinpath('test.target') , bootstrap_aggregation=_UpperCAmelCase) assert isinstance(_UpperCAmelCase , _UpperCAmelCase)
351
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = 'laion/clap-htsat-unfused' SCREAMING_SNAKE_CASE = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self , **a) -> Optional[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **a) def SCREAMING_SNAKE_CASE__ ( self , **a) -> Union[str, Any]: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **a) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , a) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor , a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') SCREAMING_SNAKE_CASE = self.get_feature_extractor(do_normalize=a , padding_value=1.0) SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=a , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , a) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor , a) def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a) SCREAMING_SNAKE_CASE = floats_list((3, 1000)) SCREAMING_SNAKE_CASE = feature_extractor(a , return_tensors='np') SCREAMING_SNAKE_CASE = processor(audios=a , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a) SCREAMING_SNAKE_CASE = 'This is a test string' SCREAMING_SNAKE_CASE = processor(text=a) SCREAMING_SNAKE_CASE = tokenizer(a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(a) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(a) self.assertListEqual(a , a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
327
0
def lowerCAmelCase_ ( A_ ,A_ = " "): UpperCamelCase__: Tuple = [] UpperCamelCase__: Dict = 0 for index, char in enumerate(A_): if char == separator: split_words.append(string[last_index:index]) UpperCamelCase__: Tuple = index + 1 elif index + 1 == len(A_): split_words.append(string[last_index : index + 1]) return split_words if __name__ == "__main__": from doctest import testmod testmod()
149
class _a : """simple docstring""" def __init__( self: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Tuple=None , __lowerCamelCase: Optional[Any]=None ): '''simple docstring''' UpperCamelCase__: Any = data UpperCamelCase__: Tuple = previous UpperCamelCase__: Any = next_node def __str__( self: str ): '''simple docstring''' return F"{self.data}" def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' return self.data def UpperCAmelCase_ ( self: str ): '''simple docstring''' return self.next def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' return self.previous class _a : """simple docstring""" def __init__( self: List[str] , __lowerCamelCase: str ): '''simple docstring''' UpperCamelCase__: Optional[Any] = head def __iter__( self: Optional[int] ): '''simple docstring''' return self def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' if not self.current: raise StopIteration else: UpperCamelCase__: Tuple = self.current.get_data() UpperCamelCase__: str = self.current.get_next() return value class _a : """simple docstring""" def __init__( self: List[Any] ): '''simple docstring''' UpperCamelCase__: List[str] = None # First node in list UpperCamelCase__: str = None # Last node in list def __str__( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Dict = self.head UpperCamelCase__: int = [] while current is not None: nodes.append(current.get_data() ) UpperCamelCase__: Optional[Any] = current.get_next() return " ".join(str(__lowerCamelCase ) for node in nodes ) def __contains__( self: List[str] , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: Any = self.head while current: if current.get_data() == value: return True UpperCamelCase__: int = current.get_next() return False def __iter__( self: List[Any] ): '''simple docstring''' return LinkedListIterator(self.head ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' if self.head: return self.head.get_data() return None def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' if self.tail: return self.tail.get_data() return None def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: Node ): '''simple docstring''' if self.head is None: UpperCamelCase__: List[str] = node UpperCamelCase__: List[str] = node else: self.insert_before_node(self.head , __lowerCamelCase ) def UpperCAmelCase_ ( self: Any , __lowerCamelCase: Node ): '''simple docstring''' if self.head is None: self.set_head(__lowerCamelCase ) else: self.insert_after_node(self.tail , __lowerCamelCase ) def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: Optional[int] = Node(__lowerCamelCase ) if self.head is None: self.set_head(__lowerCamelCase ) else: self.set_tail(__lowerCamelCase ) def UpperCAmelCase_ ( self: Tuple , __lowerCamelCase: Node , __lowerCamelCase: Node ): '''simple docstring''' UpperCamelCase__: Tuple = node UpperCamelCase__: int = node.previous if node.get_previous() is None: UpperCamelCase__: List[str] = node_to_insert else: UpperCamelCase__: Union[str, Any] = node_to_insert UpperCamelCase__: Dict = node_to_insert def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: Node , __lowerCamelCase: Node ): '''simple docstring''' UpperCamelCase__: List[Any] = node UpperCamelCase__: Dict = node.next if node.get_next() is None: UpperCamelCase__: Optional[int] = node_to_insert else: UpperCamelCase__: Optional[int] = node_to_insert UpperCamelCase__: Any = node_to_insert def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: Optional[int] = 1 UpperCamelCase__: Dict = Node(__lowerCamelCase ) UpperCamelCase__: Dict = self.head while node: if current_position == position: self.insert_before_node(__lowerCamelCase , __lowerCamelCase ) return current_position += 1 UpperCamelCase__: Dict = node.next self.insert_after_node(self.tail , __lowerCamelCase ) def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: Any = self.head while node: if node.get_data() == item: return node UpperCamelCase__: str = node.get_next() raise Exception("Node not found" ) def UpperCAmelCase_ ( self: Union[str, Any] , __lowerCamelCase: Any ): '''simple docstring''' if (node := self.get_node(__lowerCamelCase )) is not None: if node == self.head: UpperCamelCase__: List[Any] = self.head.get_next() if node == self.tail: UpperCamelCase__: Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(__lowerCamelCase ) @staticmethod def UpperCAmelCase_ ( __lowerCamelCase: Node ): '''simple docstring''' if node.get_next(): UpperCamelCase__: List[str] = node.previous if node.get_previous(): UpperCamelCase__: Union[str, Any] = node.next UpperCamelCase__: Union[str, Any] = None UpperCamelCase__: int = None def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' return self.head is None def lowerCAmelCase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
149
1
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=1E-12 ) -> List[str]: '''simple docstring''' UpperCamelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase_ , axis=1 ) , a_min=UpperCamelCase_ ) ).T UpperCamelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase_ , axis=1 ) , a_min=UpperCamelCase_ ) ).T return jnp.matmul(UpperCamelCase_ , norm_emb_a.T ) class SCREAMING_SNAKE_CASE_ ( nn.Module ): __lowerCAmelCase = 42 __lowerCAmelCase = jnp.floataa def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = FlaxCLIPVisionModule(self.config.vision_config ) UpperCamelCase = nn.Dense(self.config.projection_dim , use_bias=a__ , dtype=self.dtype ) UpperCamelCase = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) UpperCamelCase = self.param( """special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCamelCase = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,) ) UpperCamelCase = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,) ) def __call__( self : Any , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = self.vision_model(a__ )[1] UpperCamelCase = self.visual_projection(a__ ) UpperCamelCase = jax_cosine_distance(a__ , self.special_care_embeds ) UpperCamelCase = jax_cosine_distance(a__ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCamelCase = 0.0 UpperCamelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCamelCase = jnp.round(a__ , 3 ) UpperCamelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=a__ ) # Use a lower threshold if an image has any special care concept UpperCamelCase = is_special_care * 0.0_1 UpperCamelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCamelCase = jnp.round(a__ , 3 ) UpperCamelCase = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class SCREAMING_SNAKE_CASE_ ( __a ): __lowerCAmelCase = CLIPConfig __lowerCAmelCase = """clip_input""" __lowerCAmelCase = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Optional[int] , lowerCamelCase_ : CLIPConfig , lowerCamelCase_ : Optional[Tuple] = None , lowerCamelCase_ : int = 0 , lowerCamelCase_ : jnp.dtype = jnp.floataa , lowerCamelCase_ : bool = True , **lowerCamelCase_ : Optional[Any] , ): """simple docstring""" if input_shape is None: UpperCamelCase = (1, 224, 224, 3) UpperCamelCase = self.module_class(config=a__ , dtype=a__ , **a__ ) super().__init__(a__ , a__ , input_shape=a__ , seed=a__ , dtype=a__ , _do_init=_do_init ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : jax.random.KeyArray , lowerCamelCase_ : Tuple , lowerCamelCase_ : FrozenDict = None ): """simple docstring""" UpperCamelCase = jax.random.normal(a__ , a__ ) UpperCamelCase , UpperCamelCase = jax.random.split(a__ ) UpperCamelCase = {"""params""": params_rng, """dropout""": dropout_rng} UpperCamelCase = self.module.init(a__ , a__ )["""params"""] return random_params def __call__( self : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : dict = None , ): """simple docstring""" UpperCamelCase = jnp.transpose(a__ , (0, 2, 3, 1) ) return self.module.apply( {"""params""": params or self.params} , jnp.array(a__ , dtype=jnp.floataa ) , rngs={} , )
360
def lowercase( UpperCamelCase_ = 1000000 ) -> int: '''simple docstring''' UpperCamelCase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , UpperCamelCase_ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
165
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCAmelCase_ = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCAmelCase_ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowerCamelCase_ ( _UpperCamelCase ) -> Dict: """simple docstring""" if "://" in dataset_path: snake_case_ : Dict = dataset_path.split('''://''' )[1] return dataset_path def lowerCamelCase_ ( _UpperCamelCase ) -> Tuple: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" snake_case_ : Dict = not is_remote_filesystem(lowercase__ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase__ ) , fs._strip_protocol(lowercase__ ) ) else: fs.mv(lowercase__ , lowercase__ , recursive=lowercase__ ) def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: snake_case_ : Any = None snake_case_ : str = None snake_case_ : Optional[int] = threading.Lock()
279
'''simple docstring''' def __UpperCamelCase ( lowercase__ : Union[str, Any]=2_81_23 ): '''simple docstring''' __lowercase =[1] * (limit + 1) for i in range(2, int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1, limit // i + 1 ): sum_divs[k * i] += k + i __lowercase =set() __lowercase =0 for n in range(1, limit + 1 ): if sum_divs[n] > n: abundants.add(lowercase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
141
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def a_ ( *lowerCAmelCase_ : Union[str, Any] ): if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = list(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): __lowerCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def a_ ( lowerCAmelCase_ : Exception ): __lowerCAmelCase = [ 'CUDA out of memory.', # CUDA OOM 'cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.', # CUDNN SNAFU 'DefaultCPUAllocator: can\'t allocate memory', # CPU OOM ] if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def a_ ( lowerCAmelCase_ : callable = None, lowerCAmelCase_ : int = 128 ): if function is None: return functools.partial(lowerCAmelCase_, starting_batch_size=lowerCAmelCase_ ) __lowerCAmelCase = starting_batch_size def decorator(*lowerCAmelCase_ : Dict, **lowerCAmelCase_ : Dict ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __lowerCAmelCase = list(inspect.signature(lowerCAmelCase_ ).parameters.keys() ) # Guard against user error if len(lowerCAmelCase_ ) < (len(lowerCAmelCase_ ) + 1): __lowerCAmelCase = ', '.join([F"""{arg}={value}""" for arg, value in zip(params[1:], args[1:] )] ) raise TypeError( F"""Batch size was passed into `{function.__name__}` as the first argument when called.""" F"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError('No executable batch size found, reached zero.' ) try: return function(lowerCAmelCase_, *lowerCAmelCase_, **lowerCAmelCase_ ) except Exception as e: if should_reduce_batch_size(lowerCAmelCase_ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
351
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase ( self : Union[str, Any] ) -> Tuple: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = ort.SessionOptions() __lowerCAmelCase = False return options def lowercase ( self : Tuple ) -> List[Any]: __lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) __lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) __lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default __lowerCAmelCase = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = 'A red cat sitting on a park bench' __lowerCAmelCase = np.random.RandomState(0 ) __lowerCAmelCase = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_5 , generator=lowerCAmelCase_ , output_type='np' , ) __lowerCAmelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-2
207
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = 'https://openaipublic.azureedge.net/jukebox/models/' UpperCamelCase__ = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: UpperCAmelCase__ = key.replace(".model.1.bias", ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: UpperCAmelCase__ = key.replace(".model.1.weight", ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: UpperCAmelCase__ = key.replace(".model.3.bias", ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: UpperCAmelCase__ = key.replace(".model.3.weight", ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: UpperCAmelCase__ = key.replace("conditioner_blocks.0", "conditioner_blocks" ) if "prime_prior" in key: UpperCAmelCase__ = key.replace("prime_prior", "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCAmelCase__ = key.replace(".emb.", "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k", ".codebook" ) if "y_emb." in key: return key.replace("y_emb.", "metadata_embedding." ) if "x_emb.emb." in key: UpperCAmelCase__ = key.replace("0.x_emb.emb", "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln", "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln", ".layer_norm" ) if "_ln" in key: return key.replace("_ln", "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj", "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out", "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out", "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb", "embed_tokens" ) return key def lowerCAmelCase_ ( __A, __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = {} import re UpperCAmelCase__ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) UpperCAmelCase__ = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) UpperCAmelCase__ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) UpperCAmelCase__ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) UpperCAmelCase__ = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) UpperCAmelCase__ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) UpperCAmelCase__ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) UpperCAmelCase__ = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) UpperCAmelCase__ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__A ): UpperCAmelCase__ = re_encoder_block_conv_in.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) UpperCAmelCase__ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" UpperCAmelCase__ = re_encoder_block_conv_in.sub(__A, __A ) elif re_encoder_block_resnet.fullmatch(__A ): UpperCAmelCase__ = re_encoder_block_resnet.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) UpperCAmelCase__ = {"1": 1, "3": 2}[groups[-2]] UpperCAmelCase__ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" UpperCAmelCase__ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCAmelCase__ = prefix + resnet_block UpperCAmelCase__ = re_encoder_block_resnet.sub(__A, __A ) elif re_encoder_block_proj_out.fullmatch(__A ): UpperCAmelCase__ = re_encoder_block_proj_out.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" UpperCAmelCase__ = re_encoder_block_proj_out.sub(__A, __A ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__A ): UpperCAmelCase__ = re_decoder_block_conv_out.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCAmelCase__ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" UpperCAmelCase__ = re_decoder_block_conv_out.sub(__A, __A ) elif re_decoder_block_resnet.fullmatch(__A ): UpperCAmelCase__ = re_decoder_block_resnet.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCAmelCase__ = {"1": 1, "3": 2}[groups[-2]] UpperCAmelCase__ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" UpperCAmelCase__ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCAmelCase__ = prefix + resnet_block UpperCAmelCase__ = re_decoder_block_resnet.sub(__A, __A ) elif re_decoder_block_proj_in.fullmatch(__A ): UpperCAmelCase__ = re_decoder_block_proj_in.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" UpperCAmelCase__ = re_decoder_block_proj_in.sub(__A, __A ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__A ): UpperCAmelCase__ = re_prior_cond_conv_out.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCAmelCase__ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" UpperCAmelCase__ = re_prior_cond_conv_out.sub(__A, __A ) elif re_prior_cond_resnet.fullmatch(__A ): UpperCAmelCase__ = re_prior_cond_resnet.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCAmelCase__ = {"1": 1, "3": 2}[groups[-2]] UpperCAmelCase__ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" UpperCAmelCase__ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCAmelCase__ = prefix + resnet_block UpperCAmelCase__ = re_prior_cond_resnet.sub(__A, __A ) elif re_prior_cond_proj_in.fullmatch(__A ): UpperCAmelCase__ = re_prior_cond_proj_in.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" UpperCAmelCase__ = re_prior_cond_proj_in.sub(__A, __A ) # keep original key else: UpperCAmelCase__ = original_key UpperCAmelCase__ = replace_key(__A ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: UpperCAmelCase__ = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) UpperCAmelCase__ = original_key UpperCAmelCase__ = original_key UpperCAmelCase__ = value return new_dict @torch.no_grad() def lowerCAmelCase_ ( __A=None, __A=None ) -> Optional[Any]: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): UpperCAmelCase__ = requests.get(f"""{PREFIX}{file}""", allow_redirects=__A ) os.makedirs(f"""{pytorch_dump_folder_path}/""", exist_ok=__A ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""", "wb" ).write(r.content ) UpperCAmelCase__ = MODEL_MAPPING[model_name.split("/" )[-1]] UpperCAmelCase__ = JukeboxConfig.from_pretrained(__A ) UpperCAmelCase__ = JukeboxModel(__A ) UpperCAmelCase__ = [] UpperCAmelCase__ = {} for i, dict_name in enumerate(__A ): UpperCAmelCase__ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["model"] UpperCAmelCase__ = {} for k in old_dic.keys(): if k.endswith(".b" ): UpperCAmelCase__ = old_dic[k] elif k.endswith(".w" ): UpperCAmelCase__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCAmelCase__ = old_dic[k] else: UpperCAmelCase__ = old_dic[k] UpperCAmelCase__ = "vqvae" if i == 0 else f"""priors.{3 - i}""" UpperCAmelCase__ = fix_jukebox_keys(__A, model.state_dict(), __A, __A ) weight_dict.append(__A ) UpperCAmelCase__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(__A ) for i in range(len(__A ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__A ).mkdir(exist_ok=__A ) with open(f"""{pytorch_dump_folder_path}/mapping.json""", "w" ) as txtfile: json.dump(__A, __A ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) return weight_dict if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) UpperCamelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
65
class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase = "" , UpperCAmelCase = False ): """simple docstring""" _UpperCAmelCase = {} # A node will be a leaf if the tree contains its word _UpperCAmelCase = is_leaf _UpperCAmelCase = prefix def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 0 for q, w in zip(self.prefix , UpperCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" for word in words: self.insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if self.prefix == word: _UpperCAmelCase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _UpperCAmelCase = RadixNode(prefix=UpperCAmelCase , is_leaf=UpperCAmelCase ) else: _UpperCAmelCase = self.nodes[word[0]] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _UpperCAmelCase = remaining_prefix _UpperCAmelCase = self.nodes[matching_string[0]] _UpperCAmelCase = RadixNode(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = aux_node if remaining_word == "": _UpperCAmelCase = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _UpperCAmelCase = list(self.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf self.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _UpperCAmelCase = False # If there is 1 edge, we merge it with its child else: _UpperCAmelCase = list(incoming_node.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes return True def UpperCamelCase ( self , UpperCAmelCase = 0 ): """simple docstring""" if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __A ( )-> bool: """simple docstring""" _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = RadixNode() root.insert_many(__lowerCAmelCase ) assert all(root.find(__lowerCAmelCase ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __A ( )-> None: """simple docstring""" assert test_trie() def __A ( )-> None: """simple docstring""" _UpperCAmelCase = RadixNode() _UpperCAmelCase = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(__lowerCAmelCase ) print('Words:' , __lowerCAmelCase ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
39
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __lowerCAmelCase : int =logging.get_logger(__name__) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
32
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = KandinskyInpaintPipeline snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ : Optional[int] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ : Tuple = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ : Dict = False @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return self.time_input_dim @property def A__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A__ ( self ): """simple docstring""" return 100 @property def A__ ( self ): """simple docstring""" lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(__lowerCAmelCase ) lowercase = text_encoder.eval() return text_encoder @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ): """simple docstring""" lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , ) lowercase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) lowercase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def A__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( __lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
32
1
from __future__ import annotations from collections.abc import Generator def SCREAMING_SNAKE_CASE_ ( ) -> Generator[int, None, None]: """simple docstring""" a_ : dict[int, int] = {} a_ : Tuple = 2 while True: a_ : Optional[int] = factor_map.pop(__A , __A ) if factor: a_ : Union[str, Any] = factor + prime while x in factor_map: x += factor a_ : List[Any] = factor else: a_ : Tuple = prime yield prime prime += 1 def SCREAMING_SNAKE_CASE_ ( __A : float = 1e1_0 ) -> int: """simple docstring""" a_ : List[str] = sieve() a_ : Any = 1 while True: a_ : List[Any] = next(__A ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__A ) n += 2 if __name__ == "__main__": print(solution())
32
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ : Any = {'UserAgent': UserAgent().random} def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] ) -> dict: """simple docstring""" a_ : Tuple = script.contents[0] a_ : int = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]: a_ : Tuple = F"""https://www.instagram.com/{username}/""" a_ : Optional[Any] = self.get_json() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> dict: a_ : Any = requests.get(self.url , headers=SCREAMING_SNAKE_CASE__ ).text a_ : Dict = BeautifulSoup(SCREAMING_SNAKE_CASE__ , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Union[str, Any] ) -> str: return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self : Optional[int] ) -> str: return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: return self.user_data["username"] @property def SCREAMING_SNAKE_CASE ( self : str ) -> str: return self.user_data["full_name"] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.user_data["biography"] @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["business_email"] @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.user_data["external_url"] @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.user_data["edge_followed_by"]["count"] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self.user_data["edge_follow"]["count"] @property def SCREAMING_SNAKE_CASE ( self : str ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: return self.user_data["profile_pic_url_hd"] @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> bool: return self.user_data["is_verified"] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> bool: return self.user_data["is_private"] def SCREAMING_SNAKE_CASE_ ( __A : str = "github" ) -> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions a_ : int = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Union[str, Any] = InstagramUser('github') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
32
1
'''simple docstring''' class UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : int): """simple docstring""" a : Dict = n a : Dict = [None] * self.n a : int = 0 # index of the first element a : Optional[int] = 0 a : Optional[Any] = 0 def __len__( self : int): """simple docstring""" return self.size def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return self.size == 0 def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[str]): """simple docstring""" if self.size >= self.n: raise Exception('QUEUE IS FULL') a : int = data a : str = (self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" if self.size == 0: raise Exception('UNDERFLOW') a : Union[str, Any] = self.array[self.front] a : Optional[Any] = None a : List[str] = (self.front + 1) % self.n self.size -= 1 return temp
345
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : Dict = logging.get_logger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Any = ["pixel_values"] def __init__( self : str , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Dict[str, int]] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : str = size if size is not None else {'shortest_edge': 2_5_6} a : Dict = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a : int = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : Any = do_resize a : List[str] = size a : Union[str, Any] = resample a : int = do_center_crop a : Optional[int] = crop_size a : Tuple = do_rescale a : int = rescale_factor a : Optional[Any] = do_normalize a : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : Optional[int] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a : Union[str, Any] = get_resize_output_image_size(UpperCAmelCase_ , size=size['shortest_edge'] , default_to_square=UpperCAmelCase_) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : List[str] = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size['height'], size['width']) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any]): """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase_ : List[str] , ): """simple docstring""" a : int = do_resize if do_resize is not None else self.do_resize a : int = size if size is not None else self.size a : Union[str, Any] = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) a : str = resample if resample is not None else self.resample a : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop a : Union[str, Any] = crop_size if crop_size is not None else self.crop_size a : Dict = get_size_dict(UpperCAmelCase_ , param_name='crop_size') a : str = do_rescale if do_rescale is not None else self.do_rescale a : int = rescale_factor if rescale_factor is not None else self.rescale_factor a : str = do_normalize if do_normalize is not None else self.do_normalize a : List[str] = image_mean if image_mean is not None else self.image_mean a : Optional[int] = image_std if image_std is not None else self.image_std a : Dict = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a : List[Any] = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: a : Dict = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_) for image in images] if do_center_crop: a : Any = [self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_) for image in images] if do_rescale: a : Optional[int] = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_) for image in images] if do_normalize: a : Dict = [self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_) for image in images] a : List[Any] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] a : List[str] = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Tuple] = None): """simple docstring""" a : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_) != len(UpperCAmelCase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(UpperCAmelCase_): a : Optional[Any] = target_sizes.numpy() a : List[str] = [] for idx in range(len(UpperCAmelCase_)): a : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=UpperCAmelCase_) a : Union[str, Any] = resized_logits[0].argmax(dim=0) semantic_segmentation.append(UpperCAmelCase_) else: a : Optional[int] = logits.argmax(dim=1) a : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
345
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__: List[Any] = logging.get_logger(__name__) A__: Union[str, Any] = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : int = "detr" __UpperCamelCase : Any = ["past_key_values"] __UpperCamelCase : Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :str=None , SCREAMING_SNAKE_CASE :str=3 , SCREAMING_SNAKE_CASE :Optional[int]=1_0_0 , SCREAMING_SNAKE_CASE :Dict=6 , SCREAMING_SNAKE_CASE :Any=2_0_4_8 , SCREAMING_SNAKE_CASE :Optional[Any]=8 , SCREAMING_SNAKE_CASE :Dict=6 , SCREAMING_SNAKE_CASE :Dict=2_0_4_8 , SCREAMING_SNAKE_CASE :Optional[Any]=8 , SCREAMING_SNAKE_CASE :Optional[Any]=0.0 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :List[Any]="relu" , SCREAMING_SNAKE_CASE :Optional[int]=2_5_6 , SCREAMING_SNAKE_CASE :Dict=0.1 , SCREAMING_SNAKE_CASE :Tuple=0.0 , SCREAMING_SNAKE_CASE :str=0.0 , SCREAMING_SNAKE_CASE :List[str]=0.02 , SCREAMING_SNAKE_CASE :Tuple=1.0 , SCREAMING_SNAKE_CASE :Optional[int]=False , SCREAMING_SNAKE_CASE :Dict="sine" , SCREAMING_SNAKE_CASE :str="resnet50" , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :List[Any]=False , SCREAMING_SNAKE_CASE :Any=1 , SCREAMING_SNAKE_CASE :Union[str, Any]=5 , SCREAMING_SNAKE_CASE :str=2 , SCREAMING_SNAKE_CASE :Optional[Any]=1 , SCREAMING_SNAKE_CASE :Any=1 , SCREAMING_SNAKE_CASE :Union[str, Any]=5 , SCREAMING_SNAKE_CASE :int=2 , SCREAMING_SNAKE_CASE :Optional[Any]=0.1 , **SCREAMING_SNAKE_CASE :str , ) -> Dict: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _a : int =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): _a : str =backbone_config.get("""model_type""" ) _a : List[Any] =CONFIG_MAPPING[backbone_model_type] _a : List[str] =config_class.from_dict(_lowerCAmelCase ) # set timm attributes to None _a , _a , _a : Tuple =None, None, None _a : Optional[Any] =use_timm_backbone _a : int =backbone_config _a : List[Any] =num_channels _a : Union[str, Any] =num_queries _a : Dict =d_model _a : List[Any] =encoder_ffn_dim _a : Dict =encoder_layers _a : Union[str, Any] =encoder_attention_heads _a : List[str] =decoder_ffn_dim _a : str =decoder_layers _a : Tuple =decoder_attention_heads _a : Dict =dropout _a : List[Any] =attention_dropout _a : str =activation_dropout _a : int =activation_function _a : Optional[int] =init_std _a : Optional[Any] =init_xavier_std _a : str =encoder_layerdrop _a : List[Any] =decoder_layerdrop _a : List[str] =encoder_layers _a : Dict =auxiliary_loss _a : Dict =position_embedding_type _a : Tuple =backbone _a : Union[str, Any] =use_pretrained_backbone _a : List[str] =dilation # Hungarian matcher _a : List[str] =class_cost _a : List[str] =bbox_cost _a : Optional[Any] =giou_cost # Loss coefficients _a : List[Any] =mask_loss_coefficient _a : int =dice_loss_coefficient _a : int =bbox_loss_coefficient _a : Tuple =giou_loss_coefficient _a : Union[str, Any] =eos_coefficient super().__init__(is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase ) @property def __UpperCAmelCase ( self :Tuple ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def __UpperCAmelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' return self.d_model @classmethod def __UpperCAmelCase ( cls :Tuple , SCREAMING_SNAKE_CASE :List[str] , **SCREAMING_SNAKE_CASE :int ) -> str: '''simple docstring''' return cls(backbone_config=_lowerCAmelCase , **_lowerCAmelCase ) def __UpperCAmelCase ( self :Any ) -> Dict[str, any]: '''simple docstring''' _a : Optional[Any] =copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _a : Any =self.backbone_config.to_dict() _a : Dict =self.__class__.model_type return output class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Optional[Any] = version.parse("1.11" ) @property def __UpperCAmelCase ( self :str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __UpperCAmelCase ( self :Optional[int] ) -> float: '''simple docstring''' return 1e-5 @property def __UpperCAmelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' return 1_2
276
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = parent _lowerCAmelCase = config_class _lowerCAmelCase = has_text_modality _lowerCAmelCase = kwargs _lowerCAmelCase = common_properties def _snake_case ( self ) -> int: _lowerCAmelCase = self.config_class(**self.inputs_dict ) _lowerCAmelCase = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) , msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCAmelCase ): try: setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual( getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , msg=f'''`{name} value {idx} expected, but was {getattr(_lowerCAmelCase , _lowerCAmelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCAmelCase ): try: _lowerCAmelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , msg=f'''`{name} value {idx} expected, but was {getattr(_lowerCAmelCase , _lowerCAmelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.config_class(**self.inputs_dict ) _lowerCAmelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = os.path.join(_lowerCAmelCase , "config.json" ) config_first.to_json_file(_lowerCAmelCase ) _lowerCAmelCase = self.config_class.from_json_file(_lowerCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _snake_case ( self ) -> str: _lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = self.config_class.from_pretrained(_lowerCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.config_class(**self.inputs_dict ) _lowerCAmelCase = "test" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) config_first.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = self.config_class.from_pretrained(_lowerCAmelCase , subfolder=_lowerCAmelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _lowerCAmelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _snake_case ( self ) -> List[Any]: if self.config_class.is_composition: return _lowerCAmelCase = self.config_class() self.parent.assertIsNotNone(_lowerCAmelCase ) def _snake_case ( self ) -> str: _lowerCAmelCase = copy.deepcopy(_lowerCAmelCase ) _lowerCAmelCase = self.config_class(**_lowerCAmelCase ) _lowerCAmelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) ) elif getattr(_lowerCAmelCase , _lowerCAmelCase ) != value: wrong_values.append((key, getattr(_lowerCAmelCase , _lowerCAmelCase ), value) ) if len(_lowerCAmelCase ) > 0: _lowerCAmelCase = "\n".join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def _snake_case ( self ) -> List[str]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
158
0
class snake_case__: """simple docstring""" def __init__( self : Optional[Any] ): lowercase__ : Tuple = "" lowercase__ : int = "" lowercase__ : int = [] def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowercase__ : str = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: lowercase__ : Tuple = self.__min_dist_top_down_dp(SCREAMING_SNAKE_CASE , n - 1 ) lowercase__ : Any = self.__min_dist_top_down_dp(m - 1 , SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) lowercase__ : List[str] = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return self.dp[m][n] def snake_case ( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): lowercase__ : Optional[int] = worda lowercase__ : List[Any] = worda lowercase__ : List[Any] = [[-1 for _ in range(len(SCREAMING_SNAKE_CASE ) )] for _ in range(len(SCREAMING_SNAKE_CASE ) )] return self.__min_dist_top_down_dp(len(SCREAMING_SNAKE_CASE ) - 1 , len(SCREAMING_SNAKE_CASE ) - 1 ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): lowercase__ : int = worda lowercase__ : Tuple = worda lowercase__ : Dict = len(SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowercase__ : List[Any] = j elif j == 0: # second string is empty lowercase__ : List[Any] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowercase__ : Any = self.dp[i - 1][j - 1] else: lowercase__ : str = self.dp[i][j - 1] lowercase__ : str = self.dp[i - 1][j] lowercase__ : Tuple = self.dp[i - 1][j - 1] lowercase__ : Tuple = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return self.dp[m][n] if __name__ == "__main__": lowerCAmelCase__ = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() lowerCAmelCase__ = input('''Enter the first string: ''').strip() lowerCAmelCase__ = input('''Enter the second string: ''').strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
121
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" lowercase__ : List[str] = [] for old_item in old_list: lowercase__ : Optional[Any] = old_item.replace("in_layers.0" , "norm1" ) lowercase__ : Union[str, Any] = new_item.replace("in_layers.2" , "conv1" ) lowercase__ : Optional[Any] = new_item.replace("out_layers.0" , "norm2" ) lowercase__ : Union[str, Any] = new_item.replace("out_layers.3" , "conv2" ) lowercase__ : Dict = new_item.replace("emb_layers.1" , "time_emb_proj" ) lowercase__ : int = new_item.replace("skip_connection" , "conv_shortcut" ) lowercase__ : Tuple = shave_segments(lowerCamelCase__ , n_shave_prefix_segments=lowerCamelCase__ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" lowercase__ : str = [] for old_item in old_list: lowercase__ : Optional[int] = old_item lowercase__ : Dict = new_item.replace("norm.weight" , "group_norm.weight" ) lowercase__ : Optional[int] = new_item.replace("norm.bias" , "group_norm.bias" ) lowercase__ : Tuple = new_item.replace("proj_out.weight" , "proj_attn.weight" ) lowercase__ : List[Any] = new_item.replace("proj_out.bias" , "proj_attn.bias" ) lowercase__ : Optional[Any] = shave_segments(lowerCamelCase__ , n_shave_prefix_segments=lowerCamelCase__ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowercase__ : List[str] = old_checkpoint[path] lowercase__ : str = old_tensor.shape[0] // 3 lowercase__ : List[str] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowercase__ : Union[str, Any] = old_tensor.shape[0] // config["num_head_channels"] // 3 lowercase__ : Union[str, Any] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowercase__ , lowercase__ , lowercase__ : Optional[Any] = old_tensor.split(channels // num_heads , dim=1 ) lowercase__ : Dict = query.reshape(lowerCamelCase__ ) lowercase__ : Dict = key.reshape(lowerCamelCase__ ) lowercase__ : int = value.reshape(lowerCamelCase__ ) for path in paths: lowercase__ : Union[str, Any] = path["new"] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowercase__ : List[Any] = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) lowercase__ : Optional[Any] = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) lowercase__ : List[str] = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: lowercase__ : Tuple = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowercase__ : List[Any] = old_checkpoint[path["old"]][:, :, 0] else: lowercase__ : List[Any] = old_checkpoint[path["old"]] def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = {} lowercase__ : Optional[Any] = checkpoint["time_embed.0.weight"] lowercase__ : Tuple = checkpoint["time_embed.0.bias"] lowercase__ : Dict = checkpoint["time_embed.2.weight"] lowercase__ : Optional[Any] = checkpoint["time_embed.2.bias"] lowercase__ : Optional[int] = checkpoint["input_blocks.0.0.weight"] lowercase__ : List[Any] = checkpoint["input_blocks.0.0.bias"] lowercase__ : Tuple = checkpoint["out.0.weight"] lowercase__ : List[Any] = checkpoint["out.0.bias"] lowercase__ : Tuple = checkpoint["out.2.weight"] lowercase__ : Optional[Any] = checkpoint["out.2.bias"] # Retrieves the keys for the input blocks only lowercase__ : Dict = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) lowercase__ : str = { layer_id: [key for key in checkpoint if F"""input_blocks.{layer_id}""" in key] for layer_id in range(lowerCamelCase__ ) } # Retrieves the keys for the middle blocks only lowercase__ : Tuple = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) lowercase__ : Union[str, Any] = { layer_id: [key for key in checkpoint if F"""middle_block.{layer_id}""" in key] for layer_id in range(lowerCamelCase__ ) } # Retrieves the keys for the output blocks only lowercase__ : Tuple = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) lowercase__ : Tuple = { layer_id: [key for key in checkpoint if F"""output_blocks.{layer_id}""" in key] for layer_id in range(lowerCamelCase__ ) } for i in range(1 , lowerCamelCase__ ): lowercase__ : Tuple = (i - 1) // (config["num_res_blocks"] + 1) lowercase__ : Optional[int] = (i - 1) % (config["num_res_blocks"] + 1) lowercase__ : List[Any] = [key for key in input_blocks[i] if F"""input_blocks.{i}.0""" in key] lowercase__ : Dict = [key for key in input_blocks[i] if F"""input_blocks.{i}.1""" in key] if F"""input_blocks.{i}.0.op.weight""" in checkpoint: lowercase__ : int = checkpoint[ F"""input_blocks.{i}.0.op.weight""" ] lowercase__ : List[str] = checkpoint[ F"""input_blocks.{i}.0.op.bias""" ] continue lowercase__ : Union[str, Any] = renew_resnet_paths(lowerCamelCase__ ) lowercase__ : Optional[int] = {"old": F"""input_blocks.{i}.0""", "new": F"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} lowercase__ : Optional[int] = {"old": "resnets.2.op", "new": "downsamplers.0.op"} assign_to_checkpoint( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , additional_replacements=[meta_path, resnet_op] , config=lowerCamelCase__ ) if len(lowerCamelCase__ ): lowercase__ : Tuple = renew_attention_paths(lowerCamelCase__ ) lowercase__ : str = { "old": F"""input_blocks.{i}.1""", "new": F"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } lowercase__ : List[str] = { F"""input_blocks.{i}.1.qkv.bias""": { "key": F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", "query": F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", "value": F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, F"""input_blocks.{i}.1.qkv.weight""": { "key": F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", "query": F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", "value": F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=lowerCamelCase__ , config=lowerCamelCase__ , ) lowercase__ : int = middle_blocks[0] lowercase__ : Dict = middle_blocks[1] lowercase__ : Dict = middle_blocks[2] lowercase__ : Any = renew_resnet_paths(lowerCamelCase__ ) assign_to_checkpoint(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , config=lowerCamelCase__ ) lowercase__ : List[Any] = renew_resnet_paths(lowerCamelCase__ ) assign_to_checkpoint(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , config=lowerCamelCase__ ) lowercase__ : Optional[int] = renew_attention_paths(lowerCamelCase__ ) lowercase__ : Optional[int] = { "middle_block.1.qkv.bias": { "key": "mid_block.attentions.0.key.bias", "query": "mid_block.attentions.0.query.bias", "value": "mid_block.attentions.0.value.bias", }, "middle_block.1.qkv.weight": { "key": "mid_block.attentions.0.key.weight", "query": "mid_block.attentions.0.query.weight", "value": "mid_block.attentions.0.value.weight", }, } assign_to_checkpoint( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , attention_paths_to_split=lowerCamelCase__ , config=lowerCamelCase__ ) for i in range(lowerCamelCase__ ): lowercase__ : List[Any] = i // (config["num_res_blocks"] + 1) lowercase__ : Optional[int] = i % (config["num_res_blocks"] + 1) lowercase__ : List[Any] = [shave_segments(lowerCamelCase__ , 2 ) for name in output_blocks[i]] lowercase__ : Optional[Any] = {} for layer in output_block_layers: lowercase__ , lowercase__ : str = layer.split("." )[0], shave_segments(lowerCamelCase__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(lowerCamelCase__ ) else: lowercase__ : Tuple = [layer_name] if len(lowerCamelCase__ ) > 1: lowercase__ : Dict = [key for key in output_blocks[i] if F"""output_blocks.{i}.0""" in key] lowercase__ : Dict = [key for key in output_blocks[i] if F"""output_blocks.{i}.1""" in key] lowercase__ : Optional[Any] = renew_resnet_paths(lowerCamelCase__ ) lowercase__ : Optional[Any] = renew_resnet_paths(lowerCamelCase__ ) lowercase__ : Tuple = {"old": F"""output_blocks.{i}.0""", "new": F"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , additional_replacements=[meta_path] , config=lowerCamelCase__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowercase__ : List[str] = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) lowercase__ : Tuple = checkpoint[ F"""output_blocks.{i}.{index}.conv.weight""" ] lowercase__ : Optional[Any] = checkpoint[ F"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(lowerCamelCase__ ) == 2: lowercase__ : int = [] if len(lowerCamelCase__ ): lowercase__ : Tuple = renew_attention_paths(lowerCamelCase__ ) lowercase__ : str = { "old": F"""output_blocks.{i}.1""", "new": F"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } lowercase__ : Union[str, Any] = { F"""output_blocks.{i}.1.qkv.bias""": { "key": F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", "query": F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", "value": F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, F"""output_blocks.{i}.1.qkv.weight""": { "key": F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", "query": F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", "value": F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=lowerCamelCase__ , ) else: lowercase__ : int = renew_resnet_paths(lowerCamelCase__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowercase__ : List[Any] = ".".join(["output_blocks", str(lowerCamelCase__ ), path["old"]] ) lowercase__ : Any = ".".join(["up_blocks", str(lowerCamelCase__ ), "resnets", str(lowerCamelCase__ ), path["new"]] ) lowercase__ : List[Any] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = torch.load(args.checkpoint_path) with open(args.config_file) as f: lowerCAmelCase__ = json.loads(f.read()) lowerCAmelCase__ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] lowerCAmelCase__ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: lowerCAmelCase__ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) lowerCAmelCase__ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) lowerCAmelCase__ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
121
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow def a__ ( self ) -> Any: _A : Dict = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=_a ).to(_a ) _A : Tuple = AutoTokenizer.from_pretrained("""google/mt5-small""" ) _A : List[Any] = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids _A : Optional[int] = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids _A : Dict = model(input_ids.to(_a ) , labels=labels.to(_a ) ).loss _A : Tuple = -(labels.shape[-1] * loss.item()) _A : Union[str, Any] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
26
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __a ( datasets.BeamBasedBuilder ): def __lowercase ( self : List[str] ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=SCREAMING_SNAKE_CASE , ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE ) class __a ( datasets.BeamBasedBuilder ): def __lowercase ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=SCREAMING_SNAKE_CASE , ) def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class __a ( A__ ): @require_beam def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : List[Any] = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCamelCase__ : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __lowercase ( self : Any ): '''simple docstring''' import apache_beam as beam UpperCamelCase__ : Any = beam.io.parquetio.WriteToParquet UpperCamelCase__ : Tuple = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : str = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCamelCase__ : Optional[Any] = partial(SCREAMING_SNAKE_CASE , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCamelCase__ : List[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , SCREAMING_SNAKE_CASE ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __lowercase ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : int = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : List[Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : Any = NestedBeamDataset(cache_dir=SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCamelCase__ : List[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
189
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _a ( ): '''simple docstring''' __UpperCAmelCase : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('''RGB''' ) return image def _a ( _lowercase : List[str] ): '''simple docstring''' __UpperCAmelCase : str = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def _a ( _lowercase : Dict , _lowercase : Any , _lowercase : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = dct.pop(_lowercase ) __UpperCAmelCase : Optional[int] = val def _a ( _lowercase : Optional[Any] , _lowercase : Dict ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __UpperCAmelCase : Optional[Any] = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) __UpperCAmelCase : Optional[Any] = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict __UpperCAmelCase : Optional[int] = torch.cat((q_bias, torch.zeros_like(_lowercase , requires_grad=_lowercase ), v_bias) ) __UpperCAmelCase : List[Any] = qkv_bias def _a ( _lowercase : Dict , _lowercase : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = 364 if '''coco''' in model_name else 224 __UpperCAmelCase : List[str] = BlipaVisionConfig(image_size=_lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __UpperCAmelCase : Dict = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=_lowercase ).to_dict() elif "opt-6.7b" in model_name: __UpperCAmelCase : int = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=_lowercase ).to_dict() elif "t5-xl" in model_name: __UpperCAmelCase : List[Any] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __UpperCAmelCase : Optional[int] = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() __UpperCAmelCase : Dict = BlipaConfig(vision_config=_lowercase , text_config=_lowercase ) return config, image_size @torch.no_grad() def _a ( _lowercase : Optional[Any] , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=False ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) __UpperCAmelCase : List[Any] = tokenizer('''\n''' , add_special_tokens=_lowercase ).input_ids[0] __UpperCAmelCase , __UpperCAmelCase : int = get_blipa_config(_lowercase , eos_token_id=_lowercase ) __UpperCAmelCase : Any = BlipaForConditionalGeneration(_lowercase ).eval() __UpperCAmelCase : List[str] = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } __UpperCAmelCase , __UpperCAmelCase : Optional[int] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) __UpperCAmelCase : Any = '''cuda''' if torch.cuda.is_available() else '''cpu''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = load_model_and_preprocess( name=_lowercase , model_type=_lowercase , is_eval=_lowercase , device=_lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys __UpperCAmelCase : Optional[int] = original_model.state_dict() __UpperCAmelCase : Union[str, Any] = create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) if key.startswith('''Qformer.bert''' ): __UpperCAmelCase : int = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: __UpperCAmelCase : Any = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: __UpperCAmelCase : List[str] = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: __UpperCAmelCase : str = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): __UpperCAmelCase : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): __UpperCAmelCase : int = key.replace('''t5''' , '''language''' ) __UpperCAmelCase : List[str] = val # read in qv biases read_in_q_v_bias(_lowercase , _lowercase ) __UpperCAmelCase , __UpperCAmelCase : str = hf_model.load_state_dict(_lowercase , strict=_lowercase ) assert len(_lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __UpperCAmelCase : Optional[int] = load_demo_image() __UpperCAmelCase : Any = vis_processors['''eval'''](_lowercase ).unsqueeze(0 ).to(_lowercase ) __UpperCAmelCase : List[str] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(_lowercase ) # create processor __UpperCAmelCase : Dict = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=_lowercase , image_std=_lowercase ) __UpperCAmelCase : List[Any] = BlipaProcessor(image_processor=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase : Union[str, Any] = processor(images=_lowercase , return_tensors='''pt''' ).pixel_values.to(_lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowercase , _lowercase ) original_model.to(_lowercase ) hf_model.to(_lowercase ) with torch.no_grad(): if "opt" in model_name: __UpperCAmelCase : Union[str, Any] = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits __UpperCAmelCase : Any = hf_model(_lowercase , _lowercase ).logits else: __UpperCAmelCase : Dict = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits __UpperCAmelCase : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __UpperCAmelCase : List[Any] = hf_model(_lowercase , _lowercase , labels=_lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowercase ) assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": __UpperCAmelCase : Dict = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowercase ) else: # cast to same type __UpperCAmelCase : Dict = logits.dtype assert torch.allclose(original_logits.to(_lowercase ) , _lowercase , atol=1E-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) __UpperCAmelCase : Any = '''''' __UpperCAmelCase : List[Any] = tokenizer(_lowercase , return_tensors='''pt''' ).input_ids.to(_lowercase ) __UpperCAmelCase : Dict = original_model.generate({'''image''': original_pixel_values} ) __UpperCAmelCase : Union[str, Any] = hf_model.generate( _lowercase , _lowercase , do_sample=_lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , _lowercase ) __UpperCAmelCase : Tuple = input_ids.shape[1] __UpperCAmelCase : Dict = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowercase ) __UpperCAmelCase : str = [text.strip() for text in output_text] print('''HF generation:''' , _lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowercase ) hf_model.save_pretrained(_lowercase ) if push_to_hub: processor.push_to_hub(F'nielsr/{model_name}' ) hf_model.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase :Dict = argparse.ArgumentParser() __UpperCAmelCase :str = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) __UpperCAmelCase :Union[str, Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
240
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase :List[Any] = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :List[Any] = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :List[Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :List[str] = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys __UpperCAmelCase :int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
240
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): _A , _A : Any = image.size _A , _A : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _A : List[str] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _A : Any = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_55.0 _A : Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 ) _A : Union[str, Any] = torch.from_numpy(UpperCamelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]: super().__init__() self.register_modules(vqvae=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase) @torch.no_grad() def __call__( self , __lowerCamelCase = None , __lowerCamelCase = 1 , __lowerCamelCase = 1_0_0 , __lowerCamelCase = 0.0 , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Tuple = 1 elif isinstance(__lowerCamelCase , torch.Tensor): _A : Union[str, Any] = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__lowerCamelCase)}") if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Union[str, Any] = preprocess(__lowerCamelCase) _A , _A : Union[str, Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _A : Optional[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) _A : str = next(self.unet.parameters()).dtype _A : Union[str, Any] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase) _A : List[Any] = image.to(device=self.device , dtype=__lowerCamelCase) # set timesteps and move to the correct device self.scheduler.set_timesteps(__lowerCamelCase , device=self.device) _A : Any = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _A : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A : str = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) _A : Optional[int] = {} if accepts_eta: _A : List[Any] = eta for t in self.progress_bar(__lowerCamelCase): # concat latents and low resolution image in the channel dimension. _A : List[Any] = torch.cat([latents, image] , dim=1) _A : str = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase) # predict the noise residual _A : Any = self.unet(__lowerCamelCase , __lowerCamelCase).sample # compute the previous noisy sample x_t -> x_t-1 _A : Optional[int] = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase).prev_sample # decode the image latents with the VQVAE _A : Union[str, Any] = self.vqvae.decode(__lowerCamelCase).sample _A : Dict = torch.clamp(__lowerCamelCase , -1.0 , 1.0) _A : Tuple = image / 2 + 0.5 _A : int = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _A : Optional[int] = self.numpy_to_pil(__lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase)
11
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class A ( __snake_case ): __magic_name__ = DistilBertTokenizer __magic_name__ = DistilBertTokenizerFast __magic_name__ = True @slow def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : List[Any] = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) A : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE ) A : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE ) A : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE ) A : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
3
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a__ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Any = argparse.ArgumentParser() parser.add_argument('''-f''' ) _a : Dict = parser.parse_args() return args.f def __UpperCAmelCase ( __a : Optional[int] ,__a : List[str]="eval" ) -> Any: """simple docstring""" _a : Any = os.path.join(__a ,F"""{split}_results.json""" ) if os.path.exists(__a ): with open(__a ,'''r''' ) as f: return json.load(__a ) raise ValueError(F"""can't find {path}""" ) a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> str: _a : Any = self.get_auto_remove_tmp_dir() _a : Optional[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_glue.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def __lowercase ( self ) -> Dict: _a : Tuple = self.get_auto_remove_tmp_dir() _a : Tuple = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_clm_flax.main() _a : List[str] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def __lowercase ( self ) -> Optional[int]: _a : str = self.get_auto_remove_tmp_dir() _a : Optional[int] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_a , '''argv''' , _a ): run_summarization_flax.main() _a : Optional[int] = get_results(_a , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def __lowercase ( self ) -> Tuple: _a : List[str] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_a , '''argv''' , _a ): run_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def __lowercase ( self ) -> Dict: _a : Optional[Any] = self.get_auto_remove_tmp_dir() _a : int = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_a , '''argv''' , _a ): run_ta_mlm_flax.main() _a : List[Any] = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def __lowercase ( self ) -> Optional[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _a : Any = 7 if get_gpu_count() > 1 else 2 _a : List[Any] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_a , '''argv''' , _a ): run_flax_ner.main() _a : Dict = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def __lowercase ( self ) -> Any: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : Union[str, Any] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_a , '''argv''' , _a ): run_qa.main() _a : Any = get_results(_a ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
15
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = '''▁''' _lowercase = {'''vocab_file''': '''spiece.model'''} _lowercase = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } _lowercase = { '''google/reformer-crime-and-punishment''': 52_42_88, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = VOCAB_FILES_NAMES _lowerCamelCase: List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple ,A_ : Optional[Any] ,A_ : Optional[Any]="</s>" ,A_ : Union[str, Any]="<unk>" ,A_ : Dict=[] ,A_ : Optional[Dict[str, Any]] = None ,**A_ : str ,) -> None: A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A_ ,unk_token=A_ ,additional_special_tokens=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict[str, int]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Tuple: A = self.__dict__.copy() A = None return state def __setstate__( self : int ,A_ : str ) -> str: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Optional[Any] ) -> Optional[Any]: return self.sp_model.piece_to_id(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int] ) -> Dict: if index < self.sp_model.get_piece_size(): A = self.sp_model.IdToPiece(A_ ) return token def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : int ) -> Dict: A = [] A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token A = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
74
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _lowercase = logging.get_logger(__name__) _lowercase = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Tuple = '''dpt''' def __init__( self : str ,A_ : Tuple=768 ,A_ : int=12 ,A_ : Optional[int]=12 ,A_ : Optional[int]=3072 ,A_ : List[str]="gelu" ,A_ : str=0.0 ,A_ : int=0.0 ,A_ : str=0.02 ,A_ : str=1e-12 ,A_ : str=384 ,A_ : Dict=16 ,A_ : Union[str, Any]=3 ,A_ : Dict=False ,A_ : Any=True ,A_ : Optional[int]=[2, 5, 8, 11] ,A_ : Optional[Any]="project" ,A_ : Tuple=[4, 2, 1, 0.5] ,A_ : int=[96, 192, 384, 768] ,A_ : int=256 ,A_ : str=-1 ,A_ : Optional[int]=False ,A_ : Optional[int]=True ,A_ : Union[str, Any]=0.4 ,A_ : Union[str, Any]=255 ,A_ : Union[str, Any]=0.1 ,A_ : List[str]=[1, 1024, 24, 24] ,A_ : List[str]=[0, 1] ,A_ : List[Any]=None ,**A_ : Tuple ,) -> Union[str, Any]: super().__init__(**A_ ) A = hidden_size A = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) A = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): logger.info('Initializing the config with a `BiT` backbone.' ) A = BitConfig(**A_ ) elif isinstance(A_ ,A_ ): A = backbone_config else: raise ValueError( F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) A = backbone_featmap_shape A = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: A = None A = None A = [] A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) A = readout_type A = reassemble_factors A = neck_hidden_sizes A = fusion_hidden_size A = head_in_index A = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) A = use_auxiliary_head A = auxiliary_loss_weight A = semantic_loss_ignore_index A = semantic_classifier_dropout def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: A = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: A = self.backbone_config.to_dict() A = self.__class__.model_type return output
74
1
'''simple docstring''' from collections import defaultdict def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: A_ = 1 A_ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def _UpperCAmelCase ( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": __snake_case , __snake_case : Union[str, Any] = 10, 9 __snake_case : int = defaultdict(list) __snake_case : dict[int, bool] = {} __snake_case : list[int] = [] __snake_case : Union[str, Any] = 0 __snake_case : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCAmelCase ( ) -> Dict: A_ = ArgumentParser('''Accelerate CLI tool''', usage='''accelerate <command> [<args>]''', allow_abbrev=_UpperCamelCase ) A_ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=_UpperCamelCase ) env_command_parser(subparsers=_UpperCamelCase ) launch_command_parser(subparsers=_UpperCamelCase ) tpu_command_parser(subparsers=_UpperCamelCase ) test_command_parser(subparsers=_UpperCamelCase ) # Let's go A_ = parser.parse_args() if not hasattr(_UpperCamelCase, '''func''' ): parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
18
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowercase = logging.get_logger(__name__) __lowercase = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class lowerCamelCase_ ( _lowercase ): '''simple docstring''' a__ : Union[str, Any] = '''instructblip_vision_model''' def __init__( self , __lowercase=1_408 , __lowercase=6_144 , __lowercase=39 , __lowercase=16 , __lowercase=224 , __lowercase=14 , __lowercase="gelu" , __lowercase=1E-6 , __lowercase=0.0 , __lowercase=1E-1_0 , __lowercase=True , **__lowercase , ) -> Tuple: super().__init__(**A_) __UpperCamelCase :Union[str, Any] = hidden_size __UpperCamelCase :Any = intermediate_size __UpperCamelCase :Union[str, Any] = num_hidden_layers __UpperCamelCase :Optional[int] = num_attention_heads __UpperCamelCase :int = patch_size __UpperCamelCase :List[str] = image_size __UpperCamelCase :Any = initializer_range __UpperCamelCase :Union[str, Any] = attention_dropout __UpperCamelCase :Tuple = layer_norm_eps __UpperCamelCase :List[Any] = hidden_act __UpperCamelCase :Optional[Any] = qkv_bias @classmethod def UpperCamelCase__ ( cls , __lowercase , **__lowercase) -> "PretrainedConfig": cls._set_token_in_kwargs(A_) __UpperCamelCase , __UpperCamelCase :List[str] = cls.get_config_dict(A_ , **A_) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''') == "instructblip": __UpperCamelCase :Dict = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(A_ , **A_) class lowerCamelCase_ ( _lowercase ): '''simple docstring''' a__ : Union[str, Any] = '''instructblip_qformer''' def __init__( self , __lowercase=30_522 , __lowercase=768 , __lowercase=12 , __lowercase=12 , __lowercase=3_072 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=0.02 , __lowercase=1E-1_2 , __lowercase=0 , __lowercase="absolute" , __lowercase=2 , __lowercase=1_408 , **__lowercase , ) -> Tuple: super().__init__(pad_token_id=A_ , **A_) __UpperCamelCase :Any = vocab_size __UpperCamelCase :int = hidden_size __UpperCamelCase :Union[str, Any] = num_hidden_layers __UpperCamelCase :Any = num_attention_heads __UpperCamelCase :int = hidden_act __UpperCamelCase :List[Any] = intermediate_size __UpperCamelCase :Any = hidden_dropout_prob __UpperCamelCase :Tuple = attention_probs_dropout_prob __UpperCamelCase :List[str] = max_position_embeddings __UpperCamelCase :Optional[Any] = initializer_range __UpperCamelCase :List[Any] = layer_norm_eps __UpperCamelCase :Optional[Any] = position_embedding_type __UpperCamelCase :Tuple = cross_attention_frequency __UpperCamelCase :Union[str, Any] = encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __lowercase , **__lowercase) -> "PretrainedConfig": cls._set_token_in_kwargs(A_) __UpperCamelCase , __UpperCamelCase :Any = cls.get_config_dict(A_ , **A_) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''') == "instructblip": __UpperCamelCase :Optional[Any] = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(A_ , **A_) class lowerCamelCase_ ( _lowercase ): '''simple docstring''' a__ : Dict = '''instructblip''' a__ : List[Any] = True def __init__( self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=32 , **__lowercase) -> Optional[int]: super().__init__(**A_) if vision_config is None: __UpperCamelCase :Dict = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''') if qformer_config is None: __UpperCamelCase :Any = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''') if text_config is None: __UpperCamelCase :Dict = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''') __UpperCamelCase :Optional[Any] = InstructBlipVisionConfig(**A_) __UpperCamelCase :Dict = InstructBlipQFormerConfig(**A_) __UpperCamelCase :List[str] = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __UpperCamelCase :int = CONFIG_MAPPING[text_model_type](**A_) __UpperCamelCase :List[str] = self.text_config.tie_word_embeddings __UpperCamelCase :List[str] = self.text_config.is_encoder_decoder __UpperCamelCase :Optional[int] = num_query_tokens __UpperCamelCase :List[str] = self.vision_config.hidden_size __UpperCamelCase :str = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __UpperCamelCase :Union[str, Any] = 1.0 __UpperCamelCase :Union[str, Any] = 0.02 @classmethod def UpperCamelCase__ ( cls , __lowercase , __lowercase , __lowercase , **__lowercase , ) -> List[Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A_ , ) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :List[Any] = copy.deepcopy(self.__dict__) __UpperCamelCase :Any = self.vision_config.to_dict() __UpperCamelCase :Any = self.qformer_config.to_dict() __UpperCamelCase :Dict = self.text_config.to_dict() __UpperCamelCase :List[str] = self.__class__.model_type return output
43
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowercase = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''DeiTFeatureExtractor'''] _lowercase = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
0
from statistics import mean import numpy as np def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: '''simple docstring''' UpperCAmelCase_ : Optional[Any] = 0 # Number of processes finished UpperCAmelCase_ : List[Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. UpperCAmelCase_ : List[Any] = [0] * no_of_process # List to include calculation results UpperCAmelCase_ : Union[str, Any] = [0] * no_of_process # Sort by arrival time. UpperCAmelCase_ : List[str] = [burst_time[i] for i in np.argsort(lowerCamelCase__ )] UpperCAmelCase_ : int = [process_name[i] for i in np.argsort(lowerCamelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: UpperCAmelCase_ : Optional[int] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: UpperCAmelCase_ : Union[str, Any] = arrival_time[i] UpperCAmelCase_ : List[Any] = 0 # Index showing the location of the process being performed UpperCAmelCase_ : str = 0 # Saves the current response ratio. UpperCAmelCase_ : str = 0 for i in range(0 , lowerCamelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: UpperCAmelCase_ : str = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: UpperCAmelCase_ : Tuple = temp UpperCAmelCase_ : List[Any] = i # Calculate the turn around time UpperCAmelCase_ : List[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. UpperCAmelCase_ : Dict = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [0] * no_of_process for i in range(0 , lowerCamelCase__ ): UpperCAmelCase_ : Tuple = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __a = 5 __a = ['A', 'B', 'C', 'D', 'E'] __a = [1, 2, 3, 4, 5] __a = [1, 2, 3, 4, 5] __a = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __a = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('Process name \tArrival time \tBurst time \tTurn around time \tWaiting time') for i in range(0, no_of_process): print( F"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" F"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(F"""average waiting time : {mean(waiting_time):.5f}""") print(F"""average turn around time : {mean(turn_around_time):.5f}""")
353
from math import ceil def lowerCamelCase__ ( _lowercase = 1001 ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): UpperCAmelCase_ : List[Any] = 2 * i + 1 UpperCAmelCase_ : Optional[int] = 2 * i UpperCAmelCase_ : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __a = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
235
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _UpperCamelCase = 25_0004 _UpperCamelCase = 25_0020 @require_sentencepiece @require_tokenizers class __lowercase (_UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = MBartTokenizer _UpperCamelCase = MBartTokenizerFast _UpperCamelCase = True _UpperCamelCase = True def UpperCamelCase__ ( self ) ->str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : List[Any] = MBartTokenizer(A_ , keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : str = MBartTokenizer(A_ , keep_accents=A_ ) __lowerCAmelCase : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __lowerCAmelCase : str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowerCAmelCase : str = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __lowerCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowerCAmelCase : Optional[Any] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained(A_ , **A_ ) __lowerCAmelCase : List[str] = tempfile.mkdtemp() __lowerCAmelCase : int = tokenizer_r.save_pretrained(A_ ) __lowerCAmelCase : Optional[Any] = tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __lowerCAmelCase : Tuple = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(A_ , A_ ) # Checks everything loads correctly in the same way __lowerCAmelCase : Optional[Any] = tokenizer_r.from_pretrained(A_ ) __lowerCAmelCase : Any = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=True __lowerCAmelCase : List[Any] = tempfile.mkdtemp() __lowerCAmelCase : Dict = tokenizer_r.save_pretrained(A_ , legacy_format=A_ ) __lowerCAmelCase : List[str] = tokenizer_p.save_pretrained(A_ ) # Checks it save with the same files self.assertSequenceEqual(A_ , A_ ) # Checks everything loads correctly in the same way __lowerCAmelCase : Any = tokenizer_r.from_pretrained(A_ ) __lowerCAmelCase : Any = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) shutil.rmtree(A_ ) # Save tokenizer rust, legacy_format=False __lowerCAmelCase : Tuple = tempfile.mkdtemp() __lowerCAmelCase : str = tokenizer_r.save_pretrained(A_ , legacy_format=A_ ) __lowerCAmelCase : int = tokenizer_p.save_pretrained(A_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCAmelCase : str = tokenizer_r.from_pretrained(A_ ) __lowerCAmelCase : Optional[Any] = tokenizer_p.from_pretrained(A_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_ ) ) shutil.rmtree(A_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowercase (unittest.TestCase ): _UpperCamelCase = """facebook/mbart-large-en-ro""" _UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] _UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] _UpperCamelCase = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE] @classmethod def UpperCamelCase__ ( cls ) ->Tuple: '''simple docstring''' __lowerCAmelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __lowerCAmelCase : Optional[Any] = 1 return cls def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_0020 ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A_ ) def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' self.assertIn(A_ , self.tokenizer.all_special_ids ) __lowerCAmelCase : Any = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] __lowerCAmelCase : Any = self.tokenizer.decode(A_ , skip_special_tokens=A_ ) __lowerCAmelCase : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A_ ) self.assertEqual(A_ , A_ ) self.assertNotIn(self.tokenizer.eos_token , A_ ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Tuple = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , A_ ) __lowerCAmelCase : int = 10 __lowerCAmelCase : int = self.tokenizer(A_ , max_length=A_ , truncation=A_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , A_ ) self.assertEqual(len(A_ ) , A_ ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_0026, 25_0001] ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Dict = tempfile.mkdtemp() __lowerCAmelCase : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A_ ) __lowerCAmelCase : Dict = MBartTokenizer.from_pretrained(A_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A_ ) @require_torch def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A_ , return_tensors='''pt''' ) __lowerCAmelCase : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __lowerCAmelCase : Union[str, Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(A_ , A_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : List[Any] = self.tokenizer(self.src_text , padding=A_ , truncation=A_ , max_length=3 , return_tensors='''pt''' ) __lowerCAmelCase : Optional[Any] = self.tokenizer( text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=10 , return_tensors='''pt''' ) __lowerCAmelCase : Union[str, Any] = targets['''input_ids'''] __lowerCAmelCase : int = shift_tokens_right(A_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Dict = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(A_ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3034, 2, 25_0004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_0001, } , )
275
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _UpperCamelCase = random.Random() def _lowercase ( lowercase__ , lowercase__=1.0 , lowercase__=None , lowercase__=None ): if rng is None: __lowerCAmelCase : Optional[Any] = global_rng __lowerCAmelCase : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowercase (unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=1 , A_=0.0 , A_=1_6000 , A_=True , A_=True , ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = parent __lowerCAmelCase : Optional[int] = batch_size __lowerCAmelCase : Any = min_seq_length __lowerCAmelCase : Tuple = max_seq_length __lowerCAmelCase : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowerCAmelCase : Dict = feature_size __lowerCAmelCase : Optional[int] = padding_value __lowerCAmelCase : Tuple = sampling_rate __lowerCAmelCase : Union[str, Any] = return_attention_mask __lowerCAmelCase : Dict = do_normalize def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self , A_=False , A_=False ) ->Union[str, Any]: '''simple docstring''' def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: __lowerCAmelCase : Dict = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __lowerCAmelCase : Tuple = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowerCAmelCase : Tuple = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs class __lowercase (_UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = WavaVecaFeatureExtractor def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : List[Any] = WavaVecaFeatureExtractionTester(self ) def UpperCamelCase__ ( self , A_ ) ->Optional[Any]: '''simple docstring''' self.assertTrue(np.all(np.mean(A_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ , axis=0 ) - 1 ) < 1e-3 ) ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowerCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __lowerCAmelCase : Any = [np.asarray(A_ ) for speech_input in speech_inputs] # Test not batched input __lowerCAmelCase : Optional[Any] = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values __lowerCAmelCase : Dict = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test batched __lowerCAmelCase : Dict = feat_extract(A_ , return_tensors='''np''' ).input_values __lowerCAmelCase : Dict = feat_extract(A_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowerCAmelCase : int = [floats_list((1, x) )[0] for x in (800, 800, 800)] __lowerCAmelCase : List[Any] = np.asarray(A_ ) __lowerCAmelCase : Any = feat_extract(A_ , return_tensors='''np''' ).input_values __lowerCAmelCase : Union[str, Any] = feat_extract(A_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCAmelCase : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __lowerCAmelCase : str = ['''longest''', '''max_length''', '''do_not_pad'''] __lowerCAmelCase : str = [None, 1600, None] for max_length, padding in zip(A_ , A_ ): __lowerCAmelCase : Optional[int] = feat_extract(A_ , padding=A_ , max_length=A_ , return_tensors='''np''' ) __lowerCAmelCase : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCAmelCase : Optional[int] = range(800 , 1400 , 200 ) __lowerCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in lengths] __lowerCAmelCase : int = ['''longest''', '''max_length''', '''do_not_pad'''] __lowerCAmelCase : List[str] = [None, 1600, None] for max_length, padding in zip(A_ , A_ ): __lowerCAmelCase : Union[str, Any] = feat_extract(A_ , max_length=A_ , padding=A_ ) __lowerCAmelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __lowerCAmelCase : List[str] = feat_extract( A_ , truncation=A_ , max_length=1000 , padding='''max_length''' , return_tensors='''np''' ) __lowerCAmelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCAmelCase : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __lowerCAmelCase : int = feat_extract( A_ , truncation=A_ , max_length=1000 , padding='''longest''' , return_tensors='''np''' ) __lowerCAmelCase : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) __lowerCAmelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __lowerCAmelCase : Optional[int] = feat_extract( A_ , truncation=A_ , max_length=2000 , padding='''longest''' , return_tensors='''np''' ) __lowerCAmelCase : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' import torch __lowerCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowerCAmelCase : Any = np.random.rand(100 ).astype(np.floataa ) __lowerCAmelCase : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowerCAmelCase : Any = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __lowerCAmelCase : List[str] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCamelCase__ ( self ) ->int: '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: __lowerCAmelCase : Any = WavaVecaConfig.from_pretrained(A_ ) __lowerCAmelCase : Tuple = WavaVecaFeatureExtractor.from_pretrained(A_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
275
1
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : List[Any] = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) lowerCAmelCase_ : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCAmelCase = model_type_to_module_name(lowerCAmelCase ) UpperCAmelCase = importlib.import_module(F'''.{module_name}''' , """transformers.models""" ) try: return getattr(lowerCAmelCase , lowerCAmelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase , """__name__""" , lowerCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCAmelCase = importlib.import_module("""transformers""" ) if hasattr(lowerCAmelCase , lowerCAmelCase ): return getattr(lowerCAmelCase , lowerCAmelCase ) return None def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , **lowerCAmelCase , ): '''simple docstring''' UpperCAmelCase = get_file_from_repo( lowerCAmelCase , lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , resume_download=lowerCAmelCase , proxies=lowerCAmelCase , use_auth_token=lowerCAmelCase , revision=lowerCAmelCase , local_files_only=lowerCAmelCase , ) if resolved_config_file is None: logger.info( """Could not locate the image processor configuration file, will try to use the model config instead.""" ) return {} with open(lowerCAmelCase , encoding="""utf-8""" ) as reader: return json.load(lowerCAmelCase ) class UpperCamelCase_ : def __init__( self ) -> Tuple: """simple docstring""" raise EnvironmentError( """AutoImageProcessor is designed to be instantiated """ """using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(snake_case__ ) def UpperCamelCase_ ( cls , snake_case__ , **snake_case__ ) -> Any: """simple docstring""" UpperCAmelCase = kwargs.pop("""config""" , snake_case__ ) UpperCAmelCase = kwargs.pop("""trust_remote_code""" , snake_case__ ) UpperCAmelCase = True UpperCAmelCase , UpperCAmelCase = ImageProcessingMixin.get_image_processor_dict(snake_case__ , **snake_case__ ) UpperCAmelCase = config_dict.get("""image_processor_type""" , snake_case__ ) UpperCAmelCase = None if "AutoImageProcessor" in config_dict.get("""auto_map""" , {} ): UpperCAmelCase = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCAmelCase = config_dict.pop("""feature_extractor_type""" , snake_case__ ) if feature_extractor_class is not None: logger.warning( """Could not find image processor class in the image processor config or the model config. Loading""" """ based on pattern matching with the model's feature extractor configuration.""" ) UpperCAmelCase = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""" ) if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): UpperCAmelCase = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] UpperCAmelCase = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""" ) logger.warning( """Could not find image processor auto map in the image processor config or the model config.""" """ Loading based on pattern matching with the model's feature extractor configuration.""" ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase = AutoConfig.from_pretrained(snake_case__ , **snake_case__ ) # It could be in `config.image_processor_type`` UpperCAmelCase = getattr(snake_case__ , """image_processor_type""" , snake_case__ ) if hasattr(snake_case__ , """auto_map""" ) and "AutoImageProcessor" in config.auto_map: UpperCAmelCase = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: UpperCAmelCase = image_processor_class_from_name(snake_case__ ) UpperCAmelCase = image_processor_auto_map is not None UpperCAmelCase = image_processor_class is not None or type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING UpperCAmelCase = resolve_trust_remote_code( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if has_remote_code and trust_remote_code: UpperCAmelCase = get_class_from_dynamic_module( snake_case__ , snake_case__ , **snake_case__ ) UpperCAmelCase = kwargs.pop("""code_revision""" , snake_case__ ) if os.path.isdir(snake_case__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(snake_case__ , **snake_case__ ) elif image_processor_class is not None: return image_processor_class.from_dict(snake_case__ , **snake_case__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING: UpperCAmelCase = IMAGE_PROCESSOR_MAPPING[type(snake_case__ )] return image_processor_class.from_dict(snake_case__ , **snake_case__ ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def UpperCamelCase_ ( snake_case__ , snake_case__ ) -> Dict: """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(snake_case__ , snake_case__ )
248
"""simple docstring""" lowerCAmelCase_ : Dict = {str(digit): digit**5 for digit in range(1_0)} def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCAmelCase ) ) def _lowerCAmelCase ( ): '''simple docstring''' return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(lowerCAmelCase ) ) if __name__ == "__main__": print(solution())
248
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _a ( a :Namespace ) -> Optional[int]: return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) UpperCAmelCase__ = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class lowercase_ ( lowercase ): '''simple docstring''' @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : ArgumentParser ) ->List[str]: """simple docstring""" a = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=__UpperCAmelCase , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=__UpperCAmelCase , default=__UpperCAmelCase , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=__UpperCAmelCase ) def __init__( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : str , *__UpperCAmelCase : Optional[Any] , ) ->Optional[Any]: """simple docstring""" a = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F"""Loading model {model_type}""" ) a = model_type a = tf_checkpoint a = pytorch_dump_output a = config a = finetuning_task_name def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) if "ckpt" in self._tf_checkpoint.lower(): a = self._tf_checkpoint a = '''''' else: a = self._tf_checkpoint a = '''''' convert_transfo_xl_checkpoint_to_pytorch( __UpperCAmelCase , self._config , self._pytorch_dump_output , __UpperCAmelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ShapEPipeline __snake_case = ['''prompt'''] __snake_case = ['''prompt'''] __snake_case = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] __snake_case = False @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" return 8 @property def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(__UpperCAmelCase ) @property def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) a = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } a = PriorTransformer(**__UpperCAmelCase ) return model @property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" torch.manual_seed(0 ) a = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } a = ShapERenderer(**__UpperCAmelCase ) return model def __lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" a = self.dummy_prior a = self.dummy_text_encoder a = self.dummy_tokenizer a = self.dummy_renderer a = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , ) a = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=0 ) ->Optional[int]: """simple docstring""" if str(__UpperCAmelCase ).startswith('''mps''' ): a = torch.manual_seed(__UpperCAmelCase ) else: a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" a = '''cpu''' a = self.get_dummy_components() a = self.pipeline_class(**__UpperCAmelCase ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) a = output.images[0] a = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) a = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = torch_device == '''cpu''' a = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , ) def __lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" a = self.get_dummy_components() a = self.pipeline_class(**__UpperCAmelCase ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = 1 a = 2 a = self.get_dummy_inputs(__UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: a = batch_size * [inputs[key]] a = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : int ) ->Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) a = ShapEPipeline.from_pretrained('''openai/shap-e''' ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) a = pipe( '''a shark''' , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
0
1
def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : list[int] ) -> None: UpperCAmelCase : Optional[int] = len(UpperCAmelCase ) print('''The following activities are selected:''' ) # The first activity is always selected UpperCAmelCase : Dict = 0 print(UpperCAmelCase , end=''',''' ) # Consider rest of the activities for j in range(UpperCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(UpperCAmelCase , end=''',''' ) UpperCAmelCase : str = j if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : Optional[int] = [1, 3, 0, 5, 8, 5] _lowerCamelCase : Any = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
355
from __future__ import annotations import queue class __UpperCAmelCase : def __init__( self : str, __A : Union[str, Any] ): UpperCAmelCase : Dict = data UpperCAmelCase : Tuple = None UpperCAmelCase : Any = None def a__ ( ) -> TreeNode: print('''\n********Press N to stop entering at any point of time********\n''' ) UpperCAmelCase : Any = input('''Enter the value of the root node: ''' ).strip().lower() UpperCAmelCase : queue.Queue = queue.Queue() UpperCAmelCase : Tuple = TreeNode(int(UpperCAmelCase ) ) q.put(UpperCAmelCase ) while not q.empty(): UpperCAmelCase : int = q.get() UpperCAmelCase : Union[str, Any] = f'''Enter the left node of {node_found.data}: ''' UpperCAmelCase : List[Any] = input(UpperCAmelCase ).strip().lower() or '''n''' if check == "n": return tree_node UpperCAmelCase : List[str] = TreeNode(int(UpperCAmelCase ) ) UpperCAmelCase : List[str] = left_node q.put(UpperCAmelCase ) UpperCAmelCase : List[Any] = f'''Enter the right node of {node_found.data}: ''' UpperCAmelCase : List[Any] = input(UpperCAmelCase ).strip().lower() or '''n''' if check == "n": return tree_node UpperCAmelCase : Dict = TreeNode(int(UpperCAmelCase ) ) UpperCAmelCase : Dict = right_node q.put(UpperCAmelCase ) raise def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : queue.Queue = queue.Queue() q.put(UpperCAmelCase ) while not q.empty(): UpperCAmelCase : List[Any] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : queue.Queue = queue.Queue() q.put(UpperCAmelCase ) while not q.empty(): UpperCAmelCase : int = [] while not q.empty(): UpperCAmelCase : List[str] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(UpperCAmelCase ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : list[TreeNode] = [] UpperCAmelCase : List[str] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(UpperCAmelCase ) UpperCAmelCase : Dict = n.left # end of while means current node doesn't have left child UpperCAmelCase : Union[str, Any] = stack.pop() # start to traverse its right child UpperCAmelCase : List[str] = n.right def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : list[TreeNode] = [] UpperCAmelCase : Any = node while n or stack: while n: stack.append(UpperCAmelCase ) UpperCAmelCase : Dict = n.left UpperCAmelCase : Optional[int] = stack.pop() print(n.data , end=''',''' ) UpperCAmelCase : Any = n.right def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase , UpperCAmelCase : Dict = [], [] UpperCAmelCase : Any = node stacka.append(UpperCAmelCase ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase : Union[str, Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(UpperCAmelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def a__ ( UpperCAmelCase : str = "" , UpperCAmelCase : int=50 , UpperCAmelCase : Union[str, Any]="*" ) -> str: if not s: return "\n" + width * char UpperCAmelCase , UpperCAmelCase : int = divmod(width - len(UpperCAmelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) _lowerCamelCase : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
99
0
"""simple docstring""" from __future__ import annotations def lowercase (snake_case__ : int | float | str , snake_case__ : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] lowerCAmelCase = int(snake_case__ ) lowerCAmelCase = int(snake_case__ ) lowerCAmelCase = [] for temp in range(int(snake_case__ ) ): series.append(f'''1 / {pow(temp + 1 , int(snake_case__ ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() a = int(input('Enter the last number (nth term) of the P-Series')) a = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
155
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] a = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def lowercase (snake_case__ : Dict ) -> str: '''simple docstring''' lowerCAmelCase = torch.load(snake_case__ , map_location="""cpu""" ) return sd def lowercase (snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Union[str, Any]=rename_keys_prefix ) -> Dict: '''simple docstring''' lowerCAmelCase = OrderedDict() lowerCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowerCAmelCase = key for name_pair in rename_keys_prefix: lowerCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) lowerCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowerCAmelCase = new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def lowercase (snake_case__ : List[Any] , snake_case__ : Optional[int] ) -> List[str]: '''simple docstring''' assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: lowerCAmelCase = """pretraining""" if "vcr" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 512} elif "vqa_advanced" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 2_048} elif "vqa" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 2_048} elif "nlvr" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 1_024} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 512} lowerCAmelCase = """multichoice""" elif "vqa_advanced" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 2_048} lowerCAmelCase = """vqa_advanced""" elif "vqa" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 2_048, """num_labels""": 3_129} lowerCAmelCase = """vqa""" elif "nlvr" in checkpoint_path: lowerCAmelCase = { """visual_embedding_dim""": 1_024, """num_labels""": 2, } lowerCAmelCase = """nlvr""" lowerCAmelCase = VisualBertConfig(**snake_case__ ) # Load State Dict lowerCAmelCase = load_state_dict(snake_case__ ) lowerCAmelCase = get_new_dict(snake_case__ , snake_case__ ) if model_type == "pretraining": lowerCAmelCase = VisualBertForPreTraining(snake_case__ ) elif model_type == "vqa": lowerCAmelCase = VisualBertForQuestionAnswering(snake_case__ ) elif model_type == "nlvr": lowerCAmelCase = VisualBertForVisualReasoning(snake_case__ ) elif model_type == "multichoice": lowerCAmelCase = VisualBertForMultipleChoice(snake_case__ ) model.load_state_dict(snake_case__ ) # Save Checkpoints Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') a = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
155
1
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __lowerCAmelCase = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __lowerCAmelCase = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.15}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names __lowerCAmelCase = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowerCAmelCase = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __lowerCAmelCase = '''allenai''' def snake_case_ ( snake_case ) -> Dict: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowercase__: Optional[Any] = dict((re.sub(R'@@$' , '' , snake_case ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , snake_case ), v) for k, v in d.items() ) lowercase__: Any = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'{k}</w>'] lowercase__: Any = d[k] # restore return da def snake_case_ ( snake_case , snake_case ) -> Optional[Any]: # prep assert os.path.exists(snake_case ) os.makedirs(snake_case , exist_ok=snake_case ) print(f'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models lowercase__: Optional[Any] = basename(snake_case ) lowercase__: Union[str, Any] = dirname(snake_case ) lowercase__: Optional[int] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowercase__: List[Any] = cls.hub_models() lowercase__: Union[str, Any] = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowercase__: Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'using checkpoint {checkpoint_file}' ) lowercase__: str = hub_utils.from_pretrained( snake_case , snake_case , snake_case , archive_map=snake_case , **snake_case ) lowercase__: int = vars(chkpt['args']['model'] ) lowercase__: Optional[Any] = args['source_lang'] lowercase__: Dict = args['target_lang'] lowercase__: List[str] = dirname(snake_case ) lowercase__: Any = basename(snake_case ) # dicts lowercase__: int = os.path.join(snake_case , f'dict.{src_lang}.txt' ) lowercase__: str = os.path.join(snake_case , f'dict.{tgt_lang}.txt' ) lowercase__: List[str] = Dictionary.load(snake_case ) lowercase__: Optional[int] = rewrite_dict_keys(src_dict.indices ) lowercase__: Optional[int] = len(snake_case ) lowercase__: Union[str, Any] = os.path.join(snake_case , 'vocab-src.json' ) print(f'Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowercase__: Optional[Any] = True for k in src_vocab.keys(): if not k.islower(): lowercase__: Tuple = False break lowercase__: List[Any] = Dictionary.load(snake_case ) lowercase__: Tuple = rewrite_dict_keys(tgt_dict.indices ) lowercase__: Dict = len(snake_case ) lowercase__: Optional[int] = os.path.join(snake_case , 'vocab-tgt.json' ) print(f'Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # merges_file (bpecodes) lowercase__: Union[str, Any] = os.path.join(snake_case , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowercase__: Tuple = os.path.join(snake_case , snake_case ) if os.path.exists(snake_case ): break with open(snake_case , encoding='utf-8' ) as fin: lowercase__: Optional[int] = fin.read() lowercase__: List[str] = re.sub(R' \d+$' , '' , snake_case , 0 , re.M ) # remove frequency number print(f'Generating {merges_file}' ) with open(snake_case , 'w' , encoding='utf-8' ) as fout: fout.write(snake_case ) # model config lowercase__: Any = os.path.join(snake_case , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'need to extend tokenizer to support bpe={args["bpe"]}' assert args["tokenizer"] == "moses", f'need to extend tokenizer to support bpe={args["tokenizer"]}' lowercase__: Optional[Any] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.0_2, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowercase__: Union[str, Any] = 5 lowercase__: List[Any] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowercase__: Tuple = best_score_hparams[model_dir]['length_penalty'] else: lowercase__: Union[str, Any] = 1.0 print(f'Generating {fsmt_model_config_file}' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # tokenizer config lowercase__: Optional[int] = os.path.join(snake_case , snake_case ) lowercase__: Any = { 'langs': [src_lang, tgt_lang], 'model_max_length': 10_24, 'do_lower_case': do_lower_case, } print(f'Generating {fsmt_tokenizer_config_file}' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # model lowercase__: int = chkpt['models'][0] lowercase__: Optional[int] = model.state_dict() # rename keys to start with 'model.' lowercase__: List[str] = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowercase__: int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(snake_case , snake_case ) lowercase__: Dict = FSMTConfig.from_pretrained(snake_case ) lowercase__: Union[str, Any] = FSMTForConditionalGeneration(snake_case ) # check that it loads ok model_new.load_state_dict(snake_case , strict=snake_case ) # save lowercase__: Tuple = os.path.join(snake_case , snake_case ) print(f'Generating {pytorch_weights_dump_path}' ) torch.save(snake_case , snake_case ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'cd {data_root}' ) print(f'transformers-cli upload {model_dir}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowerCAmelCase = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
288
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def snake_case_ ( snake_case , snake_case , snake_case ) -> Any: lowercase__: Dict = os.path.abspath(snake_case ) logger.info(f'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model lowercase__: Optional[Any] = tf.train.list_variables(snake_case ) lowercase__: List[Any] = [] lowercase__: Tuple = [] lowercase__: int = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowercase__: Union[str, Any] = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(f'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' lowercase__: str = name[1:] # figure out how many levels deep the name is lowercase__: Optional[Any] = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(snake_case ) # read data lowercase__: Optional[Any] = tf.train.load_variable(snake_case , snake_case ) names.append('/'.join(snake_case ) ) arrays.append(snake_case ) logger.info(f'Read a total of {len(snake_case ):,} layers' ) # Sanity check if len(set(snake_case ) ) != 1: raise ValueError(f'Found layer names with different depths (layer depth {list(set(snake_case ) )})' ) lowercase__: Any = list(set(snake_case ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(snake_case , snake_case ): lowercase__: Optional[int] = full_name.split('/' ) lowercase__: List[Any] = model lowercase__: Any = [] for i, m_name in enumerate(snake_case ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): lowercase__: Any = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) lowercase__: str = getattr(snake_case , 'embeddings' ) lowercase__: int = getattr(snake_case , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) lowercase__: int = getattr(snake_case , 'encoder' ) lowercase__: List[str] = getattr(snake_case , 'layer' ) lowercase__: Union[str, Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) lowercase__: Tuple = getattr(snake_case , 'pooler' ) lowercase__: Tuple = getattr(snake_case , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) lowercase__: Union[str, Any] = getattr(snake_case , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) lowercase__: Union[str, Any] = getattr(snake_case , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) lowercase__: Dict = getattr(snake_case , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) lowercase__: Optional[Any] = getattr(snake_case , 'token_type_embeddings' ) else: raise ValueError(f'Unknown embedding layer with name {full_name}' ) trace.append('weight' ) lowercase__: List[str] = getattr(snake_case , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) lowercase__: int = getattr(snake_case , 'attention' ) lowercase__: Union[str, Any] = getattr(snake_case , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) lowercase__: str = getattr(snake_case , 'attention' ) lowercase__: Optional[Any] = getattr(snake_case , 'output' ) lowercase__: List[Any] = getattr(snake_case , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) lowercase__: Optional[Any] = getattr(snake_case , 'attention' ) lowercase__: Optional[int] = getattr(snake_case , 'output' ) lowercase__: Optional[Any] = getattr(snake_case , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) lowercase__: Union[str, Any] = getattr(snake_case , 'output' ) lowercase__: List[Any] = getattr(snake_case , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) lowercase__: Any = getattr(snake_case , 'output' ) lowercase__: str = getattr(snake_case , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) lowercase__: Tuple = getattr(snake_case , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) lowercase__: List[str] = getattr(snake_case , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) lowercase__: Optional[int] = getattr(snake_case , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) lowercase__: Any = getattr(snake_case , 'intermediate' ) lowercase__: str = getattr(snake_case , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) lowercase__: Union[str, Any] = getattr(snake_case , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) lowercase__: str = getattr(snake_case , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) lowercase__: Tuple = getattr(snake_case , 'weight' ) else: logger.warning(f'Ignored {m_name}' ) # for certain layers reshape is necessary lowercase__: Any = '.'.join(snake_case ) if re.match(R'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , snake_case ) or re.match( R'(\S+)\.attention\.output\.dense\.weight' , snake_case ): lowercase__: Union[str, Any] = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowercase__: str = array.transpose() if pointer.shape == array.shape: lowercase__: Union[str, Any] = torch.from_numpy(snake_case ) else: raise ValueError( f'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' f' {array.shape}' ) logger.info(f'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def snake_case_ ( snake_case , snake_case , snake_case ) -> Any: # Instantiate model logger.info(f'Loading model based on config from {config_path}...' ) lowercase__: int = BertConfig.from_json_file(snake_case ) lowercase__: Tuple = BertModel(snake_case ) # Load weights from checkpoint logger.info(f'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(snake_case , snake_case , snake_case ) # Save pytorch-model logger.info(f'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , snake_case ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) __lowerCAmelCase = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
288
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCAmelCase_ (): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCAmelCase__ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def lowerCAmelCase_ (): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def lowerCAmelCase_ (): """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCAmelCase__ ): http_head("""https://huggingface.co""" )
147
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: int , lowerCAmelCase__: Optional[int] ): """simple docstring""" UpperCAmelCase_: int = hf_hub_url(repo_id=lowerCAmelCase__ , path=lowerCAmelCase__ , revision=lowerCAmelCase__ ) assert url == F'https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(lowerCAmelCase__ )}'
147
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Optional[int] ='''M-CLIP''' def __init__( self , _A=1_024 , _A=768 , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = transformerDimSize __SCREAMING_SNAKE_CASE = imageDimSize super().__init__(**_snake_case ) class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Any =MCLIPConfig def __init__( self , _A , *_A , **_A ): '''simple docstring''' super().__init__(_snake_case , *_snake_case , **_snake_case ) __SCREAMING_SNAKE_CASE = XLMRobertaModel(_snake_case ) __SCREAMING_SNAKE_CASE = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _A ( self , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.transformer(input_ids=_snake_case , attention_mask=_snake_case )[0] __SCREAMING_SNAKE_CASE = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_snake_case ), embs
357
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : str = field( metadata={'''help''': '''The output directory where the model will be written.'''} , ) UpperCamelCase__ : str = field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) } , ) UpperCamelCase__ : str = field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) } , ) UpperCamelCase__ : Optional[str] = field( default=UpperCamelCase_ , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) UpperCamelCase__ : Optional[str] = field( default=UpperCamelCase_ , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def __lowercase ( ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments,) ) ((__SCREAMING_SNAKE_CASE) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=a__ , decoder_config=a__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens __SCREAMING_SNAKE_CASE = decoder_config.decoder_start_token_id __SCREAMING_SNAKE_CASE = decoder_config.pad_token_id if decoder_start_token_id is None: __SCREAMING_SNAKE_CASE = decoder_config.bos_token_id if pad_token_id is None: __SCREAMING_SNAKE_CASE = decoder_config.eos_token_id # This is necessary to make Flax's generate() work __SCREAMING_SNAKE_CASE = decoder_config.eos_token_id __SCREAMING_SNAKE_CASE = decoder_start_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
118
0
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" A = WavaVecaForSequenceClassification.from_pretrained(UpperCAmelCase , config=UpperCAmelCase ) A = downstream_dict["""projector.weight"""] A = downstream_dict["""projector.bias"""] A = downstream_dict["""model.post_net.linear.weight"""] A = downstream_dict["""model.post_net.linear.bias"""] return model def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[str]: """simple docstring""" A = WavaVecaForAudioFrameClassification.from_pretrained(UpperCAmelCase , config=UpperCAmelCase ) A = downstream_dict["""model.linear.weight"""] A = downstream_dict["""model.linear.bias"""] return model def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" A = WavaVecaForXVector.from_pretrained(UpperCAmelCase , config=UpperCAmelCase ) A = downstream_dict["""connector.weight"""] A = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): A = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] A = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] A = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] A = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] A = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] A = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] A = downstream_dict["""objective.W"""] return model @torch.no_grad() def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" A = torch.load(UpperCAmelCase , map_location="""cpu""" ) A = checkpoint["""Downstream"""] A = WavaVecaConfig.from_pretrained(UpperCAmelCase ) A = WavaVecaFeatureExtractor.from_pretrained( UpperCAmelCase , return_attention_mask=UpperCAmelCase , do_normalize=UpperCAmelCase ) A = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): A = convert_classification(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): A = convert_diarization(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) elif arch.endswith("""ForXVector""" ): A = convert_xvector(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: A = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(UpperCAmelCase ) hf_model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') _lowerCamelCase : int = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
258
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=True , A=9_9 , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> Dict: snake_case : Any = parent snake_case : List[Any] = batch_size snake_case : List[Any] = seq_length snake_case : Dict = is_training snake_case : List[str] = use_input_mask snake_case : List[str] = use_token_type_ids snake_case : Dict = use_labels snake_case : Optional[int] = vocab_size snake_case : Optional[int] = hidden_size snake_case : Optional[Any] = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Union[str, Any] = intermediate_size snake_case : List[Any] = hidden_act snake_case : int = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : List[Any] = max_position_embeddings snake_case : List[Any] = type_vocab_size snake_case : int = type_sequence_label_size snake_case : Optional[int] = initializer_range snake_case : Union[str, Any] = num_labels snake_case : List[str] = num_choices snake_case : Optional[int] = scope def UpperCAmelCase ( self ) -> int: snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Union[str, Any] = None if self.use_input_mask: snake_case : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Tuple = None if self.use_token_type_ids: snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Optional[int] = None snake_case : str = None snake_case : List[Any] = None if self.use_labels: snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : int = ids_tensor([self.batch_size] , self.num_choices ) snake_case : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ) -> Any: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> List[str]: snake_case : Tuple = NystromformerModel(config=A ) model.to(A ) model.eval() snake_case : str = model(A , attention_mask=A , token_type_ids=A ) snake_case : List[str] = model(A , token_type_ids=A ) snake_case : Any = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Union[str, Any]: snake_case : List[Any] = NystromformerForMaskedLM(config=A ) model.to(A ) model.eval() snake_case : List[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Optional[Any]: snake_case : List[Any] = NystromformerForQuestionAnswering(config=A ) model.to(A ) model.eval() snake_case : Dict = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Tuple: snake_case : Optional[int] = self.num_labels snake_case : Union[str, Any] = NystromformerForSequenceClassification(A ) model.to(A ) model.eval() snake_case : Union[str, Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> int: snake_case : Union[str, Any] = self.num_labels snake_case : Union[str, Any] = NystromformerForTokenClassification(config=A ) model.to(A ) model.eval() snake_case : int = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : List[Any] = self.num_choices snake_case : Union[str, Any] = NystromformerForMultipleChoice(config=A ) model.to(A ) model.eval() snake_case : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[str] = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Any = config_and_inputs snake_case : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _snake_case = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> str: snake_case : Dict = NystromformerModelTester(self ) snake_case : str = ConfigTester(self , config_class=A , hidden_size=3_7 ) def UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Any: snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : int = type self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Dict: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCAmelCase ( self ) -> Any: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @slow def UpperCAmelCase ( self ) -> Optional[int]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Any = NystromformerModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Dict: snake_case : Optional[int] = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : int = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): snake_case : Optional[int] = model(A )[0] snake_case : List[Any] = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , A ) snake_case : Union[str, Any] = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Union[str, Any] = """the [MASK] of Belgium is Brussels""" snake_case : Any = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : Union[str, Any] = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : int = tokenizer(A , return_tensors="""pt""" ) with torch.no_grad(): snake_case : Optional[int] = model(encoding.input_ids ).logits snake_case : str = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(A ) , """capital""" )
124
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( lowerCAmelCase): _a = '''deberta-v2''' def __init__( self: int , _lowerCAmelCase: Union[str, Any]=12_81_00 , _lowerCAmelCase: int=15_36 , _lowerCAmelCase: Optional[Any]=24 , _lowerCAmelCase: Tuple=24 , _lowerCAmelCase: Optional[Any]=61_44 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: List[str]=0.1 , _lowerCAmelCase: str=0.1 , _lowerCAmelCase: Any=5_12 , _lowerCAmelCase: Optional[Any]=0 , _lowerCAmelCase: Union[str, Any]=0.02 , _lowerCAmelCase: List[Any]=1e-7 , _lowerCAmelCase: Any=False , _lowerCAmelCase: int=-1 , _lowerCAmelCase: Tuple=0 , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: Tuple=None , _lowerCAmelCase: Dict=0 , _lowerCAmelCase: Union[str, Any]="gelu" , **_lowerCAmelCase: Any , ): super().__init__(**_lowerCAmelCase ) lowercase :Tuple = hidden_size lowercase :List[str] = num_hidden_layers lowercase :Union[str, Any] = num_attention_heads lowercase :Optional[int] = intermediate_size lowercase :Optional[int] = hidden_act lowercase :List[Any] = hidden_dropout_prob lowercase :Tuple = attention_probs_dropout_prob lowercase :List[str] = max_position_embeddings lowercase :str = type_vocab_size lowercase :Union[str, Any] = initializer_range lowercase :str = relative_attention lowercase :int = max_relative_positions lowercase :Dict = pad_token_id lowercase :Tuple = position_biased_input # Backwards compatibility if type(_lowerCAmelCase ) == str: lowercase :List[Any] = [x.strip() for x in pos_att_type.lower().split("|" )] lowercase :Union[str, Any] = pos_att_type lowercase :List[Any] = vocab_size lowercase :int = layer_norm_eps lowercase :Any = kwargs.get("pooler_hidden_size" , _lowerCAmelCase ) lowercase :Any = pooler_dropout lowercase :List[str] = pooler_hidden_act class __lowerCAmelCase ( lowerCAmelCase): @property def SCREAMING_SNAKE_CASE ( self: List[str] ): if self.task == "multiple-choice": lowercase :Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase :Any = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE ( self: int ): return 12 def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase: int = -1 , _lowerCAmelCase: int = -1 , _lowerCAmelCase: int = -1 , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional["TensorType"] = None , _lowerCAmelCase: int = 3 , _lowerCAmelCase: int = 40 , _lowerCAmelCase: int = 40 , _lowerCAmelCase: "PreTrainedTokenizerBase" = None , ): lowercase :str = super().generate_dummy_inputs(preprocessor=_lowerCAmelCase , framework=_lowerCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
158
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): _a = StableDiffusionPanoramaPipeline _a = TEXT_TO_IMAGE_PARAMS _a = TEXT_TO_IMAGE_BATCH_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE ( self: int ): torch.manual_seed(0 ) lowercase :List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowercase :Any = DDIMScheduler() torch.manual_seed(0 ) lowercase :Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase :Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowercase :Any = CLIPTextModel(_lowerCAmelCase ) lowercase :str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase :Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Dict=0 ): lowercase :Any = torch.manual_seed(_lowerCAmelCase ) lowercase :Any = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :int = self.get_dummy_components() lowercase :int = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase :Tuple = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :List[str] = self.get_dummy_inputs(_lowerCAmelCase ) lowercase :List[Any] = sd_pipe(**_lowerCAmelCase ).images lowercase :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase :List[str] = np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE ( self: int ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :List[str] = self.get_dummy_components() lowercase :Optional[Any] = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase :Any = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Optional[int] = self.get_dummy_inputs(_lowerCAmelCase ) lowercase :List[Any] = "french fries" lowercase :int = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) lowercase :int = output.images lowercase :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase :Optional[Any] = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :int = self.get_dummy_components() lowercase :List[str] = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase :int = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Dict = self.get_dummy_inputs(_lowerCAmelCase ) lowercase :Any = sd_pipe(**_lowerCAmelCase , view_batch_size=2 ) lowercase :Union[str, Any] = output.images lowercase :List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase :Optional[int] = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self: str ): lowercase :int = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :List[Any] = self.get_dummy_components() lowercase :Tuple = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" ) lowercase :Tuple = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase :Any = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Optional[Any] = self.get_dummy_inputs(_lowerCAmelCase ) lowercase :List[Any] = sd_pipe(**_lowerCAmelCase ).images lowercase :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase :Optional[Any] = np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): lowercase :Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :List[Any] = self.get_dummy_components() lowercase :int = PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , skip_prk_steps=_lowerCAmelCase ) lowercase :List[str] = StableDiffusionPanoramaPipeline(**_lowerCAmelCase ) lowercase :int = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Union[str, Any] = self.get_dummy_inputs(_lowerCAmelCase ) lowercase :Any = sd_pipe(**_lowerCAmelCase ).images lowercase :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase :Tuple = np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self: str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: Union[str, Any]=0 ): lowercase :Any = torch.manual_seed(_lowerCAmelCase ) lowercase :Optional[int] = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Dict = "stabilityai/stable-diffusion-2-base" lowercase :Optional[Any] = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="scheduler" ) lowercase :List[str] = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase :Any = self.get_inputs() lowercase :Optional[int] = pipe(**_lowerCAmelCase ).images lowercase :int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) lowercase :Tuple = np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Union[str, Any] = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=_lowerCAmelCase ) lowercase :int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase :int = self.get_inputs() lowercase :Optional[int] = pipe(**_lowerCAmelCase ).images lowercase :List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) lowercase :Union[str, Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Dict = 0 def callback_fn(_lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: torch.FloatTensor ) -> None: lowercase :Any = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase :Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) lowercase :Optional[int] = latents[0, -3:, -3:, -1] lowercase :Any = np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase :str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) lowercase :Optional[int] = latents[0, -3:, -3:, -1] lowercase :Optional[Any] = np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase :int = False lowercase :Tuple = "stabilityai/stable-diffusion-2-base" lowercase :Optional[Any] = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="scheduler" ) lowercase :Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase :Optional[int] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase :int = self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def SCREAMING_SNAKE_CASE ( self: str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase :Optional[Any] = "stabilityai/stable-diffusion-2-base" lowercase :Dict = DDIMScheduler.from_pretrained(_lowerCAmelCase , subfolder="scheduler" ) lowercase :Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase ) lowercase :Union[str, Any] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase :Optional[int] = self.get_inputs() lowercase :Union[str, Any] = pipe(**_lowerCAmelCase ) lowercase :List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
158
1
import math import unittest def UpperCamelCase ( __lowerCamelCase : int ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Any: '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' with self.assertRaises(snake_case__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , ) self.assertFalse( is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
59
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class UpperCAmelCase : def __init__(self : Optional[Any] , snake_case__ : Optional[Any]=None , **snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) snake_case : Optional[Any] = model snake_case : Dict = kwargs.get("model_save_dir" , snake_case__ ) snake_case : int = kwargs.get("latest_model_name" , snake_case__ ) def __call__(self : Tuple , **snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = {k: np.array(snake_case__ ) for k, v in kwargs.items()} return self.model.run(snake_case__ , snake_case__ ) @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : Union[str, Path] , snake_case__ : Optional[int]=None , snake_case__ : Optional[int]=None ) -> Any: '''simple docstring''' if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) snake_case : Optional[int] = "CPUExecutionProvider" return ort.InferenceSession(snake_case__ , providers=[provider] , sess_options=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Union[str, Path] , snake_case__ : Optional[str] = None , **snake_case__ : Any ) -> List[Any]: '''simple docstring''' snake_case : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME snake_case : Any = self.model_save_dir.joinpath(self.latest_model_name ) snake_case : str = Path(snake_case__ ).joinpath(snake_case__ ) try: shutil.copyfile(snake_case__ , snake_case__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) snake_case : List[str] = self.model_save_dir.joinpath(snake_case__ ) if src_path.exists(): snake_case : Tuple = Path(snake_case__ ).joinpath(snake_case__ ) try: shutil.copyfile(snake_case__ , snake_case__ ) except shutil.SameFileError: pass def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Optional[int] , ) -> str: '''simple docstring''' if os.path.isfile(snake_case__ ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) # saving model weights/files self._save_pretrained(snake_case__ , **snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Tuple , snake_case__ : Union[str, Path] , snake_case__ : Optional[Union[bool, str, None]] = None , snake_case__ : Optional[Union[str, None]] = None , snake_case__ : bool = False , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional["ort.SessionOptions"] = None , **snake_case__ : Tuple , ) -> Tuple: '''simple docstring''' snake_case : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(snake_case__ ): snake_case : Any = OnnxRuntimeModel.load_model( os.path.join(snake_case__ , snake_case__ ) , provider=snake_case__ , sess_options=snake_case__ ) snake_case : Union[str, Any] = Path(snake_case__ ) # load model from hub else: # download model snake_case : Dict = hf_hub_download( repo_id=snake_case__ , filename=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , ) snake_case : List[Any] = Path(snake_case__ ).parent snake_case : Union[str, Any] = Path(snake_case__ ).name snake_case : Dict = OnnxRuntimeModel.load_model(snake_case__ , provider=snake_case__ , sess_options=snake_case__ ) return cls(model=snake_case__ , **snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Optional[Any] , snake_case__ : Union[str, Path] , snake_case__ : bool = True , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , **snake_case__ : Dict , ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = None if len(str(snake_case__ ).split("@" ) ) == 2: snake_case , snake_case : int = model_id.split("@" ) return cls._from_pretrained( model_id=snake_case__ , revision=snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , use_auth_token=snake_case__ , **snake_case__ , )
59
1
"""simple docstring""" import torch from torch import nn class _snake_case ( nn.Module): def __init__( self : Optional[Any], __lowercase : Tuple, __lowercase : str, __lowercase : Union[str, Any], __lowercase : List[Any], __lowercase : Dict=1, __lowercase : Dict=False ): super().__init__() lowercase__ = n_token lowercase__ = d_embed lowercase__ = d_proj lowercase__ = cutoffs + [n_token] lowercase__ = [0] + self.cutoffs lowercase__ = div_val lowercase__ = self.cutoffs[0] lowercase__ = len(self.cutoffs ) - 1 lowercase__ = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowercase__ = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed ) ) lowercase__ = nn.Parameter(torch.zeros(self.n_clusters ) ) lowercase__ = nn.ModuleList() lowercase__ = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__UpperCAmelCase, __UpperCAmelCase ) ) ) else: self.out_projs.append(__UpperCAmelCase ) self.out_layers.append(nn.Linear(__UpperCAmelCase, __UpperCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): lowercase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase__ = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__UpperCAmelCase, __UpperCAmelCase ) ) ) self.out_layers.append(nn.Linear(__UpperCAmelCase, r_idx - l_idx ) ) lowercase__ = keep_order def A__ ( self : Dict, __lowercase : List[str], __lowercase : Union[str, Any], __lowercase : str, __lowercase : List[str] ): if proj is None: lowercase__ = nn.functional.linear(__UpperCAmelCase, __UpperCAmelCase, bias=__UpperCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowercase__ = nn.functional.linear(__UpperCAmelCase, proj.t().contiguous() ) lowercase__ = nn.functional.linear(__UpperCAmelCase, __UpperCAmelCase, bias=__UpperCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def A__ ( self : Dict, __lowercase : int, __lowercase : List[str]=None, __lowercase : List[Any]=False ): if labels is not None: # Shift so that tokens < n predict n lowercase__ = hidden[..., :-1, :].contiguous() lowercase__ = labels[..., 1:].contiguous() lowercase__ = hidden.view(-1, hidden.size(-1 ) ) lowercase__ = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: lowercase__ = hidden.view(-1, hidden.size(-1 ) ) if self.n_clusters == 0: lowercase__ = self._compute_logit(__UpperCAmelCase, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0] ) if labels is not None: lowercase__ = labels != -100 lowercase__ = torch.zeros_like(__UpperCAmelCase, dtype=hidden.dtype, device=hidden.device ) lowercase__ = ( -nn.functional.log_softmax(__UpperCAmelCase, dim=-1 )[mask].gather(1, labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowercase__ = nn.functional.log_softmax(__UpperCAmelCase, dim=-1 ) else: # construct weights and biases lowercase__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase__ = self.out_layers[0].weight[l_idx:r_idx] lowercase__ = self.out_layers[0].bias[l_idx:r_idx] else: lowercase__ = self.out_layers[i].weight lowercase__ = self.out_layers[i].bias if i == 0: lowercase__ = torch.cat([weight_i, self.cluster_weight], dim=0 ) lowercase__ = torch.cat([bias_i, self.cluster_bias], dim=0 ) weights.append(__UpperCAmelCase ) biases.append(__UpperCAmelCase ) lowercase__ = weights[0], biases[0], self.out_projs[0] lowercase__ = self._compute_logit(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) lowercase__ = nn.functional.log_softmax(__UpperCAmelCase, dim=1 ) if labels is None: lowercase__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowercase__ = torch.zeros_like(__UpperCAmelCase, dtype=hidden.dtype, device=hidden.device ) lowercase__ = 0 lowercase__ = [0] + self.cutoffs for i in range(len(__UpperCAmelCase ) - 1 ): lowercase__ = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowercase__ = (labels >= l_idx) & (labels < r_idx) lowercase__ = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowercase__ = labels.index_select(0, __UpperCAmelCase ) - l_idx lowercase__ = head_logprob.index_select(0, __UpperCAmelCase ) lowercase__ = hidden.index_select(0, __UpperCAmelCase ) else: lowercase__ = hidden if i == 0: if labels is not None: lowercase__ = head_logprob_i.gather(1, target_i[:, None] ).squeeze(1 ) else: lowercase__ = head_logprob[:, : self.cutoffs[0]] else: lowercase__ = weights[i], biases[i], self.out_projs[i] lowercase__ = self._compute_logit(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) lowercase__ = nn.functional.log_softmax(__UpperCAmelCase, dim=1 ) lowercase__ = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowercase__ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1, target_i[:, None] ).squeeze(1 ) else: lowercase__ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowercase__ = logprob_i if labels is not None: if (hasattr(self, "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0, __UpperCAmelCase, -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def A__ ( self : Any, __lowercase : int ): if self.n_clusters == 0: lowercase__ = self._compute_logit(__UpperCAmelCase, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0] ) return nn.functional.log_softmax(__UpperCAmelCase, dim=-1 ) else: # construct weights and biases lowercase__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase__ = self.out_layers[0].weight[l_idx:r_idx] lowercase__ = self.out_layers[0].bias[l_idx:r_idx] else: lowercase__ = self.out_layers[i].weight lowercase__ = self.out_layers[i].bias if i == 0: lowercase__ = torch.cat([weight_i, self.cluster_weight], dim=0 ) lowercase__ = torch.cat([bias_i, self.cluster_bias], dim=0 ) weights.append(__UpperCAmelCase ) biases.append(__UpperCAmelCase ) lowercase__ = weights[0], biases[0], self.out_projs[0] lowercase__ = self._compute_logit(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) lowercase__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowercase__ = nn.functional.log_softmax(__UpperCAmelCase, dim=1 ) lowercase__ = [0] + self.cutoffs for i in range(len(__UpperCAmelCase ) - 1 ): lowercase__ = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowercase__ = head_logprob[:, : self.cutoffs[0]] else: lowercase__ = weights[i], biases[i], self.out_projs[i] lowercase__ = self._compute_logit(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) lowercase__ = nn.functional.log_softmax(__UpperCAmelCase, dim=1 ) lowercase__ = head_logprob[:, -i] + tail_logprob_i lowercase__ = logprob_i return out
366
from pathlib import Path import fire def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = Path(SCREAMING_SNAKE_CASE_ ) lowercase__ = Path(SCREAMING_SNAKE_CASE_ ) dest_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) for path in src_dir.iterdir(): lowercase__ = [x.rstrip() for x in list(path.open().readlines() )][:n] lowercase__ = dest_dir.joinpath(path.name ) print(SCREAMING_SNAKE_CASE_ ) dest_path.open("w" ).write("\n".join(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": fire.Fire(minify)
224
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __UpperCAmelCase ( unittest.TestCase ): def __magic_name__ ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __magic_name__ ( self : int ): torch.manual_seed(0 ) UpperCAmelCase : List[Any] = UNetaDModel( sample_size=(3_2, 6_4), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(1_2_8, 1_2_8), down_block_types=('''AttnDownBlock2D''', '''DownBlock2D'''), up_block_types=('''UpBlock2D''', '''AttnUpBlock2D'''), ) return model @property def __magic_name__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCAmelCase : List[str] = UNetaDConditionModel( sample_size=(6_4, 3_2), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(1_2_8, 1_2_8), down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D'''), up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D'''), cross_attention_dim=1_0, ) return model @property def __magic_name__ ( self : str ): torch.manual_seed(0 ) UpperCAmelCase : List[str] = AutoencoderKL( sample_size=(1_2_8, 6_4), in_channels=1, out_channels=1, latent_channels=1, layers_per_block=2, block_out_channels=(1_2_8, 1_2_8), down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D'''), up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D'''), ) UpperCAmelCase : List[Any] = UNetaDModel( sample_size=(6_4, 3_2), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(1_2_8, 1_2_8), down_block_types=('''AttnDownBlock2D''', '''DownBlock2D'''), up_block_types=('''UpBlock2D''', '''AttnUpBlock2D'''), ) return vqvae, unet @slow def __magic_name__ ( self : int ): UpperCAmelCase : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : List[str] = Mel( x_res=self.dummy_unet.config.sample_size[1], y_res=self.dummy_unet.config.sample_size[0], ) UpperCAmelCase : Union[str, Any] = DDPMScheduler() UpperCAmelCase : List[Any] = AudioDiffusionPipeline(vqvae=lowerCamelCase__, unet=self.dummy_unet, mel=lowerCamelCase__, scheduler=lowerCamelCase__ ) UpperCAmelCase : Any = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase : int = torch.Generator(device=lowerCamelCase__ ).manual_seed(4_2 ) UpperCAmelCase : List[Any] = pipe(generator=lowerCamelCase__, steps=4 ) UpperCAmelCase : Dict = output.audios[0] UpperCAmelCase : str = output.images[0] UpperCAmelCase : Tuple = torch.Generator(device=lowerCamelCase__ ).manual_seed(4_2 ) UpperCAmelCase : str = pipe(generator=lowerCamelCase__, steps=4, return_dict=lowerCamelCase__ ) UpperCAmelCase : Union[str, Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCAmelCase : List[Any] = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:1_0] UpperCAmelCase : Optional[int] = np.frombuffer(image_from_tuple.tobytes(), dtype='''uint8''' )[:1_0] UpperCAmelCase : Optional[Any] = np.array([6_9, 2_5_5, 2_5_5, 2_5_5, 0, 0, 7_7, 1_8_1, 1_2, 1_2_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase : Optional[int] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1], y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0], ) UpperCAmelCase : Optional[int] = DDIMScheduler() UpperCAmelCase : List[str] = self.dummy_vqvae_and_unet UpperCAmelCase : int = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_vqvae_and_unet[1], mel=lowerCamelCase__, scheduler=lowerCamelCase__ ) UpperCAmelCase : List[Any] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) np.random.seed(0 ) UpperCAmelCase : Union[str, Any] = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCAmelCase : Any = torch.Generator(device=lowerCamelCase__ ).manual_seed(4_2 ) UpperCAmelCase : Any = pipe(raw_audio=lowerCamelCase__, generator=lowerCamelCase__, start_step=5, steps=1_0 ) UpperCAmelCase : int = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCAmelCase : Dict = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:1_0] UpperCAmelCase : Tuple = np.array([1_2_0, 1_1_7, 1_1_0, 1_0_9, 1_3_8, 1_6_7, 1_3_8, 1_4_8, 1_3_2, 1_2_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase : int = self.dummy_unet_condition UpperCAmelCase : List[Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=lowerCamelCase__, mel=lowerCamelCase__, scheduler=lowerCamelCase__ ) UpperCAmelCase : Optional[int] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) np.random.seed(0 ) UpperCAmelCase : List[str] = torch.rand((1, 1, 1_0) ) UpperCAmelCase : Optional[Any] = pipe(generator=lowerCamelCase__, encoding=lowerCamelCase__ ) UpperCAmelCase : Optional[Any] = output.images[0] UpperCAmelCase : Tuple = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:1_0] UpperCAmelCase : int = np.array([1_0_7, 1_0_3, 1_2_0, 1_2_7, 1_4_2, 1_2_2, 1_1_3, 1_2_2, 9_7, 1_1_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def __magic_name__ ( self : Tuple ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Dict ): UpperCAmelCase : List[str] = torch_device UpperCAmelCase : Tuple = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) UpperCAmelCase : Any = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase : int = torch.Generator(device=lowerCamelCase__ ).manual_seed(4_2 ) UpperCAmelCase : List[Any] = pipe(generator=lowerCamelCase__ ) UpperCAmelCase : List[Any] = output.audios[0] UpperCAmelCase : str = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCAmelCase : Any = np.frombuffer(image.tobytes(), dtype='''uint8''' )[:1_0] UpperCAmelCase : Optional[Any] = np.array([1_5_1, 1_6_7, 1_5_4, 1_4_4, 1_2_2, 1_3_4, 1_2_1, 1_0_5, 7_0, 2_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
336
'''simple docstring''' def _A ( lowercase__ ): lowercase__ = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase__ = True for i in range(0 , len(lowercase__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase__ , lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False for i in range(1 , len(lowercase__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase__ , lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False return input_list if __name__ == "__main__": print("Enter list to be sorted") __A = [int(x) for x in input().split()] # inputing elements of the list in one line __A = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
164
0
class _snake_case : def __init__( self ): __magic_name__ : dict[str, TrieNode] = {} # Mapping from char to TrieNode __magic_name__ : str = False def SCREAMING_SNAKE_CASE ( self , _a ): for word in words: self.insert(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : List[str] = self for char in word: if char not in curr.nodes: __magic_name__ : str = TrieNode() __magic_name__ : Any = curr.nodes[char] __magic_name__ : str = True def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : int = self for char in word: if char not in curr.nodes: return False __magic_name__ : Any = curr.nodes[char] return curr.is_leaf def SCREAMING_SNAKE_CASE ( self , _a ): def _delete(_a , _a , _a ) -> bool: if index == len(_a ): # If word does not exist if not curr.is_leaf: return False __magic_name__ : Tuple = False return len(curr.nodes ) == 0 __magic_name__ : Union[str, Any] = word[index] __magic_name__ : List[Any] = curr.nodes.get(_a ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted __magic_name__ : List[Any] = _delete(_a , _a , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _a , 0 ) def lowerCAmelCase_ ( _snake_case : TrieNode , _snake_case : str ) -> None: '''simple docstring''' if node.is_leaf: print(_snake_case , end=" " ) for key, value in node.nodes.items(): print_words(_snake_case , word + key ) def lowerCAmelCase_ ( ) -> bool: '''simple docstring''' __magic_name__ : Dict = "banana bananas bandana band apple all beast".split() __magic_name__ : Optional[Any] = TrieNode() root.insert_many(_snake_case ) # print_words(root, "") assert all(root.find(_snake_case ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def lowerCAmelCase_ ( _snake_case : str , _snake_case : bool ) -> None: '''simple docstring''' print(str(_snake_case ) , "works!" if passes else "doesn't work :(" ) def lowerCAmelCase_ ( ) -> None: '''simple docstring''' assert test_trie() def lowerCAmelCase_ ( ) -> None: '''simple docstring''' print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
41
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case : int = logging.get_logger(__name__) def lowerCAmelCase_ ( _snake_case : str ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Optional[int] = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __magic_name__ : int = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _snake_case ) if matches: __magic_name__ : List[str] = float(matches[1] ) __magic_name__ : Dict = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __magic_name__ : List[str] = 1001 __magic_name__ : Tuple = "imagenet-1k-id2label.json" __magic_name__ : Union[str, Any] = "huggingface/label-files" __magic_name__ : str = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="dataset" ) , "r" ) ) __magic_name__ : Tuple = {int(_snake_case ) + 1: v for k, v in idalabel.items()} __magic_name__ : Dict = "background" __magic_name__ : str = idalabel __magic_name__ : List[Any] = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( ) -> str: '''simple docstring''' __magic_name__ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" __magic_name__ : Any = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( _snake_case : str , _snake_case : Optional[int] , _snake_case : Any , _snake_case : int=False ) -> Optional[int]: '''simple docstring''' __magic_name__ : int = get_mobilenet_va_config(_snake_case ) # Load 🤗 model __magic_name__ : List[Any] = MobileNetVaForImageClassification(_snake_case ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_snake_case , _snake_case , _snake_case ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __magic_name__ : Dict = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) __magic_name__ : int = image_processor(images=prepare_img() , return_tensors="pt" ) __magic_name__ : Any = model(**_snake_case ) __magic_name__ : Dict = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __magic_name__ : Tuple = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": __magic_name__ : Optional[Any] = torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: __magic_name__ : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _snake_case , atol=1E-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print("Pushing to the hub..." ) __magic_name__ : List[str] = "google/" + model_name image_processor.push_to_hub(_snake_case ) model.push_to_hub(_snake_case ) if __name__ == "__main__": snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) snake_case : str = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
41
1
"""simple docstring""" import os from math import logaa def lowercase ( __snake_case : int = "base_exp.txt" ): lowercase_ : float = 0 lowercase_ : str = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) ): lowercase_ : Dict = list(map(__snake_case , line.split(''',''' ) ) ) if x * logaa(__snake_case ) > largest: lowercase_ : Tuple = x * logaa(__snake_case ) lowercase_ : Union[str, Any] = i + 1 return result if __name__ == "__main__": print(solution())
33
'''simple docstring''' from heapq import heappop, heappush import numpy as np def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> tuple[float | int, list[tuple[int, int]]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = grid.shape lowerCamelCase__ : List[str] = [-1, 1, 0, 0] lowerCamelCase__ : Dict = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowerCamelCase__ , lowerCamelCase__ : Any = [(0, source)], set() lowerCamelCase__ : Tuple = np.full((rows, cols) , np.inf ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Optional[int] = np.empty((rows, cols) , dtype=UpperCamelCase ) lowerCamelCase__ : str = None while queue: ((lowerCamelCase__) , (lowerCamelCase__)) : List[str] = heappop(UpperCamelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowerCamelCase__ : Optional[int] = [] while (x, y) != source: path.append((x, y) ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = predecessors[x, y] path.append(UpperCamelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCamelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowerCamelCase__ : Any = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCamelCase , (dist + 1, (nx, ny)) ) lowerCamelCase__ : Union[str, Any] = dist + 1 lowerCamelCase__ : List[str] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
41
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( _a ): snake_case__ : Union[str, Any] = ["""image_processor""", """tokenizer"""] snake_case__ : Union[str, Any] = """LayoutLMv3ImageProcessor""" snake_case__ : Any = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : Any ) -> int: a_ : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __lowerCAmelCase , ) a_ : Union[str, Any] = kwargs.pop('feature_extractor' ) a_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def __call__( self : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict = None , SCREAMING_SNAKE_CASE__ : Any = None , SCREAMING_SNAKE_CASE__ : Tuple = None , SCREAMING_SNAKE_CASE__ : int = None , SCREAMING_SNAKE_CASE__ : str = True , SCREAMING_SNAKE_CASE__ : Optional[int] = False , SCREAMING_SNAKE_CASE__ : List[Any] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = 0 , SCREAMING_SNAKE_CASE__ : Optional[Any] = None , SCREAMING_SNAKE_CASE__ : List[str] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : List[Any] = False , SCREAMING_SNAKE_CASE__ : Optional[int] = False , SCREAMING_SNAKE_CASE__ : Optional[Any] = False , SCREAMING_SNAKE_CASE__ : Optional[Any] = False , SCREAMING_SNAKE_CASE__ : List[Any] = True , SCREAMING_SNAKE_CASE__ : Dict = None , **SCREAMING_SNAKE_CASE__ : int , ) -> Union[str, Any]: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor a_ : Union[str, Any] = self.image_processor(images=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): a_ : str = [text] # add batch dimension (as the image processor always adds a batch dimension) a_ : Dict = features['words'] a_ : List[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) # add pixel values a_ : Union[str, Any] = features.pop('pixel_values' ) if return_overflowing_tokens is True: a_ : Union[str, Any] = self.get_overflowing_images(__lowerCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) a_ : Optional[Any] = images return encoded_inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image a_ : Optional[int] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F""" {len(__lowerCAmelCase )} and {len(__lowerCAmelCase )}""" ) return images_with_overflow def SCREAMING_SNAKE_CASE ( self : str , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Dict ) -> Any: return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def SCREAMING_SNAKE_CASE ( self : int ) -> str: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __lowerCAmelCase , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __lowerCAmelCase , ) return self.image_processor
371
def SCREAMING_SNAKE_CASE_ ( __A : int ) -> int: """simple docstring""" if not isinstance(__A , __A ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
120
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowercase : Optional[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( lowercase__ ): def __init__( self : Dict , *_lowercase : Optional[Any] , **_lowercase : int ): warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
332
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ : Any = {'UserAgent': UserAgent().random} def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] ) -> dict: """simple docstring""" a_ : Tuple = script.contents[0] a_ : int = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]: a_ : Tuple = F"""https://www.instagram.com/{username}/""" a_ : Optional[Any] = self.get_json() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> dict: a_ : Any = requests.get(self.url , headers=SCREAMING_SNAKE_CASE__ ).text a_ : Dict = BeautifulSoup(SCREAMING_SNAKE_CASE__ , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Union[str, Any] ) -> str: return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self : Optional[int] ) -> str: return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: return self.user_data["username"] @property def SCREAMING_SNAKE_CASE ( self : str ) -> str: return self.user_data["full_name"] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.user_data["biography"] @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["business_email"] @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.user_data["external_url"] @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.user_data["edge_followed_by"]["count"] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self.user_data["edge_follow"]["count"] @property def SCREAMING_SNAKE_CASE ( self : str ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: return self.user_data["profile_pic_url_hd"] @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> bool: return self.user_data["is_verified"] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> bool: return self.user_data["is_private"] def SCREAMING_SNAKE_CASE_ ( __A : str = "github" ) -> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions a_ : int = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Union[str, Any] = InstagramUser('github') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
32
0
"""simple docstring""" from __future__ import annotations _A = list[list[int]] # assigning initial values to the grid _A = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution _A = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowercase_ ( __UpperCAmelCase ) -> str: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowercase_ ( __UpperCAmelCase ) -> Optional[Any]: if location := find_empty_location(lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ : int = digit if sudoku(lowerCAmelCase__ ) is not None: return grid lowerCAmelCase__ : Optional[Any] = 0 return None def lowercase_ ( __UpperCAmelCase ) -> Tuple: for row in grid: for cell in row: print(lowerCAmelCase__ , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 2_0) print_solution(example_grid) print("""\nExample grid solution:""") _A = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
366
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _A = logging.get_logger(__name__) _A = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } _A = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } _A = {"""facebook/blenderbot-3B""": 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowercase_ ( ) -> Tuple: lowerCAmelCase__ : int = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) lowerCAmelCase__ : Any = bs[:] lowerCAmelCase__ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCAmelCase ) cs.append(2**8 + n ) n += 1 lowerCAmelCase__ : Dict = [chr(__UpperCAmelCase ) for n in cs] return dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) def lowercase_ ( __UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : List[Any] = set() lowerCAmelCase__ : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ : Optional[Any] = char return pairs class _lowerCamelCase ( a_ ): _lowerCamelCase :Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase :List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase :Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase :Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : Any , UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : Any="replace" , UpperCamelCase : Optional[Any]="<s>" , UpperCamelCase : Union[str, Any]="</s>" , UpperCamelCase : Optional[int]="</s>" , UpperCamelCase : str="<s>" , UpperCamelCase : int="<unk>" , UpperCamelCase : int="<pad>" , UpperCamelCase : Dict="<mask>" , UpperCamelCase : Optional[int]=False , **UpperCamelCase : Optional[Any] , ) -> Any: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else bos_token lowerCAmelCase__ : int = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else eos_token lowerCAmelCase__ : Dict = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else sep_token lowerCAmelCase__ : Union[str, Any] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else cls_token lowerCAmelCase__ : int = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else unk_token lowerCAmelCase__ : Union[str, Any] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ : Union[str, Any] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( errors=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , add_prefix_space=UpperCamelCase , **UpperCamelCase , ) with open(UpperCamelCase , encoding="""utf-8""" ) as vocab_handle: lowerCAmelCase__ : Any = json.load(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in self.encoder.items()} lowerCAmelCase__ : Dict = errors # how to handle errors in decoding lowerCAmelCase__ : Union[str, Any] = bytes_to_unicode() lowerCAmelCase__ : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase , encoding="""utf-8""" ) as merges_handle: lowerCAmelCase__ : Optional[int] = merges_handle.read().split("""\n""" )[1:-1] lowerCAmelCase__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase__ : Any = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase__ : Tuple = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return len(self.encoder ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase ( self : List[str] , UpperCamelCase : str ) -> Union[str, Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowerCAmelCase__ : Union[str, Any] = tuple(UpperCamelCase ) lowerCAmelCase__ : List[str] = get_pairs(UpperCamelCase ) if not pairs: return token while True: lowerCAmelCase__ : List[str] = min(UpperCamelCase , key=lambda UpperCamelCase : self.bpe_ranks.get(UpperCamelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ : str = bigram lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : List[str] = 0 while i < len(UpperCamelCase ): try: lowerCAmelCase__ : Optional[Any] = word.index(UpperCamelCase , UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ : List[str] = j if word[i] == first and i < len(UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ : List[Any] = tuple(UpperCamelCase ) lowerCAmelCase__ : Tuple = new_word if len(UpperCamelCase ) == 1: break else: lowerCAmelCase__ : Any = get_pairs(UpperCamelCase ) lowerCAmelCase__ : Tuple = """ """.join(UpperCamelCase ) lowerCAmelCase__ : Tuple = word return word def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : List[str] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = [] for token in re.findall(self.pat , UpperCamelCase ): lowerCAmelCase__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase ).split(""" """ ) ) return bpe_tokens def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" return self.encoder.get(UpperCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return self.decoder.get(UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : List[str] = """""".join(UpperCamelCase ) lowerCAmelCase__ : List[str] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def _lowerCAmelCase ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : Union[str, Any] = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase__ : int = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase , ensure_ascii=UpperCamelCase ) + """\n""" ) lowerCAmelCase__ : Optional[Any] = 0 with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) lowerCAmelCase__ : Dict = token_index writer.write(""" """.join(UpperCamelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def _lowerCAmelCase ( self : Dict , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1, 1] + ([0] * len(UpperCamelCase )) + [1] def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = [self.sep_token_id] lowerCAmelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int]=False , **UpperCamelCase : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase__ : int = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase ) > 0 and not text[0].isspace()): lowerCAmelCase__ : Tuple = """ """ + text return (text, kwargs) def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ) -> Any: """simple docstring""" return token_ids_a + [self.eos_token_id] def _lowerCAmelCase ( self : str , UpperCamelCase : "Conversation" ) -> List[int]: """simple docstring""" lowerCAmelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = """ """.join(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = self.encode(UpperCamelCase ) if len(UpperCamelCase ) > self.model_max_length: lowerCAmelCase__ : List[str] = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
212
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _lowercase ( lowercase__ ): __lowerCAmelCase : Union[str, Any] = 3_8_4 if "tiny" in model_name: __lowerCAmelCase : Optional[Any] = [3, 3, 9, 3] __lowerCAmelCase : Tuple = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: __lowerCAmelCase : str = [3, 3, 2_7, 3] __lowerCAmelCase : str = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: __lowerCAmelCase : str = [3, 3, 2_7, 3] __lowerCAmelCase : List[str] = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] __lowerCAmelCase : Dict = 5_1_2 if "large" in model_name: __lowerCAmelCase : List[str] = [3, 3, 2_7, 3] __lowerCAmelCase : Dict = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] __lowerCAmelCase : Union[str, Any] = 7_6_8 if "xlarge" in model_name: __lowerCAmelCase : Any = [3, 3, 2_7, 3] __lowerCAmelCase : str = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] __lowerCAmelCase : str = 1_0_2_4 # set label information __lowerCAmelCase : Optional[Any] = 1_5_0 __lowerCAmelCase : int = '''huggingface/label-files''' __lowerCAmelCase : str = '''ade20k-id2label.json''' __lowerCAmelCase : Tuple = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='''dataset''' ) , '''r''' ) ) __lowerCAmelCase : str = {int(lowercase__ ): v for k, v in idalabel.items()} __lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} __lowerCAmelCase : str = ConvNextConfig( depths=lowercase__ , hidden_sizes=lowercase__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __lowerCAmelCase : List[Any] = UperNetConfig( backbone_config=lowercase__ , auxiliary_in_channels=lowercase__ , num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def _lowercase ( lowercase__ ): __lowerCAmelCase : Optional[Any] = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.{j}.gamma""", f"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((f"""backbone.downsample_layers.{i}.0.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.0.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Optional[Any] = dct.pop(lowercase__ ) __lowerCAmelCase : List[str] = val def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Dict = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } __lowerCAmelCase : str = model_name_to_url[model_name] __lowerCAmelCase : Tuple = torch.hub.load_state_dict_from_url(lowercase__ , map_location='''cpu''' )['''state_dict'''] __lowerCAmelCase : Optional[int] = get_upernet_config(lowercase__ ) __lowerCAmelCase : List[Any] = UperNetForSemanticSegmentation(lowercase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __lowerCAmelCase : str = state_dict.pop(lowercase__ ) if "bn" in key: __lowerCAmelCase : Tuple = key.replace('''bn''' , '''batch_norm''' ) __lowerCAmelCase : Dict = val # rename keys __lowerCAmelCase : Tuple = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ ) # verify on image __lowerCAmelCase : Dict = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' __lowerCAmelCase : Optional[int] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('''RGB''' ) __lowerCAmelCase : Optional[int] = SegformerImageProcessor() __lowerCAmelCase : List[str] = processor(lowercase__ , return_tensors='''pt''' ).pixel_values with torch.no_grad(): __lowerCAmelCase : int = model(lowercase__ ) if model_name == "upernet-convnext-tiny": __lowerCAmelCase : str = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": __lowerCAmelCase : List[str] = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": __lowerCAmelCase : Optional[Any] = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": __lowerCAmelCase : int = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": __lowerCAmelCase : List[Any] = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase__ , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[F"upernet-convnext-{size}" for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _UpperCamelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
275
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowercase (unittest.TestCase ): @property def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : List[str] = self.dummy_uncond_unet __lowerCAmelCase : Any = PNDMScheduler() __lowerCAmelCase : Dict = PNDMPipeline(unet=A_ , scheduler=A_ ) pndm.to(A_ ) pndm.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Optional[Any] = torch.manual_seed(0 ) __lowerCAmelCase : Any = pndm(generator=A_ , num_inference_steps=20 , output_type='''numpy''' ).images __lowerCAmelCase : Optional[Any] = torch.manual_seed(0 ) __lowerCAmelCase : List[Any] = pndm(generator=A_ , num_inference_steps=20 , output_type='''numpy''' , return_dict=A_ )[0] __lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] __lowerCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : int = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Optional[int] = '''google/ddpm-cifar10-32''' __lowerCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained(A_ ) __lowerCAmelCase : int = PNDMScheduler() __lowerCAmelCase : Any = PNDMPipeline(unet=A_ , scheduler=A_ ) pndm.to(A_ ) pndm.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Tuple = torch.manual_seed(0 ) __lowerCAmelCase : Any = pndm(generator=A_ , output_type='''numpy''' ).images __lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : List[Any] = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
275
1
'''simple docstring''' import functools def _A ( A__ , A__ ): """simple docstring""" __lowercase = len(A__ ) __lowercase = len(A__ ) @functools.cache def min_distance(A__ , A__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __lowercase = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A__ ) , 1 + min_distance(A__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , lowerCamelCase__ , ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = RobertaConfig SCREAMING_SNAKE_CASE : Optional[Any] = 'roberta' def __init__( self : List[Any] ,lowercase__ : Optional[Any] ): super().__init__(lowercase__ ) __lowercase = RobertaEmbeddings(lowercase__ ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , lowerCamelCase__ , ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = RobertaConfig SCREAMING_SNAKE_CASE : Any = 'roberta' def __init__( self : Union[str, Any] ,lowercase__ : int ): super().__init__(lowercase__ ) __lowercase = config.num_labels __lowercase = config.num_hidden_layers __lowercase = DeeRobertaModel(lowercase__ ) __lowercase = nn.Dropout(config.hidden_dropout_prob ) __lowercase = nn.Linear(config.hidden_size ,self.config.num_labels ) @add_start_docstrings_to_model_forward(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any]=None ,lowercase__ : Union[str, Any]=None ,lowercase__ : Optional[int]=None ,lowercase__ : int=None ,lowercase__ : Dict=None ,lowercase__ : List[Any]=None ,lowercase__ : str=None ,lowercase__ : List[Any]=-1 ,lowercase__ : Tuple=False ,): __lowercase = self.num_layers try: __lowercase = self.roberta( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,position_ids=lowercase__ ,head_mask=lowercase__ ,inputs_embeds=lowercase__ ,) __lowercase = outputs[1] __lowercase = self.dropout(lowercase__ ) __lowercase = self.classifier(lowercase__ ) __lowercase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowercase = e.message __lowercase = e.exit_layer __lowercase = outputs[0] if not self.training: __lowercase = entropy(lowercase__ ) __lowercase = [] __lowercase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(logits.view(-1 ) ,labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) # work with highway exits __lowercase = [] for highway_exit in outputs[-1]: __lowercase = highway_exit[0] if not self.training: highway_logits_all.append(lowercase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) highway_losses.append(lowercase__ ) if train_highway: __lowercase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __lowercase = (loss,) + outputs if not self.training: __lowercase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowercase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
52
0
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Tuple = '''efficientformer''' def __init__( self : Optional[int] ,_a : List[int] = [3, 2, 6, 4] ,_a : List[int] = [48, 96, 224, 448] ,_a : List[bool] = [True, True, True, True] ,_a : int = 448 ,_a : int = 32 ,_a : int = 4 ,_a : int = 7 ,_a : int = 5 ,_a : int = 8 ,_a : int = 4 ,_a : float = 0.0 ,_a : int = 16 ,_a : int = 3 ,_a : int = 3 ,_a : int = 3 ,_a : int = 2 ,_a : int = 1 ,_a : float = 0.0 ,_a : int = 1 ,_a : bool = True ,_a : bool = True ,_a : float = 1E-5 ,_a : str = "gelu" ,_a : float = 0.02 ,_a : float = 1E-12 ,_a : int = 224 ,_a : float = 1E-05 ,**_a : Union[str, Any] ,): '''simple docstring''' super().__init__(**_a ) _a : Union[str, Any] = hidden_act _a : Union[str, Any] = hidden_dropout_prob _a : Optional[int] = hidden_sizes _a : int = num_hidden_layers _a : Optional[int] = num_attention_heads _a : str = initializer_range _a : List[str] = layer_norm_eps _a : List[Any] = patch_size _a : Optional[int] = num_channels _a : List[str] = depths _a : int = mlp_expansion_ratio _a : List[Any] = downsamples _a : Any = dim _a : Tuple = key_dim _a : Union[str, Any] = attention_ratio _a : Union[str, Any] = resolution _a : Union[str, Any] = pool_size _a : Tuple = downsample_patch_size _a : Tuple = downsample_stride _a : str = downsample_pad _a : str = drop_path_rate _a : List[str] = num_metaad_blocks _a : Any = distillation _a : Any = use_layer_scale _a : Optional[Any] = layer_scale_init_value _a : str = image_size _a : List[str] = batch_norm_eps
271
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : List[Any] = None @property def __lowercase ( self : Dict ): '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def __lowercase ( self : str ): '''simple docstring''' _a : Dict = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a ,'feature_size' ) ) self.assertTrue(hasattr(_a ,'sampling_rate' ) ) self.assertTrue(hasattr(_a ,'padding_value' ) ) def __lowercase ( self : int ): '''simple docstring''' _a : Any = self.feat_extract_tester.prepare_inputs_for_common() _a : str = self.feature_extraction_class(**self.feat_extract_dict ) _a : int = feat_extract.model_input_names[0] _a : List[Any] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_a ) == len(_a ) for x, y in zip(_a ,processed_features[input_name] ) ) ) _a : Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_a ) _a : Union[str, Any] = BatchFeature({input_name: speech_inputs} ,tensor_type='np' ) _a : Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: _a : Optional[int] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def __lowercase ( self : Any ): '''simple docstring''' _a : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_a ) _a : Dict = self.feature_extraction_class(**self.feat_extract_dict ) _a : int = feat_extract.model_input_names[0] _a : str = BatchFeature({input_name: speech_inputs} ,tensor_type='pt' ) _a : str = processed_features[input_name] if len(batch_features_input.shape ) < 3: _a : str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def __lowercase ( self : int ): '''simple docstring''' _a : int = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_a ) _a : Dict = self.feature_extraction_class(**self.feat_extract_dict ) _a : Tuple = feat_extract.model_input_names[0] _a : int = BatchFeature({input_name: speech_inputs} ,tensor_type='tf' ) _a : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: _a : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def __lowercase ( self : Dict ,_a : Any=False ): '''simple docstring''' def _inputs_have_equal_length(_a : Tuple ): _a : Tuple = len(input[0] ) for input_slice in input[1:]: if len(_a ) != length: return False return True def _inputs_are_equal(_a : Optional[Any] ,_a : Union[str, Any] ): if len(_a ) != len(_a ): return False for input_slice_a, input_slice_a in zip(_a ,_a ): if not np.allclose(np.asarray(_a ) ,np.asarray(_a ) ,atol=1E-3 ): return False return True _a : int = self.feature_extraction_class(**self.feat_extract_dict ) _a : Tuple = self.feat_extract_tester.prepare_inputs_for_common(numpify=_a ) _a : Union[str, Any] = feat_extract.model_input_names[0] _a : Tuple = BatchFeature({input_name: speech_inputs} ) _a : str = self.feat_extract_tester.seq_length_diff _a : Dict = self.feat_extract_tester.max_seq_length + pad_diff _a : Dict = self.feat_extract_tester.min_seq_length _a : Optional[Any] = self.feat_extract_tester.batch_size _a : Tuple = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _a : int = feat_extract.pad(_a ,padding=_a ) _a : List[Any] = input_a[input_name] _a : Tuple = feat_extract.pad(_a ,padding='longest' ) _a : Any = input_a[input_name] _a : Optional[Any] = feat_extract.pad(_a ,padding='max_length' ,max_length=len(speech_inputs[-1] ) ) _a : List[str] = input_a[input_name] _a : List[str] = feat_extract.pad(_a ,padding='longest' ,return_tensors='np' ) _a : str = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_a ): feat_extract.pad(_a ,padding='max_length' )[input_name] _a : int = feat_extract.pad( _a ,padding='max_length' ,max_length=_a ,return_tensors='np' ) _a : Optional[int] = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_are_equal(_a ,_a ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _a : Tuple = feat_extract.pad(_a ,pad_to_multiple_of=10 ) _a : List[str] = input_a[input_name] _a : str = feat_extract.pad(_a ,padding='longest' ,pad_to_multiple_of=10 ) _a : Tuple = input_a[input_name] _a : Optional[int] = feat_extract.pad( _a ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=_a ) _a : Any = input_a[input_name] _a : Optional[int] = feat_extract.pad( _a ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=_a ,return_tensors='np' ,) _a : Dict = input_a[input_name] self.assertTrue(all(len(_a ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_a ,_a ) ) _a : List[str] = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_a ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _a : Any = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def __lowercase ( self : List[Any] ,_a : Optional[int]=False ): '''simple docstring''' def _inputs_have_equal_length(_a : List[str] ): _a : Union[str, Any] = len(input[0] ) for input_slice in input[1:]: if len(_a ) != length: return False return True def _inputs_are_equal(_a : List[str] ,_a : List[str] ): if len(_a ) != len(_a ): return False for input_slice_a, input_slice_a in zip(_a ,_a ): if not np.allclose(np.asarray(_a ) ,np.asarray(_a ) ,atol=1E-3 ): return False return True _a : Dict = self.feature_extraction_class(**self.feat_extract_dict ) _a : str = self.feat_extract_tester.prepare_inputs_for_common(numpify=_a ) _a : Any = feat_extract.model_input_names[0] _a : List[Any] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _a : Union[str, Any] = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=_a ) _a : str = input_a[input_name] _a : List[str] = feat_extract.pad(_a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ) _a : Tuple = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertFalse(_inputs_have_equal_length(_a ) ) # truncate to smallest with np _a : Dict = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=_a ,) _a : Any = input_a[input_name] _a : List[Any] = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ) _a : int = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_a ) ) # truncate to middle _a : Dict = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=_a ,return_tensors='np' ,) _a : List[Any] = input_a[input_name] _a : Tuple = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=_a ) _a : Tuple = input_a[input_name] _a : Tuple = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' ) _a : Dict = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_are_equal(_a ,_a ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_a ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_a ): feat_extract.pad(_a ,truncation=_a )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_a ): feat_extract.pad(_a ,padding='longest' ,truncation=_a )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_a ): feat_extract.pad(_a ,padding='longest' ,truncation=_a )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_a ): feat_extract.pad(_a ,padding='max_length' ,truncation=_a )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _a : Optional[Any] = 12 _a : List[Any] = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=_a ,truncation=_a ,) _a : Tuple = input_a[input_name] _a : str = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=_a ,) _a : List[Any] = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _a : List[Any] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _a : Union[str, Any] = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertFalse(_inputs_have_equal_length(_a ) ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' self._check_padding(numpify=_a ) def __lowercase ( self : Tuple ): '''simple docstring''' self._check_padding(numpify=_a ) def __lowercase ( self : Dict ): '''simple docstring''' self._check_truncation(numpify=_a ) def __lowercase ( self : str ): '''simple docstring''' self._check_truncation(numpify=_a ) @require_torch def __lowercase ( self : Dict ): '''simple docstring''' _a : Any = self.feature_extraction_class(**self.feat_extract_dict ) _a : List[Any] = self.feat_extract_tester.prepare_inputs_for_common() _a : Union[str, Any] = feat_extract.model_input_names[0] _a : Optional[int] = BatchFeature({input_name: speech_inputs} ) _a : List[Any] = feat_extract.pad(_a ,padding='longest' ,return_tensors='np' )[input_name] _a : List[str] = feat_extract.pad(_a ,padding='longest' ,return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def __lowercase ( self : int ): '''simple docstring''' _a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) _a : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() _a : Dict = feat_extract.model_input_names[0] _a : Optional[Any] = BatchFeature({input_name: speech_inputs} ) _a : Dict = feat_extract.pad(_a ,padding='longest' ,return_tensors='np' )[input_name] _a : Any = feat_extract.pad(_a ,padding='longest' ,return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : str = self.feat_extract_dict _a : List[Any] = True _a : Optional[int] = self.feature_extraction_class(**_a ) _a : List[Any] = self.feat_extract_tester.prepare_inputs_for_common() _a : Tuple = [len(_a ) for x in speech_inputs] _a : int = feat_extract.model_input_names[0] _a : Optional[Any] = BatchFeature({input_name: speech_inputs} ) _a : str = feat_extract.pad(_a ,padding='longest' ,return_tensors='np' ) self.assertIn('attention_mask' ,_a ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,_a ) def __lowercase ( self : int ): '''simple docstring''' _a : Any = self.feat_extract_dict _a : Tuple = True _a : Optional[int] = self.feature_extraction_class(**_a ) _a : Dict = self.feat_extract_tester.prepare_inputs_for_common() _a : Dict = [len(_a ) for x in speech_inputs] _a : Union[str, Any] = feat_extract.model_input_names[0] _a : Any = BatchFeature({input_name: speech_inputs} ) _a : List[Any] = min(_a ) _a : Dict = feat_extract.pad( _a ,padding='max_length' ,max_length=_a ,truncation=_a ,return_tensors='np' ) self.assertIn('attention_mask' ,_a ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
271
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
166
"""simple docstring""" import sys import turtle def a__ ( lowerCAmelCase , lowerCAmelCase ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(lowerCAmelCase , get_mid(lowerCAmelCase , lowerCAmelCase ) , get_mid(lowerCAmelCase , lowerCAmelCase ) , depth - 1 ) triangle(lowerCAmelCase , get_mid(lowerCAmelCase , lowerCAmelCase ) , get_mid(lowerCAmelCase , lowerCAmelCase ) , depth - 1 ) triangle(lowerCAmelCase , get_mid(lowerCAmelCase , lowerCAmelCase ) , get_mid(lowerCAmelCase , lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) _A = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") _A = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
166
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase__ : Any = logging.get_logger(__name__) class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = ["input_features"] def __init__( self : Optional[int] ,lowerCamelCase__ : Any=80 ,lowerCamelCase__ : Optional[Any]=16_000 ,lowerCamelCase__ : List[Any]=160 ,lowerCamelCase__ : int=30 ,lowerCamelCase__ : int=400 ,lowerCamelCase__ : Any=0.0 ,lowerCamelCase__ : Union[str, Any]=False ,**lowerCamelCase__ : Optional[Any] ,): super().__init__( feature_size=lowerCamelCase__ ,sampling_rate=lowerCamelCase__ ,padding_value=lowerCamelCase__ ,return_attention_mask=lowerCamelCase__ ,**lowerCamelCase__ ,) UpperCAmelCase__ = n_fft UpperCAmelCase__ = hop_length UpperCAmelCase__ = chunk_length UpperCAmelCase__ = chunk_length * sampling_rate UpperCAmelCase__ = self.n_samples // hop_length UpperCAmelCase__ = sampling_rate UpperCAmelCase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 ,num_mel_filters=lowerCamelCase__ ,min_frequency=0.0 ,max_frequency=8_0_0_0.0 ,sampling_rate=lowerCamelCase__ ,norm='slaney' ,mel_scale='slaney' ,) def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : np.array ): UpperCAmelCase__ = spectrogram( lowerCamelCase__ ,window_function(self.n_fft ,'hann' ) ,frame_length=self.n_fft ,hop_length=self.hop_length ,power=2.0 ,mel_filters=self.mel_filters ,log_mel='log10' ,) UpperCAmelCase__ = log_spec[:, :-1] UpperCAmelCase__ = np.maximum(lowerCamelCase__ ,log_spec.max() - 8.0 ) UpperCAmelCase__ = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __lowerCAmelCase ( lowerCamelCase__ : List[np.ndarray] ,lowerCamelCase__ : List[np.ndarray] ,lowerCamelCase__ : float = 0.0 ): if attention_mask is not None: UpperCAmelCase__ = np.array(lowerCamelCase__ ,np.intaa ) UpperCAmelCase__ = [] for vector, length in zip(lowerCamelCase__ ,attention_mask.sum(-1 ) ): UpperCAmelCase__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCAmelCase__ = padding_value normed_input_values.append(lowerCamelCase__ ) else: UpperCAmelCase__ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : int ,lowerCamelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : Optional[Union[str, TensorType]] = None ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[str] = "max_length" ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : Optional[bool] = None ,**lowerCamelCase__ : Dict ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) UpperCAmelCase__ = isinstance(lowerCamelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) UpperCAmelCase__ = is_batched_numpy or ( isinstance(lowerCamelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase__ = [np.asarray([speech] ,dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__ ,np.ndarray ): UpperCAmelCase__ = np.asarray(lowerCamelCase__ ,dtype=np.floataa ) elif isinstance(lowerCamelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase__ = [np.asarray([raw_speech] ).T] UpperCAmelCase__ = BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding UpperCAmelCase__ = self.pad( lowerCamelCase__ ,padding=lowerCamelCase__ ,max_length=max_length if max_length else self.n_samples ,truncation=lowerCamelCase__ ,pad_to_multiple_of=lowerCamelCase__ ,return_attention_mask=return_attention_mask or do_normalize ,) # zero-mean and unit-variance normalization if do_normalize: UpperCAmelCase__ = self.zero_mean_unit_var_norm( padded_inputs['input_features'] ,attention_mask=padded_inputs['attention_mask'] ,padding_value=self.padding_value ,) UpperCAmelCase__ = np.stack(padded_inputs['input_features'] ,axis=0 ) # make sure list is in array format UpperCAmelCase__ = padded_inputs.get('input_features' ).transpose(2 ,0 ,1 ) UpperCAmelCase__ = [self._np_extract_fbank_features(lowerCamelCase__ ) for waveform in input_features[0]] if isinstance(input_features[0] ,lowerCamelCase__ ): UpperCAmelCase__ = [np.asarray(lowerCamelCase__ ,dtype=np.floataa ) for feature in input_features] else: UpperCAmelCase__ = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCAmelCase__ = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: UpperCAmelCase__ = padded_inputs.convert_to_tensors(lowerCamelCase__ ) return padded_inputs def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
98
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = '''deit''' def __init__( self : int ,A_ : Optional[Any]=768 ,A_ : Union[str, Any]=12 ,A_ : Dict=12 ,A_ : int=3072 ,A_ : Optional[Any]="gelu" ,A_ : Dict=0.0 ,A_ : Any=0.0 ,A_ : str=0.02 ,A_ : Tuple=1e-12 ,A_ : Union[str, Any]=224 ,A_ : Optional[Any]=16 ,A_ : List[Any]=3 ,A_ : Optional[Any]=True ,A_ : Optional[int]=16 ,**A_ : Union[str, Any] ,) -> Dict: super().__init__(**A_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = encoder_stride class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: int = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> float: return 1e-4
74
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
360
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : str = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' for attribute in key.split("." ): _lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCamelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCamelCase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : Tuple = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : List[Any] = value elif weight_type == "bias": _lowerCamelCase : str = value elif weight_type == "running_mean": _lowerCamelCase : Optional[int] = value elif weight_type == "running_var": _lowerCamelCase : Optional[Any] = value elif weight_type == "num_batches_tracked": _lowerCamelCase : int = value elif weight_type == "inv_freq": _lowerCamelCase : List[str] = value else: _lowerCamelCase : Optional[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = fairseq_model.state_dict() _lowerCamelCase : List[Any] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCamelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : Dict = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCamelCase : int = True if "*" in mapped_key: _lowerCamelCase : Tuple = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCamelCase : int = mapped_key.replace("*" , _lowerCamelCase ) if "pos_bias_u" in name: _lowerCamelCase : int = None elif "pos_bias_v" in name: _lowerCamelCase : Any = None elif "weight_g" in name: _lowerCamelCase : Any = "weight_g" elif "weight_v" in name: _lowerCamelCase : Any = "weight_v" elif "bias" in name: _lowerCamelCase : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Dict = "weight" elif "running_mean" in name: _lowerCamelCase : str = "running_mean" elif "inv_freq" in name: _lowerCamelCase : List[Any] = "inv_freq" elif "running_var" in name: _lowerCamelCase : Tuple = "running_var" elif "num_batches_tracked" in name: _lowerCamelCase : str = "num_batches_tracked" else: _lowerCamelCase : Dict = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = full_name.split("conv_layers." )[-1] _lowerCamelCase : List[Any] = name.split("." ) _lowerCamelCase : Union[str, Any] = int(items[0] ) _lowerCamelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> Dict: '''simple docstring''' if config_path is not None: _lowerCamelCase : Union[str, Any] = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act="swish" ) else: _lowerCamelCase : Dict = WavaVecaConformerConfig() if "rope" in checkpoint_path: _lowerCamelCase : List[Any] = "rotary" if is_finetuned: if dict_path: _lowerCamelCase : Dict = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCamelCase : Optional[int] = target_dict.pad_index _lowerCamelCase : Dict = target_dict.bos_index _lowerCamelCase : Optional[Any] = target_dict.eos_index _lowerCamelCase : str = len(target_dict.symbols ) _lowerCamelCase : int = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCamelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) _lowerCamelCase : Tuple = True if config.feat_extract_norm == "layer" else False _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = WavaVecaConformerForCTC(_lowerCamelCase ) else: _lowerCamelCase : Any = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _lowerCamelCase : List[Any] = argparse.Namespace(task="audio_pretraining" ) _lowerCamelCase : Optional[Any] = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCamelCase : Dict = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase : str = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
340
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ : int = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCAmelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
"""simple docstring""" def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Optional[int] = [1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = 0, 0, 0 SCREAMING_SNAKE_CASE__ : List[str] = ugly_nums[ia] * 2 SCREAMING_SNAKE_CASE__ : int = ugly_nums[ia] * 3 SCREAMING_SNAKE_CASE__ : Any = ugly_nums[ia] * 5 for _ in range(1 ,_snake_case ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = min(_snake_case ,_snake_case ,_snake_case ) ugly_nums.append(_snake_case ) if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ : Optional[int] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ : List[str] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ : Tuple = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"""{ugly_numbers(2_0_0) = }""")
25
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Any = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 'mobilenet_v2' def __init__( self : Any , lowercase_ : Optional[Any]=3 , lowercase_ : List[str]=224 , lowercase_ : Optional[int]=1.0 , lowercase_ : Any=8 , lowercase_ : Optional[int]=8 , lowercase_ : Tuple=6 , lowercase_ : str=32 , lowercase_ : int=True , lowercase_ : Any=True , lowercase_ : Tuple="relu6" , lowercase_ : List[str]=True , lowercase_ : Tuple=0.8 , lowercase_ : Any=0.0_2 , lowercase_ : Dict=0.0_0_1 , lowercase_ : List[str]=255 , **lowercase_ : Any , ): super().__init__(**lowercase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) UpperCamelCase__ : int =num_channels UpperCamelCase__ : str =image_size UpperCamelCase__ : Optional[Any] =depth_multiplier UpperCamelCase__ : Optional[int] =depth_divisible_by UpperCamelCase__ : List[str] =min_depth UpperCamelCase__ : Union[str, Any] =expand_ratio UpperCamelCase__ : Union[str, Any] =output_stride UpperCamelCase__ : int =first_layer_is_expansion UpperCamelCase__ : Any =finegrained_output UpperCamelCase__ : Dict =hidden_act UpperCamelCase__ : Optional[Any] =tf_padding UpperCamelCase__ : Union[str, Any] =classifier_dropout_prob UpperCamelCase__ : int =initializer_range UpperCamelCase__ : Tuple =layer_norm_eps UpperCamelCase__ : str =semantic_loss_ignore_index class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = version.parse('1.11' ) @property def _lowerCAmelCase ( self : Any ): return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def _lowerCAmelCase ( self : List[Any] ): if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def _lowerCAmelCase ( self : int ): return 1e-4
157
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _SCREAMING_SNAKE_CASE : Dict = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _SCREAMING_SNAKE_CASE : Any = logging.getLogger() def _lowerCAmelCase ( ): '''simple docstring''' UpperCamelCase__ : Any =argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCamelCase__ : Dict =parser.parse_args() return args.f def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int="eval" ): '''simple docstring''' UpperCamelCase__ : Dict =os.path.join(UpperCAmelCase , F'''{split}_results.json''' ) if os.path.exists(UpperCAmelCase ): with open(UpperCAmelCase , '''r''' ) as f: return json.load(UpperCAmelCase ) raise ValueError(F'''can\'t find {path}''' ) _SCREAMING_SNAKE_CASE : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __a ( snake_case__ ): """simple docstring""" def _lowerCAmelCase ( self : int ): UpperCamelCase__ : Union[str, Any] =self.get_auto_remove_tmp_dir() UpperCamelCase__ : int =f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_flax_glue.main() UpperCamelCase__ : Any =get_results(lowercase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) @slow def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ : List[str] =self.get_auto_remove_tmp_dir() UpperCamelCase__ : str =f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_clm_flax.main() UpperCamelCase__ : Any =get_results(lowercase_ ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ : List[Any] =self.get_auto_remove_tmp_dir() UpperCamelCase__ : List[Any] =f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_summarization_flax.main() UpperCamelCase__ : Union[str, Any] =get_results(lowercase_ , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def _lowerCAmelCase ( self : Dict ): UpperCamelCase__ : int =self.get_auto_remove_tmp_dir() UpperCamelCase__ : Optional[int] =f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_mlm_flax.main() UpperCamelCase__ : List[Any] =get_results(lowercase_ ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : Optional[Any] =self.get_auto_remove_tmp_dir() UpperCamelCase__ : Optional[int] =f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_ta_mlm_flax.main() UpperCamelCase__ : Optional[int] =get_results(lowercase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.4_2 ) @slow def _lowerCAmelCase ( self : List[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu UpperCamelCase__ : Union[str, Any] =7 if get_gpu_count() > 1 else 2 UpperCamelCase__ : int =self.get_auto_remove_tmp_dir() UpperCamelCase__ : int =f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_flax_ner.main() UpperCamelCase__ : Any =get_results(lowercase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def _lowerCAmelCase ( self : Tuple ): UpperCamelCase__ : Union[str, Any] =self.get_auto_remove_tmp_dir() UpperCamelCase__ : Any =f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(lowercase_ , '''argv''' , lowercase_ ): run_qa.main() UpperCamelCase__ : Tuple =get_results(lowercase_ ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
157
1
'''simple docstring''' def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): return 1 if input_a == input_a else 0 def __snake_case ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
55
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = StableUnCLIPPipeline _lowerCamelCase = TEXT_TO_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = 32 lowerCamelCase_ = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=UpperCamelCase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase_ = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=UpperCamelCase , num_layers=1 , ) torch.manual_seed(0 ) lowerCamelCase_ = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=UpperCamelCase , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowerCamelCase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase ) lowerCamelCase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase , layers_per_block=1 , upcast_attention=UpperCamelCase , use_linear_projection=UpperCamelCase , ) torch.manual_seed(0 ) lowerCamelCase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL() lowerCamelCase_ = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def snake_case ( self , UpperCamelCase , UpperCamelCase=0 ): """simple docstring""" if str(UpperCamelCase ).startswith("mps" ): lowerCamelCase_ = torch.manual_seed(UpperCamelCase ) else: lowerCamelCase_ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowerCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def snake_case ( self ): """simple docstring""" lowerCamelCase_ = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowerCamelCase_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase_ = pipe("anime turle" , generator=UpperCamelCase , output_type="np" ) lowerCamelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def snake_case ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowerCamelCase_ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase_ = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
55
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __snake_case ( nn.Module ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=0.0 , snake_case__ = None , snake_case__ = "geglu" , snake_case__ = None , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = True , snake_case__ = "layer_norm" , snake_case__ = False , ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase : List[Any] =only_cross_attention UpperCAmelCase : Optional[Any] =(num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' UpperCAmelCase : Dict =(num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: UpperCAmelCase : List[Any] =AdaLayerNorm(a_ , a_ ) elif self.use_ada_layer_norm_zero: UpperCAmelCase : List[str] =AdaLayerNormZero(a_ , a_ ) else: UpperCAmelCase : List[str] =nn.LayerNorm(a_ , elementwise_affine=a_ ) UpperCAmelCase : List[Any] =Attention( query_dim=a_ , heads=a_ , dim_head=a_ , dropout=a_ , bias=a_ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=a_ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. UpperCAmelCase : Union[str, Any] =( AdaLayerNorm(a_ , a_ ) if self.use_ada_layer_norm else nn.LayerNorm(a_ , elementwise_affine=a_ ) ) UpperCAmelCase : Union[str, Any] =Attention( query_dim=a_ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=a_ , dim_head=a_ , dropout=a_ , bias=a_ , upcast_attention=a_ , ) # is self-attn if encoder_hidden_states is none else: UpperCAmelCase : Dict =None UpperCAmelCase : Optional[int] =None # 3. Feed-forward UpperCAmelCase : Optional[Any] =nn.LayerNorm(a_ , elementwise_affine=a_ ) UpperCAmelCase : Union[str, Any] =FeedForward(a_ , dropout=a_ , activation_fn=a_ , final_dropout=a_ ) # let chunk size default to None UpperCAmelCase : Union[str, Any] =None UpperCAmelCase : Any =0 def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : int =chunk_size UpperCAmelCase : Any =dim def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , ) -> Union[str, Any]: '''simple docstring''' if self.use_ada_layer_norm: UpperCAmelCase : str =self.norma(a_ , a_ ) elif self.use_ada_layer_norm_zero: UpperCAmelCase : Any =self.norma( a_ , a_ , a_ , hidden_dtype=hidden_states.dtype ) else: UpperCAmelCase : Dict =self.norma(a_ ) UpperCAmelCase : Optional[Any] =cross_attention_kwargs if cross_attention_kwargs is not None else {} UpperCAmelCase : Union[str, Any] =self.attna( a_ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=a_ , **a_ , ) if self.use_ada_layer_norm_zero: UpperCAmelCase : Tuple =gate_msa.unsqueeze(1 ) * attn_output UpperCAmelCase : Union[str, Any] =attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: UpperCAmelCase : List[str] =( self.norma(a_ , a_ ) if self.use_ada_layer_norm else self.norma(a_ ) ) UpperCAmelCase : Tuple =self.attna( a_ , encoder_hidden_states=a_ , attention_mask=a_ , **a_ , ) UpperCAmelCase : str =attn_output + hidden_states # 3. Feed-forward UpperCAmelCase : Union[str, Any] =self.norma(a_ ) if self.use_ada_layer_norm_zero: UpperCAmelCase : List[str] =norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) UpperCAmelCase : str =norm_hidden_states.shape[self._chunk_dim] // self._chunk_size UpperCAmelCase : Dict =torch.cat( [self.ff(a_ ) for hid_slice in norm_hidden_states.chunk(a_ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: UpperCAmelCase : str =self.ff(a_ ) if self.use_ada_layer_norm_zero: UpperCAmelCase : Dict =gate_mlp.unsqueeze(1 ) * ff_output UpperCAmelCase : List[str] =ff_output + hidden_states return hidden_states class __snake_case ( nn.Module ): def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = 4 , snake_case__ = 0.0 , snake_case__ = "geglu" , snake_case__ = False , ) -> Optional[int]: '''simple docstring''' super().__init__() UpperCAmelCase : Dict =int(dim * mult ) UpperCAmelCase : Union[str, Any] =dim_out if dim_out is not None else dim if activation_fn == "gelu": UpperCAmelCase : Optional[int] =GELU(a_ , a_ ) if activation_fn == "gelu-approximate": UpperCAmelCase : int =GELU(a_ , a_ , approximate='''tanh''' ) elif activation_fn == "geglu": UpperCAmelCase : List[Any] =GEGLU(a_ , a_ ) elif activation_fn == "geglu-approximate": UpperCAmelCase : Dict =ApproximateGELU(a_ , a_ ) UpperCAmelCase : Any =nn.ModuleList([] ) # project in self.net.append(a_ ) # project dropout self.net.append(nn.Dropout(a_ ) ) # project out self.net.append(nn.Linear(a_ , a_ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(a_ ) ) def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' for module in self.net: UpperCAmelCase : str =module(a_ ) return hidden_states class __snake_case ( nn.Module ): def __init__( self , snake_case__ , snake_case__ , snake_case__ = "none" ) -> int: '''simple docstring''' super().__init__() UpperCAmelCase : Union[str, Any] =nn.Linear(a_ , a_ ) UpperCAmelCase : Tuple =approximate def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' if gate.device.type != "mps": return F.gelu(a_ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCAmelCase__ ( self , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int =self.proj(a_ ) UpperCAmelCase : str =self.gelu(a_ ) return hidden_states class __snake_case ( nn.Module ): def __init__( self , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' super().__init__() UpperCAmelCase : List[str] =nn.Linear(a_ , dim_out * 2 ) def UpperCAmelCase__ ( self , snake_case__ ) -> Any: '''simple docstring''' if gate.device.type != "mps": return F.gelu(a_ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =self.proj(a_ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(a_ ) class __snake_case ( nn.Module ): def __init__( self , snake_case__ , snake_case__ ) -> int: '''simple docstring''' super().__init__() UpperCAmelCase : Union[str, Any] =nn.Linear(a_ , a_ ) def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : List[Any] =self.proj(a_ ) return x * torch.sigmoid(1.702 * x ) class __snake_case ( nn.Module ): def __init__( self , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' super().__init__() UpperCAmelCase : Optional[Any] =nn.Embedding(a_ , a_ ) UpperCAmelCase : Optional[int] =nn.SiLU() UpperCAmelCase : Dict =nn.Linear(a_ , embedding_dim * 2 ) UpperCAmelCase : int =nn.LayerNorm(a_ , elementwise_affine=a_ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] =self.linear(self.silu(self.emb(a_ ) ) ) UpperCAmelCase : Union[str, Any] =torch.chunk(a_ , 2 ) UpperCAmelCase : Dict =self.norm(a_ ) * (1 + scale) + shift return x class __snake_case ( nn.Module ): def __init__( self , snake_case__ , snake_case__ ) -> Any: '''simple docstring''' super().__init__() UpperCAmelCase : Optional[int] =CombinedTimestepLabelEmbeddings(a_ , a_ ) UpperCAmelCase : Union[str, Any] =nn.SiLU() UpperCAmelCase : Union[str, Any] =nn.Linear(a_ , 6 * embedding_dim , bias=a_ ) UpperCAmelCase : List[Any] =nn.LayerNorm(a_ , elementwise_affine=a_ , eps=1e-6 ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.linear(self.silu(self.emb(a_ , a_ , hidden_dtype=a_ ) ) ) UpperCAmelCase : Optional[int] =emb.chunk(6 , dim=1 ) UpperCAmelCase : str =self.norm(a_ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __snake_case ( nn.Module ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = 1e-5 ) -> Union[str, Any]: '''simple docstring''' super().__init__() UpperCAmelCase : List[str] =num_groups UpperCAmelCase : int =eps if act_fn is None: UpperCAmelCase : List[str] =None else: UpperCAmelCase : int =get_activation(a_ ) UpperCAmelCase : Any =nn.Linear(a_ , out_dim * 2 ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int: '''simple docstring''' if self.act: UpperCAmelCase : Dict =self.act(a_ ) UpperCAmelCase : List[str] =self.linear(a_ ) UpperCAmelCase : int =emb[:, :, None, None] UpperCAmelCase : Union[str, Any] =emb.chunk(2 , dim=1 ) UpperCAmelCase : Any =F.group_norm(a_ , self.num_groups , eps=self.eps ) UpperCAmelCase : Any =x * (1 + scale) + shift return x
352
import sys def lowerCAmelCase_ ( __lowerCAmelCase )-> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =len(__lowerCAmelCase ) UpperCAmelCase : List[str] =[[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] UpperCAmelCase : List[Any] =[[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] for chain_length in range(2 , __lowerCAmelCase ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase : str =a + chain_length - 1 UpperCAmelCase : Union[str, Any] =sys.maxsize for c in range(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : List[Any] =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase : Optional[Any] =cost UpperCAmelCase : Dict =c return matrix, sol def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' if i == j: print('''A''' + str(__lowerCAmelCase ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__lowerCAmelCase , __lowerCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCAmelCase , optimal_solution[i][j] + 1 , __lowerCAmelCase ) print(''')''' , end=''' ''' ) def lowerCAmelCase_ ( )-> List[str]: '''simple docstring''' UpperCAmelCase : Dict =[30, 35, 15, 5, 10, 20, 25] UpperCAmelCase : Optional[Any] =len(__lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase , UpperCAmelCase : Optional[int] =matrix_chain_order(__lowerCAmelCase ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
78
0
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __A : Optional[Any] = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) __A : Dict = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) __A : List[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) __A : Union[str, Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) __A : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) __A : Dict = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) __A : str = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def lowercase ( ): lowercase_ , lowercase_ : Optional[int] = randrange(len(UpperCamelCase_ ) ), randrange(len(UpperCamelCase_ ) ) lowercase_ : Optional[Any] = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase_ , lowercase_ : Optional[Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowercase ( __snake_case : Dict = 1_0_0 ): return (generate_random_hand() for _ in range(UpperCamelCase_ )) @pytest.mark.parametrize('''hand, expected''' , UpperCamelCase_ ) def lowercase ( __snake_case : Any , __snake_case : Optional[int] ): assert PokerHand(UpperCamelCase_ )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , UpperCamelCase_ ) def lowercase ( __snake_case : str , __snake_case : str ): assert PokerHand(UpperCamelCase_ )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , UpperCamelCase_ ) def lowercase ( __snake_case : Optional[Any] , __snake_case : str , __snake_case : Dict ): lowercase_ : int = PokerHand(UpperCamelCase_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , UpperCamelCase_ ) def lowercase ( __snake_case : Union[str, Any] , __snake_case : int ): assert PokerHand(UpperCamelCase_ )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , UpperCamelCase_ ) def lowercase ( __snake_case : Optional[Any] , __snake_case : Optional[int] ): assert PokerHand(UpperCamelCase_ )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , UpperCamelCase_ ) def lowercase ( __snake_case : Dict , __snake_case : Tuple , __snake_case : Tuple ): assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def lowercase ( __snake_case : str , __snake_case : Tuple , __snake_case : str ): assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected def lowercase ( ): lowercase_ : Union[str, Any] = [PokerHand(UpperCamelCase_ ) for hand in SORTED_HANDS] lowercase_ : Dict = poker_hands.copy() shuffle(UpperCamelCase_ ) lowercase_ : Any = chain(sorted(UpperCamelCase_ ) ) for index, hand in enumerate(UpperCamelCase_ ): assert hand == poker_hands[index] def lowercase ( ): # Test that five high straights are compared correctly. lowercase_ : int = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=UpperCamelCase_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. lowercase_ : Optional[Any] = PokerHand('''2C 4S AS 3D 5C''' ) lowercase_ : List[Any] = True lowercase_ : Dict = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file lowercase_ : Union[str, Any] = 0 lowercase_ : Dict = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) lowercase_ : Optional[Any] = os.path.join(UpperCamelCase_ , '''poker_hands.txt''' ) with open(UpperCamelCase_ ) as file_hand: for line in file_hand: lowercase_ : int = line[:1_4].strip() lowercase_ : Optional[int] = line[1_5:].strip() lowercase_ , lowercase_ : Tuple = PokerHand(UpperCamelCase_ ), PokerHand(UpperCamelCase_ ) lowercase_ : List[Any] = player.compare_with(UpperCamelCase_ ) if output == "Win": answer += 1 assert answer == 3_7_6
33
"""simple docstring""" from collections import defaultdict def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = first_str.lower().strip() __SCREAMING_SNAKE_CASE = second_str.lower().strip() # Remove whitespace __SCREAMING_SNAKE_CASE = first_str.replace(""" """ , """""" ) __SCREAMING_SNAKE_CASE = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): return False # Default values for count should be 0 __SCREAMING_SNAKE_CASE = defaultdict(UpperCamelCase_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(UpperCamelCase_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __magic_name__ = input("Enter the first string ").strip() __magic_name__ = input("Enter the second string ").strip() __magic_name__ = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
100
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __snake_case : Optional[Any] =logging.get_logger(__name__) __snake_case : Optional[int] ={ 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off __snake_case : List[str] =[ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] __snake_case : Dict =[ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""whisper""" snake_case_ =["""past_key_values"""] snake_case_ ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self ,__lowerCamelCase=5_18_65 ,__lowerCamelCase=80 ,__lowerCamelCase=6 ,__lowerCamelCase=4 ,__lowerCamelCase=6 ,__lowerCamelCase=4 ,__lowerCamelCase=15_36 ,__lowerCamelCase=15_36 ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.0 ,__lowerCamelCase=5_02_57 ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase="gelu" ,__lowerCamelCase=2_56 ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.02 ,__lowerCamelCase=False ,__lowerCamelCase=15_00 ,__lowerCamelCase=4_48 ,__lowerCamelCase=5_02_56 ,__lowerCamelCase=5_02_56 ,__lowerCamelCase=5_02_56 ,__lowerCamelCase=None ,__lowerCamelCase=[2_20, 5_02_56] ,__lowerCamelCase=False ,__lowerCamelCase=2_56 ,__lowerCamelCase=False ,__lowerCamelCase=0.05 ,__lowerCamelCase=10 ,__lowerCamelCase=2 ,__lowerCamelCase=0.0 ,__lowerCamelCase=10 ,__lowerCamelCase=0 ,__lowerCamelCase=7 ,**__lowerCamelCase ,) -> Dict: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : Tuple = num_mel_bins lowerCAmelCase__ : Optional[int] = d_model lowerCAmelCase__ : str = encoder_layers lowerCAmelCase__ : str = encoder_attention_heads lowerCAmelCase__ : Optional[Any] = decoder_layers lowerCAmelCase__ : Optional[int] = decoder_attention_heads lowerCAmelCase__ : List[Any] = decoder_ffn_dim lowerCAmelCase__ : int = encoder_ffn_dim lowerCAmelCase__ : Dict = dropout lowerCAmelCase__ : Any = attention_dropout lowerCAmelCase__ : List[str] = activation_dropout lowerCAmelCase__ : List[str] = activation_function lowerCAmelCase__ : Optional[Any] = init_std lowerCAmelCase__ : Any = encoder_layerdrop lowerCAmelCase__ : int = decoder_layerdrop lowerCAmelCase__ : Dict = use_cache lowerCAmelCase__ : Union[str, Any] = encoder_layers lowerCAmelCase__ : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase__ : List[Any] = max_source_positions lowerCAmelCase__ : List[str] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowerCAmelCase__ : Any = classifier_proj_size lowerCAmelCase__ : int = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : int = apply_spec_augment lowerCAmelCase__ : List[Any] = mask_time_prob lowerCAmelCase__ : Optional[Any] = mask_time_length lowerCAmelCase__ : Optional[int] = mask_time_min_masks lowerCAmelCase__ : Union[str, Any] = mask_feature_prob lowerCAmelCase__ : Optional[int] = mask_feature_length lowerCAmelCase__ : Union[str, Any] = mask_feature_min_masks lowerCAmelCase__ : Any = median_filter_width super().__init__( pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,is_encoder_decoder=snake_case__ ,decoder_start_token_id=snake_case__ ,suppress_tokens=snake_case__ ,begin_suppress_tokens=snake_case__ ,**snake_case__ ,) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' @property def lowerCAmelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowerCAmelCase__ : List[str] = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: lowerCAmelCase__ : Tuple = {0: '''batch'''} else: lowerCAmelCase__ : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(snake_case__ ,direction='''inputs''' ) return common_inputs def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = -1 ,__lowerCamelCase = -1 ,__lowerCamelCase = False ,__lowerCamelCase = None ,__lowerCamelCase = 2_20_50 ,__lowerCamelCase = 5.0 ,__lowerCamelCase = 2_20 ,) -> Mapping[str, Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = OrderedDict() lowerCAmelCase__ : Tuple = OnnxConfig.generate_dummy_inputs( self ,preprocessor=preprocessor.feature_extractor ,batch_size=snake_case__ ,framework=snake_case__ ,sampling_rate=snake_case__ ,time_duration=snake_case__ ,frequency=snake_case__ ,) lowerCAmelCase__ : str = encoder_inputs['''input_features'''].shape[2] lowerCAmelCase__ : str = encoder_sequence_length // 2 if self.use_past else seq_length lowerCAmelCase__ : Union[str, Any] = super().generate_dummy_inputs( preprocessor.tokenizer ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) lowerCAmelCase__ : Dict = encoder_inputs.pop('''input_features''' ) lowerCAmelCase__ : Tuple = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: lowerCAmelCase__ : List[Any] = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def lowerCAmelCase__ (self ) -> float: """simple docstring""" return 1e-3
362
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : Any=True ,lowerCamelCase_ : Tuple="pt"): '''simple docstring''' lowerCAmelCase__ : Tuple = {'''add_prefix_space''': True} if isinstance(lowerCamelCase_ ,lowerCamelCase_) and not line.startswith(''' ''') else {} lowerCAmelCase__ : Union[str, Any] = padding_side return tokenizer( [line] ,max_length=lowerCamelCase_ ,padding='''max_length''' if pad_to_max_length else None ,truncation=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ,**lowerCamelCase_ ,) def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : Dict ,lowerCamelCase_ : Any=None ,): '''simple docstring''' lowerCAmelCase__ : List[Any] = input_ids.ne(lowerCamelCase_).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase="train" ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase="" ,) -> List[str]: """simple docstring""" super().__init__() lowerCAmelCase__ : str = Path(__lowerCamelCase ).joinpath(type_path + '''.source''' ) lowerCAmelCase__ : int = Path(__lowerCamelCase ).joinpath(type_path + '''.target''' ) lowerCAmelCase__ : Tuple = self.get_char_lens(self.src_file ) lowerCAmelCase__ : Dict = max_source_length lowerCAmelCase__ : Optional[int] = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" lowerCAmelCase__ : Tuple = tokenizer lowerCAmelCase__ : List[Any] = prefix if n_obs is not None: lowerCAmelCase__ : Optional[Any] = self.src_lens[:n_obs] lowerCAmelCase__ : Any = src_lang lowerCAmelCase__ : Optional[Any] = tgt_lang def __len__(self ) -> str: """simple docstring""" return len(self.src_lens ) def __getitem__(self ,__lowerCamelCase ) -> Dict[str, torch.Tensor]: """simple docstring""" lowerCAmelCase__ : List[Any] = index + 1 # linecache starts at 1 lowerCAmelCase__ : Any = self.prefix + linecache.getline(str(self.src_file ) ,__lowerCamelCase ).rstrip('''\n''' ) lowerCAmelCase__ : Any = linecache.getline(str(self.tgt_file ) ,__lowerCamelCase ).rstrip('''\n''' ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer ,__lowerCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCAmelCase__ : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,__lowerCamelCase ) else self.tokenizer ) lowerCAmelCase__ : Dict = self.tokenizer.generator if isinstance(self.tokenizer ,__lowerCamelCase ) else self.tokenizer lowerCAmelCase__ : Union[str, Any] = encode_line(__lowerCamelCase ,__lowerCamelCase ,self.max_source_length ,'''right''' ) lowerCAmelCase__ : Any = encode_line(__lowerCamelCase ,__lowerCamelCase ,self.max_target_length ,'''right''' ) lowerCAmelCase__ : List[str] = source_inputs['''input_ids'''].squeeze() lowerCAmelCase__ : str = target_inputs['''input_ids'''].squeeze() lowerCAmelCase__ : Tuple = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCAmelCase__ (__lowerCamelCase ) -> List[str]: """simple docstring""" return [len(__lowerCamelCase ) for x in Path(__lowerCamelCase ).open().readlines()] def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Dict[str, torch.Tensor]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = torch.stack([x['''input_ids'''] for x in batch] ) lowerCAmelCase__ : Union[str, Any] = torch.stack([x['''attention_mask'''] for x in batch] ) lowerCAmelCase__ : List[Any] = torch.stack([x['''decoder_input_ids'''] for x in batch] ) lowerCAmelCase__ : Any = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,__lowerCamelCase ) else self.tokenizer.pad_token_id ) lowerCAmelCase__ : Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,__lowerCamelCase ) else self.tokenizer.pad_token_id ) lowerCAmelCase__ : Dict = trim_batch(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = trim_batch(__lowerCamelCase ,__lowerCamelCase ,attention_mask=__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch __snake_case : Any =getLogger(__name__) def lowerCAmelCase__ ( lowerCamelCase_ : List[List]): '''simple docstring''' return list(itertools.chain.from_iterable(lowerCamelCase_)) def lowerCAmelCase__ ( lowerCamelCase_ : str): '''simple docstring''' lowerCAmelCase__ : int = get_git_info() save_json(lowerCamelCase_ ,os.path.join(lowerCamelCase_ ,'''git_log.json''')) def lowerCAmelCase__ ( lowerCamelCase_ : Tuple ,lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Tuple=4 ,**lowerCamelCase_ : List[str]): '''simple docstring''' with open(lowerCamelCase_ ,'''w''') as f: json.dump(lowerCamelCase_ ,lowerCamelCase_ ,indent=lowerCamelCase_ ,**lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : Tuple): '''simple docstring''' with open(lowerCamelCase_) as f: return json.load(lowerCamelCase_) def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : str = git.Repo(search_parent_directories=lowerCamelCase_) lowerCAmelCase__ : List[Any] = { '''repo_id''': str(lowerCamelCase_), '''repo_sha''': str(repo.head.object.hexsha), '''repo_branch''': str(repo.active_branch), '''hostname''': str(socket.gethostname()), } return repo_infos def lowerCAmelCase__ ( lowerCamelCase_ : Callable ,lowerCamelCase_ : Iterable): '''simple docstring''' return list(map(lowerCamelCase_ ,lowerCamelCase_)) def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : Optional[Any]): '''simple docstring''' with open(lowerCamelCase_ ,'''wb''') as f: return pickle.dump(lowerCamelCase_ ,lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' def remove_articles(lowerCamelCase_ : List[str]): return re.sub(r'''\b(a|an|the)\b''' ,''' ''' ,lowerCamelCase_) def white_space_fix(lowerCamelCase_ : Optional[int]): return " ".join(text.split()) def remove_punc(lowerCamelCase_ : List[str]): lowerCAmelCase__ : List[Any] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(lowerCamelCase_ : Optional[int]): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_)))) def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = normalize_answer(lowerCamelCase_).split() lowerCAmelCase__ : str = normalize_answer(lowerCamelCase_).split() lowerCAmelCase__ : str = Counter(lowerCamelCase_) & Counter(lowerCamelCase_) lowerCAmelCase__ : Dict = sum(common.values()) if num_same == 0: return 0 lowerCAmelCase__ : Optional[int] = 1.0 * num_same / len(lowerCamelCase_) lowerCAmelCase__ : Optional[Any] = 1.0 * num_same / len(lowerCamelCase_) lowerCAmelCase__ : Optional[Any] = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Any): '''simple docstring''' return normalize_answer(lowerCamelCase_) == normalize_answer(lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : List[str] ,lowerCamelCase_ : List[str]): '''simple docstring''' assert len(lowerCamelCase_) == len(lowerCamelCase_) lowerCAmelCase__ : List[str] = 0 for hypo, pred in zip(lowerCamelCase_ ,lowerCamelCase_): em += exact_match_score(lowerCamelCase_ ,lowerCamelCase_) if len(lowerCamelCase_) > 0: em /= len(lowerCamelCase_) return {"em": em} def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' return model_prefix.startswith('''rag''') def lowerCAmelCase__ ( lowerCamelCase_ : List[str] ,lowerCamelCase_ : Dict ,lowerCamelCase_ : str): '''simple docstring''' lowerCAmelCase__ : Any = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCAmelCase__ : Optional[int] = '''dropout_rate''' for p in extra_params: if getattr(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_): if not hasattr(lowerCamelCase_ ,lowerCamelCase_) and not hasattr(lowerCamelCase_ ,equivalent_param[p]): logger.info('''config doesn\'t have a `{}` attribute'''.format(lowerCamelCase_)) delattr(lowerCamelCase_ ,lowerCamelCase_) continue lowerCAmelCase__ : Dict = p if hasattr(lowerCamelCase_ ,lowerCamelCase_) else equivalent_param[p] setattr(lowerCamelCase_ ,lowerCamelCase_ ,getattr(lowerCamelCase_ ,lowerCamelCase_)) delattr(lowerCamelCase_ ,lowerCamelCase_) return hparams, config
94
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase__ : int = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
225
from __future__ import annotations lowerCamelCase__ : Optional[int] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCamelCase__ : List[Any] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) for i in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = -1 for j in range(i + 1 , __UpperCAmelCase ): if arr[i] < arr[j]: SCREAMING_SNAKE_CASE_ = arr[j] break result.append(__UpperCAmelCase ) return result def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE_ = [] for i, outer in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = -1 for inner in arr[i + 1 :]: if outer < inner: SCREAMING_SNAKE_CASE_ = inner break result.append(__UpperCAmelCase ) return result def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [-1] * arr_size for index in reversed(range(__UpperCAmelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: SCREAMING_SNAKE_CASE_ = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCamelCase__ : List[str] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
225
1
def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" if collection == []: return [] # get some information about the collection UpperCamelCase : List[str] = len(snake_case__ ) UpperCamelCase : Union[str, Any] = max(snake_case__ ) UpperCamelCase : Optional[int] = min(snake_case__ ) # create the counting array UpperCamelCase : Tuple = coll_max + 1 - coll_min UpperCamelCase : Dict = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , snake_case__ ): UpperCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection UpperCamelCase : List[Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , snake_case__ ) ): UpperCamelCase : List[str] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def a ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" return "".join([chr(snake_case__ ) for i in counting_sort([ord(snake_case__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __UpperCAmelCase : Optional[Any] = input("Enter numbers separated by a comma:\n").strip() __UpperCAmelCase : Tuple = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
365
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase : Union[str, Any] = logging.getLogger() def a ( ): """simple docstring""" UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCamelCase : List[str] = parser.parse_args() return args.f class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , '''run_glue_deebert.py''' ) with patch.object(__SCREAMING_SNAKE_CASE , '''argv''' , __SCREAMING_SNAKE_CASE ): UpperCamelCase : int = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__SCREAMING_SNAKE_CASE , 0.666 ) @slow @require_torch_non_multi_gpu def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__SCREAMING_SNAKE_CASE )
315
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class _a : '''simple docstring''' def __init__( self , A__ , ): A__ : List[str] = parent A__ : List[str] = 13 A__ : Union[str, Any] = 7 A__ : int = True A__ : str = True A__ : Optional[Any] = False A__ : List[str] = True A__ : List[str] = 99 A__ : List[str] = 32 A__ : Union[str, Any] = 2 A__ : Optional[int] = 4 A__ : Dict = 37 A__ : Union[str, Any] = """gelu""" A__ : Union[str, Any] = 0.1 A__ : Union[str, Any] = 0.1 A__ : Union[str, Any] = 512 A__ : Optional[Any] = 16 A__ : Tuple = 2 A__ : Tuple = 0.0_2 A__ : Any = 3 A__ : Union[str, Any] = 4 A__ : int = None def __A ( self ): A__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Optional[int] = None if self.use_input_mask: A__ : int = random_attention_mask([self.batch_size, self.seq_length] ) A__ : List[Any] = None A__ : Optional[int] = None A__ : Any = None if self.use_labels: A__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A__ : Optional[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Any = TFDistilBertModel(config=A__ ) A__ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} A__ : List[str] = model(A__ ) A__ : Union[str, Any] = [input_ids, input_mask] A__ : Dict = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Optional[Any] = TFDistilBertForMaskedLM(config=A__ ) A__ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} A__ : Union[str, Any] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Tuple = TFDistilBertForQuestionAnswering(config=A__ ) A__ : Any = { """input_ids""": input_ids, """attention_mask""": input_mask, } A__ : Any = model(A__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : List[Any] = self.num_labels A__ : Optional[Any] = TFDistilBertForSequenceClassification(A__ ) A__ : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} A__ : Tuple = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : str = self.num_choices A__ : Dict = TFDistilBertForMultipleChoice(A__ ) A__ : Union[str, Any] = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) A__ : Union[str, Any] = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) A__ : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } A__ : List[Any] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Tuple = self.num_labels A__ : Union[str, Any] = TFDistilBertForTokenClassification(A__ ) A__ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} A__ : Dict = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self ): A__ : Union[str, Any] = self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__) , (A__) , (A__)) : List[str] = config_and_inputs A__ : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _a (__magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: List[str] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCAmelCase__: int = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__: Optional[int] = False UpperCAmelCase__: Tuple = False def __A ( self ): A__ : Dict = TFDistilBertModelTester(self ) A__ : Any = ConfigTester(self , config_class=A__ , dim=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*A__ ) def __A ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*A__ ) def __A ( self ): A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*A__ ) def __A ( self ): A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*A__ ) def __A ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*A__ ) def __A ( self ): A__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*A__ ) @slow def __A ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): A__ : str = TFDistilBertModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @require_tf class _a (unittest.TestCase ): '''simple docstring''' @slow def __A ( self ): A__ : Any = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) A__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) A__ : Any = model(A__ )[0] A__ : Any = [1, 6, 768] self.assertEqual(output.shape , A__ ) A__ : Union[str, Any] = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A__ , atol=1e-4 )
192
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): A_ : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A_ : Tuple = 12_8022 A_ : Optional[Any] = 12_8028 @require_sentencepiece class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Tuple = MaMaaaTokenizer UpperCAmelCase__: List[Any] = False UpperCAmelCase__: Any = False UpperCAmelCase__: Optional[Any] = True def __A ( self ): super().setUp() A__ : Union[str, Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] A__ : Optional[Any] = dict(zip(A__ , range(len(A__ ) ) ) ) A__ : Optional[int] = Path(self.tmpdirname ) save_json(A__ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(A__ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) A__ : Tuple = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self , **A__ ): return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **A__ ) def __A ( self , A__ ): return ( "This is a test", "This is a test", ) def __A ( self ): A__ : Any = """</s>""" A__ : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A__ ) , A__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A__ ) , A__ ) def __A ( self ): A__ : str = self.get_tokenizer() A__ : Dict = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<s>""" ) self.assertEqual(len(A__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("""Skip this test while all models are still to be uploaded.""" ) def __A ( self ): pass def __A ( self ): A__ : Optional[int] = self.get_tokenizer() A__ : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A__ ) , [2, 3, 4, 5, 6] , ) A__ : Dict = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(A__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) A__ : Any = tokenizer.convert_tokens_to_string(A__ ) self.assertEqual(A__ , """This is a test""" ) @slow def __A ( self ): # fmt: off A__ : int = {"""input_ids""": [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A__ , model_name="""facebook/m2m100_418M""" , revision="""c168bae485c864188cf9aa0e4108b0b6934dc91e""" , ) @require_torch @require_sentencepiece @require_tokenizers class _a (unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Optional[int] = '''facebook/m2m100_418M''' UpperCAmelCase__: Any = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__: Any = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__: List[str] = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def __A ( cls ): A__ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en""" , tgt_lang="""fr""" ) A__ : int = 1 return cls def __A ( self ): self.assertEqual(self.tokenizer.get_lang_id("""ar""" ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id("""en""" ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id("""ro""" ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id("""mr""" ) , 12_8063 ) def __A ( self ): A__ : Optional[Any] = self.tokenizer.get_vocab() self.assertEqual(len(A__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["""<unk>"""] , 3 ) self.assertIn(self.tokenizer.get_lang_token("""en""" ) , A__ ) def __A ( self ): A__ : List[Any] = """en""" A__ : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A__ ) def __A ( self ): self.assertIn(A__ , self.tokenizer.all_special_ids ) # fmt: off A__ : Dict = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on A__ : Dict = self.tokenizer.decode(A__ , skip_special_tokens=A__ ) A__ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A__ ) self.assertEqual(A__ , A__ ) self.assertNotIn(self.tokenizer.eos_token , A__ ) def __A ( self ): A__ : str = tempfile.mkdtemp() A__ : Dict = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(A__ ) A__ : List[Any] = MaMaaaTokenizer.from_pretrained(A__ ) self.assertDictEqual(new_tok.lang_token_to_id , A__ ) @require_torch def __A ( self ): A__ : List[str] = """en""" A__ : List[str] = """fr""" A__ : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A__ , return_tensors="""pt""" ) A__ : int = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: A__ : Any = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __A ( self ): A__ : List[str] = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) A__ : Any = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __A ( self ): A__ : Optional[int] = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) A__ : Any = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __A ( self ): A__ : Any = self.tokenizer._build_translation_inputs("""A test""" , return_tensors="""pt""" , src_lang="""en""" , tgt_lang="""ar""" ) self.assertEqual( nested_simplify(A__ ) , { # en_XX, A, test, EOS """input_ids""": [[12_8022, 58, 4183, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 12_8006, } , )
192
1
"""simple docstring""" from __future__ import annotations def snake_case__ ( __lowerCamelCase : list[int] , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[str] =0 lowerCamelCase__ : int =len(__lowerCamelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCamelCase__ : List[Any] =i + 1 else: lowerCamelCase__ : List[Any] =j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'{two_pointer([2, 7, 1_1, 1_5], 9) = }')
362
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata _lowercase : List[str] = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class __SCREAMING_SNAKE_CASE ( tr.AbstractTransform ): '''simple docstring''' def __init__( self : List[Any], lowerCamelCase : str = " " )-> List[str]: lowerCamelCase__ : List[str] =sentence_delimiter def snake_case ( self : Any, lowerCamelCase : str )-> Optional[Any]: return list(lowerCamelCase ) def snake_case ( self : Optional[Any], lowerCamelCase : List[str] )-> Tuple: lowerCamelCase__ : Optional[int] =[] for sent_idx, sentence in enumerate(lowerCamelCase ): chars.extend(self.process_string(lowerCamelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase ) - 1: chars.append(self.sentence_delimiter ) return chars _lowercase : Optional[int] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _lowercase : List[str] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _lowercase : Dict = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" _lowercase : List[Any] = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" _lowercase : Dict = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def snake_case ( self : Dict )-> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Value('''string''', id='''sequence''' ), '''references''': datasets.Value('''string''', id='''sequence''' ), } ), codebase_urls=['''https://github.com/jitsi/jiwer/'''], reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ], ) def snake_case ( self : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : Dict=False )-> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase, lowerCamelCase, truth_transform=lowerCamelCase, hypothesis_transform=lowerCamelCase, )["wer"] lowerCamelCase__ : Optional[Any] =0 lowerCamelCase__ : Union[str, Any] =0 for prediction, reference in zip(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : int =jiwer.compute_measures( lowerCamelCase, lowerCamelCase, truth_transform=lowerCamelCase, hypothesis_transform=lowerCamelCase, ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
272
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Dict = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''mobilenet_v1''' def __init__( self , lowercase=3 , lowercase=2_2_4 , lowercase=1.0 , lowercase=8 , lowercase="relu6" , lowercase=True , lowercase=0.999 , lowercase=0.02 , lowercase=0.001 , **lowercase , ) -> List[Any]: super().__init__(**lowercase ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) __UpperCamelCase = num_channels __UpperCamelCase = image_size __UpperCamelCase = depth_multiplier __UpperCamelCase = min_depth __UpperCamelCase = hidden_act __UpperCamelCase = tf_padding __UpperCamelCase = classifier_dropout_prob __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = version.parse('''1.11''') @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def __lowerCamelCase ( self ) -> float: return 1E-4
349
'''simple docstring''' def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = len(__A ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): __UpperCamelCase = False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
349
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = {'''vocab_file''': '''spiece.model'''} a = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } a = {'''bert_for_seq_generation''': 512} class lowercase_ ( UpperCamelCase__ ): '''simple docstring''' UpperCAmelCase : List[str] = VOCAB_FILES_NAMES UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : List[int] = [] UpperCAmelCase : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="<s>" , _UpperCAmelCase : Dict="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Optional[Any]="<pad>" , _UpperCAmelCase : str="<::::>" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : Optional[Any] , ): _A = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase_ ) @property def lowerCAmelCase_ ( self : Optional[int] ): return self.sp_model.get_piece_size() def lowerCAmelCase_ ( self : List[Any] ): _A = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): _A = self.__dict__.copy() _A = None return state def __setstate__( self : str , _UpperCAmelCase : Union[str, Any] ): _A = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : str ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple ): return self.sp_model.piece_to_id(UpperCamelCase_ ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Optional[int] ): _A = self.sp_model.IdToPiece(UpperCamelCase_ ) return token def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Any ): _A = [] _A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase_ ) + token _A = [] else: current_sub_tokens.append(UpperCamelCase_ ) out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string.strip() def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , 'wb' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
355
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging a = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def _snake_case ( _snake_case : str , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : Tuple=None ) -> List[str]: '''simple docstring''' _A = XLNetConfig.from_json_file(_snake_case ) _A = finetuning_task.lower() if finetuning_task is not None else '' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) _A = finetuning_task _A = GLUE_TASKS_NUM_LABELS[finetuning_task] _A = XLNetForSequenceClassification(_snake_case ) elif "squad" in finetuning_task: _A = finetuning_task _A = XLNetForQuestionAnswering(_snake_case ) else: _A = XLNetLMHeadModel(_snake_case ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_snake_case , _snake_case , _snake_case ) # Save pytorch-model _A = os.path.join(_snake_case , _snake_case ) _A = os.path.join(_snake_case , _snake_case ) print(F'''Save PyTorch model to {os.path.abspath(_snake_case )}''' ) torch.save(model.state_dict() , _snake_case ) print(F'''Save configuration file to {os.path.abspath(_snake_case )}''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) a = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
271
0
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class _A ( _a ): """simple docstring""" UpperCAmelCase : Optional[Any] = """encodec""" def __init__( self : Any , __UpperCAmelCase : List[Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , __UpperCAmelCase : str=24000 , __UpperCAmelCase : List[Any]=1 , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[Any]=128 , __UpperCAmelCase : Any=32 , __UpperCAmelCase : str=1 , __UpperCAmelCase : str=[8, 5, 4, 2] , __UpperCAmelCase : Union[str, Any]="weight_norm" , __UpperCAmelCase : Tuple=7 , __UpperCAmelCase : Tuple=7 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Any=True , __UpperCAmelCase : str="reflect" , __UpperCAmelCase : Any=2 , __UpperCAmelCase : int=2 , __UpperCAmelCase : str=1.0 , __UpperCAmelCase : str=1024 , __UpperCAmelCase : Any=None , __UpperCAmelCase : Union[str, Any]=True , **__UpperCAmelCase : Dict , ): a : Any = target_bandwidths a : str = sampling_rate a : Union[str, Any] = audio_channels a : Optional[int] = normalize a : Optional[Any] = chunk_length_s a : str = overlap a : List[str] = hidden_size a : List[str] = num_filters a : Union[str, Any] = num_residual_layers a : Tuple = upsampling_ratios a : Tuple = norm_type a : List[str] = kernel_size a : Tuple = last_kernel_size a : Union[str, Any] = residual_kernel_size a : Union[str, Any] = dilation_growth_rate a : Any = use_causal_conv a : str = pad_mode a : Dict = compress a : Union[str, Any] = num_lstm_layers a : List[Any] = trim_right_ratio a : str = codebook_size a : Optional[int] = codebook_dim if codebook_dim is not None else hidden_size a : int = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''') super().__init__(**__UpperCAmelCase) @property def __snake_case ( self : Union[str, Any]): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate) @property def __snake_case ( self : Union[str, Any]): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length)) @property def __snake_case ( self : List[str]): a : Optional[int] = np.prod(self.upsampling_ratios) return math.ceil(self.sampling_rate / hop_length) @property def __snake_case ( self : List[str]): return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10))
40
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _snake_case ( UpperCAmelCase_ : List[Any] ): A__ = FileLock(str(tmpdir / """foo.lock""" ) ) A__ = FileLock(str(tmpdir / """foo.lock""" ) ) A__ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase_ ): A__ = time.time() locka.acquire(UpperCAmelCase_ ) assert time.time() - _start > timeout def _snake_case ( UpperCAmelCase_ : List[Any] ): A__ = """a""" * 1000 + """.lock""" A__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase_ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 A__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase_ ): locka.acquire(0 )
335
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: SCREAMING_SNAKE_CASE = [1_44, 1_92, 2_40] SCREAMING_SNAKE_CASE = [16, 32, 64, 96, 1_28, 1_60, 6_40] elif "mobilevit_xs" in mobilevit_name: SCREAMING_SNAKE_CASE = [96, 1_20, 1_44] SCREAMING_SNAKE_CASE = [16, 32, 48, 64, 80, 96, 3_84] elif "mobilevit_xxs" in mobilevit_name: SCREAMING_SNAKE_CASE = [64, 80, 96] SCREAMING_SNAKE_CASE = [16, 16, 24, 48, 64, 80, 3_20] SCREAMING_SNAKE_CASE = 0.05 SCREAMING_SNAKE_CASE = 2.0 if mobilevit_name.startswith('deeplabv3_' ): SCREAMING_SNAKE_CASE = 5_12 SCREAMING_SNAKE_CASE = 16 SCREAMING_SNAKE_CASE = 21 SCREAMING_SNAKE_CASE = 'pascal-voc-id2label.json' else: SCREAMING_SNAKE_CASE = 10_00 SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE = 'huggingface/label-files' SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def lowercase (SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str]=False ) -> Union[str, Any]: for i in range(1 , 6 ): if F'layer_{i}.' in name: SCREAMING_SNAKE_CASE = name.replace(F'layer_{i}.' , F'encoder.layer.{i - 1}.' ) if "conv_1." in name: SCREAMING_SNAKE_CASE = name.replace('conv_1.' , 'conv_stem.' ) if ".block." in name: SCREAMING_SNAKE_CASE = name.replace('.block.' , '.' ) if "exp_1x1" in name: SCREAMING_SNAKE_CASE = name.replace('exp_1x1' , 'expand_1x1' ) if "red_1x1" in name: SCREAMING_SNAKE_CASE = name.replace('red_1x1' , 'reduce_1x1' ) if ".local_rep.conv_3x3." in name: SCREAMING_SNAKE_CASE = name.replace('.local_rep.conv_3x3.' , '.conv_kxk.' ) if ".local_rep.conv_1x1." in name: SCREAMING_SNAKE_CASE = name.replace('.local_rep.conv_1x1.' , '.conv_1x1.' ) if ".norm." in name: SCREAMING_SNAKE_CASE = name.replace('.norm.' , '.normalization.' ) if ".conv." in name: SCREAMING_SNAKE_CASE = name.replace('.conv.' , '.convolution.' ) if ".conv_proj." in name: SCREAMING_SNAKE_CASE = name.replace('.conv_proj.' , '.conv_projection.' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F'.{i}.{j}.' in name: SCREAMING_SNAKE_CASE = name.replace(F'.{i}.{j}.' , F'.{i}.layer.{j}.' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F'.{i}.{j}.' in name: SCREAMING_SNAKE_CASE = name.replace(F'.{i}.{j}.' , F'.{i}.' ) if "expand_1x1" in name: SCREAMING_SNAKE_CASE = name.replace('expand_1x1' , 'downsampling_layer.expand_1x1' ) if "conv_3x3" in name: SCREAMING_SNAKE_CASE = name.replace('conv_3x3' , 'downsampling_layer.conv_3x3' ) if "reduce_1x1" in name: SCREAMING_SNAKE_CASE = name.replace('reduce_1x1' , 'downsampling_layer.reduce_1x1' ) for i in range(2 , 5 ): if F'.global_rep.{i}.weight' in name: SCREAMING_SNAKE_CASE = name.replace(F'.global_rep.{i}.weight' , '.layernorm.weight' ) if F'.global_rep.{i}.bias' in name: SCREAMING_SNAKE_CASE = name.replace(F'.global_rep.{i}.bias' , '.layernorm.bias' ) if ".global_rep." in name: SCREAMING_SNAKE_CASE = name.replace('.global_rep.' , '.transformer.' ) if ".pre_norm_mha.0." in name: SCREAMING_SNAKE_CASE = name.replace('.pre_norm_mha.0.' , '.layernorm_before.' ) if ".pre_norm_mha.1.out_proj." in name: SCREAMING_SNAKE_CASE = name.replace('.pre_norm_mha.1.out_proj.' , '.attention.output.dense.' ) if ".pre_norm_ffn.0." in name: SCREAMING_SNAKE_CASE = name.replace('.pre_norm_ffn.0.' , '.layernorm_after.' ) if ".pre_norm_ffn.1." in name: SCREAMING_SNAKE_CASE = name.replace('.pre_norm_ffn.1.' , '.intermediate.dense.' ) if ".pre_norm_ffn.4." in name: SCREAMING_SNAKE_CASE = name.replace('.pre_norm_ffn.4.' , '.output.dense.' ) if ".transformer." in name: SCREAMING_SNAKE_CASE = name.replace('.transformer.' , '.transformer.layer.' ) if ".aspp_layer." in name: SCREAMING_SNAKE_CASE = name.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in name: SCREAMING_SNAKE_CASE = name.replace('.aspp_pool.' , '.' ) if "seg_head." in name: SCREAMING_SNAKE_CASE = name.replace('seg_head.' , 'segmentation_head.' ) if "segmentation_head.classifier.classifier." in name: SCREAMING_SNAKE_CASE = name.replace('segmentation_head.classifier.classifier.' , 'segmentation_head.classifier.' ) if "classifier.fc." in name: SCREAMING_SNAKE_CASE = name.replace('classifier.fc.' , 'classifier.' ) elif (not base_model) and ("segmentation_head." not in name): SCREAMING_SNAKE_CASE = 'mobilevit.' + name return name def lowercase (SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str]=False ) -> Any: if base_model: SCREAMING_SNAKE_CASE = '' else: SCREAMING_SNAKE_CASE = 'mobilevit.' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if key[:8] == "encoder.": SCREAMING_SNAKE_CASE = key[8:] if "qkv" in key: SCREAMING_SNAKE_CASE = key.split('.' ) SCREAMING_SNAKE_CASE = int(key_split[0][6:] ) - 1 SCREAMING_SNAKE_CASE = int(key_split[3] ) SCREAMING_SNAKE_CASE = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}' ) SCREAMING_SNAKE_CASE = layer.transformer.layer[transformer_num].attention.attention.all_head_size SCREAMING_SNAKE_CASE = ( F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[:dim] SCREAMING_SNAKE_CASE = val[dim : dim * 2] SCREAMING_SNAKE_CASE = val[-dim:] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def lowercase () -> Optional[Any]: SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any]=False ) -> List[str]: SCREAMING_SNAKE_CASE = get_mobilevit_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) # load 🤗 model if mobilevit_name.startswith('deeplabv3_' ): SCREAMING_SNAKE_CASE = MobileViTForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval() else: SCREAMING_SNAKE_CASE = MobileViTForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by MobileViTImageProcessor SCREAMING_SNAKE_CASE = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.logits if mobilevit_name.startswith('deeplabv3_' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": SCREAMING_SNAKE_CASE = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": SCREAMING_SNAKE_CASE = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": SCREAMING_SNAKE_CASE = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) else: assert logits.shape == (1, 10_00) if mobilevit_name == "mobilevit_s": SCREAMING_SNAKE_CASE = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": SCREAMING_SNAKE_CASE = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": SCREAMING_SNAKE_CASE = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: SCREAMING_SNAKE_CASE = { 'mobilevit_s': 'mobilevit-small', 'mobilevit_xs': 'mobilevit-x-small', 'mobilevit_xxs': 'mobilevit-xx-small', 'deeplabv3_mobilevit_s': 'deeplabv3-mobilevit-small', 'deeplabv3_mobilevit_xs': 'deeplabv3-mobilevit-x-small', 'deeplabv3_mobilevit_xxs': 'deeplabv3-mobilevit-xx-small', } print('Pushing to the hub...' ) SCREAMING_SNAKE_CASE = model_mapping[mobilevit_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='apple' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='apple' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
38
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> bool: SCREAMING_SNAKE_CASE = int(number**0.5 ) return number == sq * sq def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> tuple[int, int]: SCREAMING_SNAKE_CASE = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE = x_den * y_den * z_den SCREAMING_SNAKE_CASE = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) top //= hcf bottom //= hcf return top, bottom def lowercase (SCREAMING_SNAKE_CASE_ : int = 35 ) -> int: SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = Fraction(0 ) SCREAMING_SNAKE_CASE = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 SCREAMING_SNAKE_CASE = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE = x_den * y_den SCREAMING_SNAKE_CASE = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) # n=2 SCREAMING_SNAKE_CASE = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE = x_den * x_den * y_den * y_den if is_sq(SCREAMING_SNAKE_CASE_ ) and is_sq(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) # n=-1 SCREAMING_SNAKE_CASE = x_num * y_num SCREAMING_SNAKE_CASE = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) # n=2 SCREAMING_SNAKE_CASE = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(SCREAMING_SNAKE_CASE_ ) and is_sq(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) for num, den in unique_s: total += Fraction(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
38
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class A ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'swin' lowerCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Union[str, Any],lowercase_ : Union[str, Any]=2_2_4,lowercase_ : List[str]=4,lowercase_ : int=3,lowercase_ : int=9_6,lowercase_ : Optional[Any]=[2, 2, 6, 2],lowercase_ : Optional[Any]=[3, 6, 1_2, 2_4],lowercase_ : List[Any]=7,lowercase_ : List[Any]=4.0,lowercase_ : List[str]=True,lowercase_ : Union[str, Any]=0.0,lowercase_ : Dict=0.0,lowercase_ : str=0.1,lowercase_ : List[Any]="gelu",lowercase_ : Any=False,lowercase_ : Optional[Any]=0.02,lowercase_ : List[str]=1E-5,lowercase_ : Any=3_2,lowercase_ : Tuple=None,lowercase_ : Tuple=None,**lowercase_ : List[Any],)-> Dict: '''simple docstring''' super().__init__(**lowercase_ ) A__ = image_size A__ = patch_size A__ = num_channels A__ = embed_dim A__ = depths A__ = len(lowercase_ ) A__ = num_heads A__ = window_size A__ = mlp_ratio A__ = qkv_bias A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = drop_path_rate A__ = hidden_act A__ = use_absolute_embeddings A__ = layer_norm_eps A__ = initializer_range A__ = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A__ = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) A__ = ['stem'] + [F'stage{idx}' for idx in range(1,len(lowercase_ ) + 1 )] A__ , A__ = get_aligned_output_features_output_indices( out_features=lowercase_,out_indices=lowercase_,stage_names=self.stage_names ) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = version.parse('1.11' ) @property def snake_case__ ( self : str )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case__ ( self : Optional[Any] )-> float: '''simple docstring''' return 1E-4
7
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE = 1000000 ) ->int: a__: int = limit + 1 a__: Optional[int] = [0] * limit for first_term in range(1 , _SCREAMING_SNAKE_CASE ): for n in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a a__: Any = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
290
0
from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase_ ( _snake_case : int = 1000000 , _snake_case : int = 10 ) -> int: '''simple docstring''' __magic_name__ : defaultdict = defaultdict(__a ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __magic_name__ : List[Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: __magic_name__ : int = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__a , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"{solution() = }")
355
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features snake_case : List[str] = logging.get_logger(__name__) snake_case : Tuple = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) snake_case : Dict = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _snake_case : UpperCamelCase__ = field( default=snake_case , metadata={'help': 'Model type selected in the list: ' + ', '.join(snake_case )} ) UpperCamelCase__ = field( default=snake_case , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) UpperCamelCase__ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) UpperCamelCase__ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) UpperCamelCase__ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) UpperCamelCase__ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) UpperCamelCase__ = field( default=snake_case , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) UpperCamelCase__ = field( default=snake_case , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) UpperCamelCase__ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) UpperCamelCase__ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) UpperCamelCase__ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) UpperCamelCase__ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class _snake_case ( snake_case ): UpperCamelCase__ = 'train' UpperCamelCase__ = 'dev' class _snake_case ( snake_case ): UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 def __init__( self , _a , _a , _a = None , _a = Split.train , _a = False , _a = None , _a = "pt" , ): __magic_name__ : Optional[Any] = args __magic_name__ : str = is_language_sensitive __magic_name__ : Union[str, Any] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_a , _a ): try: __magic_name__ : int = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) __magic_name__ : List[str] = mode # Load data features from cache or dataset file __magic_name__ : Union[str, Any] = "v2" if args.version_2_with_negative else "v1" __magic_name__ : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __magic_name__ : Optional[Any] = cached_features_file + ".lock" with FileLock(_a ): if os.path.exists(_a ) and not args.overwrite_cache: __magic_name__ : List[Any] = time.time() __magic_name__ : Dict = torch.load(_a ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __magic_name__ : Dict = self.old_features["features"] __magic_name__ : Optional[Any] = self.old_features.get("dataset" , _a ) __magic_name__ : str = self.old_features.get("examples" , _a ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' " future run" ) else: if mode == Split.dev: __magic_name__ : Optional[int] = self.processor.get_dev_examples(args.data_dir ) else: __magic_name__ : Optional[Any] = self.processor.get_train_examples(args.data_dir ) __magic_name__ , __magic_name__ : List[Any] = squad_convert_examples_to_features( examples=self.examples , tokenizer=_a , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_a , ) __magic_name__ : Any = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , _a , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): return len(self.features ) def __getitem__( self , _a ): # Convert to Tensors and build dataset __magic_name__ : List[Any] = self.features[i] __magic_name__ : Union[str, Any] = torch.tensor(feature.input_ids , dtype=torch.long ) __magic_name__ : Dict = torch.tensor(feature.attention_mask , dtype=torch.long ) __magic_name__ : List[str] = torch.tensor(feature.token_type_ids , dtype=torch.long ) __magic_name__ : Tuple = torch.tensor(feature.cls_index , dtype=torch.long ) __magic_name__ : str = torch.tensor(feature.p_mask , dtype=torch.float ) __magic_name__ : Dict = torch.tensor(feature.is_impossible , dtype=torch.float ) __magic_name__ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __magic_name__ : Optional[int] = torch.tensor(feature.start_position , dtype=torch.long ) __magic_name__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
41
0
"""simple docstring""" from __future__ import annotations a__ : List[str] = tuple[int, int, int] a__ : Dict = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase a__ : str = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' # -------------------------- default selection -------------------------- # rotors -------------------------- a__ : str = '''EGZWVONAHDCLFQMSIPJBYUKXTR''' a__ : List[str] = '''FOBHMDKEXQNRAULPGSJVTYICZW''' a__ : Any = '''ZJXESIUQLHAVRMDOYGTNFWPBKC''' # reflector -------------------------- a__ : Optional[int] = { '''A''': '''N''', '''N''': '''A''', '''B''': '''O''', '''O''': '''B''', '''C''': '''P''', '''P''': '''C''', '''D''': '''Q''', '''Q''': '''D''', '''E''': '''R''', '''R''': '''E''', '''F''': '''S''', '''S''': '''F''', '''G''': '''T''', '''T''': '''G''', '''H''': '''U''', '''U''': '''H''', '''I''': '''V''', '''V''': '''I''', '''J''': '''W''', '''W''': '''J''', '''K''': '''X''', '''X''': '''K''', '''L''': '''Y''', '''Y''': '''L''', '''M''': '''Z''', '''Z''': '''M''', } # -------------------------- extra rotors -------------------------- a__ : Tuple = '''RMDJXFUWGISLHVTCQNKYPBEZOA''' a__ : str = '''SGLCPQWZHKXAREONTFBVIYJUDM''' a__ : Optional[Any] = '''HVSICLTYKQUBXDWAJZOMFGPREN''' a__ : List[Any] = '''RZWQHFMVDBKICJLNTUXAGYPSOE''' a__ : Optional[int] = '''LFKIJODBEGAMQPXVUHYSTCZRWN''' a__ : List[Any] = '''KOAEGVDHXPQZMLFTYWJNBRCIUS''' def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if (unique_rotsel := len(set(lowerCAmelCase_ ) )) < 3: __SCREAMING_SNAKE_CASE = f"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(lowerCAmelCase_ ) # Checks if rotor positions are valid __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rotpos if not 0 < rotorposa <= len(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = f"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(lowerCAmelCase_ ) if not 0 < rotorposa <= len(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = f"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowerCAmelCase_ ) if not 0 < rotorposa <= len(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = f"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowerCAmelCase_ ) # Validates string and returns dict __SCREAMING_SNAKE_CASE = _plugboard(lowerCAmelCase_ ) return rotpos, rotsel, pbdict def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = f"""Plugboard setting isn't type string ({type(lowerCAmelCase_ )})""" raise TypeError(lowerCAmelCase_ ) elif len(lowerCAmelCase_ ) % 2 != 0: __SCREAMING_SNAKE_CASE = f"""Odd number of symbols ({len(lowerCAmelCase_ )})""" raise Exception(lowerCAmelCase_ ) elif pbstring == "": return {} pbstring.replace(" " , "" ) # Checks if all characters are unique __SCREAMING_SNAKE_CASE = set() for i in pbstring: if i not in abc: __SCREAMING_SNAKE_CASE = f"""'{i}' not in list of symbols""" raise Exception(lowerCAmelCase_ ) elif i in tmppbl: __SCREAMING_SNAKE_CASE = f"""Duplicate symbol ({i})""" raise Exception(lowerCAmelCase_ ) else: tmppbl.add(lowerCAmelCase_ ) del tmppbl # Created the dictionary __SCREAMING_SNAKE_CASE = {} for j in range(0 , len(lowerCAmelCase_ ) - 1 , 2 ): __SCREAMING_SNAKE_CASE = pbstring[j + 1] __SCREAMING_SNAKE_CASE = pbstring[j] return pb def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = (rotora, rotora, rotora) , lowerCAmelCase_ = "" , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = text.upper() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = _validator( lowerCAmelCase_ , lowerCAmelCase_ , plugb.upper() ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rotor_position __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 __SCREAMING_SNAKE_CASE = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: __SCREAMING_SNAKE_CASE = plugboard[symbol] # rotor ra -------------------------- __SCREAMING_SNAKE_CASE = abc.index(lowerCAmelCase_ ) + rotorposa __SCREAMING_SNAKE_CASE = rotora[index % len(lowerCAmelCase_ )] # rotor rb -------------------------- __SCREAMING_SNAKE_CASE = abc.index(lowerCAmelCase_ ) + rotorposa __SCREAMING_SNAKE_CASE = rotora[index % len(lowerCAmelCase_ )] # rotor rc -------------------------- __SCREAMING_SNAKE_CASE = abc.index(lowerCAmelCase_ ) + rotorposa __SCREAMING_SNAKE_CASE = rotora[index % len(lowerCAmelCase_ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher __SCREAMING_SNAKE_CASE = reflector[symbol] # 2nd rotors __SCREAMING_SNAKE_CASE = abc[rotora.index(lowerCAmelCase_ ) - rotorposa] __SCREAMING_SNAKE_CASE = abc[rotora.index(lowerCAmelCase_ ) - rotorposa] __SCREAMING_SNAKE_CASE = abc[rotora.index(lowerCAmelCase_ ) - rotorposa] # 2nd plugboard if symbol in plugboard: __SCREAMING_SNAKE_CASE = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) if __name__ == "__main__": a__ : Union[str, Any] = '''This is my Python script that emulates the Enigma machine from WWII.''' a__ : Any = (1, 1, 1) a__ : Optional[int] = '''pictures''' a__ : Union[str, Any] = (rotora, rotora, rotora) a__ : Tuple = enigma(message, rotor_pos, rotor_sel, pb) print('''Encrypted message:''', en) print('''Decrypted message:''', enigma(en, rotor_pos, rotor_sel, pb))
54
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE : str = """▁""" SCREAMING_SNAKE_CASE : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =BigBirdTokenizer lowerCamelCase__ =BigBirdTokenizerFast lowerCamelCase__ =True lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().setUp() __snake_case : List[Any] = self.tokenizer_class(a_ , keep_accents=a_ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = '''<s>''' __snake_case : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(a_ ) , 10_04 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if not self.test_rust_tokenizer: return __snake_case : str = self.get_tokenizer() __snake_case : Dict = self.get_rust_tokenizer() __snake_case : Dict = '''I was born in 92000, and this is falsé.''' __snake_case : int = tokenizer.tokenize(a_ ) __snake_case : str = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) __snake_case : Tuple = tokenizer.encode(a_ , add_special_tokens=a_ ) __snake_case : Tuple = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) __snake_case : Optional[Any] = self.get_rust_tokenizer() __snake_case : Optional[int] = tokenizer.encode(a_ ) __snake_case : Dict = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = BigBirdTokenizer(a_ , keep_accents=a_ ) __snake_case : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ) , [2_85, 46, 10, 1_70, 3_82] , ) __snake_case : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __snake_case : Tuple = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''Hello World!''' __snake_case : List[Any] = [65, 1_85_36, 22_60, 1_01, 66] self.assertListEqual(a_ , self.big_tokenizer.encode(a_ ) ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off __snake_case : Optional[int] = [65, 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, 66] # noqa: E231 # fmt: on self.assertListEqual(a_ , self.big_tokenizer.encode(a_ ) ) @require_torch @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __snake_case : str = list(self.big_tokenizer.get_vocab().keys() )[:10] __snake_case : Tuple = ''' '''.join(a_ ) __snake_case : Tuple = self.big_tokenizer.encode_plus(a_ , return_tensors='''pt''' , return_token_type_ids=a_ ) __snake_case : List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=a_ ) __snake_case : Optional[int] = BigBirdConfig(attention_type='''original_full''' ) __snake_case : str = BigBirdModel(a_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**a_ ) model(**a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) __snake_case : Any = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = {'''input_ids''': [[65, 3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14, 66], [65, 4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
102
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ (SCREAMING_SNAKE_CASE_ ): lowerCamelCase__ = ['''pixel_values'''] def __init__( self , _a = True , _a = None , _a = 0.9 , _a = PILImageResampling.BICUBIC , _a = True , _a = None , _a = 1 / 255 , _a = True , _a = True , _a = None , _a = None , **_a , ) -> None: super().__init__(**__a ) lowerCAmelCase_ = size if size is not None else {'shortest_edge': 224} lowerCAmelCase_ = get_size_dict(__a , default_to_square=__a ) lowerCAmelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCAmelCase_ = get_size_dict(__a , param_name="crop_size" ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = crop_pct lowerCAmelCase_ = resample lowerCAmelCase_ = do_center_crop lowerCAmelCase_ = crop_size lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __a ( self , _a , _a , _a = None , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> np.ndarray: lowerCAmelCase_ = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: lowerCAmelCase_ = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowerCAmelCase_ = int(size["height"] / crop_pct ) else: lowerCAmelCase_ = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(__a ) ) lowerCAmelCase_ = get_resize_output_image_size(__a , size=__a , default_to_square=__a ) else: if "shortest_edge" in size: lowerCAmelCase_ = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) elif "height" in size and "width" in size: lowerCAmelCase_ = (size['height'], size['width']) else: raise ValueError("Invalid size for resize: {}".format(__a ) ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __a ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: lowerCAmelCase_ = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"size must contain \'height\' and \'width\' as keys. Got {size.keys()}" ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def __a ( self , _a , _a , _a = None , **_a , ) -> Any: return rescale(__a , scale=__a , data_format=__a , **__a ) def __a ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __a ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(__a , default_to_square=__a ) lowerCAmelCase_ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ = get_size_dict(__a , param_name="crop_size" ) lowerCAmelCase_ = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(__a ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=__a , size=__a , crop_pct=__a , resample=__a ) for image in images] if do_center_crop: lowerCAmelCase_ = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(__a , __a ) for image in images] lowerCAmelCase_ = {'pixel_values': images} return BatchFeature(data=__a , tensor_type=__a )
350
def A(__a: Tuple ): lowerCAmelCase_ = len(__a ) while cur > 1: # Find the maximum number in arr lowerCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
22
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A , A ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def _SCREAMING_SNAKE_CASE () -> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
2
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = tempfile.mkdtemp() # fmt: off lowerCamelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } lowerCamelCase = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_a , _a ) def _lowerCAmelCase ( self , **_a ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def _lowerCAmelCase ( self , **_a ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def _lowerCAmelCase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_tokenizer() lowerCamelCase = self.get_image_processor() lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCamelCase = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) lowerCamelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = image_processor(_a , return_tensors="""np""" ) lowerCamelCase = processor(images=_a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) lowerCamelCase = """lower newer""" lowerCamelCase = processor(text=_a ) lowerCamelCase = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) lowerCamelCase = """lower newer""" lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase = processor.batch_decode(_a ) lowerCamelCase = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) lowerCamelCase = """lower newer""" lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
291
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """big_bird""" def __init__( self : Any , UpperCAmelCase : List[str]=5_03_58 , UpperCAmelCase : List[str]=7_68 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : str=12 , UpperCAmelCase : Any=30_72 , UpperCAmelCase : str="gelu_new" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : List[Any]=40_96 , UpperCAmelCase : str=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : Optional[int]=1e-1_2 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=0 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : List[str]=66 , UpperCAmelCase : Optional[int]="block_sparse" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Union[str, Any]=64 , UpperCAmelCase : List[Any]=3 , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : Optional[int] , ): super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , sep_token_id=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : int = vocab_size lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : List[Any] = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_probs_dropout_prob lowerCAmelCase_ : Any = initializer_range lowerCAmelCase_ : Any = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[Any] = use_cache lowerCAmelCase_ : Any = rescale_embeddings lowerCAmelCase_ : Optional[Any] = attention_type lowerCAmelCase_ : Tuple = use_bias lowerCAmelCase_ : Any = block_size lowerCAmelCase_ : Dict = num_random_blocks lowerCAmelCase_ : str = classifier_dropout class __a ( __UpperCamelCase ): @property def A ( self : List[Any] ): if self.task == "multiple-choice": lowerCAmelCase_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
28
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __a : def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Optional[int] = use_input_mask lowerCAmelCase_ : Optional[Any] = use_token_type_ids lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Any = rotary_dim lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : int = None lowerCAmelCase_ : Union[str, Any] = vocab_size - 1 lowerCAmelCase_ : str = vocab_size - 1 lowerCAmelCase_ : Optional[int] = vocab_size - 1 def A ( self : List[Any] ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : str = 20 lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase_ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Dict = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : List[str] = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Any = model(UpperCAmelCase ) lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ): lowerCAmelCase_ : int = 20 lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Tuple = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def A ( self : Any ): lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self ) def A ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @tooslow def A ( self : int ): lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id lowerCAmelCase_ : List[Any] = jax.jit(model.generate ) lowerCAmelCase_ : Any = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase ) lowerCAmelCase_ : List[str] = fx_state with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def A ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase )
28
1
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class _lowerCamelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase_ = XGLMTokenizer UpperCAmelCase_ = XGLMTokenizerFast UpperCAmelCase_ = True UpperCAmelCase_ = True def snake_case_ (self ) -> int: super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = XGLMTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = "<pad>" UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def snake_case_ (self ) -> List[Any]: UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(__a ) , 10_08 ) def snake_case_ (self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 10_08 ) def snake_case_ (self ) -> Tuple: UpperCamelCase = XGLMTokenizer(__a , keep_accents=__a ) UpperCamelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) UpperCamelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCamelCase = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCamelCase = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def snake_case_ (self ) -> Union[str, Any]: return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def snake_case_ (self ) -> int: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__a , f.name ) UpperCamelCase = XGLMTokenizer(f.name , keep_accents=__a ) UpperCamelCase = pickle.dumps(__a ) pickle.loads(__a ) def snake_case_ (self ) -> int: if not self.test_rust_tokenizer: return UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = "I was born in 92000, and this is falsé." UpperCamelCase = tokenizer.tokenize(__a ) UpperCamelCase = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) UpperCamelCase = tokenizer.encode(__a , add_special_tokens=__a ) UpperCamelCase = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = tokenizer.encode(__a ) UpperCamelCase = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) @slow def snake_case_ (self ) -> Tuple: UpperCamelCase = "Hello World!" UpperCamelCase = [2, 3_12_27, 44_47, 35] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off UpperCamelCase = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def snake_case_ (self ) -> Tuple: # fmt: off UpperCamelCase = { "input_ids": [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="facebook/xglm-564M" , padding=__a , )
153
"""simple docstring""" from sklearn.metrics import recall_score import datasets lowerCAmelCase__ = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' lowerCAmelCase__ = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' lowerCAmelCase__ = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): def snake_case_ (self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def snake_case_ (self , __a , __a , __a=None , __a=1 , __a="binary" , __a=None , __a="warn" , ) -> str: UpperCamelCase = recall_score( __a , __a , labels=__a , pos_label=__a , average=__a , sample_weight=__a , zero_division=__a , ) return {"recall": float(__a ) if score.size == 1 else score}
153
1
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def A ( a_ ) -> Tuple: __UpperCamelCase : Dict =torch.exp(a_ ) __UpperCamelCase : List[str] =torch.sum(a_ ,dim=1 ) # sum of exp(x_i) __UpperCamelCase : Union[str, Any] =torch.sum(x * exp_x ,dim=1 ) # sum of x_i * exp(x_i) return torch.log(a_ ) - B / A class __A ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" super().__init__() __UpperCamelCase : Optional[int] =config.output_attentions __UpperCamelCase : List[str] =config.output_hidden_states __UpperCamelCase : int =nn.ModuleList([BertLayer(lowerCamelCase__ ) for _ in range(config.num_hidden_layers )] ) __UpperCamelCase : Any =nn.ModuleList([BertHighway(lowerCamelCase__ ) for _ in range(config.num_hidden_layers )] ) __UpperCamelCase : Union[str, Any] =[-1 for _ in range(config.num_hidden_layers )] def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if (type(lowerCamelCase__ ) is float) or (type(lowerCamelCase__ ) is int): for i in range(len(self.early_exit_entropy ) ): __UpperCamelCase : str =x else: __UpperCamelCase : Optional[Any] =x def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , ): """simple docstring""" __UpperCamelCase : Optional[int] =() __UpperCamelCase : int =() __UpperCamelCase : Optional[int] =() for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __UpperCamelCase : Union[str, Any] =all_hidden_states + (hidden_states,) __UpperCamelCase : List[str] =layer_module( lowerCamelCase__ , lowerCamelCase__ , head_mask[i] , lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =layer_outputs[0] if self.output_attentions: __UpperCamelCase : Optional[Any] =all_attentions + (layer_outputs[1],) __UpperCamelCase : List[Any] =(hidden_states,) if self.output_hidden_states: __UpperCamelCase : Tuple =current_outputs + (all_hidden_states,) if self.output_attentions: __UpperCamelCase : str =current_outputs + (all_attentions,) __UpperCamelCase : Tuple =self.highway[i](lowerCamelCase__ ) # logits, pooled_output if not self.training: __UpperCamelCase : Any =highway_exit[0] __UpperCamelCase : Union[str, Any] =entropy(lowerCamelCase__ ) __UpperCamelCase : List[str] =highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __UpperCamelCase : Union[str, Any] =all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __UpperCamelCase : str =(highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowerCamelCase__ , i + 1 ) else: __UpperCamelCase : Optional[int] =all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __UpperCamelCase : Any =all_hidden_states + (hidden_states,) __UpperCamelCase : Tuple =(hidden_states,) if self.output_hidden_states: __UpperCamelCase : Optional[int] =outputs + (all_hidden_states,) if self.output_attentions: __UpperCamelCase : Union[str, Any] =outputs + (all_attentions,) __UpperCamelCase : Dict =outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , a , ) class __A ( a ): """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" super().__init__(lowerCamelCase__ ) __UpperCamelCase : List[Any] =config __UpperCamelCase : Union[str, Any] =BertEmbeddings(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =DeeBertEncoder(lowerCamelCase__ ) __UpperCamelCase : str =BertPooler(lowerCamelCase__ ) self.init_weights() def __lowercase ( self ): """simple docstring""" self.encoder.init_highway_pooler(self.pooler ) def __lowercase ( self ): """simple docstring""" return self.embeddings.word_embeddings def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Dict =value def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowerCamelCase__ ) @add_start_docstrings_to_model_forward(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __UpperCamelCase : List[str] =input_ids.size() elif inputs_embeds is not None: __UpperCamelCase : int =inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __UpperCamelCase : Tuple =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __UpperCamelCase : Any =torch.ones(lowerCamelCase__ , device=lowerCamelCase__ ) if encoder_attention_mask is None: __UpperCamelCase : List[str] =torch.ones(lowerCamelCase__ , device=lowerCamelCase__ ) if token_type_ids is None: __UpperCamelCase : List[str] =torch.zeros(lowerCamelCase__ , dtype=torch.long , device=lowerCamelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __UpperCamelCase : torch.Tensor =self.get_extended_attention_mask(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __UpperCamelCase : Union[str, Any] =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __UpperCamelCase : int =encoder_attention_mask[:, None, None, :] __UpperCamelCase : Dict =encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __UpperCamelCase : Dict =(1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __UpperCamelCase : List[str] =self.get_head_mask(lowerCamelCase__ , self.config.num_hidden_layers ) __UpperCamelCase : Tuple =self.embeddings( input_ids=lowerCamelCase__ , position_ids=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , inputs_embeds=lowerCamelCase__ ) __UpperCamelCase : Tuple =self.encoder( lowerCamelCase__ , attention_mask=lowerCamelCase__ , head_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , ) __UpperCamelCase : Optional[Any] =encoder_outputs[0] __UpperCamelCase : Dict =self.pooler(lowerCamelCase__ ) __UpperCamelCase : Optional[int] =( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __A ( a ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =message __UpperCamelCase : Any =exit_layer # start from 1! class __A ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" super().__init__() __UpperCamelCase : List[Any] =BertPooler(lowerCamelCase__ ) __UpperCamelCase : Any =nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase : int =nn.Linear(config.hidden_size , config.num_labels ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =encoder_outputs[0] __UpperCamelCase : int =self.pooler(lowerCamelCase__ ) # "return" pooler_output # BertModel __UpperCamelCase : int =(pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __UpperCamelCase : List[str] =bmodel_output[1] __UpperCamelCase : List[str] =self.dropout(lowerCamelCase__ ) __UpperCamelCase : int =self.classifier(lowerCamelCase__ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , a , ) class __A ( a ): """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" super().__init__(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =config.num_labels __UpperCamelCase : Optional[int] =config.num_hidden_layers __UpperCamelCase : Any =DeeBertModel(lowerCamelCase__ ) __UpperCamelCase : Dict =nn.Dropout(config.hidden_dropout_prob ) __UpperCamelCase : Tuple =nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=-1 , lowerCamelCase__=False , ): """simple docstring""" __UpperCamelCase : List[str] =self.num_layers try: __UpperCamelCase : Dict =self.bert( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , position_ids=lowerCamelCase__ , head_mask=lowerCamelCase__ , inputs_embeds=lowerCamelCase__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __UpperCamelCase : int =outputs[1] __UpperCamelCase : List[Any] =self.dropout(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =self.classifier(lowerCamelCase__ ) __UpperCamelCase : Tuple =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCamelCase : Optional[Any] =e.message __UpperCamelCase : Tuple =e.exit_layer __UpperCamelCase : Dict =outputs[0] if not self.training: __UpperCamelCase : int =entropy(lowerCamelCase__ ) __UpperCamelCase : str =[] __UpperCamelCase : List[Any] =[] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCamelCase : int =MSELoss() __UpperCamelCase : Union[str, Any] =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __UpperCamelCase : List[Any] =CrossEntropyLoss() __UpperCamelCase : Union[str, Any] =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __UpperCamelCase : Tuple =[] for highway_exit in outputs[-1]: __UpperCamelCase : List[Any] =highway_exit[0] if not self.training: highway_logits_all.append(lowerCamelCase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCamelCase : Dict =MSELoss() __UpperCamelCase : List[Any] =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __UpperCamelCase : str =CrossEntropyLoss() __UpperCamelCase : int =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCamelCase__ ) if train_highway: __UpperCamelCase : Union[str, Any] =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCamelCase : Dict =(loss,) + outputs if not self.training: __UpperCamelCase : List[Any] =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCamelCase : List[str] =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
245
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :Union[str, Any] = logging.get_logger(__name__) A_ :Tuple = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class __A ( a ): """simple docstring""" UpperCamelCase__ : Any ="""xlnet""" UpperCamelCase__ : Tuple =["""mems"""] UpperCamelCase__ : Any ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCamelCase__=32000 , lowerCamelCase__=1024 , lowerCamelCase__=24 , lowerCamelCase__=16 , lowerCamelCase__=4096 , lowerCamelCase__="gelu" , lowerCamelCase__=True , lowerCamelCase__="bi" , lowerCamelCase__=0.02 , lowerCamelCase__=1E-12 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=-1 , lowerCamelCase__=False , lowerCamelCase__="last" , lowerCamelCase__=True , lowerCamelCase__="tanh" , lowerCamelCase__=0.1 , lowerCamelCase__=5 , lowerCamelCase__=5 , lowerCamelCase__=5 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Optional[int] =vocab_size __UpperCamelCase : int =d_model __UpperCamelCase : Optional[Any] =n_layer __UpperCamelCase : str =n_head if d_model % n_head != 0: raise ValueError(f'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) __UpperCamelCase : Optional[Any] =d_model // n_head __UpperCamelCase : List[Any] =ff_activation __UpperCamelCase : Tuple =d_inner __UpperCamelCase : List[Any] =untie_r __UpperCamelCase : List[Any] =attn_type __UpperCamelCase : Dict =initializer_range __UpperCamelCase : List[str] =layer_norm_eps __UpperCamelCase : List[str] =dropout __UpperCamelCase : int =mem_len __UpperCamelCase : List[Any] =reuse_len __UpperCamelCase : Union[str, Any] =bi_data __UpperCamelCase : Optional[Any] =clamp_len __UpperCamelCase : Tuple =same_length __UpperCamelCase : int =summary_type __UpperCamelCase : Dict =summary_use_proj __UpperCamelCase : Dict =summary_activation __UpperCamelCase : str =summary_last_dropout __UpperCamelCase : Dict =start_n_top __UpperCamelCase : Optional[Any] =end_n_top __UpperCamelCase : int =bos_token_id __UpperCamelCase : Union[str, Any] =pad_token_id __UpperCamelCase : Dict =eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , lowerCamelCase__ , ) __UpperCamelCase : Dict =kwargs['use_cache'] __UpperCamelCase : Optional[int] =use_mems_eval __UpperCamelCase : Any =use_mems_train super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) @property def __lowercase ( self ): """simple docstring""" logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
245
1
import unittest from transformers import DonutProcessor a ="""naver-clova-ix/donut-base""" class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : str): __lowerCamelCase : Tuple = DonutProcessor.from_pretrained(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : str = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } __lowerCamelCase : List[Any] = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) __lowerCamelCase : Tuple = self.processor.tokenajson(SCREAMING_SNAKE_CASE__) self.assertDictEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)
73
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : list ) -> list: """simple docstring""" _UpperCAmelCase : List[Any] = len(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: _UpperCAmelCase , _UpperCAmelCase : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = list(range(10, 0, -1)) print(F'Original: {arr}. Sorted: {odd_even_transposition(arr)}')
31
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Tuple = logging.get_logger(__name__) A_ : Dict = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'gpt_bigcode' lowerCamelCase__ : str = ['past_key_values'] lowerCamelCase__ : str = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self, lowerCamelCase_=5_0_2_5_7, lowerCamelCase_=1_0_2_4, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=None, lowerCamelCase_="gelu_pytorch_tanh", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1e-5, lowerCamelCase_=0.02, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=5_0_2_5_6, lowerCamelCase_=5_0_2_5_6, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=True, **lowerCamelCase_, ): '''simple docstring''' lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : Dict = n_positions lowerCamelCase__ : int = n_embd lowerCamelCase__ : Tuple = n_layer lowerCamelCase__ : Optional[Any] = n_head lowerCamelCase__ : Any = n_inner lowerCamelCase__ : Optional[Any] = activation_function lowerCamelCase__ : Tuple = resid_pdrop lowerCamelCase__ : Optional[Any] = embd_pdrop lowerCamelCase__ : List[str] = attn_pdrop lowerCamelCase__ : Union[str, Any] = layer_norm_epsilon lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Any = scale_attn_weights lowerCamelCase__ : Union[str, Any] = use_cache lowerCamelCase__ : int = attention_softmax_in_fpaa lowerCamelCase__ : List[str] = scale_attention_softmax_in_fpaa lowerCamelCase__ : Tuple = multi_query lowerCamelCase__ : str = bos_token_id lowerCamelCase__ : Tuple = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase, eos_token_id=__UpperCAmelCase, **__UpperCAmelCase )
354
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : Dict = ['image_processor', 'tokenizer'] lowerCamelCase__ : Optional[int] = 'CLIPImageProcessor' lowerCamelCase__ : List[str] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase_, ) lowerCamelCase__ : int = kwargs.pop('feature_extractor' ) lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __call__(self, lowerCamelCase_=None, lowerCamelCase_=None, lowerCamelCase_=None, **lowerCamelCase_ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase__ : Any = self.tokenizer(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if images is not None: lowerCamelCase__ : List[Any] = self.image_processor(lowerCamelCase_, return_tensors=lowerCamelCase_, **lowerCamelCase_ ) if text is not None and images is not None: lowerCamelCase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ), tensor_type=lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.tokenizer.model_input_names lowerCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
215
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ : Optional[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = DPTConfig() if "large" in checkpoint_url: _UpperCAmelCase : List[Any] = 1024 _UpperCAmelCase : Optional[int] = 4096 _UpperCAmelCase : Tuple = 24 _UpperCAmelCase : List[str] = 16 _UpperCAmelCase : str = [5, 11, 17, 23] _UpperCAmelCase : Tuple = [256, 512, 1024, 1024] _UpperCAmelCase : List[str] = (1, 384, 384) if "ade" in checkpoint_url: _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = 150 _UpperCAmelCase : Tuple = """huggingface/label-files""" _UpperCAmelCase : int = """ade20k-id2label.json""" _UpperCAmelCase : List[str] = json.load(open(cached_download(hf_hub_url(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) ) , """r""" ) ) _UpperCAmelCase : List[Any] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : Tuple = idalabel _UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : Optional[int] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Tuple = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCAmelCase : int = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: _UpperCAmelCase : str = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: _UpperCAmelCase : Optional[Any] = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: _UpperCAmelCase : int = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: _UpperCAmelCase : Dict = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: _UpperCAmelCase : List[str] = name.replace("""proj""" , """projection""" ) if "blocks" in name: _UpperCAmelCase : Dict = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: _UpperCAmelCase : Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _UpperCAmelCase : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: _UpperCAmelCase : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _UpperCAmelCase : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: _UpperCAmelCase : Dict = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: _UpperCAmelCase : Optional[Any] = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: _UpperCAmelCase : List[Any] = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: _UpperCAmelCase : Optional[int] = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: _UpperCAmelCase : List[str] = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: _UpperCAmelCase : str = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: _UpperCAmelCase : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCAmelCase : Tuple = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: _UpperCAmelCase : List[Any] = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: _UpperCAmelCase : Tuple = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: _UpperCAmelCase : Union[str, Any] = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: _UpperCAmelCase : int = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: _UpperCAmelCase : List[str] = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCAmelCase : List[str] = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCAmelCase : Tuple = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCAmelCase : List[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCAmelCase : List[str] = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: _UpperCAmelCase : Optional[int] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: _UpperCAmelCase : int = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: _UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: _UpperCAmelCase : str = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: _UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: _UpperCAmelCase : Optional[Any] = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: _UpperCAmelCase : Any = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: _UpperCAmelCase : Tuple = name.replace("""bn""" , """batch_norm""" ) if "head" in name: _UpperCAmelCase : Dict = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: _UpperCAmelCase : List[Any] = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: _UpperCAmelCase : List[Any] = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : Any = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = in_proj_weight[: config.hidden_size, :] _UpperCAmelCase : Optional[Any] = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : Dict = in_proj_bias[-config.hidden_size :] def snake_case_ ( )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase : List[str] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase : List[str] = get_dpt_config(lowerCAmelCase_ ) # load original state_dict from URL _UpperCAmelCase : Any = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(lowerCAmelCase_ ) # rename keys for key in state_dict.copy().keys(): _UpperCAmelCase : List[Any] = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : Dict = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model _UpperCAmelCase : Optional[int] = DPTForSemanticSegmentation(lowerCAmelCase_ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() # Check outputs on an image _UpperCAmelCase : Tuple = 480 if """ade""" in checkpoint_url else 384 _UpperCAmelCase : List[str] = DPTImageProcessor(size=lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = prepare_img() _UpperCAmelCase : Dict = image_processor(lowerCAmelCase_ , return_tensors="""pt""" ) # forward pass _UpperCAmelCase : Optional[Any] = model(**lowerCAmelCase_ ).logits if """ade""" in checkpoint_url else model(**lowerCAmelCase_ ).predicted_depth # Assert logits _UpperCAmelCase : Optional[int] = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: _UpperCAmelCase : str = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(lowerCAmelCase_ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCAmelCase_ ) ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) A_ : List[Any] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
215
1
"""simple docstring""" import numpy as np def _lowercase ( __snake_case ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def _lowercase ( __snake_case ) -> np.ndarray: return vector * sigmoid(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
58
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __snake_case : str = logging.get_logger(__name__) # General docstring __snake_case : Optional[int] = 'PoolFormerConfig' # Base docstring __snake_case : Any = 'sail/poolformer_s12' __snake_case : Optional[Any] = [1, 512, 7, 7] # Image classification docstring __snake_case : List[Any] = 'sail/poolformer_s12' __snake_case : Optional[Any] = 'tabby, tabby cat' __snake_case : Union[str, Any] = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def _lowercase ( __snake_case ,__snake_case = 0.0 ,__snake_case = False ) -> Tuple: if drop_prob == 0.0 or not training: return input __lowerCAmelCase : Optional[int] = 1 - drop_prob __lowerCAmelCase : Union[str, Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets __lowerCAmelCase : List[str] = keep_prob + torch.rand(__snake_case ,dtype=input.dtype ,device=input.device ) random_tensor.floor_() # binarize __lowerCAmelCase : Tuple = input.div(__snake_case ) * random_tensor return output class A__ ( nn.Module ): '''simple docstring''' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[float] = None) -> None: """simple docstring""" super().__init__() __lowerCAmelCase : Dict = drop_prob def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: torch.Tensor) -> torch.Tensor: """simple docstring""" return drop_path(_SCREAMING_SNAKE_CASE , self.drop_prob , self.training) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> str: """simple docstring""" return "p={}".format(self.drop_prob) class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any=None) -> int: """simple docstring""" super().__init__() __lowerCAmelCase : Optional[int] = patch_size if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable) else (patch_size, patch_size) __lowerCAmelCase : Any = stride if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable) else (stride, stride) __lowerCAmelCase : Any = padding if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable) else (padding, padding) __lowerCAmelCase : Optional[int] = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = norm_layer(_SCREAMING_SNAKE_CASE) if norm_layer else nn.Identity() def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[int]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : str = self.projection(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = self.norm(_SCREAMING_SNAKE_CASE) return embeddings class A__ ( nn.GroupNorm ): '''simple docstring''' def __init__( self: str , _SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: List[Any]) -> Tuple: """simple docstring""" super().__init__(1 , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) class A__ ( nn.Module ): '''simple docstring''' def __init__( self: int , _SCREAMING_SNAKE_CASE: str) -> Dict: """simple docstring""" super().__init__() __lowerCAmelCase : Dict = nn.AvgPoolad(_SCREAMING_SNAKE_CASE , stride=1 , padding=pool_size // 2 , count_include_pad=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Dict) -> Dict: """simple docstring""" return self.pool(_SCREAMING_SNAKE_CASE) - hidden_states class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str) -> Dict: """simple docstring""" super().__init__() __lowerCAmelCase : Dict = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1) __lowerCAmelCase : Tuple = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1) __lowerCAmelCase : Any = PoolFormerDropPath(_SCREAMING_SNAKE_CASE) if isinstance(config.hidden_act , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[int] = ACTaFN[config.hidden_act] else: __lowerCAmelCase : int = config.hidden_act def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: int) -> Tuple: """simple docstring""" __lowerCAmelCase : int = self.conva(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = self.act_fn(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = self.drop(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = self.conva(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = self.drop(_SCREAMING_SNAKE_CASE) return hidden_states class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]) -> str: """simple docstring""" super().__init__() __lowerCAmelCase : List[str] = PoolFormerPooling(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = PoolFormerOutput(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = PoolFormerGroupNorm(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = PoolFormerGroupNorm(_SCREAMING_SNAKE_CASE) # Useful for training neural nets __lowerCAmelCase : Optional[int] = PoolFormerDropPath(_SCREAMING_SNAKE_CASE) if drop_path > 0.0 else nn.Identity() __lowerCAmelCase : Union[str, Any] = config.use_layer_scale if config.use_layer_scale: __lowerCAmelCase : List[Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((_SCREAMING_SNAKE_CASE)) , requires_grad=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = nn.Parameter( config.layer_scale_init_value * torch.ones((_SCREAMING_SNAKE_CASE)) , requires_grad=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[int]: """simple docstring""" if self.use_layer_scale: __lowerCAmelCase : int = self.pooling(self.before_norm(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : List[str] = self.layer_scale_a.unsqueeze(-1).unsqueeze(-1) * pooling_output # First residual connection __lowerCAmelCase : Optional[Any] = hidden_states + self.drop_path(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = () __lowerCAmelCase : Union[str, Any] = self.output(self.after_norm(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : Dict = self.layer_scale_a.unsqueeze(-1).unsqueeze(-1) * layer_output # Second residual connection __lowerCAmelCase : List[str] = hidden_states + self.drop_path(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = (output,) + outputs return outputs else: __lowerCAmelCase : Optional[Any] = self.drop_path(self.pooling(self.before_norm(_SCREAMING_SNAKE_CASE))) # First residual connection __lowerCAmelCase : Optional[Any] = pooling_output + hidden_states __lowerCAmelCase : List[Any] = () # Second residual connection inside the PoolFormerOutput block __lowerCAmelCase : Any = self.drop_path(self.output(self.after_norm(_SCREAMING_SNAKE_CASE))) __lowerCAmelCase : str = hidden_states + layer_output __lowerCAmelCase : List[Any] = (output,) + outputs return outputs class A__ ( nn.Module ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Optional[Any]: """simple docstring""" super().__init__() __lowerCAmelCase : Optional[int] = config # stochastic depth decay rule __lowerCAmelCase : Tuple = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths))] # patch embeddings __lowerCAmelCase : List[str] = [] for i in range(config.num_encoder_blocks): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , )) __lowerCAmelCase : Tuple = nn.ModuleList(_SCREAMING_SNAKE_CASE) # Transformer blocks __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : Any = 0 for i in range(config.num_encoder_blocks): # each block consists of layers __lowerCAmelCase : List[Any] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( PoolFormerLayer( _SCREAMING_SNAKE_CASE , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio) , drop_path=dpr[cur + j] , )) blocks.append(nn.ModuleList(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : Union[str, Any] = nn.ModuleList(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: str=False , _SCREAMING_SNAKE_CASE: Union[str, Any]=True) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = () if output_hidden_states else None __lowerCAmelCase : Union[str, Any] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block)): __lowerCAmelCase , __lowerCAmelCase : str = layers # Get patch embeddings from hidden_states __lowerCAmelCase : str = embedding_layer(_SCREAMING_SNAKE_CASE) # Send the embeddings through the blocks for _, blk in enumerate(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : int = blk(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = layer_outputs[0] if output_hidden_states: __lowerCAmelCase : int = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=_SCREAMING_SNAKE_CASE) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = PoolFormerConfig SCREAMING_SNAKE_CASE = 'poolformer' SCREAMING_SNAKE_CASE = 'pixel_values' SCREAMING_SNAKE_CASE = True def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: List[Any]) -> List[str]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(_SCREAMING_SNAKE_CASE , nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any]=False) -> Dict: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : List[Any] = value __snake_case : Union[str, Any] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __snake_case : str = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , __SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: str , _SCREAMING_SNAKE_CASE: Optional[int]) -> Any: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = config __lowerCAmelCase : Any = PoolFormerEncoder(_SCREAMING_SNAKE_CASE) # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Optional[Any]: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[torch.FloatTensor] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" __lowerCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") __lowerCAmelCase : Union[str, Any] = self.encoder( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=encoder_outputs.hidden_states , ) class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple) -> Union[str, Any]: """simple docstring""" super().__init__() __lowerCAmelCase : List[Any] = nn.Linear(config.hidden_size , config.hidden_size) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.dense(_SCREAMING_SNAKE_CASE) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , __SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Dict: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = config.num_labels __lowerCAmelCase : Tuple = PoolFormerModel(_SCREAMING_SNAKE_CASE) # Final norm __lowerCAmelCase : Optional[Any] = PoolFormerGroupNorm(config.hidden_sizes[-1]) # Classifier head __lowerCAmelCase : Any = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[torch.FloatTensor] = None , _SCREAMING_SNAKE_CASE: Optional[torch.LongTensor] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" __lowerCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase : Union[str, Any] = self.poolformer( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = outputs[0] __lowerCAmelCase : Optional[int] = self.classifier(self.norm(_SCREAMING_SNAKE_CASE).mean([-2, -1])) __lowerCAmelCase : Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCAmelCase : int = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCAmelCase : List[Any] = "single_label_classification" else: __lowerCAmelCase : Union[str, Any] = "multi_label_classification" if self.config.problem_type == "regression": __lowerCAmelCase : Dict = MSELoss() if self.num_labels == 1: __lowerCAmelCase : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze()) else: __lowerCAmelCase : int = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) elif self.config.problem_type == "single_label_classification": __lowerCAmelCase : int = CrossEntropyLoss() __lowerCAmelCase : str = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": __lowerCAmelCase : Union[str, Any] = BCEWithLogitsLoss() __lowerCAmelCase : Optional[int] = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) if not return_dict: __lowerCAmelCase : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states)
58
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = "ctrl" A = ["past_key_values"] A = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , _UpperCAmelCase=2_4_6_5_3_4 , _UpperCAmelCase=2_5_6 , _UpperCAmelCase=1_2_8_0 , _UpperCAmelCase=8_1_9_2 , _UpperCAmelCase=4_8 , _UpperCAmelCase=1_6 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , **_UpperCAmelCase , ) -> Dict: __UpperCamelCase : Union[str, Any] = vocab_size __UpperCamelCase : Optional[Any] = n_positions __UpperCamelCase : Tuple = n_embd __UpperCamelCase : Optional[int] = n_layer __UpperCamelCase : Any = n_head __UpperCamelCase : List[Any] = dff __UpperCamelCase : List[str] = resid_pdrop __UpperCamelCase : Union[str, Any] = embd_pdrop __UpperCamelCase : Any = layer_norm_epsilon __UpperCamelCase : Optional[int] = initializer_range __UpperCamelCase : Optional[Any] = use_cache super().__init__(**_UpperCAmelCase )
298
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(snake_case__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
298
1
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __lowerCamelCase ( ) -> Any: """simple docstring""" lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=__UpperCamelCase , default=__UpperCamelCase , required=__UpperCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=__UpperCamelCase , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=__UpperCamelCase , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=__UpperCamelCase , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=__UpperCamelCase , default=0 , help="cuda_id." , ) lowerCAmelCase_ : Optional[Any] = parser.parse_args() return args def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: """simple docstring""" if not len(__UpperCamelCase ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) lowerCAmelCase_ , lowerCAmelCase_ : int = imgs[0].size lowerCAmelCase_ : Tuple = Image.new("RGB" , size=(cols * w, rows * h) ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = grid.size for i, img in enumerate(__UpperCamelCase ): grid.paste(__UpperCamelCase , box=(i % cols * w, i // cols * h) ) return grid def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase="robotic cat with wings" , __UpperCamelCase=7.5 , __UpperCamelCase=50 , __UpperCamelCase=1 , __UpperCamelCase=42 , ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = torch.Generator(pipeline.device ).manual_seed(__UpperCamelCase ) lowerCAmelCase_ : List[Any] = pipeline( __UpperCamelCase , guidance_scale=__UpperCamelCase , num_inference_steps=__UpperCamelCase , generator=__UpperCamelCase , num_images_per_prompt=__UpperCamelCase , ).images lowerCAmelCase_ : Tuple = int(math.sqrt(__UpperCamelCase ) ) lowerCAmelCase_ : List[Any] = image_grid(__UpperCamelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowercase__ = parse_args() # Load models and create wrapper for stable diffusion lowercase__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") lowercase__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") lowercase__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") lowercase__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") lowercase__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowercase__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): lowercase__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: lowercase__ = unet.to(torch.device("""cuda""", args.cuda_id)) lowercase__ = pipeline.to(unet.device) lowercase__ , lowercase__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) lowercase__ = os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
161
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : str = """ssube/stable-diffusion-x4-upscaler-onnx""" def lowerCamelCase ( self : Any , a_ : Dict=0 ): lowerCAmelCase_ : Dict = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(a_ ) ) lowerCAmelCase_ : Tuple = torch.manual_seed(a_ ) lowerCAmelCase_ : List[str] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Tuple = self.get_dummy_inputs() lowerCAmelCase_ : List[Any] = pipe(**a_ ).images lowerCAmelCase_ : str = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : int = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase_ : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Optional[Any] = self.get_dummy_inputs() lowerCAmelCase_ : Union[str, Any] = pipe(**a_ ).images lowerCAmelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : str = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase_ : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Optional[int] = self.get_dummy_inputs() lowerCAmelCase_ : Tuple = pipe(**a_ ).images lowerCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : str = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase_ : str = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Tuple = self.get_dummy_inputs() lowerCAmelCase_ : List[Any] = pipe(**a_ ).images lowerCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : Optional[int] = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCAmelCase_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Tuple = self.get_dummy_inputs() lowerCAmelCase_ : List[str] = pipe(**a_ ).images lowerCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : Optional[Any] = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCamelCase ( self : Optional[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Tuple = ort.SessionOptions() lowerCAmelCase_ : List[str] = False return options def lowerCamelCase ( self : Any ): lowerCAmelCase_ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCAmelCase_ : List[Any] = init_image.resize((1_28, 1_28) ) # using the PNDM scheduler by default lowerCAmelCase_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Dict = "A fantasy landscape, trending on artstation" lowerCAmelCase_ : Any = torch.manual_seed(0 ) lowerCAmelCase_ : Dict = pipe( prompt=a_ , image=a_ , guidance_scale=7.5 , num_inference_steps=10 , generator=a_ , output_type="np" , ) lowerCAmelCase_ : Dict = output.images lowerCAmelCase_ : Optional[int] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : Optional[int] = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowerCamelCase ( self : str ): lowerCAmelCase_ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCAmelCase_ : Union[str, Any] = init_image.resize((1_28, 1_28) ) lowerCAmelCase_ : List[Any] = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" ) lowerCAmelCase_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase_ : Any = "A fantasy landscape, trending on artstation" lowerCAmelCase_ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = pipe( prompt=a_ , image=a_ , guidance_scale=7.5 , num_inference_steps=20 , generator=a_ , output_type="np" , ) lowerCAmelCase_ : List[str] = output.images lowerCAmelCase_ : Any = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : List[str] = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
161
1
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class A ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , """num_attention_heads""" ) ) class A : '''simple docstring''' def __init__(self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : Dict=64 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Any=1 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Tuple=[128, 256, 384] , _UpperCAmelCase : int=[4, 6, 8] , _UpperCAmelCase : List[str]=[2, 3, 4] , _UpperCAmelCase : List[Any]=[16, 16, 16] , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=[2, 2, 2] , _UpperCAmelCase : Optional[Any]=[2, 2, 2] , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=2 , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = kernel_size lowercase__ = stride lowercase__ = padding lowercase__ = hidden_sizes lowercase__ = num_attention_heads lowercase__ = depths lowercase__ = key_dim lowercase__ = drop_path_rate lowercase__ = patch_size lowercase__ = attention_ratio lowercase__ = mlp_ratio lowercase__ = initializer_range lowercase__ = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase__ = is_training lowercase__ = use_labels lowercase__ = num_labels lowercase__ = initializer_range def lowerCamelCase__ (self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = LevitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = (self.image_size, self.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowercase__ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = LevitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) A__ = False A__ = False A__ = False A__ = False A__ = False def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = LevitModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ (self : Optional[Any] ) -> Dict: """simple docstring""" return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" pass @unittest.skip(reason="""Levit does not output attentions""" ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" pass def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Dict: """simple docstring""" def check_hidden_states_output(_UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : str ): lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = len(self.model_tester.depths ) + 1 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) lowercase__ = (self.model_tester.image_size, self.model_tester.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowercase__ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" pass def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> Optional[Any]: """simple docstring""" if not self.model_tester.is_training: return lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ = False lowercase__ = True for model_class in self.all_model_classes: if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase__ = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ): lowercase__ = problem_type["""title"""] lowercase__ = problem_type["""num_labels"""] lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if problem_type["num_labels"] > 1: lowercase__ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase__ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_UpperCAmelCase ) as warning_list: lowercase__ = model(**_UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = LevitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) # verify the logits lowercase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
305
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
1
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class snake_case__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = AutoencoderKL A__ = '''sample''' A__ = 1E-2 @property def A_ ( self : List[str] ) -> Dict: '''simple docstring''' __snake_case : List[str] = 4 __snake_case : int = 3 __snake_case : Dict = (32, 32) __snake_case : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) return {"sample": image} @property def A_ ( self : Dict ) -> Tuple: '''simple docstring''' return (3, 32, 32) @property def A_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) def A_ ( self : Optional[int] ) -> Dict: '''simple docstring''' __snake_case : Tuple = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def A_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' pass def A_ ( self : Tuple ) -> List[Any]: '''simple docstring''' pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def A_ ( self : Union[str, Any] ) -> int: '''simple docstring''' # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case : Any = self.prepare_init_args_and_inputs_for_common() __snake_case : Union[str, Any] = self.model_class(**__a ) model.to(__a ) assert not model.is_gradient_checkpointing and model.training __snake_case : Union[str, Any] = model(**__a ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case : List[str] = torch.randn_like(__a ) __snake_case : List[Any] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case : Optional[Any] = self.model_class(**__a ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(__a ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case : Tuple = model_a(**__a ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case : Optional[int] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case : int = dict(model.named_parameters() ) __snake_case : int = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def A_ ( self : List[str] ) -> Dict: '''simple docstring''' __snake_case , __snake_case : int = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=__a ) self.assertIsNotNone(__a ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__a ) __snake_case : Optional[Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' __snake_case : Any = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case : Tuple = model.to(__a ) model.eval() if torch_device == "mps": __snake_case : str = torch.manual_seed(0 ) else: __snake_case : List[Any] = torch.Generator(device=__a ).manual_seed(0 ) __snake_case : str = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case : Union[str, Any] = image.to(__a ) with torch.no_grad(): __snake_case : Any = model(__a , sample_posterior=__a , generator=__a ).sample __snake_case : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case : Dict = torch.tensor( [ -4.00_78e-01, -3.83_23e-04, -1.26_81e-01, -1.14_62e-01, 2.00_95e-01, 1.08_93e-01, -8.82_47e-02, -3.03_61e-01, -9.86_44e-03, ] ) elif torch_device == "cpu": __snake_case : Optional[int] = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case : Optional[int] = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(__a , __a , rtol=1e-2 ) ) @slow class snake_case__ ( unittest.TestCase ): def A_ ( self : Dict , __a : Tuple , __a : Optional[Any] ) -> Any: '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={"_".join([str(__a ) for s in shape] )}.npy''' def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Optional[int] , __a : List[str]=0 , __a : str=(4, 3, 512, 512) , __a : List[str]=False ) -> List[Any]: '''simple docstring''' __snake_case : str = torch.floataa if fpaa else torch.floataa __snake_case : Optional[int] = torch.from_numpy(load_hf_numpy(self.get_file_format(__a , __a ) ) ).to(__a ).to(__a ) return image def A_ ( self : Union[str, Any] , __a : Union[str, Any]="CompVis/stable-diffusion-v1-4" , __a : str=False ) -> Tuple: '''simple docstring''' __snake_case : Any = 'fp16' if fpaa else None __snake_case : Dict = torch.floataa if fpaa else torch.floataa __snake_case : int = AutoencoderKL.from_pretrained( __a , subfolder='vae' , torch_dtype=__a , revision=__a , ) model.to(__a ).eval() return model def A_ ( self : Dict , __a : Optional[int]=0 ) -> Dict: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(__a ) return torch.Generator(device=__a ).manual_seed(__a ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A_ ( self : str , __a : Any , __a : int , __a : Tuple ) -> Any: '''simple docstring''' __snake_case : Tuple = self.get_sd_vae_model() __snake_case : int = self.get_sd_image(__a ) __snake_case : Optional[int] = self.get_generator(__a ) with torch.no_grad(): __snake_case : List[str] = model(__a , generator=__a , sample_posterior=__a ).sample assert sample.shape == image.shape __snake_case : Union[str, Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case : Dict = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(__a , __a , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Union[str, Any] , __a : Tuple , __a : Union[str, Any] ) -> Any: '''simple docstring''' __snake_case : List[Any] = self.get_sd_vae_model(fpaa=__a ) __snake_case : List[str] = self.get_sd_image(__a , fpaa=__a ) __snake_case : List[str] = self.get_generator(__a ) with torch.no_grad(): __snake_case : Any = model(__a , generator=__a , sample_posterior=__a ).sample assert sample.shape == image.shape __snake_case : Optional[int] = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case : Optional[Any] = torch.tensor(__a ) assert torch_all_close(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A_ ( self : Optional[int] , __a : Any , __a : Optional[int] , __a : List[Any] ) -> Optional[int]: '''simple docstring''' __snake_case : List[Any] = self.get_sd_vae_model() __snake_case : Union[str, Any] = self.get_sd_image(__a ) with torch.no_grad(): __snake_case : int = model(__a ).sample assert sample.shape == image.shape __snake_case : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case : Any = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(__a , __a , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any] ) -> List[Any]: '''simple docstring''' __snake_case : Union[str, Any] = self.get_sd_vae_model() __snake_case : Any = self.get_sd_image(__a , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case : Optional[Any] = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case : Tuple = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case : Optional[Any] = torch.tensor(__a ) assert torch_all_close(__a , __a , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Dict , __a : Optional[int] , __a : int ) -> Tuple: '''simple docstring''' __snake_case : int = self.get_sd_vae_model(fpaa=__a ) __snake_case : Tuple = self.get_sd_image(__a , shape=(3, 4, 64, 64) , fpaa=__a ) with torch.no_grad(): __snake_case : List[Any] = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case : int = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case : List[Any] = torch.tensor(__a ) assert torch_all_close(__a , __a , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def A_ ( self : int , __a : Optional[int] ) -> str: '''simple docstring''' __snake_case : Optional[Any] = self.get_sd_vae_model(fpaa=__a ) __snake_case : Optional[int] = self.get_sd_image(__a , shape=(3, 4, 64, 64) , fpaa=__a ) with torch.no_grad(): __snake_case : List[Any] = model.decode(__a ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case : Optional[Any] = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__a , __a , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def A_ ( self : int , __a : List[str] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Any = self.get_sd_vae_model() __snake_case : Tuple = self.get_sd_image(__a , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case : Dict = model.decode(__a ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case : List[Any] = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def A_ ( self : Dict , __a : List[str] , __a : List[str] ) -> int: '''simple docstring''' __snake_case : List[Any] = self.get_sd_vae_model() __snake_case : Any = self.get_sd_image(__a ) __snake_case : Optional[int] = self.get_generator(__a ) with torch.no_grad(): __snake_case : Union[str, Any] = model.encode(__a ).latent_dist __snake_case : Any = dist.sample(generator=__a ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case : Tuple = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case : Optional[int] = torch.tensor(__a ) __snake_case : Optional[int] = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(__a , __a , atol=__a )
0
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) A__ : Dict = logging.getLogger() def a_ ( ) -> Tuple: __snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument('-f' ) __snake_case : Any = parser.parse_args() return args.f def a_ ( _UpperCAmelCase : Optional[int] ) -> List[Any]: __snake_case : Tuple = {} __snake_case : Union[str, Any] = os.path.join(_UpperCAmelCase ,'all_results.json' ) if os.path.exists(_UpperCAmelCase ): with open(_UpperCAmelCase ,'r' ) as f: __snake_case : List[str] = json.load(_UpperCAmelCase ) else: raise ValueError(f'''can\'t find {path}''' ) return results def a_ ( ) -> Union[str, Any]: __snake_case : Union[str, Any] = torch.cuda.is_available() and torch_device == 'cuda' return is_using_cuda and is_apex_available() A__ : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class snake_case__ ( SCREAMING_SNAKE_CASE_ ): @classmethod def A_ ( cls : Any ) -> List[str]: '''simple docstring''' # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __snake_case : Optional[int] = tempfile.mkdtemp() __snake_case : Dict = os.path.join(cls.tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) __snake_case : List[Any] = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def A_ ( cls : List[str] ) -> List[str]: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Any ) -> Optional[Any]: '''simple docstring''' __snake_case : List[Any] = self.get_auto_remove_tmp_dir() __snake_case : Dict = f''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append('--fp16' ) run_command(self._launch_args + testargs ) __snake_case : List[Any] = get_results(__a ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'glue_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Tuple = self.get_auto_remove_tmp_dir() __snake_case : str = f''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __snake_case : str = get_results(__a ) self.assertLess(result['perplexity'] , 100 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'clm_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : str ) -> List[str]: '''simple docstring''' __snake_case : int = self.get_auto_remove_tmp_dir() __snake_case : List[str] = f''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : List[str] = get_results(__a ) self.assertLess(result['perplexity'] , 42 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'mlm_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __snake_case : Any = 7 if get_gpu_count() > 1 else 2 __snake_case : Any = self.get_auto_remove_tmp_dir() __snake_case : int = f''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : Dict = get_results(__a ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) self.assertLess(result['train_loss'] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'ner_no_trainer' ) ) ) @unittest.skip(reason='Fix me @muellerzr' ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Any ) -> List[Any]: '''simple docstring''' __snake_case : Any = self.get_auto_remove_tmp_dir() __snake_case : Tuple = f''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : str = get_results(__a ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['eval_f1'] , 28 ) self.assertGreaterEqual(result['eval_exact'] , 28 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'qa_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Dict ) -> List[Any]: '''simple docstring''' __snake_case : str = self.get_auto_remove_tmp_dir() __snake_case : Any = f''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : str = get_results(__a ) self.assertGreaterEqual(result['eval_accuracy'] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(__a , 'swag_no_trainer' ) ) ) @slow @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' __snake_case : Tuple = self.get_auto_remove_tmp_dir() __snake_case : List[str] = f''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : int = get_results(__a ) self.assertGreaterEqual(result['eval_rouge1'] , 10 ) self.assertGreaterEqual(result['eval_rouge2'] , 2 ) self.assertGreaterEqual(result['eval_rougeL'] , 7 ) self.assertGreaterEqual(result['eval_rougeLsum'] , 7 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'summarization_no_trainer' ) ) ) @slow @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Union[str, Any] ) -> int: '''simple docstring''' __snake_case : Tuple = self.get_auto_remove_tmp_dir() __snake_case : str = f''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __snake_case : Dict = get_results(__a ) self.assertGreaterEqual(result['eval_bleu'] , 30 ) self.assertTrue(os.path.exists(os.path.join(__a , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'translation_no_trainer' ) ) ) @slow def A_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : Union[str, Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(__a ) __snake_case : List[str] = self.get_auto_remove_tmp_dir() __snake_case : int = f''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) __snake_case : List[str] = get_results(__a ) self.assertGreaterEqual(result['eval_overall_accuracy'] , 0.1_0 ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def A_ ( self : Tuple ) -> Any: '''simple docstring''' __snake_case : Dict = self.get_auto_remove_tmp_dir() __snake_case : Dict = f''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append('--fp16' ) run_command(self._launch_args + testargs ) __snake_case : Optional[int] = get_results(__a ) # The base model scores a 25% self.assertGreaterEqual(result['eval_accuracy'] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(__a , 'step_1' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , 'image_classification_no_trainer' ) ) )
0
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , a : Dict , a : Tuple=3 , a : Any=32 , a : str=3 , a : Optional[int]=10 , a : Union[str, Any]=[10, 20, 30, 40] , a : Any=[1, 1, 2, 1] , a : str=True , a : Dict=True , a : Optional[Any]="relu" , a : List[Any]=3 , a : Any=None , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : Union[str, Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : List[str] = embeddings_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_sizes SCREAMING_SNAKE_CASE : Tuple = depths SCREAMING_SNAKE_CASE : Optional[int] = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE : Any = num_labels SCREAMING_SNAKE_CASE : List[str] = scope SCREAMING_SNAKE_CASE : Any = len(a ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, pixel_values def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __UpperCamelCase ( self : Optional[Any] , a : List[str] , a : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = FlaxRegNetModel(config=a ) SCREAMING_SNAKE_CASE : List[str] = model(a ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self : List[Any] , a : List[Any] , a : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = FlaxRegNetForImageClassification(config=a ) SCREAMING_SNAKE_CASE : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = config_and_inputs SCREAMING_SNAKE_CASE : str = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def __UpperCamelCase ( self : Dict ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=a , has_text_modality=a ) def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def __UpperCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class(a ) SCREAMING_SNAKE_CASE : int = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : List[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" def check_hidden_states_output(a : List[str] , a : Tuple , a : Optional[int] ): SCREAMING_SNAKE_CASE : Dict = model_class(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(a , a ) ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : int = self.model_tester.num_stages self.assertEqual(len(a ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(a , a , a ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model_class(a ) @jax.jit def model_jitted(a : Optional[int] , **a : str ): return model(pixel_values=a , **a ) with self.subTest("JIT Enabled" ): SCREAMING_SNAKE_CASE : str = model_jitted(**a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE : Union[str, Any] = model_jitted(**a ).to_tuple() self.assertEqual(len(a ) , len(a ) ) for jitted_output, output in zip(a , a ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Any = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.default_image_processor SCREAMING_SNAKE_CASE : Any = prepare_img() SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=a , return_tensors="np" ) SCREAMING_SNAKE_CASE : int = model(**a ) # verify the logits SCREAMING_SNAKE_CASE : str = (1, 1000) self.assertEqual(outputs.logits.shape , a ) SCREAMING_SNAKE_CASE : Any = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) )
76
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = {"vocab_file": "spiece.model"} lowercase = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } lowercase = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = [] def __init__( self , a , a="<unk>" , a="<s>" , a="</s>" , a="<pad>" , a="[SEP]" , a="[MASK]" , a="[CLS]" , a = None , **a , ) -> None: snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else bos_token snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else cls_token snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , pad_token=a , sep_token=a , mask_token=a , cls_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @property def _UpperCamelCase ( self ) -> Tuple: return self.sp_model.get_piece_size() def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self , a ) -> Optional[Any]: snake_case_ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self , a ) -> List[str]: return self.sp_model.encode(a , out_type=a ) def _UpperCamelCase ( self , a ) -> Dict: return self.sp_model.piece_to_id(a ) def _UpperCamelCase ( self , a ) -> Union[str, Any]: snake_case_ = self.sp_model.IdToPiece(a ) return token def _UpperCamelCase ( self , a ) -> List[Any]: snake_case_ = [] snake_case_ = '' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(a ) snake_case_ = False out_string += self.sp_model.decode(a ) return out_string.strip() def _UpperCamelCase ( self , a , a = False , a = None , a = True , **a , ) -> str: snake_case_ = kwargs.pop('use_source_tokenizer' , a ) snake_case_ = self.convert_ids_to_tokens(a , skip_special_tokens=a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a ) ) snake_case_ = [] sub_texts.append(a ) else: current_sub_text.append(a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R' (\[(MASK|SEP)\])' , R'\1' , ' '.join(a ) ) else: snake_case_ = ''.join(a ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(a ) return clean_text else: return text def _UpperCamelCase ( self , a , a = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , 'wb' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,) def _UpperCamelCase ( self , a , a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _UpperCamelCase ( self , a , a = None , a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1] + ([0] * len(a )) + [1] def _UpperCamelCase ( self , a , a = None ) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
178
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Dict = (DEISMultistepScheduler,) snake_case__ : Tuple = (("""num_inference_steps""", 2_5),) def _A ( self : Union[str, Any] , **__lowerCamelCase : Tuple ): UpperCamelCase :Optional[int] = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**__lowerCamelCase ) return config def _A ( self : List[str] , __lowerCamelCase : Dict=0 , **__lowerCamelCase : Tuple ): UpperCamelCase :List[Any] = dict(self.forward_default_kwargs ) UpperCamelCase :Dict = kwargs.pop("""num_inference_steps""" , __lowerCamelCase ) UpperCamelCase :Dict = self.dummy_sample UpperCamelCase :Any = 0.1 * sample UpperCamelCase :Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase :Optional[int] = self.get_scheduler_config(**__lowerCamelCase ) UpperCamelCase :List[Any] = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals UpperCamelCase :Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) UpperCamelCase :Dict = scheduler_class.from_pretrained(__lowerCamelCase ) new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals UpperCamelCase :Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase :str = sample, sample for t in range(__lowerCamelCase , time_step + scheduler.config.solver_order + 1 ): UpperCamelCase :Optional[Any] = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample UpperCamelCase :Optional[int] = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _A ( self : Optional[int] ): pass def _A ( self : str , __lowerCamelCase : Any=0 , **__lowerCamelCase : Optional[int] ): UpperCamelCase :Dict = dict(self.forward_default_kwargs ) UpperCamelCase :Union[str, Any] = kwargs.pop("""num_inference_steps""" , __lowerCamelCase ) UpperCamelCase :Optional[Any] = self.dummy_sample UpperCamelCase :List[Any] = 0.1 * sample UpperCamelCase :Any = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase :Any = self.get_scheduler_config() UpperCamelCase :str = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase :Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) UpperCamelCase :Optional[Any] = scheduler_class.from_pretrained(__lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase :List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase :Tuple = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample UpperCamelCase :Tuple = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _A ( self : int , __lowerCamelCase : int=None , **__lowerCamelCase : List[Any] ): if scheduler is None: UpperCamelCase :Optional[Any] = self.scheduler_classes[0] UpperCamelCase :str = self.get_scheduler_config(**__lowerCamelCase ) UpperCamelCase :Optional[int] = scheduler_class(**__lowerCamelCase ) UpperCamelCase :List[Any] = self.scheduler_classes[0] UpperCamelCase :Any = self.get_scheduler_config(**__lowerCamelCase ) UpperCamelCase :Dict = scheduler_class(**__lowerCamelCase ) UpperCamelCase :Optional[Any] = 10 UpperCamelCase :Dict = self.dummy_model() UpperCamelCase :int = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase :List[Any] = model(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[int] = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample return sample def _A ( self : List[str] ): UpperCamelCase :Tuple = dict(self.forward_default_kwargs ) UpperCamelCase :Optional[Any] = kwargs.pop("""num_inference_steps""" , __lowerCamelCase ) for scheduler_class in self.scheduler_classes: UpperCamelCase :List[str] = self.get_scheduler_config() UpperCamelCase :int = scheduler_class(**__lowerCamelCase ) UpperCamelCase :Tuple = self.dummy_sample UpperCamelCase :List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCamelCase , """set_timesteps""" ): scheduler.set_timesteps(__lowerCamelCase ) elif num_inference_steps is not None and not hasattr(__lowerCamelCase , """set_timesteps""" ): UpperCamelCase :Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase :List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCamelCase :List[Any] = dummy_past_residuals[: scheduler.config.solver_order] UpperCamelCase :str = scheduler.timesteps[5] UpperCamelCase :List[Any] = scheduler.timesteps[6] UpperCamelCase :Any = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample UpperCamelCase :Union[str, Any] = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _A ( self : List[Any] ): # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCamelCase :List[Any] = DEISMultistepScheduler(**self.get_scheduler_config() ) UpperCamelCase :int = self.full_loop(scheduler=__lowerCamelCase ) UpperCamelCase :List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 UpperCamelCase :str = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCamelCase :List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCamelCase :Dict = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCamelCase :int = DEISMultistepScheduler.from_config(scheduler.config ) UpperCamelCase :List[str] = self.full_loop(scheduler=__lowerCamelCase ) UpperCamelCase :List[str] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def _A ( self : Optional[Any] ): for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def _A ( self : str ): self.check_over_configs(thresholding=__lowerCamelCase ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , algorithm_type="""deis""" , solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , ) def _A ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def _A ( self : List[str] ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , prediction_type=__lowerCamelCase , algorithm_type=__lowerCamelCase , ) UpperCamelCase :int = self.full_loop( solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , prediction_type=__lowerCamelCase , algorithm_type=__lowerCamelCase , ) assert not torch.isnan(__lowerCamelCase ).any(), "Samples have nan numbers" def _A ( self : Tuple ): self.check_over_configs(lower_order_final=__lowerCamelCase ) self.check_over_configs(lower_order_final=__lowerCamelCase ) def _A ( self : Union[str, Any] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=__lowerCamelCase , time_step=0 ) def _A ( self : List[Any] ): UpperCamelCase :str = self.full_loop() UpperCamelCase :Any = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def _A ( self : List[Any] ): UpperCamelCase :Dict = self.full_loop(prediction_type="""v_prediction""" ) UpperCamelCase :List[str] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def _A ( self : Union[str, Any] ): UpperCamelCase :List[Any] = self.scheduler_classes[0] UpperCamelCase :Optional[int] = self.get_scheduler_config(thresholding=__lowerCamelCase , dynamic_thresholding_ratio=0 ) UpperCamelCase :Tuple = scheduler_class(**__lowerCamelCase ) UpperCamelCase :Tuple = 10 UpperCamelCase :str = self.dummy_model() UpperCamelCase :Optional[int] = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase :Optional[Any] = model(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[str] = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample assert sample.dtype == torch.floataa
358
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case__ : List[Any] = StableDiffusionLDMaDPipeline snake_case__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS snake_case__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS snake_case__ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _A ( self : List[str] ): torch.manual_seed(0 ) UpperCamelCase :Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) UpperCamelCase :Any = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) UpperCamelCase :Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase :Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase :Optional[int] = CLIPTextModel(__lowerCamelCase ) UpperCamelCase :Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCamelCase :str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _A ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str]=0 ): if str(__lowerCamelCase ).startswith("""mps""" ): UpperCamelCase :List[str] = torch.manual_seed(__lowerCamelCase ) else: UpperCamelCase :Any = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _A ( self : Union[str, Any] ): UpperCamelCase :str = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase :Optional[int] = self.get_dummy_components() UpperCamelCase :List[Any] = StableDiffusionLDMaDPipeline(**__lowerCamelCase ) UpperCamelCase :Optional[Any] = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Tuple = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :Any = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[Any] = output.rgb, output.depth UpperCamelCase :int = rgb[0, -3:, -3:, -1] UpperCamelCase :int = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase :int = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) UpperCamelCase :Dict = np.array([103.46727, 85.812004, 87.849236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def _A ( self : str ): UpperCamelCase :Optional[int] = self.get_dummy_components() UpperCamelCase :int = StableDiffusionLDMaDPipeline(**__lowerCamelCase ) UpperCamelCase :Dict = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Tuple = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :int = 3 * [inputs["""prompt"""]] # forward UpperCamelCase :Dict = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[str] = output.rgb, output.depth UpperCamelCase :Tuple = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase :List[Any] = depth_slice_a[0, -3:, -1] UpperCamelCase :Optional[Any] = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :int = 3 * [inputs.pop("""prompt""" )] UpperCamelCase :List[Any] = ldmad_pipe.tokenizer( __lowerCamelCase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__lowerCamelCase , return_tensors="""pt""" , ) UpperCamelCase :List[str] = text_inputs["""input_ids"""].to(__lowerCamelCase ) UpperCamelCase :List[Any] = ldmad_pipe.text_encoder(__lowerCamelCase )[0] UpperCamelCase :Dict = prompt_embeds # forward UpperCamelCase :str = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Optional[int] = output.rgb, output.depth UpperCamelCase :Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase :int = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def _A ( self : List[Any] ): UpperCamelCase :int = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase :Any = self.get_dummy_components() UpperCamelCase :Optional[int] = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) UpperCamelCase :Tuple = StableDiffusionLDMaDPipeline(**__lowerCamelCase ) UpperCamelCase :Optional[int] = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :int = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :str = """french fries""" UpperCamelCase :Optional[int] = ldmad_pipe(**__lowerCamelCase , negative_prompt=__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[Any] = output.rgb, output.depth UpperCamelCase :List[Any] = rgb[0, -3:, -3:, -1] UpperCamelCase :str = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase :Dict = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) UpperCamelCase :Any = np.array([107.84738, 84.62802, 89.962135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Tuple="cpu" , __lowerCamelCase : str=torch.floataa , __lowerCamelCase : Tuple=0 ): UpperCamelCase :str = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :str = np.random.RandomState(__lowerCamelCase ).standard_normal((1, 4, 64, 64) ) UpperCamelCase :Tuple = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ) UpperCamelCase :List[str] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _A ( self : Optional[Any] ): UpperCamelCase :Optional[int] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) UpperCamelCase :Any = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[int] = self.get_inputs(__lowerCamelCase ) UpperCamelCase :Optional[Any] = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[str] = output.rgb, output.depth UpperCamelCase :int = rgb[0, -3:, -3:, -1].flatten() UpperCamelCase :Optional[Any] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) UpperCamelCase :Tuple = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) UpperCamelCase :Optional[Any] = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Dict="cpu" , __lowerCamelCase : int=torch.floataa , __lowerCamelCase : Union[str, Any]=0 ): UpperCamelCase :str = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :Any = np.random.RandomState(__lowerCamelCase ).standard_normal((1, 4, 64, 64) ) UpperCamelCase :Optional[Any] = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ) UpperCamelCase :List[str] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _A ( self : str ): UpperCamelCase :List[Any] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :int = self.get_inputs(__lowerCamelCase ) UpperCamelCase :Dict = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Union[str, Any] = output.rgb, output.depth UpperCamelCase :Dict = 0.495586 UpperCamelCase :Dict = 0.33795515 UpperCamelCase :Union[str, Any] = 112.48518 UpperCamelCase :Any = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def _A ( self : Union[str, Any] ): UpperCamelCase :List[str] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[Any] = self.get_inputs(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :int = output.rgb, output.depth UpperCamelCase :Optional[int] = 0.4194127 UpperCamelCase :str = 0.35375586 UpperCamelCase :Union[str, Any] = 0.5638502 UpperCamelCase :Union[str, Any] = 0.34686103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
62
0