code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def lowercase ( ): '''simple docstring''' _UpperCAmelCase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) _UpperCAmelCase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(_SCREAMING_SNAKE_CASE , '''func''' ): parser.print_help() exit(1 ) # Run _UpperCAmelCase = args.func(_SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
260
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = " " ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = 0 for index, char in enumerate(_SCREAMING_SNAKE_CASE ): if char == separator: split_words.append(string[last_index:index] ) _UpperCAmelCase = index + 1 elif index + 1 == len(_SCREAMING_SNAKE_CASE ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
260
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = '▁' UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} UpperCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } UpperCAmelCase_ = { 'facebook/xglm-564M': 2_0_4_8, } class lowerCAmelCase_ ( __UpperCamelCase ): '''simple docstring''' lowerCAmelCase_ : Tuple = VOCAB_FILES_NAMES lowerCAmelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : str = ["input_ids", "attention_mask"] def __init__( self : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int]="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Any="</s>" , _UpperCAmelCase : str="<s>" , _UpperCAmelCase : List[Any]="<unk>" , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : Dict , ): """simple docstring""" UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCAmelCase__ = 7 UpperCAmelCase__ = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] UpperCAmelCase__ = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) UpperCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase__ = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCAmelCase__ = len(self.sp_model ) UpperCAmelCase__ = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_lowerCAmelCase ) UpperCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : str ): """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None UpperCAmelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCAmelCase__ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str ): """simple docstring""" return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Tuple ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ = self.sp_model.PieceToId(_lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
370
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = BlipImageProcessor() UpperCAmelCase__ = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCAmelCase__ = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) UpperCAmelCase__ = InstructBlipProcessor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , **_UpperCAmelCase : Tuple ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).tokenizer def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : List[str] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , **_UpperCAmelCase : Dict ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).qformer_tokenizer def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCAmelCase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) UpperCAmelCase__ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_qformer_tokenizer() UpperCAmelCase__ = InstructBlipProcessor( tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) UpperCAmelCase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_qformer_tokenizer() UpperCAmelCase__ = InstructBlipProcessor( tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = processor(text=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer(_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) UpperCAmelCase__ = qformer_tokenizer(_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_qformer_tokenizer() UpperCAmelCase__ = InstructBlipProcessor( tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_qformer_tokenizer() UpperCAmelCase__ = InstructBlipProcessor( tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase__ = processor.batch_decode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_qformer_tokenizer() UpperCAmelCase__ = InstructBlipProcessor( tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
61
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCamelCase__ = datasets.utils.logging.get_logger(__name__) @dataclass class A ( datasets.BuilderConfig ): __UpperCAmelCase : int = 1_00_00 __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[datasets.Features] = None class A ( datasets.ArrowBasedBuilder ): __UpperCAmelCase : List[Any] = ParquetConfig def lowercase_ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowercase_ (self : Dict , __UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) UpperCAmelCase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__UpperCAmelCase , (str, list, tuple) ): UpperCAmelCase__ = data_files if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase__ = [dl_manager.iter_files(__UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] UpperCAmelCase__ = [] for split_name, files in data_files.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase__ = [dl_manager.iter_files(__UpperCAmelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__UpperCAmelCase ): with open(__UpperCAmelCase , "rb" ) as f: UpperCAmelCase__ = datasets.Features.from_arrow_schema(pq.read_schema(__UpperCAmelCase ) ) break splits.append(datasets.SplitGenerator(name=__UpperCAmelCase , gen_kwargs={"files": files} ) ) return splits def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase__ = table_cast(__UpperCAmelCase , self.info.features.arrow_schema ) return pa_table def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(__UpperCAmelCase ) ): with open(__UpperCAmelCase , "rb" ) as f: UpperCAmelCase__ = pq.ParquetFile(__UpperCAmelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): UpperCAmelCase__ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(__UpperCAmelCase ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(__UpperCAmelCase )}: {e}""" ) raise
65
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase__ ( _A , _A , _A ): if isinstance(_A , torch.Tensor ): return image elif isinstance(_A , PIL.Image.Image ): a : Any = [image] if isinstance(image[0] , PIL.Image.Image ): a : List[str] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] a : int = np.concatenate(_A , axis=0 ) a : int = np.array(_A ).astype(np.floataa ) / 255.0 a : str = image.transpose(0 , 3 , 1 , 2 ) a : str = 2.0 * image - 1.0 a : Optional[int] = torch.from_numpy(_A ) elif isinstance(image[0] , torch.Tensor ): a : Optional[Any] = torch.cat(_A , dim=0 ) return image def lowerCamelCase__ ( _A , _A , _A , _A=0.9995 ): if not isinstance(_A , np.ndarray ): a : Dict = True a : Optional[Any] = va.device a : Optional[int] = va.cpu().numpy() a : Union[str, Any] = va.cpu().numpy() a : Any = np.sum(va * va / (np.linalg.norm(_A ) * np.linalg.norm(_A )) ) if np.abs(_A ) > DOT_THRESHOLD: a : Any = (1 - t) * va + t * va else: a : Any = np.arccos(_A ) a : Tuple = np.sin(_A ) a : Optional[Any] = theta_a * t a : List[Any] = np.sin(_A ) a : Dict = np.sin(theta_a - theta_t ) / sin_theta_a a : int = sin_theta_t / sin_theta_a a : Any = sa * va + sa * va if inputs_are_torch: a : Dict = torch.from_numpy(_A ).to(_A ) return va def lowerCamelCase__ ( _A , _A ): a : Optional[int] = F.normalize(_A , dim=-1 ) a : str = F.normalize(_A , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase__ ( _A , _A ): for param in model.parameters(): a : int = value class a__( lowerCamelCase__ ): def __init__( self : str , __snake_case : AutoencoderKL , __snake_case : CLIPTextModel , __snake_case : CLIPModel , __snake_case : CLIPTokenizer , __snake_case : UNetaDConditionModel , __snake_case : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , __snake_case : CLIPFeatureExtractor , __snake_case : List[str]=None , __snake_case : List[str]=None , __snake_case : List[Any]=None , ): super().__init__() self.register_modules( vae=__snake_case , text_encoder=__snake_case , clip_model=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , feature_extractor=__snake_case , coca_model=__snake_case , coca_tokenizer=__snake_case , coca_transform=__snake_case , ) a : Optional[Any] = ( feature_extractor.size if isinstance(feature_extractor.size , __snake_case ) else feature_extractor.size['shortest_edge'] ) a : Optional[int] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __snake_case ) set_requires_grad(self.clip_model , __snake_case ) def lowercase_ ( self : int , __snake_case : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory a : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def lowercase_ ( self : Union[str, Any] ): self.enable_attention_slicing(__snake_case ) def lowercase_ ( self : Optional[Any] ): set_requires_grad(self.vae , __snake_case ) def lowercase_ ( self : Tuple ): set_requires_grad(self.vae , __snake_case ) def lowercase_ ( self : int ): set_requires_grad(self.unet , __snake_case ) def lowercase_ ( self : Union[str, Any] ): set_requires_grad(self.unet , __snake_case ) def lowercase_ ( self : int , __snake_case : Dict , __snake_case : str , __snake_case : Optional[int] ): # get the original timestep using init_timestep a : Optional[Any] = min(int(num_inference_steps * strength ) , __snake_case ) a : Union[str, Any] = max(num_inference_steps - init_timestep , 0 ) a : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase_ ( self : Dict , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Optional[Any]=None ): if not isinstance(__snake_case , torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(__snake_case )}""" ) a : Optional[Any] = image.to(device=__snake_case , dtype=__snake_case ) if isinstance(__snake_case , __snake_case ): a : Optional[int] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__snake_case ) ] a : Optional[Any] = torch.cat(__snake_case , dim=0 ) else: a : Union[str, Any] = self.vae.encode(__snake_case ).latent_dist.sample(__snake_case ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor a : List[str] = 0.18215 * init_latents a : str = init_latents.repeat_interleave(__snake_case , dim=0 ) a : Dict = randn_tensor(init_latents.shape , generator=__snake_case , device=__snake_case , dtype=__snake_case ) # get latents a : Dict = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case ) a : int = init_latents return latents def lowercase_ ( self : List[str] , __snake_case : Dict ): a : List[Any] = self.coca_transform(__snake_case ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): a : Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) a : Union[str, Any] = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def lowercase_ ( self : Tuple , __snake_case : Any , __snake_case : Optional[Any] ): a : List[Any] = self.feature_extractor.preprocess(__snake_case ) a : Optional[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() a : int = self.clip_model.get_image_features(__snake_case ) a : str = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__snake_case ) a : Tuple = image_embeddings_clip.repeat_interleave(__snake_case , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowercase_ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : List[Any] , ): a : Optional[Any] = latents.detach().requires_grad_() a : List[Any] = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual a : Any = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): a : int = self.scheduler.alphas_cumprod[timestep] a : Any = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a : List[str] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 a : Tuple = torch.sqrt(__snake_case ) a : str = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __snake_case ): a : List[Any] = self.scheduler.sigmas[index] a : Optional[int] = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor a : Union[str, Any] = 1 / 0.18215 * sample a : str = self.vae.decode(__snake_case ).sample a : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) a : Tuple = transforms.Resize(self.feature_extractor_size )(__snake_case ) a : List[str] = self.normalize(__snake_case ).to(latents.dtype ) a : List[str] = self.clip_model.get_image_features(__snake_case ) a : Tuple = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__snake_case ) a : int = spherical_dist_loss(__snake_case , __snake_case ).mean() * clip_guidance_scale a : List[str] = -torch.autograd.grad(__snake_case , __snake_case )[0] if isinstance(self.scheduler , __snake_case ): a : List[Any] = latents.detach() + grads * (sigma**2) a : Optional[int] = noise_pred_original else: a : List[Any] = noise_pred_original - torch.sqrt(__snake_case ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Optional[int] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] , __snake_case : Optional[str] = None , __snake_case : Optional[str] = None , __snake_case : Optional[int] = 5_12 , __snake_case : Optional[int] = 5_12 , __snake_case : float = 0.6 , __snake_case : Optional[int] = 50 , __snake_case : Optional[float] = 7.5 , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[float] = 1_00 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , __snake_case : float = 0.8 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , ): if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(__snake_case )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(__snake_case , torch.Generator ) and batch_size > 1: a : Dict = [generator] + [None] * (batch_size - 1) a : Any = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] a : List[str] = [x[0] for x in coca_is_none if x[1]] a : List[str] = ', '.join(__snake_case ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__snake_case ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) a : int = self.get_image_description(__snake_case ) if style_prompt is None: if len(__snake_case ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) a : Union[str, Any] = self.get_image_description(__snake_case ) # get prompt text embeddings for content and style a : Optional[Any] = self.tokenizer( __snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=__snake_case , return_tensors='pt' , ) a : Dict = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] a : Dict = self.tokenizer( __snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=__snake_case , return_tensors='pt' , ) a : Dict = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] a : Any = slerp(__snake_case , __snake_case , __snake_case ) # duplicate text embeddings for each generation per prompt a : Optional[Any] = text_embeddings.repeat_interleave(__snake_case , dim=0 ) # set timesteps a : int = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) a : Any = {} if accepts_offset: a : Optional[Any] = 1 self.scheduler.set_timesteps(__snake_case , **__snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) a , a : Tuple = self.get_timesteps(__snake_case , __snake_case , self.device ) a : Optional[int] = timesteps[:1].repeat(__snake_case ) # Preprocess image a : Optional[Any] = preprocess(__snake_case , __snake_case , __snake_case ) a : List[Any] = self.prepare_latents( __snake_case , __snake_case , __snake_case , text_embeddings.dtype , self.device , __snake_case ) a : str = preprocess(__snake_case , __snake_case , __snake_case ) a : Union[str, Any] = self.prepare_latents( __snake_case , __snake_case , __snake_case , text_embeddings.dtype , self.device , __snake_case ) a : Union[str, Any] = slerp(__snake_case , __snake_case , __snake_case ) if clip_guidance_scale > 0: a : Dict = self.get_clip_image_embeddings(__snake_case , __snake_case ) a : int = self.get_clip_image_embeddings(__snake_case , __snake_case ) a : List[str] = slerp( __snake_case , __snake_case , __snake_case ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. a : int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: a : Any = content_text_input.input_ids.shape[-1] a : List[Any] = self.tokenizer([''] , padding='max_length' , max_length=__snake_case , return_tensors='pt' ) a : List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt a : Dict = uncond_embeddings.repeat_interleave(__snake_case , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes a : Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. a : List[str] = (batch_size, self.unet.config.in_channels, height // 8, width // 8) a : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps a : int = torch.randn(__snake_case , generator=__snake_case , device='cpu' , dtype=__snake_case ).to( self.device ) else: a : Optional[int] = torch.randn(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) a : List[str] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler a : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a : Optional[Any] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a : Union[str, Any] = {} if accepts_eta: a : List[str] = eta # check if the scheduler accepts generator a : List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: a : Any = generator with self.progress_bar(total=__snake_case ): for i, t in enumerate(__snake_case ): # expand the latents if we are doing classifier free guidance a : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a : Dict = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual a : List[Any] = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample # perform classifier free guidance if do_classifier_free_guidance: a , a : List[str] = noise_pred.chunk(2 ) a : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: a : Optional[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) a , a : Union[str, Any] = self.cond_fn( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # compute the previous noisy sample x_t -> x_t-1 a : Any = self.scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor a : Tuple = 1 / 0.18215 * latents a : Optional[int] = self.vae.decode(__snake_case ).sample a : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) a : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a : str = self.numpy_to_pil(__snake_case ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__snake_case , nsfw_content_detected=__snake_case )
297
0
"""simple docstring""" from bisect import bisect from itertools import accumulate def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Any = sorted(zip(lowercase__ , lowercase__ ) , key=lambda lowercase__ : x[0] / x[1] , reverse=lowercase__ ) _lowerCamelCase : Any = [i[0] for i in r], [i[1] for i in r] _lowerCamelCase : List[str] = list(accumulate(lowercase__ ) ) _lowerCamelCase : List[Any] = bisect(lowercase__ , lowercase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _SCREAMING_SNAKE_CASE : str = 2_56 class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = ['melgan'] def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): super().__init__() # From MELGAN snake_case = math.log(1E-5 ) # Matches MelGAN training. snake_case = 4.0 # Largest value for most examples snake_case = 1_2_8 self.register_modules( notes_encoder=__snake_case , continuous_encoder=__snake_case , decoder=__snake_case , scheduler=__snake_case , melgan=__snake_case , ) def a_ ( self , __snake_case , __snake_case=(-1.0, 1.0) , __snake_case=False ): snake_case , snake_case = output_range if clip: snake_case = torch.clip(__snake_case , self.min_value , self.max_value ) # Scale to [0, 1]. snake_case = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def a_ ( self , __snake_case , __snake_case=(-1.0, 1.0) , __snake_case=False ): snake_case , snake_case = input_range snake_case = torch.clip(__snake_case , __snake_case , __snake_case ) if clip else outputs # Scale to [0, 1]. snake_case = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = input_tokens > 0 snake_case , snake_case = self.notes_encoder( encoder_input_tokens=__snake_case , encoder_inputs_mask=__snake_case ) snake_case , snake_case = self.continuous_encoder( encoder_inputs=__snake_case , encoder_inputs_mask=__snake_case ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = noise_time if not torch.is_tensor(__snake_case ): snake_case = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(__snake_case ) and len(timesteps.shape ) == 0: snake_case = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) snake_case = self.decoder( encodings_and_masks=__snake_case , decoder_input_tokens=__snake_case , decoder_noise_time=__snake_case ) return logits @torch.no_grad() def __call__( self , __snake_case , __snake_case = None , __snake_case = 1_0_0 , __snake_case = True , __snake_case = "numpy" , __snake_case = None , __snake_case = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__snake_case , __snake_case ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(__snake_case )}.''' ) snake_case = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) snake_case = np.zeros([1, 0, self.n_dims] , np.floataa ) snake_case = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__snake_case , device=self.device ) for i, encoder_input_tokens in enumerate(__snake_case ): if i == 0: snake_case = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. snake_case = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__snake_case , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. snake_case = ones snake_case = self.scale_features( __snake_case , output_range=[-1.0, 1.0] , clip=__snake_case ) snake_case = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=__snake_case , continuous_mask=__snake_case , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop snake_case = randn_tensor( shape=encoder_continuous_inputs.shape , generator=__snake_case , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__snake_case ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): snake_case = self.decode( encodings_and_masks=__snake_case , input_tokens=__snake_case , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 snake_case = self.scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample snake_case = self.scale_to_features(__snake_case , input_range=[-1.0, 1.0] ) snake_case = mel[:1] snake_case = mel.cpu().float().numpy() snake_case = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__snake_case , __snake_case ) logger.info('''Generated segment''' , __snake_case ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": snake_case = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: snake_case = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__snake_case )
127
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class A__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case = 1.0 , __snake_case = None , ): super().__init__() snake_case = initial_learning_rate snake_case = warmup_steps snake_case = power snake_case = decay_schedule_fn snake_case = name def __call__( self , __snake_case ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. snake_case = tf.cast(__snake_case , tf.floataa ) snake_case = tf.cast(self.warmup_steps , tf.floataa ) snake_case = global_step_float / warmup_steps_float snake_case = self.initial_learning_rate * tf.math.pow(__snake_case , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=__snake_case , ) def a_ ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = 0.0 ,UpperCamelCase_ = 0.9 ,UpperCamelCase_ = 0.999 ,UpperCamelCase_ = 1e-8 ,UpperCamelCase_ = None ,UpperCamelCase_ = None ,UpperCamelCase_ = 0.0 ,UpperCamelCase_ = 1.0 ,UpperCamelCase_ = None ,): """simple docstring""" snake_case = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCamelCase_ ,decay_steps=num_train_steps - num_warmup_steps ,end_learning_rate=init_lr * min_lr_ratio ,power=UpperCamelCase_ ,) if num_warmup_steps: snake_case = WarmUp( initial_learning_rate=UpperCamelCase_ ,decay_schedule_fn=UpperCamelCase_ ,warmup_steps=UpperCamelCase_ ,) if weight_decay_rate > 0.0: snake_case = AdamWeightDecay( learning_rate=UpperCamelCase_ ,weight_decay_rate=UpperCamelCase_ ,beta_a=UpperCamelCase_ ,beta_a=UpperCamelCase_ ,epsilon=UpperCamelCase_ ,clipnorm=UpperCamelCase_ ,global_clipnorm=UpperCamelCase_ ,exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] ,include_in_weight_decay=UpperCamelCase_ ,) else: snake_case = tf.keras.optimizers.Adam( learning_rate=UpperCamelCase_ ,beta_a=UpperCamelCase_ ,beta_a=UpperCamelCase_ ,epsilon=UpperCamelCase_ ,clipnorm=UpperCamelCase_ ,global_clipnorm=UpperCamelCase_ ,) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class A__ ( snake_case__ ): """simple docstring""" def __init__( self , __snake_case = 0.001 , __snake_case = 0.9 , __snake_case = 0.999 , __snake_case = 1E-7 , __snake_case = False , __snake_case = 0.0 , __snake_case = None , __snake_case = None , __snake_case = "AdamWeightDecay" , **__snake_case , ): super().__init__(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , **__snake_case ) snake_case = weight_decay_rate snake_case = include_in_weight_decay snake_case = exclude_from_weight_decay @classmethod def a_ ( cls , __snake_case ): snake_case = {'''WarmUp''': WarmUp} return super(__snake_case , cls ).from_config(__snake_case , custom_objects=__snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case ): super(__snake_case , self )._prepare_local(__snake_case , __snake_case , __snake_case ) snake_case = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def a_ ( self , __snake_case , __snake_case=None , **__snake_case ): snake_case , snake_case = list(zip(*__snake_case ) ) return super(__snake_case , self ).apply_gradients(zip(__snake_case , __snake_case ) , name=__snake_case , **__snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} snake_case = apply_state or {} snake_case = apply_state.get((var_device, var_dtype) ) if coefficients is None: snake_case = self._fallback_apply_state(__snake_case , __snake_case ) snake_case = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def a_ ( self , __snake_case , __snake_case , __snake_case=None ): snake_case , snake_case = self._get_lr(var.device , var.dtype.base_dtype , __snake_case ) snake_case = self._decay_weights_op(__snake_case , __snake_case , __snake_case ) with tf.control_dependencies([decay] ): return super(__snake_case , self )._resource_apply_dense(__snake_case , __snake_case , **__snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None ): snake_case , snake_case = self._get_lr(var.device , var.dtype.base_dtype , __snake_case ) snake_case = self._decay_weights_op(__snake_case , __snake_case , __snake_case ) with tf.control_dependencies([decay] ): return super(__snake_case , self )._resource_apply_sparse(__snake_case , __snake_case , __snake_case , **__snake_case ) def a_ ( self ): snake_case = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def a_ ( self , __snake_case ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__snake_case , __snake_case ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__snake_case , __snake_case ) is not None: return False return True class A__ ( snake_case__ ): """simple docstring""" def __init__( self ): snake_case = [] snake_case = None @property def a_ ( self ): if self._accum_steps is None: snake_case = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=__snake_case , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def a_ ( self ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , __snake_case ): if not self._gradients: snake_case = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__snake_case ) , trainable=__snake_case , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(__snake_case ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(__snake_case )}''' ) for accum_gradient, gradient in zip(self._gradients , __snake_case ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__snake_case ) self._accum_steps.assign_add(1 ) def a_ ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__snake_case ) )
127
1
"""simple docstring""" def _A ( lowercase , lowercase ): """simple docstring""" a =len(lowercase ) a =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): a =True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): a =False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: a =subset[i - 1][j] if arr[i - 1] <= j: a =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" from __future__ import annotations def _A ( lowercase , lowercase , lowercase , ): """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
215
0
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar UpperCAmelCase__ : str = TypeVar('T') class lowerCAmelCase_ (Generic[T] ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ = True ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : dict[T, list[T]] = {} # dictionary of lists SCREAMING_SNAKE_CASE__ : Tuple = directed def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> GraphAdjacencyList[T]: """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE__ ) self.adj_list[destination_vertex].append(SCREAMING_SNAKE_CASE__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [destination_vertex] SCREAMING_SNAKE_CASE__ : Tuple = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: SCREAMING_SNAKE_CASE__ : Any = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: SCREAMING_SNAKE_CASE__ : Any = [destination_vertex] SCREAMING_SNAKE_CASE__ : Optional[int] = [] return self def __repr__(self ) -> str: """simple docstring""" return pformat(self.adj_list )
25
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ (a__ , a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = IFPipeline __UpperCamelCase : Dict = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} __UpperCamelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" return self._get_dummy_components() def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ) -> List[Any]: """simple docstring""" if str(SCREAMING_SNAKE_CASE__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : Any = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __magic_name__ (self ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __magic_name__ (self ) -> List[str]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __magic_name__ (self ) -> Tuple: """simple docstring""" self._test_save_load_local() def __magic_name__ (self ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Dict = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE__ : Union[str, Any] = IFImgaImgPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE__ : Optional[Any] = IFInpaintingPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : int = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : int = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 SCREAMING_SNAKE_CASE__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[str] = output.images[0] assert image.shape == (2_56, 2_56, 3) SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Dict = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE__ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , original_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[Any] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE__ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , original_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Dict = output.images[0] assert image.shape == (2_56, 2_56, 3) SCREAMING_SNAKE_CASE__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase_ ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
25
1
import numpy # List of input, output pairs __UpperCAmelCase = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __UpperCAmelCase = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) __UpperCAmelCase = [2, 4, 1, 5] __UpperCAmelCase = len(train_data) __UpperCAmelCase = 0.009 def A__ ( __lowerCamelCase, __lowerCamelCase="train" ): return calculate_hypothesis_value(__lowerCamelCase, __lowerCamelCase ) - output( __lowerCamelCase, __lowerCamelCase ) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = 0 for i in range(len(__lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A__ ( __lowerCamelCase, __lowerCamelCase ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A__ ( __lowerCamelCase, __lowerCamelCase ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A__ ( __lowerCamelCase, __lowerCamelCase=m ): SCREAMING_SNAKE_CASE_ = 0 for i in range(__lowerCamelCase ): if index == -1: summation_value += _error(__lowerCamelCase ) else: summation_value += _error(__lowerCamelCase ) * train_data[i][0][index] return summation_value def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = summation_of_cost_derivative(__lowerCamelCase, __lowerCamelCase ) / m return cost_derivative_value def A__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output SCREAMING_SNAKE_CASE_ = 0.00_00_02 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while True: j += 1 SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] for i in range(0, len(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE_ = get_cost_derivative(i - 1 ) SCREAMING_SNAKE_CASE_ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __lowerCamelCase, __lowerCamelCase, atol=__lowerCamelCase, rtol=__lowerCamelCase, ): break SCREAMING_SNAKE_CASE_ = temp_parameter_vector print(('''Number of iterations:''', j) ) def A__ ( ): for i in range(len(__lowerCamelCase ) ): print(('''Actual output value:''', output(__lowerCamelCase, '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(__lowerCamelCase, '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
257
from graphs.minimum_spanning_tree_kruskal import kruskal def A__ ( ): SCREAMING_SNAKE_CASE_ = 9 SCREAMING_SNAKE_CASE_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE_ = kruskal(__lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__lowerCamelCase ) == sorted(__lowerCamelCase )
257
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __snake_case = pd.read_csv('''sample_data.csv''', header=None) __snake_case = df.shape[:1][0] # If you're using some other dataset input the target column __snake_case = df.iloc[:, 1:2] __snake_case = actual_data.values.reshape(len_data, 1) __snake_case = MinMaxScaler().fit_transform(actual_data) __snake_case = 10 __snake_case = 5 __snake_case = 20 __snake_case = len_data - periods * look_back __snake_case = actual_data[:division] __snake_case = actual_data[division - look_back :] __snake_case , __snake_case = [], [] __snake_case , __snake_case = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __snake_case = np.array(train_x) __snake_case = np.array(test_x) __snake_case = np.array([list(i.ravel()) for i in train_y]) __snake_case = np.array([list(i.ravel()) for i in test_y]) __snake_case = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') __snake_case = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) __snake_case = model.predict(x_test)
97
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available lowerCamelCase : int ={ '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] =[ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] =['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys lowerCamelCase : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
189
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 100 ): lowerCAmelCase = (n * (n + 1) // 2) ** 2 lowerCAmelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'''{solution() = }''')
309
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Any = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor'''] __UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
1
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ ( lowercase__): def UpperCAmelCase__ ( self : Tuple ) -> Any: '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(__lowercase , '''num_heads''' ) ) class __magic_name__ : def __init__( self : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict=13 , lowerCamelCase__ : str=64 , lowerCamelCase__ : str=3 , lowerCamelCase__ : Tuple=[16, 48, 96] , lowerCamelCase__ : Dict=[1, 3, 6] , lowerCamelCase__ : Union[str, Any]=[1, 2, 10] , lowerCamelCase__ : Optional[int]=[7, 3, 3] , lowerCamelCase__ : Tuple=[4, 2, 2] , lowerCamelCase__ : List[str]=[2, 1, 1] , lowerCamelCase__ : List[str]=[2, 2, 2] , lowerCamelCase__ : Optional[Any]=[False, False, True] , lowerCamelCase__ : Optional[Any]=[0.0, 0.0, 0.0] , lowerCamelCase__ : Tuple=0.02 , lowerCamelCase__ : Tuple=1E-1_2 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Optional[int]=2 , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Any = parent UpperCamelCase__ : List[Any] = batch_size UpperCamelCase__ : Optional[int] = image_size UpperCamelCase__ : Optional[int] = patch_sizes UpperCamelCase__ : Optional[int] = patch_stride UpperCamelCase__ : Optional[Any] = patch_padding UpperCamelCase__ : Tuple = is_training UpperCamelCase__ : Any = use_labels UpperCamelCase__ : List[str] = num_labels UpperCamelCase__ : int = num_channels UpperCamelCase__ : Optional[Any] = embed_dim UpperCamelCase__ : Optional[Any] = num_heads UpperCamelCase__ : Optional[Any] = stride_kv UpperCamelCase__ : Union[str, Any] = depth UpperCamelCase__ : Optional[int] = cls_token UpperCamelCase__ : Tuple = attention_drop_rate UpperCamelCase__ : str = initializer_range UpperCamelCase__ : Union[str, Any] = layer_norm_eps def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : int = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Optional[int] = CvtModel(config=__lowercase ) model.to(__lowercase ) model.eval() UpperCamelCase__ : int = model(__lowercase ) UpperCamelCase__ : Tuple = (self.image_size, self.image_size) UpperCamelCase__ : Union[str, Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCamelCase__ : Tuple = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCamelCase__ : Union[str, Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def UpperCAmelCase__ ( self : str , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] ) -> int: '''simple docstring''' UpperCamelCase__ : Dict = self.num_labels UpperCamelCase__ : List[str] = CvtForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() UpperCamelCase__ : Any = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Any = self.prepare_config_and_inputs() UpperCamelCase__ : Union[str, Any] = config_and_inputs UpperCamelCase__ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowercase__ , lowercase__ , unittest.TestCase): A: Union[str, Any] = (CvtModel, CvtForImageClassification) if is_torch_available() else () A: List[str] = ( {'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification} if is_torch_available() else {} ) A: int = False A: str = False A: Tuple = False A: List[Any] = False A: Optional[Any] = False def UpperCAmelCase__ ( self : List[str] ) -> Any: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = CvtModelTester(self ) UpperCamelCase__ : Any = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return @unittest.skip(reason='''Cvt does not output attentions''' ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self : int ) -> str: '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : str = model_class(__lowercase ) UpperCamelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Optional[int] = [*signature.parameters.keys()] UpperCamelCase__ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCAmelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCAmelCase__ ( self : str ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple ): UpperCamelCase__ : int = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): UpperCamelCase__ : Optional[int] = model(**self._prepare_for_class(__lowercase , __lowercase ) ) UpperCamelCase__ : Optional[int] = outputs.hidden_states UpperCamelCase__ : Union[str, Any] = len(self.model_tester.depth ) self.assertEqual(len(__lowercase ) , __lowercase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Union[str, Any] = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : List[Any] = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def UpperCAmelCase__ ( self : int ) -> Any: '''simple docstring''' UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' pass @slow def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Dict = CvtModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def _a ( ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCAmelCase__ ( self : Dict ) -> Any: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowercase ) UpperCamelCase__ : Optional[int] = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Any = image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): UpperCamelCase__ : str = model(**__lowercase ) # verify the logits UpperCamelCase__ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) UpperCamelCase__ : Optional[Any] = torch.tensor([0.9285, 0.9015, -0.3150] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) )
146
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a : Tuple = logging.get_logger(__name__) a : Optional[Any] = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class a ( lowercase__ ): """simple docstring""" a : str = 'mvp' a : Optional[Any] = ['past_key_values'] a : int = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Dict , __lowercase : Tuple=50267 , __lowercase : Optional[int]=1024 , __lowercase : Any=12 , __lowercase : List[Any]=4096 , __lowercase : Optional[Any]=16 , __lowercase : List[str]=12 , __lowercase : Optional[Any]=4096 , __lowercase : Tuple=16 , __lowercase : Union[str, Any]=0.0 , __lowercase : str=0.0 , __lowercase : Any="gelu" , __lowercase : Any=1024 , __lowercase : List[str]=0.1 , __lowercase : List[Any]=0.0 , __lowercase : int=0.0 , __lowercase : str=0.02 , __lowercase : Tuple=0.0 , __lowercase : Union[str, Any]=False , __lowercase : Dict=True , __lowercase : List[Any]=1 , __lowercase : Optional[Any]=0 , __lowercase : Union[str, Any]=2 , __lowercase : Optional[int]=True , __lowercase : Dict=2 , __lowercase : int=2 , __lowercase : Union[str, Any]=False , __lowercase : Union[str, Any]=100 , __lowercase : str=800 , **__lowercase : Union[str, Any] , ) -> Any: __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : Optional[Any] = d_model __UpperCAmelCase : int = encoder_ffn_dim __UpperCAmelCase : Tuple = encoder_layers __UpperCAmelCase : List[str] = encoder_attention_heads __UpperCAmelCase : Any = decoder_ffn_dim __UpperCAmelCase : List[Any] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Optional[int] = dropout __UpperCAmelCase : Tuple = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : List[Any] = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = encoder_layerdrop __UpperCAmelCase : Union[str, Any] = decoder_layerdrop __UpperCAmelCase : List[Any] = classifier_dropout __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : int = encoder_layers __UpperCAmelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Tuple = use_prompt __UpperCAmelCase : str = prompt_length __UpperCAmelCase : Union[str, Any] = prompt_mid_dim super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __lowercase ): __UpperCAmelCase : Optional[Any] = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ """The config can simply be saved and uploaded again to be fixed.""" )
114
0
import datasets from .evaluate import evaluate lowercase : Any = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" lowercase : List[Any] = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" lowercase : Optional[Any] = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) ,codebase_urls=["""https://www.atticusprojectai.org/cuad"""] ,reference_urls=["""https://www.atticusprojectai.org/cuad"""] ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} lowercase : Optional[int] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] lowercase : List[Any] = evaluate(dataset=a_ ,predictions=a_ ) return score
359
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowercase : Tuple = """<<<<<<< This should probably be modified because it mentions: """ lowercase : Any = """======= >>>>>>> """ lowercase : List[str] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] lowercase : Any = [ # (pattern, replacement) # Order is important here for some replacements (R"""tfds\.core""", R"""datasets"""), (R"""tf\.io\.gfile\.GFile""", R"""open"""), (R"""tf\.([\w\d]+)""", R"""datasets.Value('\1')"""), (R"""tfds\.features\.Text\(\)""", R"""datasets.Value('string')"""), (R"""tfds\.features\.Text\(""", R"""datasets.Value('string'),"""), (R"""features\s*=\s*tfds.features.FeaturesDict\(""", R"""features=datasets.Features("""), (R"""tfds\.features\.FeaturesDict\(""", R"""dict("""), (R"""The TensorFlow Datasets Authors""", R"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (R"""tfds\.""", R"""datasets."""), (R"""dl_manager\.manual_dir""", R"""self.config.data_dir"""), (R"""self\.builder_config""", R"""self.config"""), ] def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class __snake_case ( lowerCAmelCase ): @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' lowercase : str = parser.add_parser( """convert""" ,help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" ,) train_parser.add_argument( """--tfds_path""" ,type=snake_case ,required=snake_case ,help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" ,) train_parser.add_argument( """--datasets_directory""" ,type=snake_case ,required=snake_case ,help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=snake_case ) def __init__( self ,snake_case ,snake_case ,*snake_case ): '''simple docstring''' lowercase : Optional[Any] = get_logger("""datasets-cli/converting""" ) lowercase : Optional[int] = tfds_path lowercase : Dict = datasets_directory def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if os.path.isdir(self._tfds_path ): lowercase : List[str] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase : Tuple = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) lowercase : Optional[int] = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) lowercase : List[Any] = [] lowercase : Optional[int] = [] lowercase : Dict = {} if os.path.isdir(self._tfds_path ): lowercase : int = os.listdir(snake_case ) else: lowercase : List[Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) lowercase : List[Any] = os.path.join(snake_case ,snake_case ) lowercase : List[str] = os.path.join(snake_case ,snake_case ) if not os.path.isfile(snake_case ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(snake_case ,encoding="""utf-8""" ) as f: lowercase : str = f.readlines() lowercase : Union[str, Any] = [] lowercase : Optional[Any] = False lowercase : Optional[Any] = False lowercase : Optional[int] = [] for line in lines: lowercase : int = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase : Union[str, Any] = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here lowercase : List[Any] = """""" continue elif "from absl import logging" in out_line: lowercase : Optional[int] = """from datasets import logging\n""" elif "getLogger" in out_line: lowercase : Any = out_line.replace("""getLogger""" ,"""get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase : Optional[Any] = True lowercase : Optional[Any] = list(filter(lambda snake_case : e in out_line ,snake_case ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(snake_case ) + """\n""" ) out_lines.append(snake_case ) out_lines.append(snake_case ) continue else: for pattern, replacement in TO_CONVERT: lowercase : Union[str, Any] = re.sub(snake_case ,snake_case ,snake_case ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase : Dict = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" ,snake_case ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) lowercase : Optional[int] = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase : Any = True out_lines.append(snake_case ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase : Union[str, Any] = f_name.replace(""".py""" ,"""""" ) lowercase : Optional[Any] = os.path.join(snake_case ,snake_case ) lowercase : List[str] = os.path.join(snake_case ,snake_case ) os.makedirs(snake_case ,exist_ok=snake_case ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(snake_case ) if needs_manual_update: with_manual_update.append(snake_case ) with open(snake_case ,"""w""" ,encoding="""utf-8""" ) as f: f.writelines(snake_case ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: lowercase : Optional[int] = os.path.basename(snake_case ) lowercase : int = imports_to_builder_map[f_name.replace(""".py""" ,"""""" )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(snake_case ,snake_case ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
285
0
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int=13 , UpperCamelCase__ : Union[str, Any]=30 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : Any=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : List[str]=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : int=10 , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : List[str]=0.6 , UpperCamelCase__ : Dict=None , ) -> str: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = mask_ratio __magic_name__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __magic_name__ = (image_size // patch_size) ** 2 __magic_name__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self : Dict ) -> Tuple: """simple docstring""" __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _lowercase ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ) -> str: """simple docstring""" __magic_name__ = TFViTMAEModel(config=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ) -> Any: """simple docstring""" __magic_name__ = TFViTMAEForPreTraining(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) # expected sequence length = num_patches __magic_name__ = (self.image_size // self.patch_size) ** 2 __magic_name__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __magic_name__ = 1 __magic_name__ = TFViTMAEForPreTraining(UpperCamelCase__ ) __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) __magic_name__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __magic_name__ = self.prepare_config_and_inputs() ((__magic_name__) , (__magic_name__) , (__magic_name__)) = config_and_inputs __magic_name__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _A , _A , unittest.TestCase ): '''simple docstring''' a__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () a__ = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} a__ = False a__ = False a__ = False a__ = False def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = TFViTMAEModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" pass def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __magic_name__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , tf.keras.layers.Layer ) ) def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _lowercase ( self : List[Any] ) -> str: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self : Any ) -> Optional[int]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) __magic_name__ = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = outputs_dict[0].numpy() __magic_name__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase__ : int ): __magic_name__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase__ ): __magic_name__ = v.numpy() else: __magic_name__ = np.array(UpperCamelCase__ ) return inputs_np_dict for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = prepare_numpy_arrays(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) __magic_name__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ = tf.constant(UpperCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __magic_name__ = tf_noise super().check_pt_tf_models(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : List[str] ) -> Dict: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase__ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(UpperCamelCase__ , UpperCamelCase__ ),) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase__ , """_keras_serializable""" , UpperCamelCase__ ) } __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ = tf.convert_to_tensor(UpperCamelCase__ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: __magic_name__ = main_layer_class(UpperCamelCase__ ) __magic_name__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } __magic_name__ = tf.keras.Model(UpperCamelCase__ , outputs=main_layer(UpperCamelCase__ ) ) __magic_name__ = model(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = os.path.join(UpperCamelCase__ , """keras_model.h5""" ) model.save(UpperCamelCase__ ) __magic_name__ = tf.keras.models.load_model( UpperCamelCase__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase__ , tf.keras.Model ) __magic_name__ = model(UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) @slow def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ = outputs.last_hidden_state.numpy() __magic_name__ = 0 else: __magic_name__ = outputs.logits.numpy() __magic_name__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ , saved_model=UpperCamelCase__ ) __magic_name__ = model_class.from_pretrained(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ = after_outputs["""last_hidden_state"""].numpy() __magic_name__ = 0 else: __magic_name__ = after_outputs["""logits"""].numpy() __magic_name__ = 0 __magic_name__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase__ , 1E-5 ) def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase__ ) __magic_name__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config __magic_name__ = model_class.from_config(model.config ) __magic_name__ = new_model(UpperCamelCase__ ) # Build model new_model.set_weights(model.get_weights() ) __magic_name__ = new_model(UpperCamelCase__ , noise=UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass @slow def _lowercase ( self : Any ) -> str: """simple docstring""" __magic_name__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(UpperCamelCase__ ) def a__ ( ): '''simple docstring''' __magic_name__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def _lowercase ( self : Dict ) -> int: """simple docstring""" np.random.seed(2 ) __magic_name__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=UpperCamelCase__ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __magic_name__ = ViTMAEConfig() __magic_name__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(1, num_patches) ) # forward pass __magic_name__ = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) # verify the logits __magic_name__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) __magic_name__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1E-4 )
88
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCAmelCase_ ).to(lowerCAmelCase_ ) _snake_case = AutoTokenizer.from_pretrained('google/mt5-small' ) _snake_case = tokenizer('Hello there' , return_tensors='pt' ).input_ids _snake_case = tokenizer('Hi I am' , return_tensors='pt' ).input_ids _snake_case = model(input_ids.to(lowerCAmelCase_ ) , labels=labels.to(lowerCAmelCase_ ) ).loss _snake_case = -(labels.shape[-1] * loss.item()) _snake_case = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
42
0
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a_ : Dict = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a_ : int = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a_ : Optional[int] = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ), id='''references''' ), } ), codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''], reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ], ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=4, lowerCAmelCase=False ): """simple docstring""" lowerCamelCase_ =compute_bleu( reference_corpus=lowerCAmelCase, translation_corpus=lowerCAmelCase, max_order=lowerCAmelCase, smooth=lowerCAmelCase ) ((lowerCamelCase_), (lowerCamelCase_), (lowerCamelCase_), (lowerCamelCase_), (lowerCamelCase_), (lowerCamelCase_)) =score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
362
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def a_ ( __snake_case : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'''{test_file} instead.''' ) lowerCamelCase_ =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )] lowerCamelCase_ ='''.'''.join(__snake_case ) return test_module_path def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =get_module_path(__snake_case ) lowerCamelCase_ =importlib.import_module(__snake_case ) return test_module def a_ ( __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): lowerCamelCase_ =getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =test_class() if hasattr(__snake_case , '''setUp''' ): test.setUp() lowerCamelCase_ =None if hasattr(__snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase_ =test.model_tester.__class__ return model_tester def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case ) lowerCamelCase_ =[] for test_class in test_classes: lowerCamelCase_ =get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def a_ ( __snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def a_ ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def a_ ( __snake_case : List[str] ) -> List[Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
6
0
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar UpperCamelCase = TypeVar('''_T''') class lowerCAmelCase_ ( Generic[_T] ): '''simple docstring''' def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Iterable[_T] | None = None ) -> None: '''simple docstring''' A: list[_T] = list(iterable or [] ) A: list[_T] = [] def __len__( self : List[str] ) -> int: '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__( self : int ) -> str: '''simple docstring''' return f"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : _T ) -> None: '''simple docstring''' self._stacka.append(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> _T: '''simple docstring''' A: str = self._stacka.pop A: Optional[Any] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
319
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : Optional[torch.FloatTensor] = None class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = 2 @register_to_config def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1_00 , SCREAMING_SNAKE_CASE_ : float = 1.007 , SCREAMING_SNAKE_CASE_ : float = 80 , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 50 , ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = sigma_max # setable values A: int = None A: np.IntTensor = None A: torch.FloatTensor = None # sigma(t_i) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Optional[Any]: '''simple docstring''' A: List[Any] = num_inference_steps A: List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy() A: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) A: str = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] A: Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A: str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: A: List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) A: Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device ) A: Optional[Any] = sigma + gamma * sigma A: List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: Union[str, Any] = sample_hat + sigma_hat * model_output A: str = (sample_hat - pred_original_sample) / sigma_hat A: Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: int = sample_prev + sigma_prev * model_output A: List[Any] = (sample_prev - pred_original_sample) / sigma_prev A: Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict: '''simple docstring''' raise NotImplementedError()
319
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a__ ( unittest.TestCase ): def __init__( self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , ) -> Any: '''simple docstring''' a = size if size is not None else {"height": 18, "width": 18} a = parent a = batch_size a = num_channels a = image_size a = min_resolution a = max_resolution a = do_resize a = size a = apply_ocr def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class a__ ( UpperCamelCase__ , unittest.TestCase ): a : Dict = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , "do_resize" ) ) self.assertTrue(hasattr(A , "size" ) ) self.assertTrue(hasattr(A , "apply_ocr" ) ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , A ) self.assertIsInstance(encoding.boxes , A ) # Test batched a = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a = LayoutLMvaImageProcessor() from datasets import load_dataset a = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) a = Image.open(ds[0]["file"] ).convert("RGB" ) a = image_processing(A , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 a = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A ) self.assertListEqual(encoding.boxes , A ) # with apply_OCR = False a = LayoutLMvaImageProcessor(apply_ocr=A ) a = image_processing(A , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
351
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class a__ ( UpperCamelCase__ , unittest.TestCase ): a : List[Any] = RoFormerTokenizer a : Tuple = RoFormerTokenizerFast a : Dict = True a : Optional[Any] = True def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' super().setUp() def lowerCAmelCase_ ( self , **A ) -> Tuple: '''simple docstring''' return self.tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **A ) def lowerCAmelCase_ ( self , **A ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **A ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' a = "永和服装饰品有限公司,今天天气非常好" a = "永和 服装 饰品 有限公司 , 今 天 天 气 非常 好" return input_text, output_text def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = self.get_tokenizer() a , a = self.get_chinese_input_output_texts() a = tokenizer.tokenize(A ) self.assertListEqual(A , output_text.split() ) a = tokens + [tokenizer.unk_token] a = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' a = self.get_rust_tokenizer() a , a = self.get_chinese_input_output_texts() a = tokenizer.tokenize(A ) self.assertListEqual(A , output_text.split() ) a = tokens + [tokenizer.unk_token] a = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' pass def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' pass def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' pass
180
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : List[str] = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase_ = get_tests_dir('fixtures') UpperCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json') UpperCAmelCase_ = get_tests_dir('fixtures/dummy-config.json') class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = 0 def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) __lowerCamelCase = WavaVecaFeatureExtractor(**UpperCamelCase_ ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) # make sure private variable is not incorrectly saved __lowerCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with self.assertRaisesRegex( UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCAmelCase__ ( self: Tuple ): with self.assertRaisesRegex( UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" ) def lowerCAmelCase__ ( self: Optional[Any] ): with self.assertRaisesRegex( UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase__ ( self: Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCAmelCase__ ( self: Any ): try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase__ ( self: Dict ): class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = True try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
12
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : torch.FloatTensor _snake_case : torch.FloatTensor _snake_case : Optional[torch.FloatTensor] = None class lowerCamelCase (_snake_case , _snake_case ): '''simple docstring''' _snake_case : str = 2 @register_to_config def __init__( self , _UpperCamelCase = 0.02 , _UpperCamelCase = 1_0_0 , _UpperCamelCase = 1.0_07 , _UpperCamelCase = 8_0 , _UpperCamelCase = 0.05 , _UpperCamelCase = 5_0 , ) -> Dict: # standard deviation of the initial noise distribution UpperCAmelCase_ : Optional[int] = sigma_max # setable values UpperCAmelCase_ : int = None UpperCAmelCase_ : np.IntTensor = None UpperCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> torch.FloatTensor: return sample def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> str: UpperCAmelCase_ : Tuple = num_inference_steps UpperCAmelCase_ : Optional[int] = np.arange(0 , self.num_inference_steps )[::-1].copy() UpperCAmelCase_ : Union[str, Any] = torch.from_numpy(_UpperCamelCase ).to(_UpperCamelCase ) UpperCAmelCase_ : str = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] UpperCAmelCase_ : Optional[Any] = torch.tensor(_UpperCamelCase , dtype=torch.floataa , device=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[torch.FloatTensor, float]: if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase_ : str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: UpperCAmelCase_ : Any = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase_ : int = self.config.s_noise * randn_tensor(sample.shape , generator=_UpperCamelCase ).to(sample.device ) UpperCAmelCase_ : Optional[Any] = sigma + gamma * sigma UpperCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = True , ) -> Union[KarrasVeOutput, Tuple]: UpperCAmelCase_ : int = sample_hat + sigma_hat * model_output UpperCAmelCase_ : Dict = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase_ : List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_UpperCamelCase , derivative=_UpperCamelCase , pred_original_sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = True , ) -> Union[KarrasVeOutput, Tuple]: UpperCAmelCase_ : int = sample_prev + sigma_prev * model_output UpperCAmelCase_ : Union[str, Any] = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase_ : List[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_UpperCamelCase , derivative=_UpperCamelCase , pred_original_sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: raise NotImplementedError()
145
from collections import defaultdict from math import ceil, sqrt def lowercase__ ( __snake_case : int = 1_000_000 , __snake_case : int = 10 ): '''simple docstring''' UpperCAmelCase_ : defaultdict = defaultdict(__snake_case ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCAmelCase_ : Union[str, Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCAmelCase_ : int = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__snake_case , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'{solution() = }')
145
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case__ = KandinskyVaaPipeline snake_case__ = [ "image_embeds", "negative_image_embeds", ] snake_case__ = ["image_embeds", "negative_image_embeds"] snake_case__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case__ = False @property def __lowerCAmelCase ( self : int ): return 32 @property def __lowerCAmelCase ( self : Optional[int] ): return 32 @property def __lowerCAmelCase ( self : Tuple ): return self.time_input_dim @property def __lowerCAmelCase ( self : Dict ): return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : Union[str, Any] ): return 100 @property def __lowerCAmelCase ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCAmelCase__ = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } UpperCAmelCase__ = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def __lowerCAmelCase ( self : Any ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self : Dict ): torch.manual_seed(0 ) UpperCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ = self.dummy_unet UpperCAmelCase__ = self.dummy_movq UpperCAmelCase__ = DDIMScheduler( num_train_timesteps=1_000 ,beta_schedule='linear' ,beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,clip_sample=lowerCamelCase__ ,set_alpha_to_one=lowerCamelCase__ ,steps_offset=1 ,prediction_type='epsilon' ,thresholding=lowerCamelCase__ ,) UpperCAmelCase__ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Dict=0 ): UpperCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) UpperCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith('mps' ): UpperCAmelCase__ = torch.manual_seed(lowerCamelCase__ ) else: UpperCAmelCase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) UpperCAmelCase__ = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = 'cpu' UpperCAmelCase__ = self.get_dummy_components() UpperCAmelCase__ = self.pipeline_class(**lowerCamelCase__ ) UpperCAmelCase__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase__ = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) UpperCAmelCase__ = output.images UpperCAmelCase__ = pipe( **self.get_dummy_inputs(lowerCamelCase__ ) ,return_dict=lowerCamelCase__ ,)[0] UpperCAmelCase__ = image[0, -3:, -3:, -1] UpperCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' ) UpperCAmelCase__ = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' ,torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) UpperCAmelCase__ = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' ,torch_dtype=torch.floataa ) UpperCAmelCase__ = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase__ = 'red cat, 4k photo' UpperCAmelCase__ = torch.Generator(device='cuda' ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ = pipe_prior( lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=5 ,negative_prompt='' ,).to_tuple() UpperCAmelCase__ = torch.Generator(device='cuda' ).manual_seed(0 ) UpperCAmelCase__ = pipeline( image_embeds=lowerCamelCase__ ,negative_image_embeds=lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=100 ,output_type='np' ,) UpperCAmelCase__ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCamelCase__ ,lowerCamelCase__ )
98
def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase= [False] * len(lowercase__ ) __lowercase= [] queue.append(lowercase__ ) __lowercase= True while queue: __lowercase= queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase__ ) __lowercase= True __lowercase= u return visited[t] def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> int: '''simple docstring''' __lowercase= [-1] * (len(lowercase__ )) __lowercase= 0 while bfs(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __lowercase= float('Inf' ) __lowercase= sink while s != source: # Find the minimum value in select path __lowercase= min(lowercase__ , graph[parent[s]][s] ) __lowercase= parent[s] max_flow += path_flow __lowercase= sink while v != source: __lowercase= parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowercase= parent[v] return max_flow lowerCAmelCase = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase ,lowerCAmelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
295
0
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCamelCase_ ( __magic_name__ ): @require_torch def _lowercase( self ) -> List[str]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ UpperCAmelCase : Tuple = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ UpperCAmelCase : List[Any] = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache UpperCAmelCase : Optional[int] = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(A ) BertModel.from_pretrained(A ) BertTokenizer.from_pretrained(A ) pipeline(task="""fill-mask""" , model=A ) # baseline - just load from_pretrained with normal network UpperCAmelCase : Optional[Any] = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed UpperCAmelCase : int = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : List[Any] = """1""" UpperCAmelCase : int = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def _lowercase( self ) -> Optional[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase : Optional[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ UpperCAmelCase : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ UpperCAmelCase : Tuple = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache UpperCAmelCase : Optional[Any] = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(A ) BertModel.from_pretrained(A ) BertTokenizer.from_pretrained(A ) pipeline(task="""fill-mask""" , model=A ) # baseline - just load from_pretrained with normal network UpperCAmelCase : Any = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed UpperCAmelCase : List[str] = self.get_env() UpperCAmelCase : Optional[Any] = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def _lowercase( self ) -> str: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase : int = """ from transformers import BertConfig, BertModel, BertTokenizer """ UpperCAmelCase : Tuple = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ UpperCAmelCase : Dict = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network UpperCAmelCase : Tuple = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed UpperCAmelCase : Union[str, Any] = self.get_env() UpperCAmelCase : Tuple = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network UpperCAmelCase : Optional[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Tuple = """1""" UpperCAmelCase : Tuple = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def _lowercase( self ) -> Tuple: UpperCAmelCase : List[Any] = """ from transformers import pipeline """ UpperCAmelCase : Optional[Any] = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ UpperCAmelCase : Optional[Any] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ UpperCAmelCase : List[str] = self.get_env() UpperCAmelCase : List[Any] = """1""" UpperCAmelCase : int = [sys.executable, """-c""", """\n""".join([load, mock, run] )] UpperCAmelCase : str = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = """ from transformers import AutoModel """ UpperCAmelCase : List[str] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network UpperCAmelCase : Union[str, Any] = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed UpperCAmelCase : Union[str, Any] = self.get_env() UpperCAmelCase : Optional[Any] = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Dict = """1""" UpperCAmelCase : List[Any] = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) snake_case_ = ["""accelerate""", """launch"""] snake_case_ = Path.home() / """.cache/huggingface/accelerate""" snake_case_ = """default_config.yaml""" snake_case_ = config_folder / config_file snake_case_ = config_folder / """_default_config.yaml""" snake_case_ = Path('''tests/test_configs''' ) @classmethod def lowercase_ ( cls ) -> Tuple: '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase_ ( cls ) -> Union[str, Any]: '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=_A ): execute_subprocess_async( self.base_cmd + ['--config_file', str(_A ), self.test_file_path] , env=os.environ.copy() ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = """test-tpu""" snake_case_ = """us-central1-a""" snake_case_ = """ls""" snake_case_ = ["""accelerate""", """tpu-config"""] snake_case_ = """cd /usr/share""" snake_case_ = """tests/test_samples/test_command_file.sh""" snake_case_ = """Running gcloud compute tpus tpu-vm ssh""" def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _A , ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _A , ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=_A ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _A , ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo \"Hello World\"', '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _A , ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , )
90
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _UpperCAmelCase ( unittest.TestCase): def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : Tuple = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() _UpperCAmelCase : List[str] = dict(zip(_A , range(len(_A ) ) ) ) _UpperCAmelCase : List[Any] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } _UpperCAmelCase : Dict = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } _UpperCAmelCase : Optional[int] = tempfile.mkdtemp() _UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase : int = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) # load decoder from hub _UpperCAmelCase : List[Any] = """hf-internal-testing/ngram-beam-search-decoder""" def __snake_case ( self , **_A ) -> Dict: '''simple docstring''' _UpperCAmelCase : str = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def __snake_case ( self , **_A ) -> Tuple: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def __snake_case ( self , **_A ) -> Union[str, Any]: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def __snake_case ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : Optional[Any] = self.get_feature_extractor() _UpperCAmelCase : List[str] = self.get_decoder() _UpperCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Any = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def __snake_case ( self ) -> int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _UpperCAmelCase : Tuple = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Any = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_A , """include""" ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = self.get_feature_extractor() _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : List[Any] = self.get_decoder() _UpperCAmelCase : Dict = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : List[Any] = floats_list((3, 10_00) ) _UpperCAmelCase : str = feature_extractor(_A , return_tensors="""np""" ) _UpperCAmelCase : int = processor(_A , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self ) -> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.get_feature_extractor() _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : Dict = self.get_decoder() _UpperCAmelCase : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Optional[Any] = """This is a test string""" _UpperCAmelCase : Optional[Any] = processor(text=_A ) _UpperCAmelCase : Dict = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self , _A=(2, 10, 16) , _A=77 ) -> Union[str, Any]: '''simple docstring''' np.random.seed(_A ) return np.random.rand(*_A ) def __snake_case ( self ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = self.get_feature_extractor() _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : Optional[Any] = self.get_decoder() _UpperCAmelCase : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : str = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _UpperCAmelCase : Optional[int] = processor.decode(_A ) _UpperCAmelCase : str = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def __snake_case ( self , _A ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Tuple = self.get_feature_extractor() _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : Optional[Any] = self.get_decoder() _UpperCAmelCase : str = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Union[str, Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _UpperCAmelCase : int = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: _UpperCAmelCase : Dict = processor.batch_decode(_A , _A ) _UpperCAmelCase : Tuple = list(_A ) with get_context("""fork""" ).Pool() as p: _UpperCAmelCase : Tuple = decoder.decode_beams_batch(_A , _A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.get_feature_extractor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : Tuple = self.get_decoder() _UpperCAmelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Optional[int] = self._get_dummy_logits() _UpperCAmelCase : List[str] = 15 _UpperCAmelCase : Dict = -20.0 _UpperCAmelCase : List[str] = -4.0 _UpperCAmelCase : Any = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) _UpperCAmelCase : Any = decoded_processor_out.text _UpperCAmelCase : Any = list(_A ) with get_context("""fork""" ).Pool() as pool: _UpperCAmelCase : str = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) _UpperCAmelCase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] _UpperCAmelCase : List[str] = [d[0][2] for d in decoded_decoder_out] _UpperCAmelCase : Tuple = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _A , atol=1e-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _A , atol=1e-3 ) ) def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int = self.get_feature_extractor() _UpperCAmelCase : List[Any] = self.get_tokenizer() _UpperCAmelCase : Union[str, Any] = self.get_decoder() _UpperCAmelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) _UpperCAmelCase : Optional[int] = self._get_dummy_logits() _UpperCAmelCase : Any = 2.0 _UpperCAmelCase : Union[str, Any] = 5.0 _UpperCAmelCase : List[Any] = -20.0 _UpperCAmelCase : str = True _UpperCAmelCase : Union[str, Any] = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) _UpperCAmelCase : Tuple = decoded_processor_out.text _UpperCAmelCase : Tuple = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context("""fork""" ).Pool() as pool: _UpperCAmelCase : Optional[Any] = decoder.decode_beams_batch( _A , _A , ) _UpperCAmelCase : Optional[int] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _A ) _UpperCAmelCase : List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _A ) def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase : Union[str, Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _UpperCAmelCase : Optional[Any] = os.listdir(_A ) _UpperCAmelCase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def __snake_case ( self ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : Dict = WavaVecaProcessorWithLM.from_pretrained(_A ) _UpperCAmelCase : Any = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase : Dict = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _UpperCAmelCase : Optional[Any] = os.listdir(_A ) _UpperCAmelCase : Union[str, Any] = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Dict = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : List[Any] = floats_list((3, 10_00) ) _UpperCAmelCase : str = processor_wavaveca(_A , return_tensors="""np""" ) _UpperCAmelCase : Any = processor_auto(_A , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) _UpperCAmelCase : Union[str, Any] = self._get_dummy_logits() _UpperCAmelCase : Dict = processor_wavaveca.batch_decode(_A ) _UpperCAmelCase : Optional[Any] = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.get_feature_extractor() _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Union[str, Any] = self.get_decoder() _UpperCAmelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def __snake_case ( _A , _A ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Any = [d[key] for d in offsets] return retrieved_list def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : List[Any] = self._get_dummy_logits()[0] _UpperCAmelCase : Tuple = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def __snake_case ( self ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _UpperCAmelCase : Optional[Any] = self._get_dummy_logits() _UpperCAmelCase : List[Any] = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_A , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __snake_case ( self ) -> str: '''simple docstring''' import torch _UpperCAmelCase : List[str] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_A ) _UpperCAmelCase : List[Any] = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) _UpperCAmelCase : List[Any] = iter(_A ) _UpperCAmelCase : Optional[Any] = next(_A ) _UpperCAmelCase : Optional[int] = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) _UpperCAmelCase : Dict = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _UpperCAmelCase : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): _UpperCAmelCase : Optional[int] = model(_A ).logits.cpu().numpy() _UpperCAmelCase : Union[str, Any] = processor.decode(logits[0] , output_word_offsets=_A ) _UpperCAmelCase : str = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _UpperCAmelCase : Optional[int] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] _UpperCAmelCase : List[Any] = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_A , """word""" ) ) , _A ) self.assertEqual(""" """.join(self.get_from_offsets(_A , """word""" ) ) , output.text ) # output times _UpperCAmelCase : List[str] = torch.tensor(self.get_from_offsets(_A , """start_time""" ) ) _UpperCAmelCase : Any = torch.tensor(self.get_from_offsets(_A , """end_time""" ) ) # fmt: off _UpperCAmelCase : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _UpperCAmelCase : List[Any] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.01 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.01 ) )
246
0
import itertools import math def __snake_case ( _UpperCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __snake_case ( ): __a = 2 while True: if is_prime(_UpperCAmelCase ): yield num num += 1 def __snake_case ( _UpperCAmelCase = 10001 ): return next(itertools.islice(prime_generator() , nth - 1 , _UpperCAmelCase ) ) if __name__ == "__main__": print(f'{solution() = }')
351
def __snake_case ( _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('''Input value must be an \'int\' type''' ) __a = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
131
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Tuple = AudioLDMPipeline __snake_case : Tuple = TEXT_TO_AUDIO_PARAMS __snake_case : Optional[int] = TEXT_TO_AUDIO_BATCH_PARAMS __snake_case : Union[str, Any] = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=(32, 64) ,class_embed_type="""simple_projection""" ,projection_class_embeddings_input_dim=32 ,class_embeddings_concat=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase__ ,set_alpha_to_one=lowerCamelCase__ ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=1 ,out_channels=1 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,projection_dim=32 ,) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" ,model_max_length=77 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 ,sampling_rate=16000 ,upsample_initial_channel=16 ,upsample_rates=[2, 2] ,upsample_kernel_sizes=[4, 4] ,resblock_kernel_sizes=[3, 7] ,resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] ,normalize_before=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Optional[Any]=0 ) -> str: '''simple docstring''' if str(lowerCamelCase__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 256 SCREAMING_SNAKE_CASE = audio[:10] SCREAMING_SNAKE_CASE = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = 3 * [inputs["""prompt"""]] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop("""prompt""" )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( lowerCamelCase__ ,padding="""max_length""" ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=lowerCamelCase__ ,return_tensors="""pt""" ,) SCREAMING_SNAKE_CASE = text_inputs["""input_ids"""].to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(lowerCamelCase__ ,dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = 3 * ["""this is a negative prompt"""] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs["""prompt"""]] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop("""prompt""" )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( lowerCamelCase__ ,padding="""max_length""" ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=lowerCamelCase__ ,return_tensors="""pt""" ,) SCREAMING_SNAKE_CASE = text_inputs["""input_ids"""].to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(lowerCamelCase__ ,dim=-1 ) embeds.append(lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """egg cracking""" SCREAMING_SNAKE_CASE = audioldm_pipe(**lowerCamelCase__ ,negative_prompt=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 256 SCREAMING_SNAKE_CASE = audio[:10] SCREAMING_SNAKE_CASE = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(lowerCamelCase__ ,num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size ,num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(lowerCamelCase__ ,num_inference_steps=2 ,num_waveforms_per_prompt=lowerCamelCase__ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size ,num_inference_steps=2 ,num_waveforms_per_prompt=lowerCamelCase__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) / vocoder_sampling_rate == 0.032 def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = ["""hey"""] SCREAMING_SNAKE_CASE = audioldm_pipe(lowerCamelCase__ ,num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 256) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(lowerCamelCase__ ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(lowerCamelCase__ ,num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> str: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCamelCase__ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase__ ) @slow class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Any="cpu" ,lowerCamelCase__ : Optional[int]=torch.floataa ,lowerCamelCase__ : List[str]=0 ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(lowerCamelCase__ ).standard_normal((1, 8, 128, 16) ) SCREAMING_SNAKE_CASE = torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ ,dtype=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = 25 SCREAMING_SNAKE_CASE = audioldm_pipe(**lowerCamelCase__ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 81920 SCREAMING_SNAKE_CASE = audio[77230:77240] SCREAMING_SNAKE_CASE = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(lowerCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_inputs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**lowerCamelCase__ ).audios[0] assert audio.ndim == 1 assert len(lowerCamelCase__ ) == 81920 SCREAMING_SNAKE_CASE = audio[27780:27790] SCREAMING_SNAKE_CASE = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
296
from collections import defaultdict from math import gcd def __lowercase ( _SCREAMING_SNAKE_CASE = 1_50_00_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = defaultdict(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _SCREAMING_SNAKE_CASE , 2 ): if gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) > 1: continue SCREAMING_SNAKE_CASE = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_SCREAMING_SNAKE_CASE , limit + 1 , _SCREAMING_SNAKE_CASE ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
296
1
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) class a ( _lowerCamelCase ): def __init__( self : Tuple , lowercase_ : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): super().__init__() snake_case_ = nn.ModuleList(lowercase_ ) def A_ ( self : Any , lowercase_ : torch.FloatTensor , lowercase_ : Union[torch.Tensor, float, int] , lowercase_ : torch.Tensor , lowercase_ : List[torch.tensor] , lowercase_ : List[float] , lowercase_ : Optional[torch.Tensor] = None , lowercase_ : Optional[torch.Tensor] = None , lowercase_ : Optional[torch.Tensor] = None , lowercase_ : Optional[Dict[str, Any]] = None , lowercase_ : bool = False , lowercase_ : bool = True , ): for i, (image, scale, controlnet) in enumerate(zip(lowercase_ , lowercase_ , self.nets ) ): snake_case_ ,snake_case_ = controlnet( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) # merge samples if i == 0: snake_case_ ,snake_case_ = down_samples, mid_sample else: snake_case_ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowercase_ , lowercase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def A_ ( self : Any , lowercase_ : Union[str, os.PathLike] , lowercase_ : bool = True , lowercase_ : Callable = None , lowercase_ : bool = False , lowercase_ : Optional[str] = None , ): snake_case_ = 0 snake_case_ = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowercase_ , is_main_process=lowercase_ , save_function=lowercase_ , safe_serialization=lowercase_ , variant=lowercase_ , ) idx += 1 snake_case_ = model_path_to_save + F"_{idx}" @classmethod def A_ ( cls : Dict , lowercase_ : Optional[Union[str, os.PathLike]] , **lowercase_ : Any ): snake_case_ = 0 snake_case_ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... snake_case_ = pretrained_model_path while os.path.isdir(lowercase_ ): snake_case_ = ControlNetModel.from_pretrained(lowercase_ , **lowercase_ ) controlnets.append(lowercase_ ) idx += 1 snake_case_ = pretrained_model_path + F"_{idx}" logger.info(F"{len(lowercase_ )} controlnets loaded from {pretrained_model_path}." ) if len(lowercase_ ) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(lowercase_ )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(lowercase_ )
72
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class a ( _lowerCamelCase , unittest.TestCase ): snake_case_ = FlaxAutoencoderKL @property def A_ ( self : List[Any] ): snake_case_ = 4 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = jax.random.PRNGKey(0 ) snake_case_ = jax.random.uniform(lowercase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def A_ ( self : Tuple ): snake_case_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } snake_case_ = self.dummy_input return init_dict, inputs_dict
72
1
from collections import defaultdict from math import gcd def __lowerCAmelCase ( a__ = 150_0000 ) -> int: __a = defaultdict(a__ ) __a = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , a__ , 2 ): if gcd(a__ , a__ ) > 1: continue __a = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(a__ , limit + 1 , a__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
6
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCAmelCase ( unittest.TestCase): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=None , ) -> Optional[int]: '''simple docstring''' a__ : str =size if size is not None else {"shortest_edge": 2_0} a__ : Union[str, Any] =crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} a__ : Tuple =parent a__ : Optional[int] =batch_size a__ : Any =num_channels a__ : List[str] =image_size a__ : Dict =min_resolution a__ : List[Any] =max_resolution a__ : Dict =do_resize a__ : Union[str, Any] =size a__ : str =do_center_crop a__ : List[str] =crop_size def _lowercase ( self ) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[int] =MobileNetVaImageProcessingTester(self ) @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> Any: '''simple docstring''' a__ : List[str] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "crop_size" ) ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : Any =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 2_0} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) a__ : Dict =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def _lowercase ( self ) -> Any: '''simple docstring''' pass def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Dict =self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input a__ : List[Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : Dict =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> int: '''simple docstring''' a__ : str =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input a__ : List[str] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : Union[str, Any] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Any =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ : int =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input a__ : Optional[Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : str =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
95
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : dict ): '''simple docstring''' lowerCAmelCase : Any = set() # edges = list of graph's edges lowerCAmelCase : Optional[int] = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCAmelCase , lowerCAmelCase : Any = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def a__ ( SCREAMING_SNAKE_CASE : dict ): '''simple docstring''' lowerCAmelCase : List[Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
133
"""simple docstring""" import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) lowerCAmelCase : Tuple = parser.parse_args() return args.f def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = {} lowerCAmelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE , "all_results.json" ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , "r" ) as f: lowerCAmelCase : str = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f"""can't find {path}""" ) return results def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" @classmethod def lowercase__ ( cls ): """simple docstring""" lowerCAmelCase : Any = tempfile.mkdtemp() lowerCAmelCase : List[Any] = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase : Optional[int] = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def lowercase__ ( cls ): """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() lowerCAmelCase : int = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) lowerCAmelCase : Dict = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowerCAmelCase : List[str] = get_results(snake_case__ ) self.assertLess(result["perplexity"] , 100 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : Any = get_results(snake_case__ ) self.assertLess(result["perplexity"] , 42 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase : Optional[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : int = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : str = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() lowerCAmelCase : List[str] = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : Optional[Any] = get_results(snake_case__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 28 ) self.assertGreaterEqual(result["eval_exact"] , 28 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : List[Any] = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : Tuple = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : str = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_rouge1"] , 10 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() lowerCAmelCase : Tuple = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : int = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_bleu"] , 30 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "translation_no_trainer" ) ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase : Any = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) lowerCAmelCase : int = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.get_auto_remove_tmp_dir() lowerCAmelCase : Union[str, Any] = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) lowerCAmelCase : Dict = get_results(snake_case__ ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "image_classification_no_trainer" ) ) )
133
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Optional[int] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' f"{test_file} instead." ) lowerCAmelCase : str = components[-1] if not test_fn.endswith('py' ): raise ValueError(f"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith('test_modeling_' ): raise ValueError( f"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) lowerCAmelCase : int = components[:-1] + [test_fn.replace('.py', '' )] lowerCAmelCase : Optional[Any] = '.'.join(a__ ) return test_module_path def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Optional[Any] = get_module_path(a__ ) lowerCAmelCase : int = importlib.import_module(a__ ) return test_module def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Tuple = [] lowerCAmelCase : Optional[Any] = get_test_module(a__ ) for attr in dir(a__ ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(a__, a__ ) ) # sort with class names return sorted(a__, key=lambda _UpperCAmelCase : x.__name__ ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Optional[int] = get_test_module(a__ ) for attr in dir(a__ ): lowerCAmelCase : Optional[int] = getattr(a__, a__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCAmelCase : Any = getattr(a__, 'all_model_classes', [] ) if len(a__ ) > 0: test_classes.append(a__ ) # sort with class names return sorted(a__, key=lambda _UpperCAmelCase : x.__name__ ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Any = get_test_classes(a__ ) lowerCAmelCase : List[str] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(a__, key=lambda _UpperCAmelCase : x.__name__ ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowerCAmelCase : int = test_class() if hasattr(a__, 'setUp' ): test.setUp() lowerCAmelCase : Tuple = None if hasattr(a__, 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCAmelCase : Optional[Any] = test.model_tester.__class__ return model_tester def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : int = get_test_classes(a__ ) lowerCAmelCase : Union[str, Any] = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(a__ ) # sort with class names return sorted(a__, key=lambda _UpperCAmelCase : x.__name__ ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Dict = get_test_classes_for_model(a__, a__ ) lowerCAmelCase : Tuple = [] for test_class in test_classes: lowerCAmelCase : Optional[Any] = get_model_tester_from_test_class(a__ ) if tester_class is not None: tester_classes.append(a__ ) # sort with class names return sorted(a__, key=lambda _UpperCAmelCase : x.__name__ ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : List[str] = get_test_classes(a__ ) lowerCAmelCase : str = {test_class: get_model_tester_from_test_class(a__ ) for test_class in test_classes} return test_tester_mapping def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' lowerCAmelCase : Dict = get_model_classes(a__ ) lowerCAmelCase : Tuple = { model_class: get_test_classes_for_model(a__, a__ ) for model_class in model_classes } return model_test_mapping def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : int = get_model_classes(a__ ) lowerCAmelCase : Optional[int] = { model_class: get_tester_classes_for_model(a__, a__ ) for model_class in model_classes } return model_to_tester_mapping def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if isinstance(a__, a__ ): return o elif isinstance(a__, a__ ): return o.__name__ elif isinstance(a__, (list, tuple) ): return [to_json(a__ ) for x in o] elif isinstance(a__, a__ ): return {to_json(a__ ): to_json(a__ ) for k, v in o.items()} else: return o
138
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''ChineseCLIPImageProcessor''' snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> Tuple: '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) __a = self.image_processor def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: __a = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class
6
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json''' ), }, } __snake_case = { '''yjernite/retribert-base-uncased''': 512, } __snake_case = { '''yjernite/retribert-base-uncased''': {'''do_lower_case''': True}, } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = VOCAB_FILES_NAMES A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP A_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Dict = PRETRAINED_INIT_CONFIGURATION A_ : Optional[int] = RetriBertTokenizer A_ : int = ['input_ids', 'attention_mask'] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[Any]: super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) _a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): _a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) _a = do_lower_case _a = strip_accents _a = tokenize_chinese_chars _a = normalizer_class(**__UpperCAmelCase ) _a = do_lower_case def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: _a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: _a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
153
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __lowerCamelCase : '''simple docstring''' @staticmethod def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : List[Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = DepthEstimationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: _a = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , __UpperCAmelCase ) import datasets _a = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) _a = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , __UpperCAmelCase , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def _UpperCAmelCase ( self ) -> Tuple: pass @slow @require_torch def _UpperCAmelCase ( self ) -> List[str]: _a = '''Intel/dpt-large''' _a = pipeline('''depth-estimation''' , model=__UpperCAmelCase ) _a = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) _a = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
153
1
from scipy.stats import pearsonr import datasets __lowerCamelCase : List[Any] = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ __lowerCamelCase : Optional[int] = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ __lowerCamelCase : str = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ),reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"],) def __UpperCamelCase ( self : List[str],_A : Optional[int],_A : Optional[Any],_A : Any=False ): """simple docstring""" if return_pvalue: SCREAMING_SNAKE_CASE_ : Tuple = pearsonr(__lowerCAmelCase,__lowerCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__lowerCAmelCase,__lowerCAmelCase )[0] )}
18
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] ={ """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class _A ( lowerCAmelCase ): snake_case__ : Union[str, Any] = 'open-llama' def __init__( self , __lowerCAmelCase=10_0000 , __lowerCAmelCase=4096 , __lowerCAmelCase=1_1008 , __lowerCAmelCase=32 , __lowerCAmelCase=32 , __lowerCAmelCase="silu" , __lowerCAmelCase=2048 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-6 , __lowerCAmelCase=True , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" lowercase = vocab_size lowercase = max_position_embeddings lowercase = hidden_size lowercase = intermediate_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = initializer_range lowercase = rms_norm_eps lowercase = use_cache lowercase = kwargs.pop( """use_memorry_efficient_attention""" , __lowerCAmelCase ) lowercase = hidden_dropout_prob lowercase = attention_dropout_prob lowercase = use_stable_embedding lowercase = shared_input_output_embedding lowercase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , tie_word_embeddings=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'got {self.rope_scaling}' ) lowercase = self.rope_scaling.get("""type""" , __lowerCAmelCase ) lowercase = self.rope_scaling.get("""factor""" , __lowerCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
197
0
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = MvpTokenizer __lowerCAmelCase = MvpTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = filter_roberta_detectors def SCREAMING_SNAKE_CASE ( self ) -> Any: super().setUp() a =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a =dict(zip(__A , range(len(__A ) ) ) ) a =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a ={'''unk_token''': '''<unk>'''} a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__A ) ) def SCREAMING_SNAKE_CASE ( self , **__A ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__A ) def SCREAMING_SNAKE_CASE ( self , **__A ) -> Any: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> int: return "lower newer", "lower newer" @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' ) @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Any: a =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] a =[0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a =tokenizer(__A , max_length=len(__A ) , padding=__A , return_tensors='''pt''' ) self.assertIsInstance(__A , __A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) a =batch.input_ids.tolist()[0] self.assertListEqual(__A , __A ) # Test that special tokens are reset @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Any: a =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a =tokenizer(__A , padding=__A , return_tensors='''pt''' ) # check if input_ids are returned and no labels self.assertIn('''input_ids''' , __A ) self.assertIn('''attention_mask''' , __A ) self.assertNotIn('''labels''' , __A ) self.assertNotIn('''decoder_attention_mask''' , __A ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> str: a =[ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a =tokenizer(text_target=__A , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a =tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__A , truncation=__A , return_tensors='''pt''' ) self.assertIsInstance(__A , __A ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =['''A long paragraph for summarization.'''] a =[ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a =tokenizer(__A , text_target=__A , return_tensors='''pt''' ) a =inputs['''input_ids'''] a =inputs['''labels'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass def SCREAMING_SNAKE_CASE ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a =self.rust_tokenizer_class.from_pretrained(__A , **__A ) a =self.tokenizer_class.from_pretrained(__A , **__A ) a ='''A, <mask> AllenNLP sentence.''' a =tokenizer_r.encode_plus(__A , add_special_tokens=__A , return_token_type_ids=__A ) a =tokenizer_p.encode_plus(__A , add_special_tokens=__A , return_token_type_ids=__A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) a =tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) a =tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
370
"""simple docstring""" import os import sys import unittest lowerCamelCase_ : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCamelCase_ : Dict = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") lowerCamelCase_ : Dict = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class __A ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ) -> Any: a =get_test_to_tester_mapping(__A ) a =get_test_to_tester_mapping(__A ) a ={'''BertModelTest''': '''BertModelTester'''} a ={ '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(__A ) , __A ) self.assertEqual(get_test_info.to_json(__A ) , __A ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =get_model_to_test_mapping(__A ) a =get_model_to_test_mapping(__A ) a ={ '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } a ={ '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(__A ) , __A ) self.assertEqual(get_test_info.to_json(__A ) , __A ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =get_model_to_tester_mapping(__A ) a =get_model_to_tester_mapping(__A ) a ={ '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } a ={ '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(__A ) , __A ) self.assertEqual(get_test_info.to_json(__A ) , __A )
215
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str]=3 , lowerCamelCase : Dict=32 , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : Dict=10 , lowerCamelCase : Optional[int]=[10, 20, 30, 40] , lowerCamelCase : Optional[int]=[1, 1, 2, 1] , lowerCamelCase : Optional[int]=True , lowerCamelCase : Optional[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : Dict=3 , lowerCamelCase : int=None , ) -> Any: lowerCAmelCase_ : Union[str, Any] = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : Optional[Any] = image_size lowerCAmelCase_ : Optional[Any] = num_channels lowerCAmelCase_ : List[str] = embeddings_size lowerCAmelCase_ : str = hidden_sizes lowerCAmelCase_ : Any = depths lowerCAmelCase_ : Optional[int] = is_training lowerCAmelCase_ : Union[str, Any] = use_labels lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : int = num_labels lowerCAmelCase_ : Optional[Any] = scope lowerCAmelCase_ : Optional[Any] = len(lowerCamelCase ) def __lowercase ( self : Any ) -> List[str]: lowerCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : List[Any] = None if self.use_labels: lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_ : Tuple = self.get_config() return config, pixel_values, labels def __lowercase ( self : str ) -> List[Any]: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __lowercase ( self : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : int ) -> Tuple: lowerCAmelCase_ : Dict = TFResNetModel(config=lowerCamelCase ) lowerCAmelCase_ : Any = model(lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowercase ( self : Any , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] ) -> Tuple: lowerCAmelCase_ : Dict = self.num_labels lowerCAmelCase_ : Dict = TFResNetForImageClassification(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self : Optional[Any] ) -> int: lowerCAmelCase_ : Dict = self.prepare_config_and_inputs() lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : Dict = config_and_inputs lowerCAmelCase_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def __lowercase ( self : List[Any] ) -> int: lowerCAmelCase_ : List[Any] = TFResNetModelTester(self ) lowerCAmelCase_ : Dict = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def __lowercase ( self : int ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : Dict ) -> List[Any]: return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def __lowercase ( self : Dict ) -> Tuple: pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def __lowercase ( self : str ) -> int: pass def __lowercase ( self : List[str] ) -> Any: lowerCAmelCase_, lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[Any] = model_class(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase_ : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __lowercase ( self : List[str] ) -> Dict: lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __lowercase ( self : Optional[Any] ) -> Dict: def check_hidden_states_output(lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): lowerCAmelCase_ : List[str] = model_class(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) lowerCAmelCase_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ : Dict = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase_, lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Optional[int] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase_ : Optional[Any] = layer_type lowerCAmelCase_ : Tuple = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : Any = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __lowercase ( self : List[str] ) -> str: lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def __lowercase ( self : Tuple ) -> Optional[Any]: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : str = TFResNetModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase): """simple docstring""" @cached_property def __lowercase ( self : List[str] ) -> Dict: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowercase ( self : Optional[Any] ) -> Optional[Any]: lowerCAmelCase_ : Any = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase_ : Any = self.default_image_processor lowerCAmelCase_ : Union[str, Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=lowerCamelCase , return_tensors="""tf""" ) # forward pass lowerCAmelCase_ : Tuple = model(**lowerCamelCase ) # verify the logits lowerCAmelCase_ : Optional[int] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) lowerCAmelCase_ : Tuple = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase , atol=1E-4 ) )
120
'''simple docstring''' def UpperCamelCase_ ( A__ : int = 1_00 ): '''simple docstring''' lowerCAmelCase_ : int = set() lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = n + 1 # maximum limit for a in range(2 , A__ ): for b in range(2 , A__ ): lowerCAmelCase_ : str = a**b # calculates the current power collect_powers.add(A__ ) # adds the result to the set return len(A__ ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
120
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = original_name.split("." )[0] UpperCAmelCase_ = key.split("." ) UpperCAmelCase_ = int(key_list[key_list.index(snake_case_ ) - 2] ) UpperCAmelCase_ = int(key_list[key_list.index(snake_case_ ) - 1] ) UpperCAmelCase_ = orig_block_num - offset UpperCAmelCase_ = key.replace(f"""{orig_block_num}.{layer_num}.{original_name}""" , f"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def lowerCAmelCase_ ( snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = OrderedDict() UpperCAmelCase_ , UpperCAmelCase_ = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): UpperCAmelCase_ = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 UpperCAmelCase_ = key[: key.find("proj" )] UpperCAmelCase_ = key.replace(snake_case_ , f"""patch_embeddings.{total_embed_found}.""" ) UpperCAmelCase_ = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: UpperCAmelCase_ = "poolformer.encoder." + key if "mlp.fc1" in key: UpperCAmelCase_ = replace_key_with_offset(snake_case_ , snake_case_ , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: UpperCAmelCase_ = replace_key_with_offset(snake_case_ , snake_case_ , "mlp.fc2" , "output.conv2" ) if "norm1" in key: UpperCAmelCase_ = replace_key_with_offset(snake_case_ , snake_case_ , "norm1" , "before_norm" ) if "norm2" in key: UpperCAmelCase_ = replace_key_with_offset(snake_case_ , snake_case_ , "norm2" , "after_norm" ) if "layer_scale_1" in key: UpperCAmelCase_ = replace_key_with_offset(snake_case_ , snake_case_ , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: UpperCAmelCase_ = replace_key_with_offset(snake_case_ , snake_case_ , "layer_scale_2" , "layer_scale_2" ) if "head" in key: UpperCAmelCase_ = key.replace("head" , "classifier" ) UpperCAmelCase_ = value return new_state_dict def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return image @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = PoolFormerConfig() # set attributes based on model_name UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = model_name[-3:] UpperCAmelCase_ = 10_00 UpperCAmelCase_ = "imagenet-1k-id2label.json" UpperCAmelCase_ = (1, 10_00) # set config attributes UpperCAmelCase_ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(snake_case_ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} if size == "s12": UpperCAmelCase_ = [2, 2, 6, 2] UpperCAmelCase_ = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ = 4.0 UpperCAmelCase_ = 0.9 elif size == "s24": UpperCAmelCase_ = [4, 4, 12, 4] UpperCAmelCase_ = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ = 4.0 UpperCAmelCase_ = 0.9 elif size == "s36": UpperCAmelCase_ = [6, 6, 18, 6] UpperCAmelCase_ = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ = 4.0 UpperCAmelCase_ = 1E-6 UpperCAmelCase_ = 0.9 elif size == "m36": UpperCAmelCase_ = [6, 6, 18, 6] UpperCAmelCase_ = [96, 1_92, 3_84, 7_68] UpperCAmelCase_ = 4.0 UpperCAmelCase_ = 1E-6 UpperCAmelCase_ = 0.95 elif size == "m48": UpperCAmelCase_ = [8, 8, 24, 8] UpperCAmelCase_ = [96, 1_92, 3_84, 7_68] UpperCAmelCase_ = 4.0 UpperCAmelCase_ = 1E-6 UpperCAmelCase_ = 0.95 else: raise ValueError(f"""Size {size} not supported""" ) # load image processor UpperCAmelCase_ = PoolFormerImageProcessor(crop_pct=snake_case_ ) # Prepare image UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=snake_case_ , return_tensors="pt" ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict UpperCAmelCase_ = torch.load(snake_case_ , map_location=torch.device("cpu" ) ) # rename keys UpperCAmelCase_ = rename_keys(snake_case_ ) # create HuggingFace model and load state dict UpperCAmelCase_ = PoolFormerForImageClassification(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() # Define image processor UpperCAmelCase_ = PoolFormerImageProcessor(crop_pct=snake_case_ ) UpperCAmelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass UpperCAmelCase_ = model(snake_case_ ) UpperCAmelCase_ = outputs.logits # define expected logit slices for different models if size == "s12": UpperCAmelCase_ = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": UpperCAmelCase_ = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": UpperCAmelCase_ = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": UpperCAmelCase_ = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": UpperCAmelCase_ = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , snake_case_ , atol=1E-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) SCREAMING_SNAKE_CASE_: Optional[int] =parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
359
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib SCREAMING_SNAKE_CASE_: List[str] =get_logger() SCREAMING_SNAKE_CASE_: Optional[dict] =None class __A ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): def __init__(self : List[Any] , __a : Optional[int]=None , __a : Any=None , **__a : Dict ): super().__init__(features=__a ) import jax from jaxlib.xla_client import Device if isinstance(__a , __a ): raise ValueError( f"""Expected {device} to be a `str` not {type(__a )}, as `jaxlib.xla_extension.Device` """ "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) UpperCAmelCase_ = device if isinstance(__a , __a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) UpperCAmelCase_ = str(jax.devices()[0] ) UpperCAmelCase_ = jnp_array_kwargs @staticmethod def _lowercase (): import jax return {str(__a ): device for device in jax.devices()} def _lowercase (self : str , __a : Tuple ): import jax import jax.numpy as jnp if isinstance(__a , __a ) and column: if all( isinstance(__a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__a , axis=0 ) return column def _lowercase (self : Any , __a : Optional[int] ): import jax import jax.numpy as jnp if isinstance(__a , (str, bytes, type(__a )) ): return value elif isinstance(__a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase_ = {} if isinstance(__a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase_ = {"dtype": jnp.intaa} else: UpperCAmelCase_ = {"dtype": jnp.intaa} elif isinstance(__a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase_ = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__a , PIL.Image.Image ): UpperCAmelCase_ = np.asarray(__a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__a , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase (self : int , __a : Any ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__a , "__array__" ) and not isinstance(__a , jax.Array ): UpperCAmelCase_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) elif isinstance(__a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) return self._tensorize(__a ) def _lowercase (self : Union[str, Any] , __a : dict ): return map_nested(self._recursive_tensorize , __a , map_list=__a ) def _lowercase (self : str , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_row(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_row(__a ) return self.recursive_tensorize(__a ) def _lowercase (self : Tuple , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_column(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_column(__a , pa_table.column_names[0] ) UpperCAmelCase_ = self.recursive_tensorize(__a ) UpperCAmelCase_ = self._consolidate(__a ) return column def _lowercase (self : str , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_batch(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_batch(__a ) UpperCAmelCase_ = self.recursive_tensorize(__a ) for column_name in batch: UpperCAmelCase_ = self._consolidate(batch[column_name] ) return batch
106
0
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=3_2 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , use_stable_embedding=__lowerCAmelCase , ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = OpenLlamaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = True lowerCamelCase__ = OpenLlamaModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , ) lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , ) lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = OpenLlamaForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = OpenLlamaForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # first forward pass lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase , ) lowerCamelCase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )['''hidden_states'''][0] lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )['''hidden_states'''][0] # select random slice lowerCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase_ = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = OpenLlamaModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = 3 lowerCamelCase__ = input_dict['''input_ids'''] lowerCamelCase__ = input_ids.ne(1 ).to(__lowerCAmelCase ) lowerCamelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase__ = OpenLlamaForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = 3 lowerCamelCase__ = '''single_label_classification''' lowerCamelCase__ = input_dict['''input_ids'''] lowerCamelCase__ = input_ids.ne(1 ).to(__lowerCAmelCase ) lowerCamelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase__ = OpenLlamaForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = 3 lowerCamelCase__ = '''multi_label_classification''' lowerCamelCase__ = input_dict['''input_ids'''] lowerCamelCase__ = input_ids.ne(1 ).to(__lowerCAmelCase ) lowerCamelCase__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase__ = OpenLlamaForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = ids_tensor([1, 1_0] , config.vocab_size ) lowerCamelCase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ = OpenLlamaModel(__lowerCAmelCase ) original_model.to(__lowerCAmelCase ) original_model.eval() lowerCamelCase__ = original_model(__lowerCAmelCase ).last_hidden_state lowerCamelCase__ = original_model(__lowerCAmelCase ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ = {'''type''': scaling_type, '''factor''': 1_0.0} lowerCamelCase__ = OpenLlamaModel(__lowerCAmelCase ) scaled_model.to(__lowerCAmelCase ) scaled_model.eval() lowerCamelCase__ = scaled_model(__lowerCAmelCase ).last_hidden_state lowerCamelCase__ = scaled_model(__lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) )
209
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Any ) -> Union[str, Any]: """simple docstring""" A__ = ["""a""", """b""", """c"""] # Defaults to last layer if both are None A__ , A__ = get_aligned_output_features_output_indices(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""c"""] ) self.assertEqual(__lowerCAmelCase , [2] ) # Out indices set to match out features A__ , A__ = get_aligned_output_features_output_indices(["""a""", """c"""] , __lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""a""", """c"""] ) self.assertEqual(__lowerCAmelCase , [0, 2] ) # Out features set to match out indices A__ , A__ = get_aligned_output_features_output_indices(__lowerCAmelCase , [0, 2] , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""a""", """c"""] ) self.assertEqual(__lowerCAmelCase , [0, 2] ) # Out features selected from negative indices A__ , A__ = get_aligned_output_features_output_indices(__lowerCAmelCase , [-3, -1] , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""a""", """c"""] ) self.assertEqual(__lowerCAmelCase , [-3, -1] ) def a_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , __lowerCAmelCase ) # Out features must be a list with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] ) # Out features must be a subset of stage names with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] ) # Out indices must be a list or tuple with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(__lowerCAmelCase , 0 , ["""a""", """b"""] ) # Out indices must be a subset of stage names with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(__lowerCAmelCase , (0, 1) , ["""a"""] ) # Out features and out indices must be the same length with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] ) # Out features should match out indices with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] ) # Out features and out indices should be in order with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] ) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] ) def a_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" A__ = BackboneMixin() A__ = ["""a""", """b""", """c"""] A__ = ["""a""", """c"""] A__ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly A__ = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""] ) self.assertEqual(backbone.out_indices , [0, 1] ) A__ = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [-3, -1] )
274
0
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[str]=None ) -> Dict: __A : Union[str, Any] = None if token is not None: __A : Dict = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} __A : Optional[int] = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' __A : Tuple = requests.get(__snake_case , headers=__snake_case ).json() __A : int = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) __A : int = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(__snake_case ): __A : Any = requests.get(url + f'&page={i + 2}' , headers=__snake_case ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def _lowerCAmelCase ( __snake_case : str , __snake_case : Optional[int]=None ) -> str: __A : Optional[Any] = None if token is not None: __A : Optional[int] = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} __A : Dict = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' __A : Dict = requests.get(__snake_case , headers=__snake_case ).json() __A : Union[str, Any] = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) __A : str = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(__snake_case ): __A : List[str] = requests.get(url + f'&page={i + 2}' , headers=__snake_case ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def _lowerCAmelCase ( __snake_case : Dict , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> str: __A : Any = None if token is not None: __A : List[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} __A : Any = requests.get(__snake_case , headers=__snake_case , allow_redirects=__snake_case ) __A : Optional[Any] = result.headers['Location'] __A : str = requests.get(__snake_case , allow_redirects=__snake_case ) __A : Union[str, Any] = os.path.join(__snake_case , f'{artifact_name}.zip' ) with open(__snake_case , 'wb' ) as fp: fp.write(response.content ) def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : str=None ) -> Any: __A : Any = [] __A : Tuple = [] __A : Dict = None with zipfile.ZipFile(__snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(__snake_case ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__snake_case ) as f: for line in f: __A : str = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __A : int = line[: line.index(': ' )] __A : Tuple = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed __A : str = line[len('FAILED ' ) :] failed_tests.append(__snake_case ) elif filename == "job_name.txt": __A : Union[str, Any] = line if len(__snake_case ) != len(__snake_case ): raise ValueError( f'`errors` and `failed_tests` should have the same number of elements. Got {len(__snake_case )} for `errors` ' f'and {len(__snake_case )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' ' problem.' ) __A : Union[str, Any] = None if job_name and job_links: __A : int = job_links.get(__snake_case , __snake_case ) # A list with elements of the form (line of error, error, failed test) __A : str = [x + [y] + [job_link] for x, y in zip(__snake_case , __snake_case )] return result def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : Any=None ) -> Dict: __A : Any = [] __A : Union[str, Any] = [os.path.join(__snake_case , __snake_case ) for p in os.listdir(__snake_case ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(__snake_case , job_links=__snake_case ) ) return errors def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Dict=None ) -> Tuple: __A : Tuple = Counter() counter.update([x[1] for x in logs] ) __A : List[str] = counter.most_common() __A : int = {} for error, count in counts: if error_filter is None or error not in error_filter: __A : Any = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} __A : List[str] = dict(sorted(r.items() , key=lambda __snake_case : item[1]["count"] , reverse=__snake_case ) ) return r def _lowerCAmelCase ( __snake_case : Any ) -> Dict: __A : Optional[Any] = test.split('::' )[0] if test.startswith('tests/models/' ): __A : List[str] = test.split('/' )[2] else: __A : List[Any] = None return test def _lowerCAmelCase ( __snake_case : str , __snake_case : Union[str, Any]=None ) -> Optional[Any]: __A : Optional[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] __A : int = [x for x in logs if x[2] is not None] __A : Optional[Any] = {x[2] for x in logs} __A : Union[str, Any] = {} for test in tests: __A : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __A : Dict = counter.most_common() __A : Dict = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __A : List[Any] = sum(error_counts.values() ) if n_errors > 0: __A : str = {'count': n_errors, 'errors': error_counts} __A : Dict = dict(sorted(r.items() , key=lambda __snake_case : item[1]["count"] , reverse=__snake_case ) ) return r def _lowerCAmelCase ( __snake_case : Any ) -> Dict: __A : str = '| no. | error | status |' __A : Dict = '|-:|:-|:-|' __A : Dict = [header, sep] for error in reduced_by_error: __A : int = reduced_by_error[error]['count'] __A : Any = f'| {count} | {error[:1_00]} | |' lines.append(__snake_case ) return "\n".join(__snake_case ) def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Any: __A : Tuple = '| model | no. of errors | major error | count |' __A : Optional[Any] = '|-:|-:|-:|-:|' __A : Optional[Any] = [header, sep] for model in reduced_by_model: __A : Union[str, Any] = reduced_by_model[model]['count'] __A : Optional[Any] = list(reduced_by_model[model]['errors'].items() )[0] __A : str = f'| {model} | {count} | {error[:60]} | {_count} |' lines.append(__snake_case ) return "\n".join(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') lowercase__ : List[str] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowercase__ : str = get_job_links(args.workflow_run_id, token=args.token) lowercase__ : Optional[Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowercase__ : List[str] = k.find(''' / ''') lowercase__ : Optional[Any] = k[index + len(''' / ''') :] lowercase__ : List[Any] = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowercase__ : Optional[int] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowercase__ : Optional[int] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowercase__ : int = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowercase__ : str = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowercase__ : List[Any] = reduce_by_error(errors) lowercase__ : Union[str, Any] = reduce_by_model(errors) lowercase__ : Dict = make_github_table(reduced_by_error) lowercase__ : List[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
350
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> float: def get_matched_characters(__snake_case : str , __snake_case : str ) -> str: __A : Optional[int] = [] __A : Optional[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __A : str = int(max(0 , i - limit ) ) __A : str = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__snake_case ) __A : Dict = f'{_stra[0:_stra.index(__snake_case )]} {_stra[_stra.index(__snake_case ) + 1:]}' return "".join(__snake_case ) # matching characters __A : Any = get_matched_characters(__snake_case , __snake_case ) __A : str = get_matched_characters(__snake_case , __snake_case ) __A : str = len(__snake_case ) # transposition __A : Tuple = ( len([(ca, ca) for ca, ca in zip(__snake_case , __snake_case ) if ca != ca] ) // 2 ) if not match_count: __A : int = 0.0 else: __A : Union[str, Any] = ( 1 / 3 * ( match_count / len(__snake_case ) + match_count / len(__snake_case ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __A : Tuple = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
190
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCAmelCase_ = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } lowerCAmelCase_ = { '''RUCAIBox/mvp''': 1_0_2_4, } class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : List[Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase_ : Any = MvpTokenizer def __init__(self , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__="replace" , __magic_name__="<s>" , __magic_name__="</s>" , __magic_name__="</s>" , __magic_name__="<s>" , __magic_name__="<unk>" , __magic_name__="<pad>" , __magic_name__="<mask>" , __magic_name__=False , __magic_name__=True , **__magic_name__ , ) -> Optional[Any]: '''simple docstring''' super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) snake_case_ : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __magic_name__ ) != add_prefix_space: snake_case_ : List[Any] = getattr(__magic_name__ , pre_tok_state.pop('''type''' ) ) snake_case_ : Any = add_prefix_space snake_case_ : List[str] = pre_tok_class(**__magic_name__ ) snake_case_ : Optional[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ : List[str] = '''post_processor''' snake_case_ : Union[str, Any] = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: snake_case_ : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ : Optional[Any] = tuple(state['''sep'''] ) if "cls" in state: snake_case_ : Tuple = tuple(state['''cls'''] ) snake_case_ : Union[str, Any] = False if state.get('''add_prefix_space''' , __magic_name__ ) != add_prefix_space: snake_case_ : Union[str, Any] = add_prefix_space snake_case_ : Tuple = True if state.get('''trim_offsets''' , __magic_name__ ) != trim_offsets: snake_case_ : Dict = trim_offsets snake_case_ : Union[str, Any] = True if changes_to_apply: snake_case_ : int = getattr(__magic_name__ , state.pop('''type''' ) ) snake_case_ : Optional[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowerCamelCase (self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase (self , __magic_name__ ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value snake_case_ : Optional[int] = value def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> BatchEncoding: '''simple docstring''' snake_case_ : List[str] = kwargs.get('''is_split_into_words''' , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> BatchEncoding: '''simple docstring''' snake_case_ : Tuple = kwargs.get('''is_split_into_words''' , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> Tuple[str]: '''simple docstring''' snake_case_ : Any = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__=None ) -> List[Any]: '''simple docstring''' snake_case_ : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> List[int]: '''simple docstring''' snake_case_ : str = [self.sep_token_id] snake_case_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
279
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : int = [[float('''inf''' ) for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase )] for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): snake_case_ : Dict = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_UpperCamelCase ): # looping through rows of graph array for i in range(_UpperCamelCase ): # looping through columns of graph array for j in range(_UpperCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): snake_case_ : List[Any] = dist[i][k] + dist[k][j] _print_dist(_UpperCamelCase , _UpperCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('''Enter number of vertices: ''')) lowerCAmelCase_ = int(input('''Enter number of edges: ''')) lowerCAmelCase_ = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) lowerCAmelCase_ = int(input('''Enter source:''')) lowerCAmelCase_ = int(input('''Enter destination:''')) lowerCAmelCase_ = float(input('''Enter weight:''')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
279
1
def _UpperCamelCase ( UpperCamelCase_ : list , UpperCamelCase_ : list , UpperCamelCase_ : int ) -> int: """simple docstring""" if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. lowerCAmelCase__ = [p / w for p, w in zip(UpperCamelCase_ , UpperCamelCase_ )] # Creating a copy of the list and sorting profit/weight in ascending order lowerCAmelCase__ = sorted(UpperCamelCase_ ) # declaring useful variables lowerCAmelCase__ = len(UpperCamelCase_ ) lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight lowerCAmelCase__ = sorted_profit_by_weight[length - i - 1] lowerCAmelCase__ = profit_by_weight.index(UpperCamelCase_ ) lowerCAmelCase__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __snake_case : Dict = [int(x) for x in input("""Input profits separated by spaces: """).split()] __snake_case : List[Any] = [int(x) for x in input("""Input weights separated by spaces: """).split()] __snake_case : List[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
122
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Dict = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
122
1
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _SCREAMING_SNAKE_CASE ( __snake_case : dict ): '''simple docstring''' return (data["data"], data["target"]) def _SCREAMING_SNAKE_CASE ( __snake_case : np.ndarray , __snake_case : np.ndarray , __snake_case : np.ndarray ): '''simple docstring''' lowercase = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__snake_case , __snake_case ) # Predict target for test data lowercase = xgb.predict(__snake_case ) lowercase = predictions.reshape(len(__snake_case ) , 1 ) return predictions def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = fetch_california_housing() lowercase , lowercase = data_handling(__snake_case ) lowercase , lowercase , lowercase , lowercase = train_test_split( __snake_case , __snake_case , test_size=0.25 , random_state=1 ) lowercase = xgboost(__snake_case , __snake_case , __snake_case ) # Error printing print(f'Mean Absolute Error : {mean_absolute_error(__snake_case , __snake_case )}' ) print(f'Mean Square Error : {mean_squared_error(__snake_case , __snake_case )}' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
220
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] ): '''simple docstring''' lowercase = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : List[str] ): '''simple docstring''' lowercase = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] ): '''simple docstring''' lowercase = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', 'stage2.cls_token') ) return token def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' lowercase = 'imagenet-1k-id2label.json' lowercase = 10_00 lowercase = 'huggingface/label-files' lowercase = num_labels lowercase = json.load(open(cached_download(hf_hub_url(__snake_case , __snake_case , repo_type='dataset' ) ) , 'r' ) ) lowercase = {int(__snake_case ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} lowercase = lowercase = CvtConfig(num_labels=__snake_case , idalabel=__snake_case , labelaid=__snake_case ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowercase = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowercase = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase = [2, 2, 20] lowercase = [3, 12, 16] lowercase = [1_92, 7_68, 10_24] lowercase = CvtForImageClassification(__snake_case ) lowercase = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowercase = image_size lowercase = torch.load(__snake_case , map_location=torch.device('cpu' ) ) lowercase = OrderedDict() lowercase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase = list_of_state_dict + cls_token(__snake_case ) lowercase = list_of_state_dict + embeddings(__snake_case ) for cnt in range(config.depth[idx] ): lowercase = list_of_state_dict + attention(__snake_case , __snake_case ) lowercase = list_of_state_dict + final() for gg in list_of_state_dict: print(__snake_case ) for i in range(len(__snake_case ) ): lowercase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__snake_case ) model.save_pretrained(__snake_case ) image_processor.save_pretrained(__snake_case ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=3_8_4, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _UpperCamelCase : Tuple = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
220
1
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" snake_case_ : str = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1_024, '''hidden_size''': 768, '''max_length''': 512, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1_024, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } snake_case_ : Union[str, Any] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py snake_case_ : List[str] = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=_UpperCamelCase , output_all_encodings=_UpperCamelCase , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , _UpperCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later snake_case_ : Dict = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab snake_case_ : List[Any] = os.path.join(get_home_dir() , '''models''' ) snake_case_ : int = _load_vocab(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , cls=_UpperCamelCase ) snake_case_ : Any = nlp.model.BERTModel( _UpperCamelCase , len(_UpperCamelCase ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=_UpperCamelCase , use_token_type_embed=_UpperCamelCase , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=_UpperCamelCase , use_decoder=_UpperCamelCase , ) original_bort.load_parameters(_UpperCamelCase , cast_dtype=_UpperCamelCase , ignore_extra=_UpperCamelCase ) snake_case_ : List[Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 snake_case_ : Dict = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(_UpperCamelCase ), } snake_case_ : Optional[int] = BertConfig.from_dict(_UpperCamelCase ) snake_case_ : Union[str, Any] = BertForMaskedLM(_UpperCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(_UpperCamelCase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(_UpperCamelCase , _UpperCamelCase ): snake_case_ : Tuple = hf_param.shape snake_case_ : Dict = to_torch(params[gluon_param] ) snake_case_ : Dict = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param snake_case_ : Optional[Any] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) snake_case_ : List[Any] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) snake_case_ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) snake_case_ : Optional[int] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) snake_case_ : List[Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): snake_case_ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention snake_case_ : BertSelfAttention = layer.attention.self snake_case_ : List[str] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) snake_case_ : Union[str, Any] = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) snake_case_ : str = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) snake_case_ : Union[str, Any] = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) snake_case_ : str = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) snake_case_ : Optional[int] = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output snake_case_ : BertSelfOutput = layer.attention.output snake_case_ : List[Any] = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) snake_case_ : Optional[int] = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) snake_case_ : Union[str, Any] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) snake_case_ : int = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate snake_case_ : BertIntermediate = layer.intermediate snake_case_ : Optional[Any] = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) snake_case_ : Tuple = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output snake_case_ : BertOutput = layer.output snake_case_ : Union[str, Any] = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) snake_case_ : str = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) snake_case_ : Tuple = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) snake_case_ : List[str] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models snake_case_ : List[str] = RobertaTokenizer.from_pretrained('''roberta-base''' ) snake_case_ : List[Any] = tokenizer.encode_plus(_UpperCamelCase )['''input_ids'''] # Get gluon output snake_case_ : Optional[int] = mx.nd.array([input_ids] ) snake_case_ : str = original_bort(inputs=_UpperCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_UpperCamelCase ) snake_case_ : Any = BertModel.from_pretrained(_UpperCamelCase ) hf_bort_model.eval() snake_case_ : List[str] = tokenizer.encode_plus(_UpperCamelCase , return_tensors='''pt''' ) snake_case_ : Any = hf_bort_model(**_UpperCamelCase )[0] snake_case_ : Dict = output_gluon[0].asnumpy() snake_case_ : Tuple = output_hf[0].detach().numpy() snake_case_ : Optional[int] = np.max(np.abs(hf_layer - gluon_layer ) ).item() snake_case_ : Tuple = np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , _UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase_ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
279
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : lowerCamelCase_ : Optional[int] = field( default=128, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) lowerCamelCase_ : bool = field( default=_a, metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowerCamelCase_ : bool = field( default=_a, metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) }, ) lowerCamelCase_ : Optional[int] = field( default=_a, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) }, ) lowerCamelCase_ : Optional[int] = field( default=_a, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) }, ) lowerCamelCase_ : Optional[int] = field( default=_a, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) }, ) @dataclass class __lowerCAmelCase : lowerCamelCase_ : str = field( default=_a, metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCamelCase_ : str = field( default=_a, metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) lowerCamelCase_ : Optional[bool] = field( default=_a, metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''}, ) lowerCamelCase_ : bool = field( default=_a, metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''}, ) lowerCamelCase_ : str = field( default='''main''', metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''}, ) lowerCamelCase_ : bool = field( default=_a, metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) }, ) lowerCamelCase_ : bool = field( default=_a, metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''}, ) def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ : List[Any] = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) datasets.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case_ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: snake_case_ : Union[str, Any] = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: snake_case_ : str = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Optional[int] = train_dataset.features['''label'''].names if training_args.do_eval: snake_case_ : Dict = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Tuple = eval_dataset.features['''label'''].names if training_args.do_predict: snake_case_ : int = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Optional[int] = predict_dataset.features['''label'''].names # Labels snake_case_ : int = len(_UpperCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCamelCase , idalabel={str(_UpperCamelCase ): label for i, label in enumerate(_UpperCamelCase )} , labelaid={label: i for i, label in enumerate(_UpperCamelCase )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: snake_case_ : Dict = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case_ : str = False def preprocess_function(_UpperCamelCase ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=_UpperCamelCase , max_length=data_args.max_seq_length , truncation=_UpperCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: snake_case_ : List[Any] = min(len(_UpperCamelCase ) , data_args.max_train_samples ) snake_case_ : int = train_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): snake_case_ : Optional[int] = train_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(_UpperCamelCase ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: snake_case_ : List[str] = min(len(_UpperCamelCase ) , data_args.max_eval_samples ) snake_case_ : List[str] = eval_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): snake_case_ : List[str] = eval_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: snake_case_ : Union[str, Any] = min(len(_UpperCamelCase ) , data_args.max_predict_samples ) snake_case_ : Dict = predict_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): snake_case_ : List[str] = predict_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function snake_case_ : int = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase ): snake_case_ : List[str] = p.predictions[0] if isinstance(p.predictions , _UpperCamelCase ) else p.predictions snake_case_ : Tuple = np.argmax(_UpperCamelCase , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case_ : Optional[int] = default_data_collator elif training_args.fpaa: snake_case_ : Any = DataCollatorWithPadding(_UpperCamelCase , pad_to_multiple_of=8 ) else: snake_case_ : Any = None # Initialize our Trainer snake_case_ : Any = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: snake_case_ : int = None if training_args.resume_from_checkpoint is not None: snake_case_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ : Dict = last_checkpoint snake_case_ : int = trainer.train(resume_from_checkpoint=_UpperCamelCase ) snake_case_ : Union[str, Any] = train_result.metrics snake_case_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCamelCase ) ) snake_case_ : Dict = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , _UpperCamelCase ) trainer.save_metrics('''train''' , _UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case_ : Any = trainer.evaluate(eval_dataset=_UpperCamelCase ) snake_case_ : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCamelCase ) snake_case_ : str = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('''eval''' , _UpperCamelCase ) trainer.save_metrics('''eval''' , _UpperCamelCase ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) snake_case_ , snake_case_ , snake_case_ : Optional[int] = trainer.predict(_UpperCamelCase , metric_key_prefix='''predict''' ) snake_case_ : Union[str, Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_UpperCamelCase ) ) snake_case_ : Optional[int] = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('''predict''' , _UpperCamelCase ) trainer.save_metrics('''predict''' , _UpperCamelCase ) snake_case_ : List[Any] = np.argmax(_UpperCamelCase , axis=1 ) snake_case_ : Optional[Any] = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(_UpperCamelCase , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(_UpperCamelCase ): snake_case_ : List[str] = label_list[item] writer.write(f'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
279
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _UpperCAmelCase : Any = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class lowercase ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *snake_case , **snake_case ): super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def a ( self , snake_case=None ): snake_case_ = {} if top_k is not None: snake_case_ = top_k return {}, {}, postprocess_params def __call__( self , snake_case , **snake_case ): return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def a ( self , snake_case ): snake_case_ = load_image(__UpperCAmelCase ) snake_case_ = self.image_processor(images=__UpperCAmelCase , return_tensors=self.framework ) return model_inputs def a ( self , snake_case ): snake_case_ = self.model(**__UpperCAmelCase ) return model_outputs def a ( self , snake_case , snake_case=5 ): if top_k > self.model.config.num_labels: snake_case_ = self.model.config.num_labels if self.framework == "pt": snake_case_ = model_outputs.logits.softmax(-1 )[0] snake_case_ = probs.topk(__UpperCAmelCase ) elif self.framework == "tf": snake_case_ = stable_softmax(model_outputs.logits , axis=-1 )[0] snake_case_ = tf.math.top_k(__UpperCAmelCase , k=__UpperCAmelCase ) snake_case_ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) snake_case_ = scores.tolist() snake_case_ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__UpperCAmelCase , __UpperCAmelCase )]
285
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowerCAmelCase__ : str = set() # Replace all the whitespace in our sentence lowerCAmelCase__ : Tuple = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCamelCase ) == 26 def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowerCAmelCase__ : Any = [False] * 26 for char in input_str: if char.islower(): lowerCAmelCase__ : Optional[Any] = True elif char.isupper(): lowerCAmelCase__ : Any = True return all(UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" from timeit import timeit lowerCAmelCase__ : Union[str, Any] = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=UpperCamelCase ) ) print(timeit("""is_pangram_faster()""" , setup=UpperCamelCase ) ) print(timeit("""is_pangram_fastest()""" , setup=UpperCamelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
37
0
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def _a ( _snake_case , _snake_case ): """simple docstring""" return np.sqrt(np.sum((np.asarray(_snake_case ) - np.asarray(_snake_case )) ** 2 ) ) def _a ( _snake_case , _snake_case ): """simple docstring""" return sum((va - va) ** 2 for va, va in zip(_snake_case , _snake_case ) ) ** (1 / 2) if __name__ == "__main__": def _a ( ): """simple docstring""" from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=1_0000 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=1_0000 , globals=globals() , ) ) benchmark()
234
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = WavaVecaForSequenceClassification.from_pretrained(_snake_case , config=_snake_case ) UpperCAmelCase = downstream_dict["""projector.weight"""] UpperCAmelCase = downstream_dict["""projector.bias"""] UpperCAmelCase = downstream_dict["""model.post_net.linear.weight"""] UpperCAmelCase = downstream_dict["""model.post_net.linear.bias"""] return model def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = WavaVecaForAudioFrameClassification.from_pretrained(_snake_case , config=_snake_case ) UpperCAmelCase = downstream_dict["""model.linear.weight"""] UpperCAmelCase = downstream_dict["""model.linear.bias"""] return model def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = WavaVecaForXVector.from_pretrained(_snake_case , config=_snake_case ) UpperCAmelCase = downstream_dict["""connector.weight"""] UpperCAmelCase = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCAmelCase = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] UpperCAmelCase = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] UpperCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] UpperCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] UpperCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] UpperCAmelCase = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] UpperCAmelCase = downstream_dict["""objective.W"""] return model @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = torch.load(_snake_case , map_location="""cpu""" ) UpperCAmelCase = checkpoint["""Downstream"""] UpperCAmelCase = WavaVecaConfig.from_pretrained(_snake_case ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( _snake_case , return_attention_mask=_snake_case , do_normalize=_snake_case ) UpperCAmelCase = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): UpperCAmelCase = convert_classification(_snake_case , _snake_case , _snake_case ) elif arch.endswith("""ForAudioFrameClassification""" ): UpperCAmelCase = convert_diarization(_snake_case , _snake_case , _snake_case ) elif arch.endswith("""ForXVector""" ): UpperCAmelCase = convert_xvector(_snake_case , _snake_case , _snake_case ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: UpperCAmelCase = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(_snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") _UpperCamelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
234
1
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path _a : Dict = quote(UpperCamelCase__ ) return hfh.hf_hub_url(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" , revision=UpperCamelCase__ )
294
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _snake_case = logging.getLogger(__name__) class UpperCamelCase ( snake_case_ ): def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int]=-1 ) -> Tuple: # in NER datasets, the last column is usually reserved for NER label _a : Optional[int] = label_idx def _lowercase ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[Split, str] ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a : Any = mode.value _a : Optional[int] = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""" ) _a : int = 1 _a : int = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: _a : str = [] _a : str = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 _a : List[str] = [] _a : str = [] else: _a : List[Any] = line.split(""" """ ) words.append(splits[0] ) if len(UpperCAmelCase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) return examples def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List ) -> Union[str, Any]: _a : List[str] = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(UpperCAmelCase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _a : int = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(UpperCAmelCase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: _a : List[Any] = f.read().splitlines() if "O" not in labels: _a : Union[str, Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] ) -> List[str]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: _a : Optional[int] = f.read().splitlines() if "O" not in labels: _a : Optional[Any] = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[Split, str] ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a : List[Any] = mode.value _a : Union[str, Any] = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""" ) _a : List[str] = 1 _a : Optional[Any] = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(UpperCAmelCase__ ): _a : List[Any] = [] _a : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 return examples def _lowercase ( self : Tuple , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List ) -> Dict: _a : Optional[Any] = 0 for sentence in parse_incr(UpperCAmelCase__ ): _a : List[str] = preds_list[example_id] _a : str = """""" for token in sentence: out += f"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(UpperCAmelCase__ ) example_id += 1 def _lowercase ( self : List[str] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
294
1
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(_UpperCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_UpperCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
352
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __UpperCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __UpperCamelCase : str = [0, 25, 50] __UpperCamelCase : int = [25, 50, 75] __UpperCamelCase : str = fuzz.membership.trimf(X, abca) __UpperCamelCase : Tuple = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __UpperCamelCase : Dict = np.ones(75) __UpperCamelCase : str = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __UpperCamelCase : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __UpperCamelCase : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __UpperCamelCase : Dict = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __UpperCamelCase : List[str] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __UpperCamelCase : List[str] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __UpperCamelCase : Tuple = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __UpperCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __UpperCamelCase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
309
0
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCamelCase ( _lowerCamelCase : Optional[int] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple ): A__ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue A__ = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) A__ = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) A__ = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) A__ = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) A__ = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) A__ = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) A__ = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) A__ = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) A__ = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) A__ = key.replace("image_encoder.module" , "flava.image_model" ) A__ = key.replace("text_encoder.module" , "flava.text_model" ) A__ = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) A__ = key.replace("mm_encoder.module" , "flava.multimodal_model" ) A__ = key.replace("text_projection" , "flava.text_projection" ) A__ = key.replace("image_projection" , "flava.image_projection" ) A__ = value.float() for key, value in codebook_state_dict.items(): A__ = value return upgrade @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Any=None ): if config_path is not None: A__ = FlavaConfig.from_pretrained(_lowerCamelCase ) else: A__ = FlavaConfig() A__ = FlavaForPreTraining(_lowerCamelCase ).eval() A__ = convert_dalle_checkpoint(_lowerCamelCase , _lowerCamelCase , save_checkpoint=_lowerCamelCase ) if os.path.exists(_lowerCamelCase ): A__ = torch.load(_lowerCamelCase , map_location="cpu" ) else: A__ = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" ) A__ = upgrade_state_dict(_lowerCamelCase , _lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) A__ = hf_model.state_dict() A__ = count_parameters(_lowerCamelCase ) A__ = count_parameters(_lowerCamelCase ) + count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __lowerCAmelCase : Any =parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
237
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __lowerCAmelCase : Any =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __lowerCAmelCase : Optional[int] =" def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Tuple )-> Union[str, Any]: A__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) A__ = self.transformer_dir shutil.copy( os.path.join(lowercase_ , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def UpperCAmelCase_ ( self :Optional[int] )-> Tuple: A__ = "src/transformers" shutil.rmtree(self.transformer_dir ) def UpperCAmelCase_ ( self :List[Any] , lowercase_ :List[str] , lowercase_ :Union[str, Any] , lowercase_ :int , lowercase_ :Tuple=None )-> Optional[Any]: A__ = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: A__ = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result A__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) A__ = black.format_str(lowercase_ , mode=lowercase_ ) A__ = os.path.join(self.transformer_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def UpperCAmelCase_ ( self :str )-> Optional[Any]: A__ = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> Optional[int]: # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , lowercase_ ) , ) # Copy consistency with a really long name A__ = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , lowercase_ , overwrite_result=re.sub("Bert" , "TestModel" , lowercase_ ) , ) def UpperCAmelCase_ ( self :Dict )-> Any: A__ = check_copies.LOCALIZED_READMES["README_zh-hans.md"] A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) A__, A__ = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme["format_model_list"] ) self.assertFalse(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) A__, A__ = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowercase_ ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) A__, A__ = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(lowercase_ , lowercase_ )
237
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } SCREAMING_SNAKE_CASE : Optional[int] = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ ) , x.transpose() ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : str = torch.tensor(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ ) , transpose(SCREAMING_SNAKE_CASE_ ).numpy() ) ) SCREAMING_SNAKE_CASE : int = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Dict = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Tuple = tf.constant(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ ) , transpose(SCREAMING_SNAKE_CASE_ ).numpy() ) ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : str = jnp.array(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE_ ) ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : str = jnp.array(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE_ , axes=(1, 2, 0) ) ) ) ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ) ) ) SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ) ) ) @require_torch def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : int = torch.tensor(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : str = torch.tensor(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Tuple = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Tuple = tf.constant(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE : Dict = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : List[Any] = tf.constant(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Dict = jnp.array(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ) ) ) ) SCREAMING_SNAKE_CASE : Any = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Dict = jnp.array(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ) ) ) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Tuple = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ ) , np.squeeze(SCREAMING_SNAKE_CASE_ ) ) ) SCREAMING_SNAKE_CASE : Tuple = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ) ) ) @require_torch def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ ) , squeeze(SCREAMING_SNAKE_CASE_ ).numpy() ) ) SCREAMING_SNAKE_CASE : Any = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : int = torch.tensor(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : int = tf.constant(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ ) , squeeze(SCREAMING_SNAKE_CASE_ ).numpy() ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : int = tf.constant(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : int = jnp.array(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE_ ) ) ) ) SCREAMING_SNAKE_CASE : Tuple = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : Dict = jnp.array(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ) ) ) ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ) ) ) @require_torch def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Dict = torch.tensor(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : List[Any] = tf.constant(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.array(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ) ) ) )
365
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
0
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow UpperCamelCase__ : List[str] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) UpperCamelCase__ : Union[str, Any] = logging.getLogger() def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument("""-f""" ) __SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() return args.f def lowerCAmelCase_ ( _lowerCamelCase: List[Any] , _lowerCamelCase: Optional[Any]="eval" ): __SCREAMING_SNAKE_CASE : List[Any] = os.path.join(_lowerCamelCase , F"{split}_results.json" ) if os.path.exists(_lowerCamelCase ): with open(_lowerCamelCase , """r""" ) as f: return json.load(_lowerCamelCase ) raise ValueError(F"can't find {path}" ) UpperCamelCase__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE : Any = F"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowerCAmelCase__ , """argv""" , lowerCAmelCase__ ): run_flax_glue.main() __SCREAMING_SNAKE_CASE : Tuple = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) @slow def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE : Dict = F"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowerCAmelCase__ , """argv""" , lowerCAmelCase__ ): run_clm_flax.main() __SCREAMING_SNAKE_CASE : List[Any] = get_results(lowerCAmelCase__ ) self.assertLess(result["""eval_perplexity"""] , 1_0_0 ) @slow def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE : Union[str, Any] = F"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(lowerCAmelCase__ , """argv""" , lowerCAmelCase__ ): run_summarization_flax.main() __SCREAMING_SNAKE_CASE : Optional[Any] = get_results(lowerCAmelCase__ , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 1_0 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE : int = F"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(lowerCAmelCase__ , """argv""" , lowerCAmelCase__ ): run_mlm_flax.main() __SCREAMING_SNAKE_CASE : Optional[int] = get_results(lowerCAmelCase__ ) self.assertLess(result["""eval_perplexity"""] , 4_2 ) @slow def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE : Optional[int] = F"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowerCAmelCase__ , """argv""" , lowerCAmelCase__ ): run_ta_mlm_flax.main() __SCREAMING_SNAKE_CASE : int = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.42 ) @slow def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = 7 if get_gpu_count() > 1 else 2 __SCREAMING_SNAKE_CASE : int = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE : Optional[Any] = F"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(lowerCAmelCase__ , """argv""" , lowerCAmelCase__ ): run_flax_ner.main() __SCREAMING_SNAKE_CASE : Union[str, Any] = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE : Tuple = F"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(lowerCAmelCase__ , """argv""" , lowerCAmelCase__ ): run_qa.main() __SCREAMING_SNAKE_CASE : Optional[int] = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result["""eval_f1"""] , 3_0 ) self.assertGreaterEqual(result["""eval_exact"""] , 3_0 )
112
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency UpperCamelCase__ : List[Any] = { '''E''': 1_2.7_0, '''T''': 9.0_6, '''A''': 8.1_7, '''O''': 7.5_1, '''I''': 6.9_7, '''N''': 6.7_5, '''S''': 6.3_3, '''H''': 6.0_9, '''R''': 5.9_9, '''D''': 4.2_5, '''L''': 4.0_3, '''C''': 2.7_8, '''U''': 2.7_6, '''M''': 2.4_1, '''W''': 2.3_6, '''F''': 2.2_3, '''G''': 2.0_2, '''Y''': 1.9_7, '''P''': 1.9_3, '''B''': 1.2_9, '''V''': 0.9_8, '''K''': 0.7_7, '''J''': 0.1_5, '''X''': 0.1_5, '''Q''': 0.1_0, '''Z''': 0.0_7, } UpperCamelCase__ : Optional[Any] = '''ETAOINSHRDLCUMWFGYPBVKJXQZ''' UpperCamelCase__ : Dict = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : int = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def lowerCAmelCase_ ( _lowerCamelCase: tuple ): return x[0] def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Dict = get_letter_count(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = """""".join(freq_to_letter[freq] ) __SCREAMING_SNAKE_CASE : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=_lowerCamelCase , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : List[Any] = get_frequency_order(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
112
1
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Union[str, Any] = ["image_processor", "tokenizer"] a__ : List[str] = "AutoImageProcessor" a__ : Tuple = "AutoTokenizer" def __init__( self : int , _lowercase : Tuple=None , _lowercase : List[Any]=None , **_lowercase : int ): __UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _lowercase , ) __UpperCAmelCase = kwargs.pop('''feature_extractor''' ) __UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_lowercase , _lowercase ) __UpperCAmelCase = self.image_processor __UpperCAmelCase = False def __call__( self : Dict , *_lowercase : Optional[Any] , **_lowercase : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) __UpperCAmelCase = kwargs.pop('''images''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: __UpperCAmelCase = self.image_processor(_lowercase , *_lowercase , **_lowercase ) if text is not None: __UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if text is None: return inputs elif images is None: return encodings else: __UpperCAmelCase = encodings['''input_ids'''] return inputs def a ( self : Optional[int] , *_lowercase : Optional[Any] , **_lowercase : Any ): return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a ( self : Tuple , *_lowercase : List[str] , **_lowercase : Tuple ): return self.tokenizer.decode(*_lowercase , **_lowercase ) @contextmanager def a ( self : str ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) __UpperCAmelCase = True __UpperCAmelCase = self.tokenizer yield __UpperCAmelCase = self.image_processor __UpperCAmelCase = False def a ( self : Optional[int] , _lowercase : Optional[int] , _lowercase : Dict=False , _lowercase : List[str]=None ): if added_vocab is None: __UpperCAmelCase = self.tokenizer.get_added_vocab() __UpperCAmelCase = {} while tokens: __UpperCAmelCase = re.search(r'''<s_(.*?)>''' , _lowercase , re.IGNORECASE ) if start_token is None: break __UpperCAmelCase = start_token.group(1 ) __UpperCAmelCase = re.search(rF'''</s_{key}>''' , _lowercase , re.IGNORECASE ) __UpperCAmelCase = start_token.group() if end_token is None: __UpperCAmelCase = tokens.replace(_lowercase , '''''' ) else: __UpperCAmelCase = end_token.group() __UpperCAmelCase = re.escape(_lowercase ) __UpperCAmelCase = re.escape(_lowercase ) __UpperCAmelCase = re.search(F'''{start_token_escaped}(.*?){end_token_escaped}''' , _lowercase , re.IGNORECASE ) if content is not None: __UpperCAmelCase = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __UpperCAmelCase = self.tokenajson(_lowercase , is_inner_value=_lowercase , added_vocab=_lowercase ) if value: if len(_lowercase ) == 1: __UpperCAmelCase = value[0] __UpperCAmelCase = value else: # leaf nodes __UpperCAmelCase = [] for leaf in content.split(r'''<sep/>''' ): __UpperCAmelCase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __UpperCAmelCase = leaf[1:-2] # for categorical special tokens output[key].append(_lowercase ) if len(output[key] ) == 1: __UpperCAmelCase = output[key][0] __UpperCAmelCase = tokens[tokens.find(_lowercase ) + len(_lowercase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_lowercase , added_vocab=_lowercase ) if len(_lowercase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def a ( self : Tuple ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _lowercase , ) return self.image_processor_class @property def a ( self : Tuple ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _lowercase , ) return self.image_processor
86
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _lowercase : List[Any] = logging.get_logger(__name__) @add_end_docstrings(_lowerCAmelCase ) class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : str , *_lowercase : Tuple , **_lowercase : List[Any] ): super().__init__(*_lowercase , **_lowercase ) self.check_model_type(_lowercase ) def a ( self : int , _lowercase : Dict=None , _lowercase : List[Any]=None , _lowercase : int=None , **_lowercase : Dict ): __UpperCAmelCase , __UpperCAmelCase = {}, {} if padding is not None: __UpperCAmelCase = padding if truncation is not None: __UpperCAmelCase = truncation if top_k is not None: __UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[str] , _lowercase : Union["Image.Image", str] , _lowercase : str = None , **_lowercase : Optional[Any] ): if isinstance(_lowercase , (Image.Image, str) ) and isinstance(_lowercase , _lowercase ): __UpperCAmelCase = {'''image''': image, '''question''': question} else: __UpperCAmelCase = image __UpperCAmelCase = super().__call__(_lowercase , **_lowercase ) return results def a ( self : Union[str, Any] , _lowercase : List[str] , _lowercase : Any=False , _lowercase : Union[str, Any]=False ): __UpperCAmelCase = load_image(inputs['''image'''] ) __UpperCAmelCase = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_lowercase , truncation=_lowercase ) __UpperCAmelCase = self.image_processor(images=_lowercase , return_tensors=self.framework ) model_inputs.update(_lowercase ) return model_inputs def a ( self : Optional[Any] , _lowercase : str ): __UpperCAmelCase = self.model(**_lowercase ) return model_outputs def a ( self : str , _lowercase : Optional[int] , _lowercase : Any=5 ): if top_k > self.model.config.num_labels: __UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": __UpperCAmelCase = model_outputs.logits.sigmoid()[0] __UpperCAmelCase , __UpperCAmelCase = probs.topk(_lowercase ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) __UpperCAmelCase = scores.tolist() __UpperCAmelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_lowercase , _lowercase )]
86
1
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __snake_case : List[str] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __snake_case : Any = { '''allenai/longformer-base-4096''': 4_096, '''allenai/longformer-large-4096''': 4_096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4_096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4_096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _lowercase ( ) -> Any: __lowerCAmelCase : Optional[Any] = ( list(range(ord("!" ) ,ord("~" ) + 1 ) ) + list(range(ord("¡" ) ,ord("¬" ) + 1 ) ) + list(range(ord("®" ) ,ord("ÿ" ) + 1 ) ) ) __lowerCAmelCase : int = bs[:] __lowerCAmelCase : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__snake_case ) cs.append(2**8 + n ) n += 1 __lowerCAmelCase : Optional[int] = [chr(__snake_case ) for n in cs] return dict(zip(__snake_case ,__snake_case ) ) def _lowercase ( __snake_case ) -> Optional[Any]: __lowerCAmelCase : str = set() __lowerCAmelCase : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCAmelCase : Optional[Any] = char return pairs class A__ ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Dict="replace" , _SCREAMING_SNAKE_CASE: Dict="<s>" , _SCREAMING_SNAKE_CASE: Union[str, Any]="</s>" , _SCREAMING_SNAKE_CASE: Any="</s>" , _SCREAMING_SNAKE_CASE: str="<s>" , _SCREAMING_SNAKE_CASE: int="<unk>" , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: Any="<mask>" , _SCREAMING_SNAKE_CASE: Tuple=False , **_SCREAMING_SNAKE_CASE: Tuple , ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : str = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else bos_token __lowerCAmelCase : List[str] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else eos_token __lowerCAmelCase : str = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else sep_token __lowerCAmelCase : Union[str, Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else cls_token __lowerCAmelCase : str = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else unk_token __lowerCAmelCase : Optional[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase : Dict = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding="utf-8") as vocab_handle: __lowerCAmelCase : Union[str, Any] = json.load(_UpperCAmelCase) __lowerCAmelCase : str = {v: k for k, v in self.encoder.items()} __lowerCAmelCase : Union[str, Any] = errors # how to handle errors in decoding __lowerCAmelCase : Any = bytes_to_unicode() __lowerCAmelCase : Any = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding="utf-8") as merges_handle: __lowerCAmelCase : Optional[int] = merges_handle.read().split("\n")[1:-1] __lowerCAmelCase : Tuple = [tuple(merge.split()) for merge in bpe_merges] __lowerCAmelCase : Dict = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase)))) __lowerCAmelCase : Optional[int] = {} __lowerCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCAmelCase : Any = re.compile(r"\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Dict: """simple docstring""" return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Tuple) -> Union[str, Any]: """simple docstring""" if token in self.cache: return self.cache[token] __lowerCAmelCase : Union[str, Any] = tuple(_UpperCAmelCase) __lowerCAmelCase : Union[str, Any] = get_pairs(_UpperCAmelCase) if not pairs: return token while True: __lowerCAmelCase : Any = min(_UpperCAmelCase , key=lambda _SCREAMING_SNAKE_CASE: self.bpe_ranks.get(_UpperCAmelCase , float("inf"))) if bigram not in self.bpe_ranks: break __lowerCAmelCase : Tuple = bigram __lowerCAmelCase : Dict = [] __lowerCAmelCase : List[str] = 0 while i < len(_UpperCAmelCase): try: __lowerCAmelCase : List[str] = word.index(_UpperCAmelCase , _UpperCAmelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) __lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_UpperCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __lowerCAmelCase : Optional[Any] = tuple(_UpperCAmelCase) __lowerCAmelCase : Tuple = new_word if len(_UpperCAmelCase) == 1: break else: __lowerCAmelCase : Optional[int] = get_pairs(_UpperCAmelCase) __lowerCAmelCase : List[Any] = ' '.join(_UpperCAmelCase) __lowerCAmelCase : int = word return word def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Tuple) -> List[str]: """simple docstring""" __lowerCAmelCase : List[str] = [] for token in re.findall(self.pat , _UpperCAmelCase): __lowerCAmelCase : Any = ''.join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: List[str]) -> int: """simple docstring""" return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Any) -> Tuple: """simple docstring""" return self.decoder.get(_UpperCAmelCase) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: List[Any]) -> int: """simple docstring""" __lowerCAmelCase : Dict = ''.join(_UpperCAmelCase) __lowerCAmelCase : Any = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[Any] = None) -> Union[str, Any]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return __lowerCAmelCase : str = os.path.join( _UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) __lowerCAmelCase : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(_UpperCAmelCase , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase) + "\n") __lowerCAmelCase : int = 0 with open(_UpperCAmelCase , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _SCREAMING_SNAKE_CASE: kv[1]): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!") __lowerCAmelCase : List[str] = token_index writer.write(" ".join(_UpperCAmelCase) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[Any] = None) -> Union[str, Any]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase : List[Any] = [self.cls_token_id] __lowerCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict = None , _SCREAMING_SNAKE_CASE: Any = False) -> int: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase)) + [1] return [1] + ([0] * len(_UpperCAmelCase)) + [1, 1] + ([0] * len(_UpperCAmelCase)) + [1] def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] = None) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = [self.sep_token_id] __lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any]=False , **_SCREAMING_SNAKE_CASE: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase) > 0 and not text[0].isspace()): __lowerCAmelCase : Optional[int] = ' ' + text return (text, kwargs)
269
'''simple docstring''' import random def _lowerCAmelCase ( __snake_case : int , __snake_case : float , __snake_case : bool = False ) -> dict: __A : dict = {i: [] for i in range(__snake_case )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(__snake_case ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(__snake_case ): for j in range(i + 1 , __snake_case ): if random.random() < probability: graph[i].append(__snake_case ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(__snake_case ) return graph def _lowerCAmelCase ( __snake_case : int ) -> dict: return { i: [j for j in range(__snake_case ) if i != j] for i in range(__snake_case ) } if __name__ == "__main__": import doctest doctest.testmod()
190
0
"""simple docstring""" from __future__ import annotations class __a : def __init__( self , a__=None ): _lowerCamelCase = data _lowerCamelCase = None def __repr__( self ): _lowerCamelCase = [] _lowerCamelCase = self while temp: string_rep.append(F'{temp.data}' ) _lowerCamelCase = temp.next return "->".join(a__ ) def SCREAMING_SNAKE_CASE_ ( snake_case : list )-> Optional[int]: if not elements_list: raise Exception('The Elements List is empty' ) _lowerCamelCase = _lowerCamelCase = Node(elements_list[0] ) for i in range(1 , len(snake_case ) ): _lowerCamelCase = Node(elements_list[i] ) _lowerCamelCase = current.next return head def SCREAMING_SNAKE_CASE_ ( snake_case : Node )-> None: if head_node is not None and isinstance(snake_case , snake_case ): print_reverse(head_node.next ) print(head_node.data ) def SCREAMING_SNAKE_CASE_ ( )-> Union[str, Any]: from doctest import testmod testmod() _lowerCamelCase = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(snake_case ) print('Elements in Reverse:' ) print_reverse(snake_case ) if __name__ == "__main__": main()
360
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Any =logging.get_logger(__name__) A_ : Dict =Dict[str, Any] A_ : Dict =List[Prediction] @add_end_docstrings(lowerCAmelCase__ ) class __a ( lowerCAmelCase__ ): def __init__( self , *a__ , **a__ ): super().__init__(*a__ , **a__ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def snake_case_ ( self , **a__ ): _lowerCamelCase = {} if "threshold" in kwargs: _lowerCamelCase = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *a__ , **a__ ): return super().__call__(*a__ , **a__ ) def snake_case_ ( self , a__ ): _lowerCamelCase = load_image(a__ ) _lowerCamelCase = torch.IntTensor([[image.height, image.width]] ) _lowerCamelCase = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: _lowerCamelCase = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) _lowerCamelCase = target_size return inputs def snake_case_ ( self , a__ ): _lowerCamelCase = model_inputs.pop('target_size' ) _lowerCamelCase = self.model(**a__ ) _lowerCamelCase = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: _lowerCamelCase = model_inputs['bbox'] return model_outputs def snake_case_ ( self , a__ , a__=0.9 ): _lowerCamelCase = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _lowerCamelCase , _lowerCamelCase = target_size[0].tolist() def unnormalize(a__ ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ] ) ) _lowerCamelCase , _lowerCamelCase = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _lowerCamelCase = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _lowerCamelCase = [unnormalize(a__ ) for bbox in model_outputs['bbox'].squeeze(0 )] _lowerCamelCase = ['score', 'label', 'box'] _lowerCamelCase = [dict(zip(a__ , a__ ) ) for vals in zip(scores.tolist() , a__ , a__ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _lowerCamelCase = self.image_processor.post_process_object_detection(a__ , a__ , a__ ) _lowerCamelCase = raw_annotations[0] _lowerCamelCase = raw_annotation['scores'] _lowerCamelCase = raw_annotation['labels'] _lowerCamelCase = raw_annotation['boxes'] _lowerCamelCase = scores.tolist() _lowerCamelCase = [self.model.config.idalabel[label.item()] for label in labels] _lowerCamelCase = [self._get_bounding_box(a__ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _lowerCamelCase = ['score', 'label', 'box'] _lowerCamelCase = [ dict(zip(a__ , a__ ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def snake_case_ ( self , a__ ): if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = box.int().tolist() _lowerCamelCase = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
80
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser a_ : Any = re.compile(R"""\s+""") def a_ ( __snake_case : Tuple ) -> List[str]: """simple docstring""" return {"hash": hashlib.mda(re.sub(__snake_case , '''''' , example['''content'''] ).encode('''utf-8''' ) ).hexdigest()} def a_ ( __snake_case : Any ) -> str: """simple docstring""" lowerCamelCase_ =[len(__snake_case ) for line in example['''content'''].splitlines()] return {"line_mean": np.mean(__snake_case ), "line_max": max(__snake_case )} def a_ ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ =np.mean([c.isalnum() for c in example['''content''']] ) return {"alpha_frac": alpha_frac} def a_ ( __snake_case : str , __snake_case : int ) -> Optional[Any]: """simple docstring""" if example["hash"] in uniques: uniques.remove(example['''hash'''] ) return True else: return False def a_ ( __snake_case : Dict , __snake_case : List[Any]=5 ) -> int: """simple docstring""" lowerCamelCase_ =['''auto-generated''', '''autogenerated''', '''automatically generated'''] lowerCamelCase_ =example['''content'''].splitlines() for _, line in zip(range(__snake_case ) , __snake_case ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( __snake_case : List[Any] , __snake_case : str=5 , __snake_case : List[Any]=0.0_5 ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =['''unit tests''', '''test file''', '''configuration file'''] lowerCamelCase_ =example['''content'''].splitlines() lowerCamelCase_ =0 lowerCamelCase_ =0 # first test for _, line in zip(range(__snake_case ) , __snake_case ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test lowerCamelCase_ =example['''content'''].count('''\n''' ) lowerCamelCase_ =int(coeff * nlines ) for line in lines: count_config += line.lower().count('''config''' ) count_test += line.lower().count('''test''' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =['''def ''', '''class ''', '''for ''', '''while '''] lowerCamelCase_ =example['''content'''].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( __snake_case : str , __snake_case : Optional[int]=4 ) -> Dict: """simple docstring""" lowerCamelCase_ =example['''content'''].splitlines() lowerCamelCase_ =0 for line in lines: counter += line.lower().count('''=''' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( __snake_case : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ =tokenizer(example['''content'''] , truncation=__snake_case )['''input_ids'''] lowerCamelCase_ =len(example['''content'''] ) / len(__snake_case ) return {"ratio": ratio} def a_ ( __snake_case : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ ={} results.update(get_hash(__snake_case ) ) results.update(line_stats(__snake_case ) ) results.update(alpha_stats(__snake_case ) ) results.update(char_token_ratio(__snake_case ) ) results.update(is_autogenerated(__snake_case ) ) results.update(is_config_or_test(__snake_case ) ) results.update(has_no_keywords(__snake_case ) ) results.update(has_few_assignments(__snake_case ) ) return results def a_ ( __snake_case : List[str] , __snake_case : int , __snake_case : List[str] ) -> Dict: """simple docstring""" if not check_uniques(__snake_case , __snake_case ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( __snake_case : List[str] ) -> List[str]: """simple docstring""" with open(__snake_case , '''rb''' ) as f_in: with gzip.open(str(__snake_case ) + '''.gz''' , '''wb''' , compresslevel=6 ) as f_out: shutil.copyfileobj(__snake_case , __snake_case ) os.unlink(__snake_case ) # Settings a_ : List[Any] = HfArgumentParser(PreprocessingArguments) a_ : int = parser.parse_args() if args.num_workers is None: a_ : List[str] = multiprocessing.cpu_count() a_ : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset a_ : Any = time.time() a_ : str = load_dataset(args.dataset_name, split="""train""") print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing a_ : Tuple = time.time() a_ : Any = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes a_ : List[Any] = set(ds.unique("""hash""")) a_ : str = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics a_ : Tuple = time.time() a_ : int = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: a_ : Union[str, Any] = time.time() a_ , a_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file a_ : str = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) a_ : Optional[Any] = output_dir / """data""" data_dir.mkdir(exist_ok=True) a_ : Any = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): a_ : int = str(data_dir / F"""file-{file_number+1:012}.json""") a_ : Optional[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
75
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a_ : str = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp a_ : Optional[Any] = 5 a_ : str = 10 @require_sentencepiece @require_tokenizers class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : int =SpeechaTextTokenizer lowercase : int =False lowercase : List[str] =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCamelCase_ =sp.SentencePieceProcessor() spm_model.Load(lowerCAmelCase ) lowerCamelCase_ =['''<s>''', '''<pad>''', '''</s>''', '''<unk>'''] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(lowerCAmelCase ) )] lowerCamelCase_ =dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowerCamelCase_ =Path(self.tmpdirname ) save_json(lowerCAmelCase, save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase, save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) lowerCamelCase_ =SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''<pad>''' lowerCamelCase_ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ), lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ), lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''<s>''' ) self.assertEqual(vocab_keys[1], '''<pad>''' ) self.assertEqual(vocab_keys[-1], '''j''' ) self.assertEqual(len(lowerCAmelCase ), 1_001 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size, 1_001 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCamelCase_ =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase, ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ), [289, 50, 14, 174, 386], ) lowerCamelCase_ =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase, [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''], ) lowerCamelCase_ =tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCamelCase_ =tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase, [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''], ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={'''input_ids''': [[3_791, 797, 31, 11, 64, 797, 31, 2_429, 433, 12, 1_176, 12, 20, 786, 915, 142, 2_413, 240, 37, 3_238, 797, 31, 11, 35, 93, 915, 142, 2_413, 240, 37, 5_540, 567, 1_276, 93, 37, 610, 40, 62, 455, 657, 1_042, 123, 780, 177, 37, 309, 241, 1_298, 514, 20, 292, 2_737, 114, 2_469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3_388, 511, 459, 4, 3_555, 40, 321, 302, 705, 4, 3_388, 511, 583, 326, 5, 5, 5, 62, 3_310, 560, 177, 2_680, 217, 1_508, 32, 31, 853, 418, 64, 583, 511, 1_605, 62, 35, 93, 560, 177, 2_680, 217, 1_508, 1_521, 64, 583, 511, 519, 62, 20, 1_515, 764, 20, 149, 261, 5_625, 7_972, 20, 5_540, 567, 1_276, 93, 3_925, 1_675, 11, 15, 802, 7_972, 576, 217, 1_508, 11, 35, 93, 1_253, 2_441, 15, 289, 652, 31, 416, 321, 3_842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2_681, 1_153, 3_434, 20, 5_540, 37, 567, 126, 1_253, 2_441, 3_376, 449, 210, 431, 1_563, 177, 767, 5_540, 11, 1_203, 472, 11, 2_953, 685, 285, 364, 706, 1_153, 20, 6_799, 20, 2_869, 20, 4_464, 126, 40, 2_429, 20, 1_040, 866, 2_664, 418, 20, 318, 20, 1_726, 186, 20, 265, 522, 35, 93, 2_191, 4_634, 20, 1_040, 12, 6_799, 15, 228, 2_356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_575, 2_666, 684, 1_582, 1_176, 12, 627, 149, 619, 20, 4_902, 563, 11, 20, 149, 261, 3_420, 2_356, 174, 142, 4_714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase, model_name='''facebook/s2t-small-mustc-en-de-st''', revision='''a14f04cf0776c02f62a8cb800cf7909e15ea23ad''', ) @require_sentencepiece class __UpperCamelCase ( unittest.TestCase ): lowercase : Tuple ='valhalla/s2t_mustc_multilinguial_medium' lowercase : Dict ='C\'est trop cool' lowercase : str ='Esto es genial' @classmethod def lowercase__ ( cls ): """simple docstring""" lowerCamelCase_ =SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['''pt'''], 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['''ru'''], 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['''it'''], 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['''de'''], 11 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size, 10_000 ) def lowercase__ ( self ): """simple docstring""" self.assertIn(lowerCAmelCase, self.tokenizer.all_special_ids ) lowerCamelCase_ =[ES_CODE, 4, 1_601, 47, 7_647, 2] lowerCamelCase_ =self.tokenizer.decode(lowerCAmelCase, skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ =self.tokenizer.decode(generated_ids[1:], skip_special_tokens=lowerCAmelCase ) self.assertEqual(lowerCAmelCase, lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''fr''' lowerCamelCase_ =self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0], lowerCAmelCase ) self.assertEqual(encoded[-1], self.tokenizer.eos_token_id ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''fr''' self.assertListEqual(self.tokenizer.prefix_tokens, [FR_CODE] ) lowerCamelCase_ ='''es''' self.assertListEqual(self.tokenizer.prefix_tokens, [ES_CODE] )
75
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase_ = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0] snake_case = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case = 0 # the area corresponding to the grid that gives the product closest to target snake_case = 0 # an estimate of b, using the quadratic formula snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the triangle number corresponding to b_floor snake_case = 42 # the triangle number corresponding to b_ceil snake_case = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case = floor(A ) snake_case = ceil(A ) snake_case = triangle_numbers[b_floor] snake_case = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_first_guess * triangle_a snake_case = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_second_guess * triangle_a snake_case = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
332
1
'''simple docstring''' from datetime import datetime import requests def __lowerCamelCase ( __snake_case : str ) -> bytes: """simple docstring""" A__ : str ="""https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" A__ : Dict =requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(__snake_case ).content if __name__ == "__main__": __snake_case : Optional[Any] = input('Enter Video/IGTV url: ').strip() __snake_case : Dict = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
134
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( __snake_case : List[str], __snake_case : Union[str, Any], __snake_case : Dict ) -> Dict: """simple docstring""" return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def __lowerCamelCase ( __snake_case : str, __snake_case : int, __snake_case : Dict, __snake_case : int="attention" ) -> str: """simple docstring""" A__ : Union[str, Any] =np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) A__ : str =k_tmp.reshape(k_tmp.shape[0], k_tmp.shape[1] * k_tmp.shape[2] ) A__ : List[Any] =np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) A__ : Optional[int] =o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1], o_tmp.shape[2] ) A__ : Dict =np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) A__ : Dict =q_tmp.reshape(q_tmp.shape[0], q_tmp.shape[1] * q_tmp.shape[2] ) A__ : Union[str, Any] =np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) A__ : List[str] =v_tmp.reshape(v_tmp.shape[0], v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __lowerCamelCase ( __snake_case : Dict, __snake_case : Any, __snake_case : Tuple, __snake_case : Optional[Any]=False ) -> Any: """simple docstring""" if split_mlp_wi: A__ : Any =params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] A__ : int =params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] A__ : Optional[Any] =(wi_a, wi_a) else: A__ : Optional[int] =params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] A__ : int =params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : str, __snake_case : Any, __snake_case : int ) -> List[Any]: """simple docstring""" return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i] def __lowerCamelCase ( __snake_case : dict, *, __snake_case : int, __snake_case : bool, __snake_case : bool = False ) -> Union[str, Any]: """simple docstring""" A__ : Optional[int] =traverse_util.flatten_dict(variables["""target"""] ) A__ : int ={"""/""".join(__snake_case ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi A__ : List[Any] ="""encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""", __snake_case ) A__ : Optional[int] =collections.OrderedDict() # Shared embeddings. A__ : List[Any] =old["""token_embedder/embedding"""] # Encoder. for i in range(__snake_case ): # Block i, layer 0 (Self Attention). A__ : Optional[Any] =tax_layer_norm_lookup(__snake_case, __snake_case, """encoder""", """pre_attention_layer_norm""" ) A__ , A__ , A__ , A__ : Optional[int] =tax_attention_lookup(__snake_case, __snake_case, """encoder""", """attention""" ) A__ : List[str] =layer_norm A__ : Dict =k.T A__ : Optional[int] =o.T A__ : str =q.T A__ : Any =v.T # Block i, layer 1 (MLP). A__ : List[Any] =tax_layer_norm_lookup(__snake_case, __snake_case, """encoder""", """pre_mlp_layer_norm""" ) A__ , A__ : int =tax_mlp_lookup(__snake_case, __snake_case, """encoder""", __snake_case ) A__ : Optional[int] =layer_norm if split_mlp_wi: A__ : List[str] =wi[0].T A__ : List[str] =wi[1].T else: A__ : Optional[int] =wi.T A__ : Optional[Any] =wo.T if scalable_attention: # convert the rel_embedding of each layer A__ : int =tax_relpos_bias_lookup( __snake_case, __snake_case, """encoder""" ).T A__ : Optional[int] =old["""encoder/encoder_norm/scale"""] if not scalable_attention: A__ : List[Any] =tax_relpos_bias_lookup( __snake_case, 0, """encoder""" ).T A__ : Tuple =tax_relpos_bias_lookup( __snake_case, 0, """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(__snake_case ): # Block i, layer 0 (Self Attention). A__ : List[str] =tax_layer_norm_lookup(__snake_case, __snake_case, """decoder""", """pre_self_attention_layer_norm""" ) A__ , A__ , A__ , A__ : List[str] =tax_attention_lookup(__snake_case, __snake_case, """decoder""", """self_attention""" ) A__ : str =layer_norm A__ : List[str] =k.T A__ : int =o.T A__ : Tuple =q.T A__ : Optional[Any] =v.T # Block i, layer 1 (Cross Attention). A__ : int =tax_layer_norm_lookup(__snake_case, __snake_case, """decoder""", """pre_cross_attention_layer_norm""" ) A__ , A__ , A__ , A__ : Optional[Any] =tax_attention_lookup(__snake_case, __snake_case, """decoder""", """encoder_decoder_attention""" ) A__ : str =layer_norm A__ : Union[str, Any] =k.T A__ : str =o.T A__ : Any =q.T A__ : str =v.T # Block i, layer 2 (MLP). A__ : str =tax_layer_norm_lookup(__snake_case, __snake_case, """decoder""", """pre_mlp_layer_norm""" ) A__ , A__ : Optional[int] =tax_mlp_lookup(__snake_case, __snake_case, """decoder""", __snake_case ) A__ : Dict =layer_norm if split_mlp_wi: A__ : List[Any] =wi[0].T A__ : Union[str, Any] =wi[1].T else: A__ : Optional[int] =wi.T A__ : str =wo.T if scalable_attention: # convert the rel_embedding of each layer A__ : str =tax_relpos_bias_lookup(__snake_case, __snake_case, """decoder""" ).T A__ : str =old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: A__ : Tuple =old["""decoder/logits_dense/kernel"""].T return new def __lowerCamelCase ( __snake_case : Dict, __snake_case : bool ) -> Optional[Any]: """simple docstring""" A__ : Any =collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: A__ : Union[str, Any] =state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: A__ : List[str] =state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) A__ : Optional[Any] =state_dict["""shared.weight"""] return state_dict def __lowerCamelCase ( __snake_case : str, __snake_case : str, __snake_case : Optional[Any], __snake_case : int, __snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" A__ : str =checkpoints.load_tax_checkpoint(__snake_case ) A__ : Optional[Any] =convert_tax_to_pytorch( __snake_case, num_layers=config.num_layers, is_encoder_only=__snake_case, scalable_attention=__snake_case ) A__ : str =make_state_dict(__snake_case, __snake_case ) model.load_state_dict(__snake_case, strict=__snake_case ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Dict, __snake_case : Optional[int], __snake_case : bool = False, __snake_case : bool = False, ) -> Dict: """simple docstring""" A__ : Tuple =MTaConfig.from_json_file(__snake_case ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: A__ : List[Any] =UMTaEncoderModel(__snake_case ) else: A__ : int =UMTaForConditionalGeneration(__snake_case ) # Load weights from tf checkpoint load_tax_weights_in_ta(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(__snake_case ) # Verify that we can load the checkpoint. model.from_pretrained(__snake_case ) print("""Done""" ) if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) __snake_case : Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
134
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCamelCase : Optional[Any] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCamelCase : Union[str, Any] = parser.parse_args() __lowerCamelCase : Any = '''cpu''' __lowerCamelCase : Optional[int] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCamelCase : Union[str, Any] = '''path-to-your-trained-model''' __lowerCamelCase : Optional[int] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCamelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCamelCase : Dict = pipe.to(device) # to channels last __lowerCamelCase : Any = pipe.unet.to(memory_format=torch.channels_last) __lowerCamelCase : str = pipe.vae.to(memory_format=torch.channels_last) __lowerCamelCase : int = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCamelCase : str = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCamelCase : List[Any] = torch.randn(2, 4, 64, 64) __lowerCamelCase : Dict = torch.rand(1) * 999 __lowerCamelCase : List[Any] = torch.randn(2, 77, 768) __lowerCamelCase : List[str] = (sample, timestep, encoder_hidden_status) try: __lowerCamelCase : Dict = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCamelCase : int = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCamelCase : int = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCamelCase : str = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCamelCase : int = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCamelCase : str = 666 __lowerCamelCase : int = torch.Generator(device).manual_seed(seed) __lowerCamelCase : int = {'''generator''': generator} if args.steps is not None: __lowerCamelCase : List[str] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCamelCase : List[str] = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
204
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = ["input_features", "attention_mask"] def __init__( self : int , _lowercase : Dict=80 , _lowercase : Union[str, Any]=1_60_00 , _lowercase : str=0.0 , _lowercase : int=10 , _lowercase : str=25 , _lowercase : Union[str, Any]="hamming_window" , _lowercase : Dict=3_27_68.0 , _lowercase : Optional[int]=0.97 , _lowercase : Optional[int]=1.0 , _lowercase : int=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[int]=False , **_lowercase : Union[str, Any] , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ = feature_size SCREAMING_SNAKE_CASE__ = sampling_rate SCREAMING_SNAKE_CASE__ = padding_value SCREAMING_SNAKE_CASE__ = hop_length SCREAMING_SNAKE_CASE__ = win_length SCREAMING_SNAKE_CASE__ = frame_signal_scale SCREAMING_SNAKE_CASE__ = preemphasis_coeff SCREAMING_SNAKE_CASE__ = mel_floor SCREAMING_SNAKE_CASE__ = normalize_means SCREAMING_SNAKE_CASE__ = normalize_vars SCREAMING_SNAKE_CASE__ = win_function SCREAMING_SNAKE_CASE__ = return_attention_mask SCREAMING_SNAKE_CASE__ = win_length * sampling_rate // 10_00 SCREAMING_SNAKE_CASE__ = hop_length * sampling_rate // 10_00 SCREAMING_SNAKE_CASE__ = optimal_fft_length(self.sample_size ) SCREAMING_SNAKE_CASE__ = (self.n_fft // 2) + 1 def __a ( self : str , _lowercase : np.array ): """simple docstring""" if self.win_function == "hamming_window": SCREAMING_SNAKE_CASE__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowercase ) else: SCREAMING_SNAKE_CASE__ = window_function(window_length=self.sample_size , name=self.win_function ) SCREAMING_SNAKE_CASE__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) SCREAMING_SNAKE_CASE__ = spectrogram( one_waveform * self.frame_signal_scale , window=_lowercase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_lowercase , preemphasis=self.preemphasis_coeff , mel_filters=_lowercase , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def __a ( self : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : int ): """simple docstring""" if self.normalize_means: SCREAMING_SNAKE_CASE__ = x[:input_length].mean(axis=0 ) SCREAMING_SNAKE_CASE__ = np.subtract(_lowercase , _lowercase ) if self.normalize_vars: SCREAMING_SNAKE_CASE__ = x[:input_length].std(axis=0 ) SCREAMING_SNAKE_CASE__ = np.divide(_lowercase , _lowercase ) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE__ = padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE__ = x.astype(np.floataa ) return x def __a ( self : int , _lowercase : List[np.ndarray] , _lowercase : Optional[np.ndarray] = None ): """simple docstring""" SCREAMING_SNAKE_CASE__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_lowercase , _lowercase , self.padding_value ) for x, n in zip(_lowercase , _lowercase )] def __call__( self : Dict , _lowercase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _lowercase : Union[bool, str, PaddingStrategy] = False , _lowercase : Optional[int] = None , _lowercase : bool = False , _lowercase : Optional[int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[int] = None , **_lowercase : List[str] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) SCREAMING_SNAKE_CASE__ = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) SCREAMING_SNAKE_CASE__ = is_batched_numpy or ( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE__ = [np.asarray(_lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowercase , np.ndarray ): SCREAMING_SNAKE_CASE__ = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE__ = [raw_speech] # extract fbank features SCREAMING_SNAKE_CASE__ = [self._extract_mfsc_features(_lowercase ) for one_waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE__ = BatchFeature({"""input_features""": features} ) SCREAMING_SNAKE_CASE__ = self.pad( _lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) # make sure list is in array format SCREAMING_SNAKE_CASE__ = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , _lowercase ): SCREAMING_SNAKE_CASE__ = [np.asarray(_lowercase , dtype=np.floataa ) for feature in input_features] SCREAMING_SNAKE_CASE__ = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: SCREAMING_SNAKE_CASE__ = [np.asarray(_lowercase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: SCREAMING_SNAKE_CASE__ = ( np.array(_lowercase , dtype=np.intaa ) if self._get_padding_strategies(_lowercase , max_length=_lowercase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) SCREAMING_SNAKE_CASE__ = self.normalize( padded_inputs["""input_features"""] , attention_mask=_lowercase ) if return_tensors is not None: SCREAMING_SNAKE_CASE__ = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
204
1
'''simple docstring''' from math import ceil def a_ ( _lowerCAmelCase = 1001 ) -> int: __lowerCamelCase : Tuple = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): __lowerCamelCase : Dict = 2 * i + 1 __lowerCamelCase : int = 2 * i __lowerCamelCase : Optional[int] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _UpperCamelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
208
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
208
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf a__ = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Dict = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **_a ) -> Optional[int]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _a : List[str] = deprecated_arg[3:] _a : int = not kwargs.pop(_a ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) _a : Dict = kwargs.pop('''tpu_name''' , self.tpu_name ) _a : Dict = kwargs.pop('''device_idx''' , self.device_idx ) _a : Dict = kwargs.pop('''eager_mode''' , self.eager_mode ) _a : List[str] = kwargs.pop('''use_xla''' , self.use_xla ) super().__init__(**_a ) UpperCAmelCase__ : str = field( default=__lowercase , metadata={"help": "Name of TPU"} , ) UpperCAmelCase__ : int = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) UpperCAmelCase__ : bool = field(default=__lowercase , metadata={"help": "Benchmark models in eager model."} ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def __lowercase ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['''tf'''] ) _a : int = None if self.tpu: try: if self.tpu_name: _a : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _a : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _a : Optional[int] = None return tpu @cached_property def __lowercase ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _a : Dict = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' ) _a : Optional[Any] = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU _a : Any = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def __lowercase ( self ) -> bool: requires_backends(self , ['''tf'''] ) return self._setup_tpu is not None @property def __lowercase ( self ) -> "tf.distribute.Strategy": requires_backends(self , ['''tf'''] ) return self._setup_strategy @property def __lowercase ( self ) -> Any: requires_backends(self , ['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def __lowercase ( self ) -> int: requires_backends(self , ['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __lowercase ( self ) -> bool: return self.n_gpu > 0
15
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : Dict = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : int = 2 * i + 1 _a : str = 2 * i _a : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
15
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A_ = logging.get_logger(__name__) class lowercase( __a ): '''simple docstring''' lowercase__ = ["input_features"] def __init__( self: List[Any], a_: Tuple=80, a_: List[str]=16_000, a_: Tuple=160, a_: Optional[int]=30, a_: List[str]=400, a_: Union[str, Any]=0.0, a_: Union[str, Any]=False, **a_: Dict, ): '''simple docstring''' super().__init__( feature_size=a_, sampling_rate=a_, padding_value=a_, return_attention_mask=a_, **a_, ) _snake_case : Union[str, Any] = n_fft _snake_case : Optional[Any] = hop_length _snake_case : Optional[int] = chunk_length _snake_case : str = chunk_length * sampling_rate _snake_case : Dict = self.n_samples // hop_length _snake_case : List[str] = sampling_rate _snake_case : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=a_, min_frequency=0.0, max_frequency=8_000.0, sampling_rate=a_, norm="""slaney""", mel_scale="""slaney""", ) def UpperCamelCase_ ( self: List[Any], a_: np.array ): '''simple docstring''' _snake_case : str = spectrogram( a_, window_function(self.n_fft, """hann""" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters, log_mel="""log10""", ) _snake_case : Dict = log_spec[:, :-1] _snake_case : List[Any] = np.maximum(a_, log_spec.max() - 8.0 ) _snake_case : int = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCamelCase_ ( a_: List[np.ndarray], a_: List[np.ndarray], a_: float = 0.0 ): '''simple docstring''' if attention_mask is not None: _snake_case : str = np.array(a_, np.intaa ) _snake_case : str = [] for vector, length in zip(a_, attention_mask.sum(-1 ) ): _snake_case : List[str] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _snake_case : Any = padding_value normed_input_values.append(a_ ) else: _snake_case : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self: Optional[int], a_: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], a_: bool = True, a_: Optional[int] = None, a_: Optional[Union[str, TensorType]] = None, a_: Optional[bool] = None, a_: Optional[str] = "max_length", a_: Optional[int] = None, a_: Optional[int] = None, a_: Optional[bool] = None, **a_: Any, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _snake_case : str = isinstance(a_, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) _snake_case : Optional[Any] = is_batched_numpy or ( isinstance(a_, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: _snake_case : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a_, np.ndarray ): _snake_case : Optional[Any] = np.asarray(a_, dtype=np.floataa ) elif isinstance(a_, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _snake_case : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _snake_case : List[str] = [np.asarray([raw_speech] ).T] _snake_case : Optional[int] = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding _snake_case : Optional[Any] = self.pad( a_, padding=a_, max_length=max_length if max_length else self.n_samples, truncation=a_, pad_to_multiple_of=a_, return_attention_mask=return_attention_mask or do_normalize, ) # zero-mean and unit-variance normalization if do_normalize: _snake_case : Dict = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""], attention_mask=padded_inputs["""attention_mask"""], padding_value=self.padding_value, ) _snake_case : Tuple = np.stack(padded_inputs["""input_features"""], axis=0 ) # make sure list is in array format _snake_case : Optional[int] = padded_inputs.get("""input_features""" ).transpose(2, 0, 1 ) _snake_case : Dict = [self._np_extract_fbank_features(a_ ) for waveform in input_features[0]] if isinstance(input_features[0], a_ ): _snake_case : List[str] = [np.asarray(a_, dtype=np.floataa ) for feature in input_features] else: _snake_case : List[Any] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _snake_case : Any = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: _snake_case : List[str] = padded_inputs.convert_to_tensors(a_ ) return padded_inputs def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = copy.deepcopy(self.__dict__ ) _snake_case : Union[str, Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
64
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging A_ = logging.get_logger(__name__) class lowercase: '''simple docstring''' lowercase__ = 42 lowercase__ = None @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' raise NotImplementedError def UpperCamelCase_ ( self: Tuple, a_: int, a_: int, a_: str, **a_: Dict ): '''simple docstring''' raise NotImplementedError def UpperCamelCase_ ( self: Union[str, Any], a_: List[str] ): '''simple docstring''' raise NotImplementedError def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' if not self.is_available(): raise RuntimeError( f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def UpperCamelCase_ ( cls: Tuple ): '''simple docstring''' return f"`pip install {cls.pip_package or cls.name}`" class lowercase( __a ): '''simple docstring''' lowercase__ = "optuna" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_optuna_available() def UpperCamelCase_ ( self: Union[str, Any], a_: List[Any], a_: int, a_: str, **a_: List[str] ): '''simple docstring''' return run_hp_search_optuna(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Any ): '''simple docstring''' return default_hp_space_optuna(a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "ray" lowercase__ = "'ray[tune]'" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_ray_available() def UpperCamelCase_ ( self: int, a_: Optional[Any], a_: int, a_: str, **a_: List[Any] ): '''simple docstring''' return run_hp_search_ray(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: str, a_: Tuple ): '''simple docstring''' return default_hp_space_ray(a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "sigopt" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_sigopt_available() def UpperCamelCase_ ( self: Dict, a_: str, a_: int, a_: str, **a_: int ): '''simple docstring''' return run_hp_search_sigopt(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: str, a_: List[str] ): '''simple docstring''' return default_hp_space_sigopt(a_ ) class lowercase( __a ): '''simple docstring''' lowercase__ = "wandb" @staticmethod def UpperCamelCase_ ( ): '''simple docstring''' return is_wandb_available() def UpperCamelCase_ ( self: Optional[Any], a_: str, a_: int, a_: str, **a_: Union[str, Any] ): '''simple docstring''' return run_hp_search_wandb(a_, a_, a_, **a_ ) def UpperCamelCase_ ( self: str, a_: Any ): '''simple docstring''' return default_hp_space_wandb(a_ ) A_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(snake_case__ ) > 0: _snake_case : Any = available_backends[0].name if len(snake_case__ ) > 1: logger.info( F"{len(snake_case__ )} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( F" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
64
1
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline lowercase = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def lowerCamelCase_ ( UpperCamelCase__ : Dict, UpperCamelCase__ : tuple, UpperCamelCase__ : Path, UpperCamelCase__ : Any, UpperCamelCase__ : str, UpperCamelCase__ : Any, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Optional[Any]=False, ): '''simple docstring''' output_path.parent.mkdir(parents=UpperCamelCase__, exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__, UpperCamelCase__, f=output_path.as_posix(), input_names=UpperCamelCase__, output_names=UpperCamelCase__, dynamic_axes=UpperCamelCase__, do_constant_folding=UpperCamelCase__, use_external_data_format=UpperCamelCase__, enable_onnx_checker=UpperCamelCase__, opset_version=UpperCamelCase__, ) else: export( UpperCamelCase__, UpperCamelCase__, f=output_path.as_posix(), input_names=UpperCamelCase__, output_names=UpperCamelCase__, dynamic_axes=UpperCamelCase__, do_constant_folding=UpperCamelCase__, opset_version=UpperCamelCase__, ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : str, UpperCamelCase__ : int, UpperCamelCase__ : bool = False ): '''simple docstring''' UpperCamelCase__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCamelCase__ = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: UpperCamelCase__ = '''cpu''' UpperCamelCase__ = StableDiffusionPipeline.from_pretrained(UpperCamelCase__, torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) UpperCamelCase__ = Path(UpperCamelCase__ ) # TEXT ENCODER UpperCamelCase__ = pipeline.text_encoder.config.max_position_embeddings UpperCamelCase__ = pipeline.text_encoder.config.hidden_size UpperCamelCase__ = pipeline.tokenizer( '''A sample prompt''', padding='''max_length''', max_length=pipeline.tokenizer.model_max_length, truncation=UpperCamelCase__, return_tensors='''pt''', ) onnx_export( pipeline.text_encoder, model_args=(text_input.input_ids.to(device=UpperCamelCase__, dtype=torch.intaa )), output_path=output_path / '''text_encoder''' / '''model.onnx''', ordered_input_names=['''input_ids'''], output_names=['''last_hidden_state''', '''pooler_output'''], dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, }, opset=UpperCamelCase__, ) del pipeline.text_encoder # UNET UpperCamelCase__ = pipeline.unet.config.in_channels UpperCamelCase__ = pipeline.unet.config.sample_size UpperCamelCase__ = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet, model_args=( torch.randn(2, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ).to(device=UpperCamelCase__, dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__, dtype=UpperCamelCase__ ), torch.randn(2, UpperCamelCase__, UpperCamelCase__ ).to(device=UpperCamelCase__, dtype=UpperCamelCase__ ), False, ), output_path=UpperCamelCase__, ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''], output_names=['''out_sample'''], dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, }, opset=UpperCamelCase__, use_external_data_format=UpperCamelCase__, ) UpperCamelCase__ = str(unet_path.absolute().as_posix() ) UpperCamelCase__ = os.path.dirname(UpperCamelCase__ ) UpperCamelCase__ = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__, UpperCamelCase__, save_as_external_data=UpperCamelCase__, all_tensors_to_one_file=UpperCamelCase__, location='''weights.pb''', convert_attribute=UpperCamelCase__, ) del pipeline.unet # VAE ENCODER UpperCamelCase__ = pipeline.vae UpperCamelCase__ = vae_encoder.config.in_channels UpperCamelCase__ = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder UpperCamelCase__ = lambda UpperCamelCase__, UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__, UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__, model_args=( torch.randn(1, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ).to(device=UpperCamelCase__, dtype=UpperCamelCase__ ), False, ), output_path=output_path / '''vae_encoder''' / '''model.onnx''', ordered_input_names=['''sample''', '''return_dict'''], output_names=['''latent_sample'''], dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, }, opset=UpperCamelCase__, ) # VAE DECODER UpperCamelCase__ = pipeline.vae UpperCamelCase__ = vae_decoder.config.latent_channels UpperCamelCase__ = vae_decoder.config.out_channels # forward only through the decoder part UpperCamelCase__ = vae_encoder.decode onnx_export( UpperCamelCase__, model_args=( torch.randn(1, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ).to(device=UpperCamelCase__, dtype=UpperCamelCase__ ), False, ), output_path=output_path / '''vae_decoder''' / '''model.onnx''', ordered_input_names=['''latent_sample''', '''return_dict'''], output_names=['''sample'''], dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, }, opset=UpperCamelCase__, ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: UpperCamelCase__ = pipeline.safety_checker UpperCamelCase__ = safety_checker.config.vision_config.num_channels UpperCamelCase__ = safety_checker.config.vision_config.image_size UpperCamelCase__ = safety_checker.forward_onnx onnx_export( pipeline.safety_checker, model_args=( torch.randn( 1, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, ).to(device=UpperCamelCase__, dtype=UpperCamelCase__ ), torch.randn(1, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ).to(device=UpperCamelCase__, dtype=UpperCamelCase__ ), ), output_path=output_path / '''safety_checker''' / '''model.onnx''', ordered_input_names=['''clip_input''', '''images'''], output_names=['''out_images''', '''has_nsfw_concepts'''], dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, }, opset=UpperCamelCase__, ) del pipeline.safety_checker UpperCamelCase__ = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) UpperCamelCase__ = pipeline.feature_extractor else: UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ), vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ), text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ), tokenizer=pipeline.tokenizer, unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ), scheduler=pipeline.scheduler, safety_checker=UpperCamelCase__, feature_extractor=UpperCamelCase__, requires_safety_checker=safety_checker is not None, ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('''ONNX pipeline saved to''', UpperCamelCase__ ) del pipeline del onnx_pipeline UpperCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__, provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=1_4, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") lowercase = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
35
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowercase = logging.get_logger(__name__) class __lowercase ( A ): '''simple docstring''' def __init__( self : Any , *_a : Optional[Any] , **_a : Any ): warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
35
1
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __A : """simple docstring""" def __init__( self ) -> Tuple: a ={} def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=1 ) -> Union[str, Any]: if self.graph.get(__A ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: a =[[w, v]] if not self.graph.get(__A ): a =[] def SCREAMING_SNAKE_CASE ( self ) -> int: return list(self.graph ) def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> Optional[Any]: if self.graph.get(__A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__A ) def SCREAMING_SNAKE_CASE ( self , __A=-2 , __A=-1 ) -> List[Any]: if s == d: return [] a =[] a =[] if s == -2: a =list(self.graph )[0] stack.append(__A ) visited.append(__A ) a =s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a =s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) a =node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__A ) != 0: a =stack[len(__A ) - 1] else: a =ss # check if se have reached the starting point if len(__A ) == 0: return visited def SCREAMING_SNAKE_CASE ( self , __A=-1 ) -> int: if c == -1: a =floor(random() * 1_0000 ) + 10 for i in range(__A ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): a =floor(random() * c ) + 1 if n != i: self.add_pair(__A , __A , 1 ) def SCREAMING_SNAKE_CASE ( self , __A=-2 ) -> List[str]: a =deque() a =[] if s == -2: a =list(self.graph )[0] d.append(__A ) visited.append(__A ) while d: a =d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[Any]: a =0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def SCREAMING_SNAKE_CASE ( self , __A ) -> Tuple: return len(self.graph[u] ) def SCREAMING_SNAKE_CASE ( self , __A=-2 ) -> List[Any]: a =[] a =[] if s == -2: a =list(self.graph )[0] stack.append(__A ) visited.append(__A ) a =s a =[] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a =s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a =node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__A ) != 0: a =stack[len(__A ) - 1] else: a =ss # check if se have reached the starting point if len(__A ) == 0: return sorted_nodes def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =[] a =[] a =list(self.graph )[0] stack.append(__A ) visited.append(__A ) a =-2 a =[] a =s a =False a =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a =len(__A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a =node[1] break # check if all the children are visited if s == ss: stack.pop() a =True if len(__A ) != 0: a =stack[len(__A ) - 1] else: a =False indirect_parents.append(__A ) a =s a =ss # check if se have reached the starting point if len(__A ) == 0: return list(__A ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =[] a =[] a =list(self.graph )[0] stack.append(__A ) visited.append(__A ) a =-2 a =[] a =s a =False a =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a =len(__A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a =node[1] break # check if all the children are visited if s == ss: stack.pop() a =True if len(__A ) != 0: a =stack[len(__A ) - 1] else: a =False indirect_parents.append(__A ) a =s a =ss # check if se have reached the starting point if len(__A ) == 0: return False def SCREAMING_SNAKE_CASE ( self , __A=-2 , __A=-1 ) -> List[str]: a =time() self.dfs(__A , __A ) a =time() return end - begin def SCREAMING_SNAKE_CASE ( self , __A=-2 ) -> int: a =time() self.bfs(__A ) a =time() return end - begin class __A : """simple docstring""" def __init__( self ) -> List[str]: a ={} def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=1 ) -> Dict: # check if the u exists if self.graph.get(__A ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist a =[[w, v]] # add the other way if self.graph.get(__A ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist a =[[w, u]] def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> Any: if self.graph.get(__A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__A ) # the other way round if self.graph.get(__A ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__A ) def SCREAMING_SNAKE_CASE ( self , __A=-2 , __A=-1 ) -> int: if s == d: return [] a =[] a =[] if s == -2: a =list(self.graph )[0] stack.append(__A ) visited.append(__A ) a =s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a =s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) a =node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__A ) != 0: a =stack[len(__A ) - 1] else: a =ss # check if se have reached the starting point if len(__A ) == 0: return visited def SCREAMING_SNAKE_CASE ( self , __A=-1 ) -> List[Any]: if c == -1: a =floor(random() * 1_0000 ) + 10 for i in range(__A ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): a =floor(random() * c ) + 1 if n != i: self.add_pair(__A , __A , 1 ) def SCREAMING_SNAKE_CASE ( self , __A=-2 ) -> str: a =deque() a =[] if s == -2: a =list(self.graph )[0] d.append(__A ) visited.append(__A ) while d: a =d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE ( self , __A ) -> str: return len(self.graph[u] ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =[] a =[] a =list(self.graph )[0] stack.append(__A ) visited.append(__A ) a =-2 a =[] a =s a =False a =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a =len(__A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a =node[1] break # check if all the children are visited if s == ss: stack.pop() a =True if len(__A ) != 0: a =stack[len(__A ) - 1] else: a =False indirect_parents.append(__A ) a =s a =ss # check if se have reached the starting point if len(__A ) == 0: return list(__A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =[] a =[] a =list(self.graph )[0] stack.append(__A ) visited.append(__A ) a =-2 a =[] a =s a =False a =set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a =s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a =len(__A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a =node[1] break # check if all the children are visited if s == ss: stack.pop() a =True if len(__A ) != 0: a =stack[len(__A ) - 1] else: a =False indirect_parents.append(__A ) a =s a =ss # check if se have reached the starting point if len(__A ) == 0: return False def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: return list(self.graph ) def SCREAMING_SNAKE_CASE ( self , __A=-2 , __A=-1 ) -> Optional[int]: a =time() self.dfs(__A , __A ) a =time() return end - begin def SCREAMING_SNAKE_CASE ( self , __A=-2 ) -> Dict: a =time() self.bfs(__A ) a =time() return end - begin
81
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , ) -> Optional[int]: lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = 99 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 37 lowerCamelCase_ = "gelu" lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.0_2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = None def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_( self ) -> List[str]: ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = self.prepare_config_and_inputs() lowerCamelCase_ = True lowerCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: lowerCamelCase_ = TFEsmModel(config=lowercase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCamelCase_ = True lowerCamelCase_ = TFEsmModel(config=lowercase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(lowercase , encoder_hidden_states=lowercase ) # Also check the case where encoder outputs are not passed lowerCamelCase_ = model(lowercase , attention_mask=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCamelCase_ = TFEsmForMaskedLM(config=lowercase ) lowerCamelCase_ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFEsmForTokenClassification(config=lowercase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = TFEsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFEsmModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: pass @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_( self ) -> Any: pass def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(lowercase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase_ = model.get_bias() assert isinstance(lowercase , lowercase ) for k, v in name.items(): assert isinstance(lowercase , tf.Variable ) else: lowerCamelCase_ = model.get_output_embeddings() assert x is None lowerCamelCase_ = model.get_bias() assert name is None @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(lowercase )[0] lowerCamelCase_ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowercase ) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(lowercase )[0] # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
19
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Dict = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """transfo-xl""" _snake_case = ["""mems"""] _snake_case = { """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , A=2_6_7_7_3_5 , A=[2_0_0_0_0, 4_0_0_0_0, 2_0_0_0_0_0] , A=1_0_2_4 , A=1_0_2_4 , A=1_6 , A=6_4 , A=4_0_9_6 , A=4 , A=False , A=1_8 , A=1_6_0_0 , A=1_0_0_0 , A=True , A=True , A=0 , A=-1 , A=True , A=0.1 , A=0.0 , A=True , A="normal" , A=0.01 , A=0.01 , A=0.02 , A=1e-5 , A=0 , **A , ) -> Optional[int]: snake_case : Optional[Any] = vocab_size snake_case : Tuple = [] self.cutoffs.extend(A ) if proj_share_all_but_first: snake_case : Union[str, Any] = [False] + [True] * len(self.cutoffs ) else: snake_case : Optional[int] = [False] + [False] * len(self.cutoffs ) snake_case : Union[str, Any] = d_model snake_case : Optional[Any] = d_embed snake_case : int = d_head snake_case : str = d_inner snake_case : int = div_val snake_case : Optional[Any] = pre_lnorm snake_case : Any = n_layer snake_case : Optional[int] = n_head snake_case : Tuple = mem_len snake_case : int = same_length snake_case : int = attn_type snake_case : Optional[int] = clamp_len snake_case : Optional[Any] = sample_softmax snake_case : str = adaptive snake_case : List[Any] = dropout snake_case : Optional[Any] = dropatt snake_case : List[str] = untie_r snake_case : List[str] = init snake_case : Any = init_range snake_case : Union[str, Any] = proj_init_std snake_case : Optional[int] = init_std snake_case : Tuple = layer_norm_epsilon super().__init__(eos_token_id=A , **A ) @property def UpperCAmelCase ( self ) -> Dict: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def UpperCAmelCase ( self , A ) -> Tuple: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
176
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCamelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase : Dict = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=8 ) -> Optional[int]: snake_case : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 snake_case : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A , A , ) -> int: super().__init__() self.register_modules( unet=A , scheduler=A , movq=A , ) snake_case : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase ( self , A , A , A , A , A , A ) -> str: if latents is None: snake_case : List[str] = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) snake_case : Union[str, Any] = latents.to(A ) snake_case : Optional[Any] = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase ( self , A=0 ) -> List[str]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) snake_case : Dict = torch.device(f"""cuda:{gpu_id}""" ) snake_case : Tuple = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) def UpperCAmelCase ( self , A=0 ) -> Optional[Any]: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) snake_case : int = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: snake_case , snake_case : Tuple = cpu_offload_with_hook(A , A , prev_module_hook=A ) # We'll offload the last model manually. snake_case : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase ( self ) -> str: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A ) def __call__( self , A , A , A , A = 5_1_2 , A = 5_1_2 , A = 1_0_0 , A = 4.0 , A = 1 , A = None , A = None , A = "pil" , A = True , ) -> Any: snake_case : int = self._execution_device snake_case : Tuple = guidance_scale > 1.0 if isinstance(A , A ): snake_case : str = torch.cat(A , dim=0 ) if isinstance(A , A ): snake_case : int = torch.cat(A , dim=0 ) if isinstance(A , A ): snake_case : Tuple = torch.cat(A , dim=0 ) snake_case : List[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: snake_case : Optional[int] = image_embeds.repeat_interleave(A , dim=0 ) snake_case : Dict = negative_image_embeds.repeat_interleave(A , dim=0 ) snake_case : Optional[Any] = hint.repeat_interleave(A , dim=0 ) snake_case : List[str] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A ) snake_case : Optional[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A ) self.scheduler.set_timesteps(A , device=A ) snake_case : Tuple = self.scheduler.timesteps snake_case : Tuple = self.movq.config.latent_channels snake_case , snake_case : Optional[int] = downscale_height_and_width(A , A , self.movq_scale_factor ) # create initial latent snake_case : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A , A , A , self.scheduler , ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance snake_case : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case : Any = {"""image_embeds""": image_embeds, """hint""": hint} snake_case : List[Any] = self.unet( sample=A , timestep=A , encoder_hidden_states=A , added_cond_kwargs=A , return_dict=A , )[0] if do_classifier_free_guidance: snake_case , snake_case : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) snake_case , snake_case : Tuple = noise_pred.chunk(2 ) snake_case , snake_case : Optional[Any] = variance_pred.chunk(2 ) snake_case : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case : Dict = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case , snake_case : int = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case : Dict = self.scheduler.step( A , A , A , generator=A , )[0] # post-processing snake_case : Tuple = self.movq.decode(A , force_not_quantize=A )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: snake_case : Optional[int] = image * 0.5 + 0.5 snake_case : Union[str, Any] = image.clamp(0 , 1 ) snake_case : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case : Tuple = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
176
1
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if num < 0: return False __lowerCAmelCase = num __lowerCAmelCase = 0 while num > 0: __lowerCAmelCase = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
57
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A : Optional[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Optional[Any] = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: lowerCAmelCase : Optional[int] = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : Optional[int] = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : str = [5, 11, 17, 23] lowerCAmelCase : Tuple = [256, 512, 1_024, 1_024] lowerCAmelCase : Optional[int] = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCAmelCase : Optional[int] = 768 lowerCAmelCase : int = [1, 1, 1, 0.5] lowerCAmelCase : List[Any] = [256, 512, 768, 768] lowerCAmelCase : List[Any] = 150 lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : Union[str, Any] = (1, 384, 384) lowerCAmelCase : Tuple = False lowerCAmelCase : List[str] = 'project' if "ade" in checkpoint_url: lowerCAmelCase : Tuple = True lowerCAmelCase : str = 768 lowerCAmelCase : List[str] = [1, 1, 1, 0.5] lowerCAmelCase : Optional[Any] = 150 lowerCAmelCase : List[str] = 16 lowerCAmelCase : Dict = 'huggingface/label-files' lowerCAmelCase : Optional[Any] = 'ade20k-id2label.json' lowerCAmelCase : Tuple = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase, _UpperCAmelCase, repo_type='dataset' ) ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : int = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = [1, 150, 480, 480] return config, expected_shape def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : List[str] = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCAmelCase : Optional[int] = name.replace('pretrained.model', 'dpt.encoder' ) if "pretrained.model" in name: lowerCAmelCase : Dict = name.replace('pretrained.model', 'dpt.embeddings' ) if "patch_embed" in name: lowerCAmelCase : int = name.replace('patch_embed', '' ) if "pos_embed" in name: lowerCAmelCase : Any = name.replace('pos_embed', 'position_embeddings' ) if "attn.proj" in name: lowerCAmelCase : str = name.replace('attn.proj', 'attention.output.dense' ) if "proj" in name and "project" not in name: lowerCAmelCase : Union[str, Any] = name.replace('proj', 'projection' ) if "blocks" in name: lowerCAmelCase : List[str] = name.replace('blocks', 'layer' ) if "mlp.fc1" in name: lowerCAmelCase : Optional[Any] = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase : Any = name.replace('mlp.fc2', 'output.dense' ) if "norm1" in name and "backbone" not in name: lowerCAmelCase : List[str] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name and "backbone" not in name: lowerCAmelCase : str = name.replace('norm2', 'layernorm_after' ) if "scratch.output_conv" in name: lowerCAmelCase : int = name.replace('scratch.output_conv', 'head' ) if "scratch" in name: lowerCAmelCase : Optional[int] = name.replace('scratch', 'neck' ) if "layer1_rn" in name: lowerCAmelCase : int = name.replace('layer1_rn', 'convs.0' ) if "layer2_rn" in name: lowerCAmelCase : Optional[Any] = name.replace('layer2_rn', 'convs.1' ) if "layer3_rn" in name: lowerCAmelCase : List[str] = name.replace('layer3_rn', 'convs.2' ) if "layer4_rn" in name: lowerCAmelCase : int = name.replace('layer4_rn', 'convs.3' ) if "refinenet" in name: lowerCAmelCase : Optional[int] = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCAmelCase : Any = name.replace(f"refinenet{layer_idx}", f"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowerCAmelCase : Dict = name.replace('out_conv', 'projection' ) if "resConfUnit1" in name: lowerCAmelCase : Optional[int] = name.replace('resConfUnit1', 'residual_layer1' ) if "resConfUnit2" in name: lowerCAmelCase : List[str] = name.replace('resConfUnit2', 'residual_layer2' ) if "conv1" in name: lowerCAmelCase : List[Any] = name.replace('conv1', 'convolution1' ) if "conv2" in name: lowerCAmelCase : Optional[int] = name.replace('conv2', 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCAmelCase : Union[str, Any] = name.replace('pretrained.act_postprocess1.0.project.0', 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCAmelCase : Optional[Any] = name.replace('pretrained.act_postprocess2.0.project.0', 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCAmelCase : List[Any] = name.replace('pretrained.act_postprocess3.0.project.0', 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCAmelCase : Optional[Any] = name.replace('pretrained.act_postprocess4.0.project.0', 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCAmelCase : Tuple = name.replace('pretrained.act_postprocess1.3', 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: lowerCAmelCase : str = name.replace('pretrained.act_postprocess1.4', 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: lowerCAmelCase : int = name.replace('pretrained.act_postprocess2.3', 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: lowerCAmelCase : Optional[Any] = name.replace('pretrained.act_postprocess2.4', 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess3.3', 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess4.3', 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess4.4', 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: lowerCAmelCase : int = name.replace('pretrained', 'dpt' ) if "bn" in name: lowerCAmelCase : List[str] = name.replace('bn', 'batch_norm' ) if "head" in name: lowerCAmelCase : Any = name.replace('head', 'head.head' ) if "encoder.norm" in name: lowerCAmelCase : Dict = name.replace('encoder.norm', 'layernorm' ) if "auxlayer" in name: lowerCAmelCase : Tuple = name.replace('auxlayer', 'auxiliary_head.head' ) if "backbone" in name: lowerCAmelCase : Tuple = name.replace('backbone', 'backbone.bit.encoder' ) if ".." in name: lowerCAmelCase : Optional[Any] = name.replace('..', '.' ) if "stem.conv" in name: lowerCAmelCase : List[str] = name.replace('stem.conv', 'bit.embedder.convolution' ) if "blocks" in name: lowerCAmelCase : Dict = name.replace('blocks', 'layers' ) if "convolution" in name and "backbone" in name: lowerCAmelCase : Dict = name.replace('convolution', 'conv' ) if "layer" in name and "backbone" in name: lowerCAmelCase : Dict = name.replace('layer', 'layers' ) if "backbone.bit.encoder.bit" in name: lowerCAmelCase : List[str] = name.replace('backbone.bit.encoder.bit', 'backbone.bit' ) if "embedder.conv" in name: lowerCAmelCase : Any = name.replace('embedder.conv', 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: lowerCAmelCase : Optional[int] = name.replace('backbone.bit.encoder.stem.norm', 'backbone.bit.embedder.norm' ) return name def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : List[Any] = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowerCAmelCase : int = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Union[str, Any] = in_proj_weight[: config.hidden_size, :] lowerCAmelCase : Dict = in_proj_bias[: config.hidden_size] lowerCAmelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : List[str] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Tuple = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase , lowerCAmelCase : List[str] = get_dpt_config(_UpperCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCAmelCase : str = torch.load(_UpperCAmelCase, map_location='cpu' ) # remove certain keys remove_ignore_keys_(_UpperCAmelCase ) # rename keys for key in state_dict.copy().keys(): lowerCAmelCase : str = state_dict.pop(_UpperCAmelCase ) lowerCAmelCase : int = val # read in qkv matrices read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase ) # load HuggingFace model lowerCAmelCase : int = DPTForSemanticSegmentation(_UpperCAmelCase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # Check outputs on an image lowerCAmelCase : str = 480 if 'ade' in checkpoint_url else 384 lowerCAmelCase : Dict = DPTImageProcessor(size=_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = prepare_img() lowerCAmelCase : Union[str, Any] = image_processor(_UpperCAmelCase, return_tensors='pt' ) # forward pass lowerCAmelCase : Optional[Any] = model(**_UpperCAmelCase ).logits if 'ade' in checkpoint_url else model(**_UpperCAmelCase ).predicted_depth if show_prediction: lowerCAmelCase : str = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ), size=(image.size[1], image.size[0]), mode='bicubic', align_corners=_UpperCAmelCase, ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) __A : Dict = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
138
0
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCamelCase_ ( pl.LightningModule): """simple docstring""" def __init__( self : str , UpperCAmelCase__ : List[str] ) -> Union[str, Any]: super().__init__() __SCREAMING_SNAKE_CASE = model __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = nn.Linear(self.model.config.hidden_size , self.num_labels ) def UpperCAmelCase_ ( self : int ) -> Any: pass def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = LongformerModel.from_pretrained(__A ) __SCREAMING_SNAKE_CASE = LightningModel(__A ) __SCREAMING_SNAKE_CASE = torch.load(__A , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model __SCREAMING_SNAKE_CASE = LongformerForQuestionAnswering.from_pretrained(__A ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__A ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a__ : List[str] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
357
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase__ : WhisperForConditionalGeneration , UpperCAmelCase__ : WhisperProcessor , UpperCAmelCase__ : AutoencoderKL , UpperCAmelCase__ : CLIPTextModel , UpperCAmelCase__ : CLIPTokenizer , UpperCAmelCase__ : UNetaDConditionModel , UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase__ : StableDiffusionSafetyChecker , UpperCAmelCase__ : CLIPImageProcessor , ) -> Optional[int]: super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=UpperCAmelCase__ , speech_processor=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ , ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ) -> str: if slice_size == "auto": __SCREAMING_SNAKE_CASE = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def __call__( self : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str=1_6_0_0_0 , UpperCAmelCase__ : int = 5_1_2 , UpperCAmelCase__ : int = 5_1_2 , UpperCAmelCase__ : int = 5_0 , UpperCAmelCase__ : float = 7.5 , UpperCAmelCase__ : Optional[Union[str, List[str]]] = None , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : Optional[torch.Generator] = None , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase__ : int = 1 , **UpperCAmelCase__ : Dict , ) -> Any: __SCREAMING_SNAKE_CASE = self.speech_processor.feature_extractor( UpperCAmelCase__ , return_tensors="pt" , sampling_rate=UpperCAmelCase__ ).input_features.to(self.device ) __SCREAMING_SNAKE_CASE = self.speech_model.generate(UpperCAmelCase__ , max_length=4_8_0_0_0_0 ) __SCREAMING_SNAKE_CASE = self.speech_processor.tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , normalize=UpperCAmelCase__ )[ 0 ] if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = 1 elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase__ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(UpperCAmelCase__ )}.""" ) # get prompt text embeddings __SCREAMING_SNAKE_CASE = self.tokenizer( UpperCAmelCase__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __SCREAMING_SNAKE_CASE = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __SCREAMING_SNAKE_CASE = text_input_ids[:, : self.tokenizer.model_max_length] __SCREAMING_SNAKE_CASE = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = text_embeddings.shape __SCREAMING_SNAKE_CASE = text_embeddings.repeat(1 , UpperCAmelCase__ , 1 ) __SCREAMING_SNAKE_CASE = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCAmelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __SCREAMING_SNAKE_CASE = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE = 42 if negative_prompt is None: __SCREAMING_SNAKE_CASE = [""] * batch_size elif type(UpperCAmelCase__ ) is not type(UpperCAmelCase__ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(UpperCAmelCase__ )} !=""" F""" {type(UpperCAmelCase__ )}.""" ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = [negative_prompt] elif batch_size != len(UpperCAmelCase__ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(UpperCAmelCase__ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: __SCREAMING_SNAKE_CASE = negative_prompt __SCREAMING_SNAKE_CASE = text_input_ids.shape[-1] __SCREAMING_SNAKE_CASE = self.tokenizer( UpperCAmelCase__ , padding="max_length" , max_length=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="pt" , ) __SCREAMING_SNAKE_CASE = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE = uncond_embeddings.shape[1] __SCREAMING_SNAKE_CASE = uncond_embeddings.repeat(1 , UpperCAmelCase__ , 1 ) __SCREAMING_SNAKE_CASE = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCAmelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __SCREAMING_SNAKE_CASE = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __SCREAMING_SNAKE_CASE = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __SCREAMING_SNAKE_CASE = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __SCREAMING_SNAKE_CASE = torch.randn(UpperCAmelCase__ , generator=UpperCAmelCase__ , device="cpu" , dtype=UpperCAmelCase__ ).to( self.device ) else: __SCREAMING_SNAKE_CASE = torch.randn(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device , dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __SCREAMING_SNAKE_CASE = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __SCREAMING_SNAKE_CASE = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __SCREAMING_SNAKE_CASE = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __SCREAMING_SNAKE_CASE = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __SCREAMING_SNAKE_CASE = {} if accepts_eta: __SCREAMING_SNAKE_CASE = eta for i, t in enumerate(self.progress_bar(UpperCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) # predict the noise residual __SCREAMING_SNAKE_CASE = self.unet(UpperCAmelCase__ , UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ ).sample # perform guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 1 / 0.18_215 * latents __SCREAMING_SNAKE_CASE = self.vae.decode(UpperCAmelCase__ ).sample __SCREAMING_SNAKE_CASE = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=UpperCAmelCase__ , nsfw_content_detected=UpperCAmelCase__ )
195
0
from __future__ import annotations def lowercase_ ( _lowerCamelCase : list[int]): if len(_lowerCamelCase) == 0: return array lowercase__ , lowercase__ : Any = min(_lowerCamelCase), max(_lowerCamelCase) # Compute the variables lowercase__ : List[str] = _max - _min + 1 lowercase__ , lowercase__ : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowercase__ : int = i - _min lowercase__ : Any = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowercase__ : Any = 0 for i in range(_lowerCamelCase): while holes_repeat[i] > 0: lowercase__ : List[str] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by comma:\n''') UpperCamelCase = [int(x) for x in user_input.split(''',''')] print(pigeon_sort(unsorted))
87
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[int] = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
192
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> List[str]: """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) SCREAMING_SNAKE_CASE :Tuple = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class __magic_name__ ( snake_case ): @staticmethod def UpperCAmelCase_ ( _lowercase )-> Optional[int]: UpperCamelCase_ = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=_lowercase , required=_lowercase , help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" , type=_lowercase , required=_lowercase , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=_lowercase , required=_lowercase , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=_lowercase , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=_lowercase , default=_lowercase , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=_lowercase ) def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , *_lowercase , )-> Union[str, Any]: UpperCamelCase_ = logging.get_logger("transformers-cli/converting" ) self._logger.info(F"Loading model {model_type}" ) UpperCamelCase_ = model_type UpperCamelCase_ = tf_checkpoint UpperCamelCase_ = pytorch_dump_output UpperCamelCase_ = config UpperCamelCase_ = finetuning_task_name def UpperCAmelCase_ ( self )-> Optional[int]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) if "ckpt" in self._tf_checkpoint.lower(): UpperCamelCase_ = self._tf_checkpoint UpperCamelCase_ = "" else: UpperCamelCase_ = self._tf_checkpoint UpperCamelCase_ = "" convert_transfo_xl_checkpoint_to_pytorch( _lowercase , self._config , self._pytorch_dump_output , _lowercase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowercase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
60
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False )-> str: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = f"Expected string as input, found {type(SCREAMING_SNAKE_CASE_ )}" raise ValueError(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = f"Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE_ )}" raise ValueError(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = input_str.split("_" ) UpperCamelCase_ = 0 if use_pascal else 1 UpperCamelCase_ = words[start_index:] UpperCamelCase_ = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCamelCase_ = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
60
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class snake_case ( unittest.TestCase ): """simple docstring""" snake_case__ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case__ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Any ): UpperCAmelCase__ = TextaTextGenerationPipeline(model=lowerCamelCase__ ,tokenizer=lowerCamelCase__ ) return generator, ["Something to write", "Something else"] def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any] ): UpperCAmelCase__ = generator('Something there' ) self.assertEqual(lowerCamelCase__ ,[{'generated_text': ANY(lowerCamelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) UpperCAmelCase__ = generator(['This is great !', 'Something else'] ,num_return_sequences=2 ,do_sample=lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ ,[ [{'generated_text': ANY(lowerCamelCase__ )}, {'generated_text': ANY(lowerCamelCase__ )}], [{'generated_text': ANY(lowerCamelCase__ )}, {'generated_text': ANY(lowerCamelCase__ )}], ] ,) UpperCAmelCase__ = generator( ['This is great !', 'Something else'] ,num_return_sequences=2 ,batch_size=2 ,do_sample=lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ ,[ [{'generated_text': ANY(lowerCamelCase__ )}, {'generated_text': ANY(lowerCamelCase__ )}], [{'generated_text': ANY(lowerCamelCase__ )}, {'generated_text': ANY(lowerCamelCase__ )}], ] ,) with self.assertRaises(lowerCamelCase__ ): generator(4 ) @require_torch def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = pipeline('text2text-generation' ,model='patrickvonplaten/t5-tiny-random' ,framework='pt' ) # do_sample=False necessary for reproducibility UpperCAmelCase__ = generator('Something there' ,do_sample=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ ,[{'generated_text': ''}] ) UpperCAmelCase__ = 3 UpperCAmelCase__ = generator( 'Something there' ,num_return_sequences=lowerCamelCase__ ,num_beams=lowerCamelCase__ ,) UpperCAmelCase__ = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = generator('This is a test' ,do_sample=lowerCamelCase__ ,num_return_sequences=2 ,return_tensors=lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ ,[ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] ,) UpperCAmelCase__ = generator.model.config.eos_token_id UpperCAmelCase__ = '<pad>' UpperCAmelCase__ = generator( ['This is a test', 'This is a second test'] ,do_sample=lowerCamelCase__ ,num_return_sequences=2 ,batch_size=2 ,return_tensors=lowerCamelCase__ ,) self.assertEqual( lowerCamelCase__ ,[ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] ,) @require_tf def __lowerCAmelCase ( self : Any ): UpperCAmelCase__ = pipeline('text2text-generation' ,model='patrickvonplaten/t5-tiny-random' ,framework='tf' ) # do_sample=False necessary for reproducibility UpperCAmelCase__ = generator('Something there' ,do_sample=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ ,[{'generated_text': ''}] )
98
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ : Optional[Any] = logging.getLogger() def a_ ( ): UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('-f' ) UpperCAmelCase__ = parser.parse_args() return args.f class snake_case ( __UpperCAmelCase ): """simple docstring""" def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ): UpperCAmelCase__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 ,'run_glue_deebert.py' ) with patch.object(lowerCamelCase__ ,'argv' ,lowerCamelCase__ ): UpperCAmelCase__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCamelCase__ ,0.6_6_6 ) @slow @require_torch_non_multi_gpu def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(lowerCamelCase__ ) UpperCAmelCase__ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase__ ) UpperCAmelCase__ = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase__ )
98
1
import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE_:Any = """docs/source/en/_toctree.yml""" def __UpperCamelCase ( _lowerCAmelCase ) -> Optional[Any]: """simple docstring""" A : List[Any] = defaultdict(_lowerCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 A : Dict = [key for key, value in counts.items() if value > 1] A : Optional[int] = [] for duplicate_key in duplicates: A : Dict = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(_lowerCAmelCase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : s["title"].lower() ) def __UpperCamelCase ( _lowerCAmelCase=False ) -> Tuple: """simple docstring""" with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: A : List[Any] = yaml.safe_load(f.read() ) # Get to the API doc A : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 A : Dict = content[api_idx]["""sections"""] # Then to the model doc A : int = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 A : Union[str, Any] = api_doc[model_idx]["""sections"""] A : List[Any] = [(idx, section) for idx, section in enumerate(_lowerCAmelCase ) if """sections""" in section] A : Optional[Any] = False for idx, modality_doc in modalities_docs: A : Union[str, Any] = modality_doc["""sections"""] A : List[str] = clean_model_doc_toc(_lowerCAmelCase ) if old_modality_doc != new_modality_doc: A : Optional[Any] = True if overwrite: A : Dict = new_modality_doc if diff: if overwrite: A : str = model_doc A : List[str] = api_doc with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(_lowerCAmelCase , allow_unicode=_lowerCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Dict = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") SCREAMING_SNAKE_CASE_:Dict = parser.parse_args() check_model_doc(args.fix_and_overwrite)
115
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): A : str = tempfile.mkdtemp() A : Any = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] A : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) A : Any = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], """do_convert_rgb""": True, } A : int = os.path.join(self.tmpdirname, lowerCamelCase__ ) with open(self.image_processor_file, """w""", encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return BertTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase__ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return BertTokenizerFast.from_pretrained(self.tmpdirname, **lowerCamelCase__ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase__ ) def _lowerCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): A : Optional[int] = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] A : List[Any] = [Image.fromarray(np.moveaxis(lowerCamelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self ): A : List[Any] = self.get_tokenizer() A : Dict = self.get_rust_tokenizer() A : List[Any] = self.get_image_processor() A : int = ChineseCLIPProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) A : Optional[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase__ ) A : str = ChineseCLIPProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) A : Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer, lowerCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCamelCase__ ) self.assertIsInstance(processor_fast.image_processor, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : str = ChineseCLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : Optional[int] = self.get_tokenizer(cls_token="""(CLS)""", sep_token="""(SEP)""" ) A : Optional[int] = self.get_image_processor(do_normalize=lowerCamelCase__ ) A : Optional[int] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname, cls_token="""(CLS)""", sep_token="""(SEP)""", do_normalize=lowerCamelCase__ ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Tuple = self.get_image_processor() A : List[str] = self.get_tokenizer() A : List[str] = ChineseCLIPProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : Any = self.prepare_image_inputs() A : Union[str, Any] = image_processor(lowerCamelCase__, return_tensors="""np""" ) A : str = processor(images=lowerCamelCase__, return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def _lowerCAmelCase ( self ): A : List[str] = self.get_image_processor() A : Tuple = self.get_tokenizer() A : str = ChineseCLIPProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : Any = """Alexandra,T-shirt的价格是15便士。""" A : Optional[Any] = processor(text=lowerCamelCase__ ) A : int = tokenizer(lowerCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def _lowerCAmelCase ( self ): A : Dict = self.get_image_processor() A : List[str] = self.get_tokenizer() A : int = ChineseCLIPProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : str = """Alexandra,T-shirt的价格是15便士。""" A : Dict = self.prepare_image_inputs() A : Optional[int] = processor(text=lowerCamelCase__, images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def _lowerCAmelCase ( self ): A : Union[str, Any] = self.get_image_processor() A : List[str] = self.get_tokenizer() A : List[str] = ChineseCLIPProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A : List[Any] = processor.batch_decode(lowerCamelCase__ ) A : str = tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : List[str] = self.get_image_processor() A : List[str] = self.get_tokenizer() A : Any = ChineseCLIPProcessor(tokenizer=lowerCamelCase__, image_processor=lowerCamelCase__ ) A : List[Any] = """Alexandra,T-shirt的价格是15便士。""" A : Optional[Any] = self.prepare_image_inputs() A : str = processor(text=lowerCamelCase__, images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
115
1
'''simple docstring''' import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib A ={ "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } A =logging.WARNING def snake_case_ (): UpperCAmelCase = os.getenv('''DATASETS_VERBOSITY''' , _SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option DATASETS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def snake_case_ (): return __name__.split('''.''' )[0] def snake_case_ (): return logging.getLogger(_get_library_name() ) def snake_case_ (): UpperCAmelCase = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def snake_case_ (): UpperCAmelCase = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def snake_case_ (_a : Optional[str] = None ): if name is None: UpperCAmelCase = _get_library_name() return logging.getLogger(_SCREAMING_SNAKE_CASE ) def snake_case_ (): return _get_library_root_logger().getEffectiveLevel() def snake_case_ (_a : int ): _get_library_root_logger().setLevel(_SCREAMING_SNAKE_CASE ) def snake_case_ (): return set_verbosity(_SCREAMING_SNAKE_CASE ) def snake_case_ (): return set_verbosity(_SCREAMING_SNAKE_CASE ) def snake_case_ (): return set_verbosity(_SCREAMING_SNAKE_CASE ) def snake_case_ (): return set_verbosity(_SCREAMING_SNAKE_CASE ) def snake_case_ (): UpperCAmelCase = False def snake_case_ (): UpperCAmelCase = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _a : def __init__( self : Any , *lowercase : Tuple , **lowercase : Tuple ): # pylint: disable=unused-argument '''simple docstring''' UpperCAmelCase = args[0] if args else None def __iter__( self : Union[str, Any] ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' def empty_fn(*lowercase : List[str] , **lowercase : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : str ): '''simple docstring''' return self def __exit__( self : Any , lowercase : List[str] , lowercase : Tuple , lowercase : str ): '''simple docstring''' return A =True class _a : def __call__( self : Union[str, Any] , *lowercase : Optional[int] , lowercase : List[Any]=False , **lowercase : List[Any] ): '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*__UpperCamelCase , **__UpperCamelCase ) else: return EmptyTqdm(*__UpperCamelCase , **__UpperCamelCase ) def A ( self : Optional[int] , *lowercase : List[str] , **lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__UpperCamelCase , **__UpperCamelCase ) def A ( self : Optional[int] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() A =_tqdm_cls() def snake_case_ (): global _tqdm_active return bool(_tqdm_active ) def snake_case_ (): global _tqdm_active UpperCAmelCase = True def snake_case_ (): global _tqdm_active UpperCAmelCase = False
34
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : List[str] = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """poolformer""" def __init__( self : List[str] , __UpperCamelCase : int=3 , __UpperCamelCase : List[Any]=1_6 , __UpperCamelCase : str=1_6 , __UpperCamelCase : List[Any]=3 , __UpperCamelCase : int=4.0 , __UpperCamelCase : str=[2, 2, 6, 2] , __UpperCamelCase : Tuple=[6_4, 1_2_8, 3_2_0, 5_1_2] , __UpperCamelCase : int=[7, 3, 3, 3] , __UpperCamelCase : str=[4, 2, 2, 2] , __UpperCamelCase : Union[str, Any]=[2, 1, 1, 1] , __UpperCamelCase : List[str]=4 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : Any="gelu" , __UpperCamelCase : List[str]=True , __UpperCamelCase : Union[str, Any]=1e-5 , __UpperCamelCase : str=0.0_2 , **__UpperCamelCase : List[Any] , )->Dict: _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = stride _UpperCAmelCase = padding _UpperCAmelCase = pool_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = mlp_ratio _UpperCAmelCase = depths _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = num_encoder_blocks _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_layer_scale _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = initializer_range super().__init__(**__UpperCamelCase ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = version.parse("""1.11""") @property def lowercase__ ( self : Union[str, Any] )->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ ( self : Tuple )->float: return 2e-3
260
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ) -> int: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope _snake_case = self.vocab_size - 1 def lowerCAmelCase ( self ) -> int: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _snake_case = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ) -> Optional[Any]: _snake_case = OpenAIGPTModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ) -> Dict: _snake_case = OpenAIGPTLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ) -> List[str]: _snake_case = OpenAIGPTDoubleHeadsModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ) -> Dict: _snake_case = self.num_labels _snake_case = OpenAIGPTForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCAmelCase_ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Union[str, Any]: _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_ , ) _snake_case = inputs_dict['labels'] _snake_case = inputs_dict['labels'] _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase_ , ) _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowerCAmelCase ( self ) -> List[str]: _snake_case = OpenAIGPTModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , n_embd=37 ) def lowerCAmelCase ( self ) -> Any: self.config_tester.run_common_tests() def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> Dict: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = OpenAIGPTModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(lowerCAmelCase_ ) _snake_case = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president is _snake_case = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the _snake_case = model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase_ )
295
import random def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : bool = False ) -> dict: '''simple docstring''' _snake_case = {i: [] for i in range(UpperCamelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(UpperCamelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if random.random() < probability: graph[i].append(UpperCamelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(UpperCamelCase__ ) return graph def lowerCamelCase__ ( UpperCamelCase__ : int ) -> dict: '''simple docstring''' return { i: [j for j in range(UpperCamelCase__ ) if i != j] for i in range(UpperCamelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
295
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) @dataclass class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : Any ,**A : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __A = deprecated_arg[3:] __A = not kwargs.pop(A ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) __A = kwargs.pop("tpu_name" ,self.tpu_name ) __A = kwargs.pop("device_idx" ,self.device_idx ) __A = kwargs.pop("eager_mode" ,self.eager_mode ) __A = kwargs.pop("use_xla" ,self.use_xla ) super().__init__(**A ) snake_case_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Name of TPU"} , ) snake_case_ = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) snake_case_ = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Benchmark models in eager model."} ) snake_case_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def UpperCamelCase_ ( self : Dict ): requires_backends(self ,["tf"] ) __A = None if self.tpu: try: if self.tpu_name: __A = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __A = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __A = None return tpu @cached_property def UpperCamelCase_ ( self : Tuple ): requires_backends(self ,["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __A = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,"GPU" ) __A = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] ,"GPU" ) # disable GPU __A = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def UpperCamelCase_ ( self : List[Any] ): requires_backends(self ,["tf"] ) return self._setup_tpu is not None @property def UpperCamelCase_ ( self : Any ): requires_backends(self ,["tf"] ) return self._setup_strategy @property def UpperCamelCase_ ( self : int ): requires_backends(self ,["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def UpperCamelCase_ ( self : Tuple ): requires_backends(self ,["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase_ ( self : Union[str, Any] ): return self.n_gpu > 0
15
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) SCREAMING_SNAKE_CASE :List[str] = 'pytorch_model.bin' SCREAMING_SNAKE_CASE :str = 'pytorch_model.bin.index.json' SCREAMING_SNAKE_CASE :Optional[int] = 'adapter_config.json' SCREAMING_SNAKE_CASE :Dict = 'adapter_model.bin' SCREAMING_SNAKE_CASE :Dict = 'adapter_model.safetensors' SCREAMING_SNAKE_CASE :str = 'tf_model.h5' SCREAMING_SNAKE_CASE :List[Any] = 'tf_model.h5.index.json' SCREAMING_SNAKE_CASE :str = 'model.ckpt' SCREAMING_SNAKE_CASE :List[Any] = 'flax_model.msgpack' SCREAMING_SNAKE_CASE :Optional[int] = 'flax_model.msgpack.index.json' SCREAMING_SNAKE_CASE :Tuple = 'model.safetensors' SCREAMING_SNAKE_CASE :List[Any] = 'model.safetensors.index.json' SCREAMING_SNAKE_CASE :str = 'config.json' SCREAMING_SNAKE_CASE :int = 'preprocessor_config.json' SCREAMING_SNAKE_CASE :Optional[Any] = FEATURE_EXTRACTOR_NAME SCREAMING_SNAKE_CASE :Optional[int] = 'generation_config.json' SCREAMING_SNAKE_CASE :List[str] = 'modelcard.json' SCREAMING_SNAKE_CASE :Optional[int] = '▁' SCREAMING_SNAKE_CASE :Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility SCREAMING_SNAKE_CASE :str = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. SCREAMING_SNAKE_CASE :Optional[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] SCREAMING_SNAKE_CASE :List[Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: __A = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: __A = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
15
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , a , a=7 , a=3 , a=30 , a=400 , a=True , a=None , a=True , a=[0.5, 0.5, 0.5] , a=[0.5, 0.5, 0.5] , a=True , a=1 / 255 , a=True , ) -> Optional[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_pad def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE__ ( self , a , a=False) -> Any: if not batched: SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(a , Image.Image): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE = int(self.size['shortest_edge'] * h / w) SCREAMING_SNAKE_CASE = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE = self.size['shortest_edge'] SCREAMING_SNAKE_CASE = int(self.size['shortest_edge'] * w / h) else: SCREAMING_SNAKE_CASE = self.size['shortest_edge'] SCREAMING_SNAKE_CASE = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) SCREAMING_SNAKE_CASE = max(a , key=lambda a: item[0])[0] SCREAMING_SNAKE_CASE = max(a , key=lambda a: item[1])[1] return expected_height, expected_width @require_torch @require_vision class _snake_case ( A__ , unittest.TestCase ): _lowercase : Dict = DetaImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = DetaImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(a , 'image_mean')) self.assertTrue(hasattr(a , 'image_std')) self.assertTrue(hasattr(a , 'do_normalize')) self.assertTrue(hasattr(a , 'do_resize')) self.assertTrue(hasattr(a , 'do_rescale')) self.assertTrue(hasattr(a , 'do_pad')) self.assertTrue(hasattr(a , 'size')) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333}) self.assertEqual(image_processor.do_pad , a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a) for image in image_inputs: self.assertIsInstance(a , Image.Image) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(a) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(a , batched=a) SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a) for image in image_inputs: self.assertIsInstance(a , np.ndarray) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(a) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(a , batched=a) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a) for image in image_inputs: self.assertIsInstance(a , torch.Tensor) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(a) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(a , batched=a) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: # prepare image and target SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r') as f: SCREAMING_SNAKE_CASE = json.loads(f.read()) SCREAMING_SNAKE_CASE = {'image_id': 3_9769, 'annotations': target} # encode them SCREAMING_SNAKE_CASE = DetaImageProcessor() SCREAMING_SNAKE_CASE = image_processing(images=a , annotations=a , return_tensors='pt') # verify pixel values SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['pixel_values'].shape , a) SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a , atol=1E-4)) # verify area SCREAMING_SNAKE_CASE = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a)) # verify boxes SCREAMING_SNAKE_CASE = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , a) SCREAMING_SNAKE_CASE = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a , atol=1E-3)) # verify image_id SCREAMING_SNAKE_CASE = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a)) # verify is_crowd SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a)) # verify class_labels SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a)) # verify orig_size SCREAMING_SNAKE_CASE = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a)) # verify size SCREAMING_SNAKE_CASE = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a)) @slow def SCREAMING_SNAKE_CASE__ ( self) -> Dict: # prepare image, target and masks_path SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r') as f: SCREAMING_SNAKE_CASE = json.loads(f.read()) SCREAMING_SNAKE_CASE = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} SCREAMING_SNAKE_CASE = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic') # encode them SCREAMING_SNAKE_CASE = DetaImageProcessor(format='coco_panoptic') SCREAMING_SNAKE_CASE = image_processing(images=a , annotations=a , masks_path=a , return_tensors='pt') # verify pixel values SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['pixel_values'].shape , a) SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a , atol=1E-4)) # verify area SCREAMING_SNAKE_CASE = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a)) # verify boxes SCREAMING_SNAKE_CASE = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , a) SCREAMING_SNAKE_CASE = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a , atol=1E-3)) # verify image_id SCREAMING_SNAKE_CASE = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a)) # verify is_crowd SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a)) # verify class_labels SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a)) # verify masks SCREAMING_SNAKE_CASE = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , a) # verify orig_size SCREAMING_SNAKE_CASE = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a)) # verify size SCREAMING_SNAKE_CASE = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a))
356
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowerCamelCase__ (_UpperCAmelCase): monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set()) @pytest.fixture def lowerCamelCase__ (_UpperCAmelCase): class _snake_case : def __init__( self , a) -> List[Any]: SCREAMING_SNAKE_CASE = metric_id class _snake_case : _lowercase : Optional[Any] = [MetricMock(A__ ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock()) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))]) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): if "tmp_path" in args: SCREAMING_SNAKE_CASE = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args) with pytest.warns(_UpperCAmelCase , match='https://huggingface.co/docs/evaluate'): func(*_UpperCAmelCase)
327
0
def __snake_case ( _lowerCAmelCase : int ) -> str: A_ : Optional[Any] = int(snake_case__ ) if decimal in (0, 1): # Exit cases for the recursion return str(snake_case__ ) A_ : Tuple = divmod(snake_case__ , 2 ) return binary_recursive(snake_case__ ) + str(snake_case__ ) def __snake_case ( _lowerCAmelCase : str ) -> str: A_ : Optional[Any] = str(snake_case__ ).strip() if not number: raise ValueError("No input value was provided" ) A_ : Any = '-' if number.startswith("-" ) else '' A_ : List[str] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f"{negative}0b{binary_recursive(int(snake_case__ ) )}" if __name__ == "__main__": from doctest import testmod testmod()
300
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __UpperCAmelCase = None __UpperCAmelCase = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __UpperCAmelCase = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : bool = True UpperCAmelCase__ : Optional[str] = None # Automatically constructed UpperCAmelCase__ : ClassVar[str] = "PIL.Image.Image" UpperCAmelCase__ : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCAmelCase__ : str = field(default="Image" , init=a__ , repr=a__ ) def __call__( self ) -> Any: return self.pa_type def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = np.array(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): return {"path": value, "bytes": None} elif isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): return {"path": None, "bytes": value} elif isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(SCREAMING_SNAKE_CASE_ ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: UpperCamelCase : Any = {} UpperCamelCase , UpperCamelCase : Union[str, Any] = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = PIL.Image.open(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : int = path.split('::' )[-1] try: UpperCamelCase : Optional[Any] = string_to_dict(SCREAMING_SNAKE_CASE_, config.HUB_DATASETS_URL )['repo_id'] UpperCamelCase : str = token_per_repo_id.get(SCREAMING_SNAKE_CASE_ ) except ValueError: UpperCamelCase : Tuple = None with xopen(SCREAMING_SNAKE_CASE_, 'rb', use_auth_token=SCREAMING_SNAKE_CASE_ ) as f: UpperCamelCase : Optional[int] = BytesIO(f.read() ) UpperCamelCase : int = PIL.Image.open(bytes_ ) else: UpperCamelCase : Optional[int] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def snake_case_ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> pa.StructArray: if pa.types.is_string(storage.type ): UpperCamelCase : List[str] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ), type=pa.binary() ) UpperCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, storage], ['bytes', 'path'], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase : Optional[int] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ), type=pa.string() ) UpperCamelCase : Union[str, Any] = pa.StructArray.from_arrays([storage, path_array], ['bytes', 'path'], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: UpperCamelCase : List[str] = storage.field('bytes' ) else: UpperCamelCase : List[str] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ), type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: UpperCamelCase : List[str] = storage.field('path' ) else: UpperCamelCase : Optional[Any] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ), type=pa.string() ) UpperCamelCase : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array], ['bytes', 'path'], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase : Optional[Any] = pa.array( [encode_np_array(np.array(SCREAMING_SNAKE_CASE_ ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) UpperCamelCase : List[str] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ), type=pa.string() ) UpperCamelCase : int = pa.StructArray.from_arrays( [bytes_array, path_array], ['bytes', 'path'], mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_, self.pa_type ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(SCREAMING_SNAKE_CASE_ ): with xopen(SCREAMING_SNAKE_CASE_, 'rb' ) as f: UpperCamelCase : Optional[int] = f.read() return bytes_ UpperCamelCase : Union[str, Any] = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) UpperCamelCase : Any = pa.array( [os.path.basename(SCREAMING_SNAKE_CASE_ ) if path is not None else None for path in storage.field('path' ).to_pylist()], type=pa.string(), ) UpperCamelCase : int = pa.StructArray.from_arrays([bytes_array, path_array], ['bytes', 'path'], mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_, self.pa_type ) def UpperCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase : Dict = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def UpperCamelCase ( snake_case__ : "PIL.Image.Image" ) -> bytes: UpperCamelCase : Any = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase : Tuple = image.format else: UpperCamelCase : List[str] = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(snake_case__ , format=snake_case__ ) return buffer.getvalue() def UpperCamelCase ( snake_case__ : "PIL.Image.Image" ) -> dict: if hasattr(snake_case__ , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(snake_case__ )} def UpperCamelCase ( snake_case__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) UpperCamelCase : Union[str, Any] = array.dtype UpperCamelCase : List[Any] = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER UpperCamelCase : Optional[Any] = dtype.kind UpperCamelCase : Any = dtype.itemsize UpperCamelCase : int = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase : Optional[Any] = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase : List[Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase : Dict = dtype_byteorder + dtype_kind + str(snake_case__ ) UpperCamelCase : str = np.dtype(snake_case__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) UpperCamelCase : Union[str, Any] = PIL.Image.fromarray(array.astype(snake_case__ ) ) return {"path": None, "bytes": image_to_bytes(snake_case__ )} def UpperCamelCase ( snake_case__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: UpperCamelCase , UpperCamelCase : Union[str, Any] = first_non_null_value(snake_case__ ) if isinstance(snake_case__ , snake_case__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(snake_case__ , np.ndarray ): UpperCamelCase : List[Any] = no_op_if_value_is_null(snake_case__ ) return [obj_to_image_dict_func(snake_case__ ) for obj in objs] elif isinstance(snake_case__ , PIL.Image.Image ): UpperCamelCase : Optional[int] = no_op_if_value_is_null(snake_case__ ) return [obj_to_image_dict_func(snake_case__ ) for obj in objs] else: return objs else: return objs
119
0
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class a ( _lowerCamelCase ): snake_case_ = (CMStochasticIterativeScheduler,) snake_case_ = 10 def A_ ( self : List[Any] , **lowercase_ : Any ): snake_case_ = { '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**lowercase_ ) return config def A_ ( self : List[Any] ): snake_case_ = 10 snake_case_ = self.get_scheduler_config() snake_case_ = self.scheduler_classes[0](**lowercase_ ) scheduler.set_timesteps(lowercase_ ) snake_case_ = scheduler.timesteps[0] snake_case_ = scheduler.timesteps[1] snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample snake_case_ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A_ ( self : Dict ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def A_ ( self : Tuple ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowercase_ ) def A_ ( self : Optional[Any] ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = 1 scheduler.set_timesteps(lowercase_ ) snake_case_ = scheduler.timesteps snake_case_ = torch.manual_seed(0 ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowercase_ ): # 1. scale model input snake_case_ = scheduler.scale_model_input(lowercase_ , lowercase_ ) # 2. predict noise residual snake_case_ = model(lowercase_ , lowercase_ ) # 3. predict previous sample x_t-1 snake_case_ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample snake_case_ = pred_prev_sample snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def A_ ( self : List[str] ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = [106, 0] scheduler.set_timesteps(timesteps=lowercase_ ) snake_case_ = scheduler.timesteps snake_case_ = torch.manual_seed(0 ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case_ = scheduler.scale_model_input(lowercase_ , lowercase_ ) # 2. predict noise residual snake_case_ = model(lowercase_ , lowercase_ ) # 3. predict previous sample x_t-1 snake_case_ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample snake_case_ = pred_prev_sample snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def A_ ( self : int ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = [39, 30, 12, 15, 0] with self.assertRaises(lowercase_ , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowercase_ ) def A_ ( self : Tuple ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = [39, 30, 12, 1, 0] snake_case_ = len(lowercase_ ) with self.assertRaises(lowercase_ , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowercase_ , timesteps=lowercase_ ) def A_ ( self : str ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowercase_ )
354
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Union[str, Any] = get_logger(__name__) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Tuple: '''simple docstring''' os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): snake_case_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F"Saving model to {output_model_file}" ) torch.save(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Saving model to {output_model_file}" ) torch.save(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = os.path.join(__UpperCAmelCase, F"{MODEL_NAME}_{model_index}" ) os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) logger.info(F"Saving model to {ckpt_dir}" ) snake_case_ = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=__UpperCAmelCase, storage_writer=dist_cp.FileSystemWriter(__UpperCAmelCase ), planner=DefaultSavePlanner(), ) logger.info(F"Model saved to {ckpt_dir}" ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> str: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return snake_case_ = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Loading model from {input_model_file}" ) snake_case_ = torch.load(__UpperCAmelCase ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Loading model from {input_model_file}" ) snake_case_ = torch.load(__UpperCAmelCase ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = ( os.path.join(__UpperCAmelCase, F"{MODEL_NAME}_{model_index}" ) if F"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(F"Loading model from {ckpt_dir}" ) snake_case_ = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=__UpperCAmelCase, storage_reader=dist_cp.FileSystemReader(__UpperCAmelCase ), planner=DefaultLoadPlanner(), ) snake_case_ = state_dict['''model'''] logger.info(F"Model loaded from {ckpt_dir}" ) model.load_state_dict(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Dict: '''simple docstring''' os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): snake_case_ = FSDP.optim_state_dict(__UpperCAmelCase, __UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Saving Optimizer state to {output_optimizer_file}" ) torch.save(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Optimizer state saved in {output_optimizer_file}" ) else: snake_case_ = os.path.join(__UpperCAmelCase, F"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(__UpperCAmelCase, exist_ok=__UpperCAmelCase ) logger.info(F"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state}, storage_writer=dist_cp.FileSystemWriter(__UpperCAmelCase ), planner=DefaultSavePlanner(), ) logger.info(F"Optimizer state saved in {ckpt_dir}" ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Union[str, Any]: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( __UpperCAmelCase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase ) logger.info(F"Loading Optimizer state from {input_optimizer_file}" ) snake_case_ = torch.load(__UpperCAmelCase ) logger.info(F"Optimizer state loaded from {input_optimizer_file}" ) else: snake_case_ = ( os.path.join(__UpperCAmelCase, F"{OPTIMIZER_NAME}_{optimizer_index}" ) if F"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(F"Loading Optimizer from {ckpt_dir}" ) snake_case_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict(), optimizer_key='''optimizer''', storage_reader=dist_cp.FileSystemReader(__UpperCAmelCase ), ) snake_case_ = optim_state['''optimizer'''] logger.info(F"Optimizer loaded from {ckpt_dir}" ) snake_case_ = FSDP.optim_state_dict_to_load(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) optimizer.load_state_dict(__UpperCAmelCase )
72
0
"""simple docstring""" from __future__ import annotations def lowercase_ ( __UpperCAmelCase ) -> list[int]: lowerCAmelCase__ : List[Any] = [True] * limit lowerCAmelCase__ : Dict = False lowerCAmelCase__ : Optional[Any] = False lowerCAmelCase__ : Union[str, Any] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowerCAmelCase__ : int = i * 2 while index < limit: lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Union[str, Any] = index + i lowerCAmelCase__ : List[str] = [2] for i in range(3 , __UpperCAmelCase , 2 ): if is_prime[i]: primes.append(__UpperCAmelCase ) return primes def lowercase_ ( __UpperCAmelCase = 100_0000 ) -> int: lowerCAmelCase__ : Tuple = prime_sieve(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : List[Any] = 0 for i in range(len(__UpperCAmelCase ) ): for j in range(i + length , len(__UpperCAmelCase ) ): lowerCAmelCase__ : List[str] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowerCAmelCase__ : Tuple = j - i lowerCAmelCase__ : List[Any] = sol return largest if __name__ == "__main__": print(f"""{solution() = }""")
242
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class _lowerCamelCase ( a_ ): _lowerCamelCase :Optional[Any] = "levit" def __init__( self : List[Any] , UpperCamelCase : List[str]=2_24 , UpperCamelCase : Any=3 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Union[str, Any]=2 , UpperCamelCase : Any=1 , UpperCamelCase : int=16 , UpperCamelCase : List[str]=[1_28, 2_56, 3_84] , UpperCamelCase : Optional[Any]=[4, 8, 12] , UpperCamelCase : Optional[int]=[4, 4, 4] , UpperCamelCase : str=[16, 16, 16] , UpperCamelCase : Tuple=0 , UpperCamelCase : List[str]=[2, 2, 2] , UpperCamelCase : Optional[int]=[2, 2, 2] , UpperCamelCase : Optional[int]=0.02 , **UpperCamelCase : Dict , ) -> Optional[Any]: """simple docstring""" super().__init__(**UpperCamelCase ) lowerCAmelCase__ : int = image_size lowerCAmelCase__ : Any = num_channels lowerCAmelCase__ : int = kernel_size lowerCAmelCase__ : Any = stride lowerCAmelCase__ : List[str] = padding lowerCAmelCase__ : Tuple = hidden_sizes lowerCAmelCase__ : str = num_attention_heads lowerCAmelCase__ : List[Any] = depths lowerCAmelCase__ : List[str] = key_dim lowerCAmelCase__ : List[str] = drop_path_rate lowerCAmelCase__ : List[Any] = patch_size lowerCAmelCase__ : Dict = attention_ratio lowerCAmelCase__ : Tuple = mlp_ratio lowerCAmelCase__ : Any = initializer_range lowerCAmelCase__ : Dict = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _lowerCamelCase ( a_ ): _lowerCamelCase :Tuple = version.parse("1.11" ) @property def _lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowerCAmelCase ( self : List[str] ) -> float: """simple docstring""" return 1E-4
242
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowercase = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""ViTFeatureExtractor"""] __lowercase = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
226
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __lowercase = logging.get_logger(__name__) class _A ( _a ): """simple docstring""" def __init__( self : List[Any] , *__UpperCAmelCase : int , **__UpperCAmelCase : List[Any]): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase)
226
1
import math def UpperCamelCase( __UpperCamelCase : Optional[Any] ): return math.sqrt(a_ ) * math.sqrt(a_ ) == num def UpperCamelCase( __UpperCamelCase : Any ): lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : List[Any] = n while left <= right: lowerCAmelCase_ : Union[str, Any] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase_ : Any = mid - 1 else: lowerCAmelCase_ : Tuple = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
103
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> List[str]: A_ : Any = parent A_ : List[Any] = batch_size A_ : List[Any] = image_size A_ : Optional[int] = num_channels A_ : Tuple = embeddings_size A_ : str = hidden_sizes A_ : Optional[Any] = depths A_ : Any = is_training A_ : int = use_labels A_ : int = hidden_act A_ : Optional[Any] = num_labels A_ : str = scope A_ : Optional[int] = len(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Dict = TFRegNetModel(config=_lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : Optional[Any] = self.num_labels A_ : int = TFRegNetForImageClassification(_lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = TFRegNetModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Dict: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase_ ( self ) -> int: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: pass def UpperCAmelCase_ ( self ) -> int: A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase ) A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Dict = layer_type A_ : List[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) def UpperCAmelCase_ ( self ) -> str: A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> int: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ : Tuple = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""tf""" ) # forward pass A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase ) # verify the logits A_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
344
0
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def _a ( self ): UpperCamelCase_: Any = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=_lowerCamelCase , dtype=jnp.bfloataa ) UpperCamelCase_: Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=_lowerCamelCase , from_pt=_lowerCamelCase , dtype=jnp.bfloataa ) UpperCamelCase_: str = controlnet_params UpperCamelCase_: int = 'bird' UpperCamelCase_: Union[str, Any] = jax.device_count() UpperCamelCase_: Union[str, Any] = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCamelCase_: Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) UpperCamelCase_: Optional[Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) UpperCamelCase_: List[Any] = jax.random.PRNGKey(0 ) UpperCamelCase_: Optional[Any] = jax.random.split(_lowerCamelCase , jax.device_count() ) UpperCamelCase_: Any = replicate(_lowerCamelCase ) UpperCamelCase_: Tuple = shard(_lowerCamelCase ) UpperCamelCase_: int = shard(_lowerCamelCase ) UpperCamelCase_: str = pipe( prompt_ids=_lowerCamelCase , image=_lowerCamelCase , params=_lowerCamelCase , prng_seed=_lowerCamelCase , num_inference_steps=5_0 , jit=_lowerCamelCase , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) UpperCamelCase_: Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase_: List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] UpperCamelCase_: Any = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase_: List[str] = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self ): UpperCamelCase_: List[str] = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=_lowerCamelCase , dtype=jnp.bfloataa ) UpperCamelCase_: List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=_lowerCamelCase , from_pt=_lowerCamelCase , dtype=jnp.bfloataa ) UpperCamelCase_: int = controlnet_params UpperCamelCase_: Union[str, Any] = 'Chef in the kitchen' UpperCamelCase_: List[Any] = jax.device_count() UpperCamelCase_: Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCamelCase_: List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) UpperCamelCase_: Tuple = pipe.prepare_image_inputs([pose_image] * num_samples ) UpperCamelCase_: Any = jax.random.PRNGKey(0 ) UpperCamelCase_: str = jax.random.split(_lowerCamelCase , jax.device_count() ) UpperCamelCase_: Optional[int] = replicate(_lowerCamelCase ) UpperCamelCase_: int = shard(_lowerCamelCase ) UpperCamelCase_: Dict = shard(_lowerCamelCase ) UpperCamelCase_: int = pipe( prompt_ids=_lowerCamelCase , image=_lowerCamelCase , params=_lowerCamelCase , prng_seed=_lowerCamelCase , num_inference_steps=5_0 , jit=_lowerCamelCase , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) UpperCamelCase_: int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase_: Optional[int] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] UpperCamelCase_: Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase_: int = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
354
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Optional[Any] = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : str ='''convbert''' def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=2 , _lowerCamelCase=9 , _lowerCamelCase=1 , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase_: Dict = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: Optional[int] = num_hidden_layers UpperCamelCase_: Optional[int] = num_attention_heads UpperCamelCase_: Optional[Any] = intermediate_size UpperCamelCase_: Tuple = hidden_act UpperCamelCase_: Any = hidden_dropout_prob UpperCamelCase_: Any = attention_probs_dropout_prob UpperCamelCase_: List[Any] = max_position_embeddings UpperCamelCase_: List[Any] = type_vocab_size UpperCamelCase_: Optional[int] = initializer_range UpperCamelCase_: Tuple = layer_norm_eps UpperCamelCase_: List[str] = embedding_size UpperCamelCase_: int = head_ratio UpperCamelCase_: Dict = conv_kernel_size UpperCamelCase_: List[Any] = num_groups UpperCamelCase_: Dict = classifier_dropout class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @property def _a ( self ): if self.task == "multiple-choice": UpperCamelCase_: Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_: Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
292
0
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : str = GPTaTokenizer __A : Optional[Any] = GPTaTokenizerFast __A : Union[str, Any] = True __A : int = {'''add_prefix_space''': True} __A : Optional[int] = False def __lowercase ( self) -> List[str]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a__ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] a__ : List[str] = dict(zip(lowercase , range(len(lowercase)))) a__ : List[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] a__ : Any = {'unk_token': '<unk>'} a__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) a__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowercase) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(lowercase)) def __lowercase ( self , **lowercase) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map) return GPTaTokenizer.from_pretrained(self.tmpdirname , **lowercase) def __lowercase ( self , **lowercase) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase) def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' a__ : Dict = 'lower newer' a__ : str = 'lower newer' return input_text, output_text def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : List[str] = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) a__ : List[Any] = 'lower newer' a__ : int = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] a__ : Optional[Any] = tokenizer.tokenize(lowercase , add_prefix_space=lowercase) self.assertListEqual(lowercase , lowercase) a__ : List[Any] = tokens + [tokenizer.unk_token] a__ : Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase) , lowercase) def __lowercase ( self) -> Optional[int]: '''simple docstring''' if not self.test_rust_tokenizer: return a__ : Optional[int] = self.get_tokenizer() a__ : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=lowercase) a__ : Optional[Any] = 'lower newer' # Testing tokenization a__ : Any = tokenizer.tokenize(lowercase , add_prefix_space=lowercase) a__ : Optional[Any] = rust_tokenizer.tokenize(lowercase) self.assertListEqual(lowercase , lowercase) # Testing conversion to ids without special tokens a__ : int = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase) a__ : Tuple = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase) self.assertListEqual(lowercase , lowercase) # Testing conversion to ids with special tokens a__ : List[str] = self.get_rust_tokenizer(add_prefix_space=lowercase) a__ : int = tokenizer.encode(lowercase , add_prefix_space=lowercase) a__ : List[Any] = rust_tokenizer.encode(lowercase) self.assertListEqual(lowercase , lowercase) # Testing the unknown token a__ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] a__ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowercase) , lowercase) def __lowercase ( self , *lowercase , **lowercase) -> List[str]: '''simple docstring''' pass def __lowercase ( self , lowercase=15) -> int: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): a__ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase) # Simple input a__ : Union[str, Any] = 'This is a simple input' a__ : Optional[Any] = ['This is a simple input 1', 'This is a simple input 2'] a__ : int = ('This is a simple input', 'This is a pair') a__ : int = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowercase , tokenizer_r.encode , lowercase , max_length=lowercase , padding='max_length') # Simple input self.assertRaises(lowercase , tokenizer_r.encode_plus , lowercase , max_length=lowercase , padding='max_length') # Simple input self.assertRaises( lowercase , tokenizer_r.batch_encode_plus , lowercase , max_length=lowercase , padding='max_length' , ) # Pair input self.assertRaises(lowercase , tokenizer_r.encode , lowercase , max_length=lowercase , padding='max_length') # Pair input self.assertRaises(lowercase , tokenizer_r.encode_plus , lowercase , max_length=lowercase , padding='max_length') # Pair input self.assertRaises( lowercase , tokenizer_r.batch_encode_plus , lowercase , max_length=lowercase , padding='max_length' , ) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Tuple = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>') # Simple input a__ : Tuple = 'This is a simple input' a__ : Optional[Any] = ['This is a simple input looooooooong', 'This is a simple input'] a__ : Any = ('This is a simple input', 'This is a pair') a__ : List[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] a__ : Optional[int] = tokenizer.pad_token_id a__ : Dict = tokenizer(lowercase , padding='max_length' , max_length=30 , return_tensors='np') a__ : str = tokenizer(lowercase , padding=lowercase , truncate=lowercase , return_tensors='np') a__ : str = tokenizer(*lowercase , padding='max_length' , max_length=60 , return_tensors='np') a__ : Any = tokenizer(lowercase , padding=lowercase , truncate=lowercase , return_tensors='np') # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30) self.assertTrue(pad_token_id in out_s['input_ids']) self.assertTrue(0 in out_s['attention_mask']) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0]) self.assertFalse(0 in out_sa['attention_mask'][0]) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1]) self.assertTrue(0 in out_sa['attention_mask'][1]) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60) self.assertTrue(pad_token_id in out_p['input_ids']) self.assertTrue(0 in out_p['attention_mask']) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0]) self.assertFalse(0 in out_pa['attention_mask'][0]) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1]) self.assertTrue(0 in out_pa['attention_mask'][1]) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Any = '$$$' a__ : int = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=lowercase , add_bos_token=lowercase) a__ : List[Any] = 'This is a simple input' a__ : List[Any] = ['This is a simple input 1', 'This is a simple input 2'] a__ : Union[str, Any] = tokenizer.bos_token_id a__ : List[str] = tokenizer(lowercase) a__ : Union[str, Any] = tokenizer(lowercase) self.assertEqual(out_s.input_ids[0] , lowercase) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids)) a__ : str = tokenizer.decode(out_s.input_ids) a__ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids) self.assertEqual(decode_s.split()[0] , lowercase) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa)) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' pass def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : str = [self.get_tokenizer(do_lower_case=lowercase , add_bos_token=lowercase)] for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): a__ : Optional[int] = 'Encode this.' a__ : Optional[int] = 'This one too please.' a__ : Optional[Any] = tokenizer.encode(lowercase , add_special_tokens=lowercase) encoded_sequence += tokenizer.encode(lowercase , add_special_tokens=lowercase) a__ : Optional[int] = tokenizer.encode_plus( lowercase , lowercase , add_special_tokens=lowercase , return_special_tokens_mask=lowercase , ) a__ : Any = encoded_sequence_dict['input_ids'] a__ : int = encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(lowercase) , len(lowercase)) a__ : Optional[Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(lowercase) ] a__ : Tuple = [x for x in filtered_sequence if x is not None] self.assertEqual(lowercase , lowercase) @require_tokenizers class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Optional[int] = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=lowercase) a__ : int = 'A photo of a cat' a__ : List[Any] = tokenizer.encode( lowercase , ) self.assertEqual(lowercase , [2, 250, 1345, 9, 10, 4758]) tokenizer.save_pretrained('test_opt') a__ : List[str] = AutoTokenizer.from_pretrained('./test_opt') a__ : Optional[Any] = tokenizer.encode( lowercase , ) self.assertEqual(lowercase , [2, 250, 1345, 9, 10, 4758]) def __lowercase ( self) -> int: '''simple docstring''' a__ : Any = AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=lowercase) a__ : str = 'A photo of a cat' a__ : Tuple = tokenizer.encode( lowercase , ) # Same as above self.assertEqual(lowercase , [2, 250, 1345, 9, 10, 4758]) @unittest.skip('This test is failing because of a bug in the fast tokenizer') def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : List[str] = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=lowercase) a__ : Tuple = 'bos' a__ : Tuple = tokenizer.get_vocab()['bos'] a__ : Dict = 'A photo of a cat' a__ : Optional[int] = tokenizer.encode( lowercase , ) # We changed the bos token self.assertEqual(lowercase , [3_1957, 250, 1345, 9, 10, 4758]) tokenizer.save_pretrained('./tok') a__ : List[str] = AutoTokenizer.from_pretrained('./tok') self.assertTrue(tokenizer.is_fast) a__ : List[Any] = tokenizer.encode( lowercase , ) self.assertEqual(lowercase , [3_1957, 250, 1345, 9, 10, 4758])
99
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
99
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase , unittest.TestCase): _SCREAMING_SNAKE_CASE : Optional[int] = RobertaTokenizer _SCREAMING_SNAKE_CASE : Union[str, Any] = RobertaTokenizerFast _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Any = {'''cls_token''': '''<s>'''} def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCAmelCase__ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowerCAmelCase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCAmelCase__ = {"""unk_token""": """<unk>"""} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase_ ) ) def UpperCamelCase__ ( self , **_UpperCamelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCamelCase__ ( self , **_UpperCamelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = """lower newer""" lowerCAmelCase__ = """lower newer""" return input_text, output_text def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase__ = """lower newer""" lowerCAmelCase__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowerCAmelCase__ = tokenizer.tokenize(lowercase_ ) # , add_prefix_space=True) self.assertListEqual(lowercase_ , lowercase_ ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowercase_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowercase_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained('roberta-base' ) lowerCAmelCase__ = tokenizer.encode('sequence builders' , add_special_tokens=lowercase_ ) lowerCAmelCase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase_ ) lowerCAmelCase__ = tokenizer.encode( 'sequence builders' , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowerCAmelCase__ = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = """Encode this sequence.""" lowerCAmelCase__ = tokenizer.byte_encoder[""" """.encode('utf-8' )[0]] # Testing encoder arguments lowerCAmelCase__ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) lowerCAmelCase__ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase_ , lowercase_ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) lowerCAmelCase__ = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) # Testing spaces after special tokens lowerCAmelCase__ = """<mask>""" tokenizer.add_special_tokens( {'mask_token': AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ )} ) # mask token has a left space lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(lowercase_ ) lowerCAmelCase__ = """Encode <mask> sequence""" lowerCAmelCase__ = """Encode <mask>sequence""" lowerCAmelCase__ = tokenizer.encode(lowercase_ ) lowerCAmelCase__ = encoded.index(lowercase_ ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase_ , lowercase_ ) lowerCAmelCase__ = tokenizer.encode(lowercase_ ) lowerCAmelCase__ = encoded.index(lowercase_ ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowerCAmelCase__ = """A, <mask> AllenNLP sentence.""" lowerCAmelCase__ = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) lowerCAmelCase__ = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowerCAmelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCAmelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowercase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowercase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase__ ( self ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowerCAmelCase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCAmelCase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowercase_ ) self.assertEqual(post_processor_state['add_prefix_space'] , lowercase_ ) self.assertEqual(post_processor_state['trim_offsets'] , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase__ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase__ = F"{text_of_1_token} {text_of_1_token}" lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowerCAmelCase__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowerCAmelCase__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowerCAmelCase__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowerCAmelCase__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowerCAmelCase__ = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowerCAmelCase__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ) + 1, 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowerCAmelCase__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowerCAmelCase__ = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , )
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Union[str, Any] = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
122
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __magic_name__ ( A : List[str] ): '''simple docstring''' a = filter(lambda A : p.requires_grad, model.parameters() ) a = sum([np.prod(p.size() ) for p in model_parameters] ) return params __lowerCAmelCase : int = logging.getLogger(__name__) def __magic_name__ ( A : List[Any], A : Dict ): '''simple docstring''' if metric == "rouge2": a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) a = ModelCheckpoint( dirpath=A, filename=A, monitor=F"""val_{metric}""", mode="max", save_top_k=3, every_n_epochs=1, ) return checkpoint_callback def __magic_name__ ( A : str, A : int ): '''simple docstring''' return EarlyStopping( monitor=F"""val_{metric}""", mode="min" if "loss" in metric else "max", patience=A, verbose=A, ) class snake_case__ (pl.Callback ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ) -> Union[str, Any]: a = {f"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__lowerCamelCase ) @rank_zero_only def __UpperCAmelCase ( self : Any , __lowerCamelCase : pl.Trainer , __lowerCamelCase : pl.LightningModule , __lowerCamelCase : str , __lowerCamelCase : List[Any]=True ) -> None: logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results a = Path(pl_module.hparams.output_dir ) if type_path == "test": a = od / "test_results.txt" a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. a = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" a = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__lowerCamelCase ) generations_file.parent.mkdir(exist_ok=__lowerCamelCase ) with open(__lowerCamelCase , "a+" ) as writer: for key in sorted(__lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue a = metrics[key] if isinstance(__lowerCamelCase , torch.Tensor ): a = val.item() a = f"""{key}: {val:.6f}\n""" writer.write(__lowerCamelCase ) if not save_generations: return if "preds" in metrics: a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__lowerCamelCase ) @rank_zero_only def __UpperCAmelCase ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple ) -> Any: try: a = pl_module.model.model.num_parameters() except AttributeError: a = pl_module.model.num_parameters() a = count_trainable_parameters(__lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : pl.Trainer , __lowerCamelCase : pl.LightningModule ) -> Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__lowerCamelCase , __lowerCamelCase , "test" ) @rank_zero_only def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : pl.Trainer , __lowerCamelCase : Any ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
107
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class snake_case__ (TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Any ) -> Optional[Any]: super().__init__(features=__lowerCamelCase ) a = torch_tensor_kwargs import torch # noqa import torch at initialization def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Dict ) -> Dict: import torch if isinstance(__lowerCamelCase , __lowerCamelCase ) and column: if all( isinstance(__lowerCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(__lowerCamelCase ) return column def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[Any] ) -> str: import torch if isinstance(__lowerCamelCase , (str, bytes, type(__lowerCamelCase )) ): return value elif isinstance(__lowerCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() a = {} if isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): a = {"dtype": torch.intaa} elif isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): a = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__lowerCamelCase , PIL.Image.Image ): a = np.asarray(__lowerCamelCase ) return torch.tensor(__lowerCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Tuple ) -> List[str]: import torch # support for torch, tf, jax etc. if hasattr(__lowerCamelCase , "__array__" ) and not isinstance(__lowerCamelCase , torch.Tensor ): a = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__lowerCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) elif isinstance(__lowerCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) return self._tensorize(__lowerCamelCase ) def __UpperCAmelCase ( self : int , __lowerCamelCase : dict ) -> str: return map_nested(self._recursive_tensorize , __lowerCamelCase , map_list=__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : pa.Table ) -> Mapping: a = self.numpy_arrow_extractor().extract_row(__lowerCamelCase ) a = self.python_features_decoder.decode_row(__lowerCamelCase ) return self.recursive_tensorize(__lowerCamelCase ) def __UpperCAmelCase ( self : int , __lowerCamelCase : pa.Table ) -> "torch.Tensor": a = self.numpy_arrow_extractor().extract_column(__lowerCamelCase ) a = self.python_features_decoder.decode_column(__lowerCamelCase , pa_table.column_names[0] ) a = self.recursive_tensorize(__lowerCamelCase ) a = self._consolidate(__lowerCamelCase ) return column def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : pa.Table ) -> Mapping: a = self.numpy_arrow_extractor().extract_batch(__lowerCamelCase ) a = self.python_features_decoder.decode_batch(__lowerCamelCase ) a = self.recursive_tensorize(__lowerCamelCase ) for column_name in batch: a = self._consolidate(batch[column_name] ) return batch
107
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase ) -> Union[str, Any]: super().__init__() self.register_modules(vqvae=lowercase , unet=lowercase , scheduler=lowercase ) @torch.no_grad() def __call__( self , lowercase = 1 , lowercase = None , lowercase = 0.0 , lowercase = 5_0 , lowercase = "pil" , lowercase = True , **lowercase , ) -> Union[Tuple, ImagePipelineOutput]: __UpperCamelCase = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowercase , ) __UpperCamelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __UpperCamelCase = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowercase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature __UpperCamelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __UpperCamelCase = {} if accepts_eta: __UpperCamelCase = eta for t in self.progress_bar(self.scheduler.timesteps ): __UpperCamelCase = self.scheduler.scale_model_input(lowercase , lowercase ) # predict the noise residual __UpperCamelCase = self.unet(lowercase , lowercase ).sample # compute the previous noisy sample x_t -> x_t-1 __UpperCamelCase = self.scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample # decode the image latents with the VAE __UpperCamelCase = self.vqvae.decode(lowercase ).sample __UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase )
243
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": a__ : Optional[int] = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') a__ : Optional[int] = f'''https://www.google.com/search?q={query}&num=100''' a__ : Union[str, Any] = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: a__ : Optional[Any] = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: a__ : Union[str, Any] = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
243
1
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore UpperCamelCase_ = namedtuple("covid_data", "cases deaths recovered") def lowercase__( __UpperCamelCase: str = "https://www.worldometers.info/coronavirus/" ): """simple docstring""" SCREAMING_SNAKE_CASE : str = '//div[@class = \"maincounter-number\"]/span/text()' return covid_data(*html.fromstring(requests.get(__UpperCamelCase ).content ).xpath(__UpperCamelCase ) ) UpperCamelCase_ = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
251
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = "▁" SCREAMING_SNAKE_CASE__ = {"vocab_file": "spiece.model"} SCREAMING_SNAKE_CASE__ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } SCREAMING_SNAKE_CASE__ = { "google/pegasus-xsum": 512, } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , lowercase , lowercase="<pad>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<mask_2>" , lowercase="<mask_1>" , lowercase=None , lowercase=103 , lowercase = None , **lowercase , ) -> None: lowerCAmelCase = offset if additional_special_tokens is not None: if not isinstance(lowercase , lowercase ): raise TypeError( f'additional_special_tokens should be of type {type(lowercase )}, but is' f' {type(lowercase )}' ) lowerCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(lowercase ) , self.offset - 1 ) ] if len(set(lowercase ) ) != len(lowercase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) lowerCAmelCase = additional_special_tokens_extended else: lowerCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase , unk_token=lowercase , mask_token=lowercase , pad_token=lowercase , mask_token_sent=lowercase , offset=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) lowerCAmelCase = mask_token_sent lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) # add special tokens to encoder dict lowerCAmelCase = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCAmelCase = {v: k for k, v in self.encoder.items()} @property def _snake_case ( self ) -> int: return len(self.sp_model ) + self.offset def _snake_case ( self ) -> Dict[str, int]: lowerCAmelCase = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , lowercase ) -> List[Any]: lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , lowercase ) -> List[str]: return self.sp_model.encode(lowercase , out_type=lowercase ) def _snake_case ( self , lowercase ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCAmelCase = self.sp_model.piece_to_id(lowercase ) return sp_id + self.offset def _snake_case ( self , lowercase ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCAmelCase = self.sp_model.IdToPiece(index - self.offset ) return token def _snake_case ( self , lowercase ) -> Optional[int]: lowerCAmelCase = [] lowerCAmelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token lowerCAmelCase = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def _snake_case ( self , lowercase=False ) -> Tuple: return 1 def _snake_case ( self , lowercase ) -> Tuple: lowerCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _snake_case ( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase ) elif token_ids_a is None: return self._special_token_mask(lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _snake_case ( self , lowercase , lowercase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self , lowercase , lowercase = None ) -> Tuple[str]: if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , """wb""" ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
46
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger UpperCamelCase = get_logger(__name__) UpperCamelCase = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class _lowerCamelCase : """simple docstring""" @add_start_docstrings(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->jnp.ndarray: '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _lowerCamelCase : """simple docstring""" @add_start_docstrings(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->jnp.ndarray: '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" @add_start_docstrings(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->jnp.ndarray: '''simple docstring''' for processor in self: A_ : Any = inspect.signature(processor.__call__ ).parameters if len(_SCREAMING_SNAKE_CASE ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) A_ : Any = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: A_ : Union[str, Any] = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return scores class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) A_ : Optional[int] = temperature def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->jnp.ndarray: '''simple docstring''' A_ : List[str] = scores / self.temperature return scores class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -float('''Inf''' ) , _SCREAMING_SNAKE_CASE = 1 )->str: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) A_ : int = top_p A_ : Any = filter_value A_ : str = min_tokens_to_keep def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->jnp.ndarray: '''simple docstring''' A_ , A_ : List[Any] = lax.top_k(_SCREAMING_SNAKE_CASE , scores.shape[-1] ) A_ : int = jnp.full_like(_SCREAMING_SNAKE_CASE , self.filter_value ) A_ : str = jax.nn.softmax(_SCREAMING_SNAKE_CASE , axis=-1 ).cumsum(axis=-1 ) A_ : Optional[int] = cumulative_probs < self.top_p # include the token that is higher than top_p as well A_ : Tuple = jnp.roll(_SCREAMING_SNAKE_CASE , 1 ) score_mask |= score_mask.at[:, 0].set(_SCREAMING_SNAKE_CASE ) # min tokens to keep A_ : Union[str, Any] = score_mask.at[:, : self.min_tokens_to_keep].set(_SCREAMING_SNAKE_CASE ) A_ : Tuple = jnp.where(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : int = jax.lax.sort_key_val(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[-1] return next_scores class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -float('''Inf''' ) , _SCREAMING_SNAKE_CASE = 1 )->Optional[Any]: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) A_ : Tuple = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Any = filter_value def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->jnp.ndarray: '''simple docstring''' A_ , A_ : Optional[Any] = scores.shape A_ : int = jnp.full(batch_size * vocab_size , self.filter_value ) A_ : Optional[int] = min(self.top_k , scores.shape[-1] ) # Safety check A_ , A_ : Union[str, Any] = lax.top_k(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = jnp.broadcast_to((jnp.arange(_SCREAMING_SNAKE_CASE ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() A_ : Tuple = topk_scores.flatten() A_ : List[str] = topk_indices.flatten() + shift A_ : Optional[int] = next_scores_flat.at[topk_indices_flat].set(_SCREAMING_SNAKE_CASE ) A_ : List[str] = next_scores_flat.reshape(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return next_scores class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : Tuple = bos_token_id def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->jnp.ndarray: '''simple docstring''' A_ : Optional[int] = jnp.full(scores.shape , -float('''inf''' ) ) A_ : Dict = 1 - jnp.bool_(cur_len - 1 ) A_ : Tuple = jnp.where(_SCREAMING_SNAKE_CASE , new_scores.at[:, self.bos_token_id].set(0 ) , _SCREAMING_SNAKE_CASE ) return scores class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : Any = max_length A_ : Any = eos_token_id def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->jnp.ndarray: '''simple docstring''' A_ : int = jnp.full(scores.shape , -float('''inf''' ) ) A_ : Dict = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A_ : Tuple = jnp.where(_SCREAMING_SNAKE_CASE , new_scores.at[:, self.eos_token_id].set(0 ) , _SCREAMING_SNAKE_CASE ) return scores class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) A_ : str = min_length A_ : int = eos_token_id def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->jnp.ndarray: '''simple docstring''' A_ : List[Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) A_ : Dict = jnp.where(_SCREAMING_SNAKE_CASE , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , _SCREAMING_SNAKE_CASE ) return scores class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : str = list(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = begin_index def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : Optional[Any] = 1 - jnp.bool_(cur_len - self.begin_index ) A_ : Any = jnp.where(_SCREAMING_SNAKE_CASE , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , _SCREAMING_SNAKE_CASE ) return scores class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' A_ : Union[str, Any] = list(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->jnp.ndarray: '''simple docstring''' A_ : str = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) ) return scores class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : Optional[int] = dict(_SCREAMING_SNAKE_CASE ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A_ : List[str] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A_ : List[Any] = force_token_array.at[index].set(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = jnp.intaa(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->jnp.ndarray: '''simple docstring''' def _force_token(_SCREAMING_SNAKE_CASE ): A_ : str = scores.shape[0] A_ : Tuple = self.force_token_array[generation_idx] A_ : Optional[int] = jnp.ones_like(_SCREAMING_SNAKE_CASE , dtype=scores.dtype ) * -float('''inf''' ) A_ : Dict = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) A_ : Dict = lax.dynamic_update_slice(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (0, current_token) ) return new_scores A_ : Optional[Any] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_SCREAMING_SNAKE_CASE ) , lambda: scores , ) , ) return scores class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' A_ : Dict = generate_config.eos_token_id A_ : Optional[int] = generate_config.no_timestamps_token_id A_ : List[Any] = generate_config.no_timestamps_token_id + 1 A_ : List[str] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_SCREAMING_SNAKE_CASE , '''max_initial_timestamp_index''' ): A_ : List[Any] = generate_config.max_initial_timestamp_index else: A_ : List[Any] = model_config.vocab_size if self.max_initial_timestamp_index is None: A_ : int = model_config.vocab_size def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' A_ : Dict = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) ) def handle_pairs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : List[Any] = jnp.where((cur_len - self.begin_index) >= 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Optional[int] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _SCREAMING_SNAKE_CASE , ) A_ : Union[str, Any] = jnp.where((cur_len - self.begin_index) < 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) return jnp.where( _SCREAMING_SNAKE_CASE , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , _SCREAMING_SNAKE_CASE , ) A_ : Any = jax.vmap(_SCREAMING_SNAKE_CASE )(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[str] = jnp.where(cur_len == self.begin_index , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _SCREAMING_SNAKE_CASE , ) A_ : Any = self.timestamp_begin + self.max_initial_timestamp_index A_ : Tuple = jnp.where( _SCREAMING_SNAKE_CASE , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , _SCREAMING_SNAKE_CASE , ) # if sum of probability over timestamps is above any other token, sample timestamp A_ : Optional[int] = jax.nn.log_softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) def handle_cumulative_probs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : int = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) A_ : Optional[int] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , _SCREAMING_SNAKE_CASE , ) A_ : str = jax.vmap(_SCREAMING_SNAKE_CASE )(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return scores
65
import math import random def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value UpperCamelCase = 0.02 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : str = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(SCREAMING_SNAKE_CASE ): # Forward propagation A_ : Optional[Any] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? A_ : Any = (expected / 100) - layer_a # Error delta A_ : List[str] = layer_1_error * sigmoid_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = int(input("""Expected value: """)) UpperCamelCase = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
65
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
211
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class __A ( A , A ): '''simple docstring''' __lowerCamelCase : Tuple = 'resnet' __lowerCamelCase : Any = ['basic', 'bottleneck'] def __init__(self , A=3 , A=64 , A=[256, 512, 1_024, 2_048] , A=[3, 4, 6, 3] , A="bottleneck" , A="relu" , A=False , A=None , A=None , **A , ) -> Dict: """simple docstring""" super().__init__(**A ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _a = num_channels _a = embedding_size _a = hidden_sizes _a = depths _a = layer_type _a = hidden_act _a = downsample_in_first_stage _a = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(A ) + 1 )] _a , _a = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = version.parse('1.11' ) @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a__ (self ) -> float: """simple docstring""" return 1E-3
211
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return 10 - x * x def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): # Bolzano theory in order to find if there is a root between a and b if equation(__UpperCAmelCase ) * equation(__UpperCAmelCase ) >= 0: raise ValueError("""Wrong space!""" ) _lowercase : str = a while (b - a) >= 0.0_1: # Find middle point _lowercase : int = (a + b) / 2 # Check if middle point is root if equation(__UpperCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__UpperCAmelCase ) * equation(__UpperCAmelCase ) < 0: _lowercase : Tuple = c else: _lowercase : Tuple = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
336
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: stooge(a_ , 0 , len(a_ ) - 1 ) return arr def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: A__ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: A__ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(a_ , a_ , (h - t) ) # Recursively sort last 2/3 elements stooge(a_ , i + t , (a_) ) # Recursively sort first 2/3 elements stooge(a_ , a_ , (h - t) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = input("Enter numbers separated by a comma:\n").strip() SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
247
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : torch.FloatTensor SCREAMING_SNAKE_CASE_ : torch.FloatTensor SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None class _SCREAMING_SNAKE_CASE( A , A ): SCREAMING_SNAKE_CASE_ : Any = 2 @register_to_config def __init__( self ,SCREAMING_SNAKE_CASE__ = 0.0_2 ,SCREAMING_SNAKE_CASE__ = 1_00 ,SCREAMING_SNAKE_CASE__ = 1.0_0_7 ,SCREAMING_SNAKE_CASE__ = 80 ,SCREAMING_SNAKE_CASE__ = 0.0_5 ,SCREAMING_SNAKE_CASE__ = 50 ,) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = sigma_max # setable values __SCREAMING_SNAKE_CASE :int = None __SCREAMING_SNAKE_CASE :np.IntTensor = None __SCREAMING_SNAKE_CASE :torch.FloatTensor = None # sigma(t_i) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> torch.FloatTensor: """simple docstring""" return sample def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = num_inference_steps __SCREAMING_SNAKE_CASE :int = np.arange(0 ,self.num_inference_steps )[::-1].copy() __SCREAMING_SNAKE_CASE :Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __SCREAMING_SNAKE_CASE :List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ,dtype=torch.floataa ,device=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Tuple[torch.FloatTensor, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: __SCREAMING_SNAKE_CASE :List[str] = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 ) else: __SCREAMING_SNAKE_CASE :Optional[Any] = 0 # sample eps ~ N(0, S_noise^2 * I) __SCREAMING_SNAKE_CASE :Optional[int] = self.config.s_noise * randn_tensor(sample.shape ,generator=SCREAMING_SNAKE_CASE__ ).to(sample.device ) __SCREAMING_SNAKE_CASE :List[str] = sigma + gamma * sigma __SCREAMING_SNAKE_CASE :str = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = True ,) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = sample_hat + sigma_hat * model_output __SCREAMING_SNAKE_CASE :Tuple = (sample_hat - pred_original_sample) / sigma_hat __SCREAMING_SNAKE_CASE :List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE__ ,derivative=SCREAMING_SNAKE_CASE__ ,pred_original_sample=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = True ,) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = sample_prev + sigma_prev * model_output __SCREAMING_SNAKE_CASE :List[Any] = (sample_prev - pred_original_sample) / sigma_prev __SCREAMING_SNAKE_CASE :Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE__ ,derivative=SCREAMING_SNAKE_CASE__ ,pred_original_sample=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError()
191
0
"""simple docstring""" import os from pathlib import Path def lowercase__() ->List[Any]: """simple docstring""" from torch.utils.cpp_extension import load lowercase__ : Any= Path(A ).resolve().parent.parent.parent / "kernels" / "deformable_detr" lowercase__ : Any= [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , A , with_cuda=A , extra_include_paths=[str(A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
150
"""simple docstring""" from __future__ import annotations class __UpperCAmelCase: """simple docstring""" def __init__( self , snake_case__=None ): '''simple docstring''' lowercase__ : Union[str, Any]= data lowercase__ : Optional[Any]= None def __repr__( self ): '''simple docstring''' lowercase__ : str= [] lowercase__ : Tuple= self while temp: string_rep.append(F'''{temp.data}''' ) lowercase__ : Optional[int]= temp.next return "->".join(snake_case__ ) def lowercase__(A ) ->Dict: """simple docstring""" if not elements_list: raise Exception("The Elements List is empty" ) lowercase__ : Optional[int]= Node(elements_list[0] ) for i in range(1 , len(A ) ): lowercase__ : Optional[Any]= Node(elements_list[i] ) lowercase__ : str= current.next return head def lowercase__(A ) ->None: """simple docstring""" if head_node is not None and isinstance(A , A ): print_reverse(head_node.next ) print(head_node.data ) def lowercase__() ->str: """simple docstring""" from doctest import testmod testmod() lowercase__ : Optional[int]= make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(A ) print("Elements in Reverse:" ) print_reverse(A ) if __name__ == "__main__": main()
150
1
'''simple docstring''' import math class __UpperCamelCase : def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' __a : Dict = 0.0 __a : Optional[int] = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __UpperCAmelCase ( self , __a , __a , __a , __a ): '''simple docstring''' for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCamelCase (): # Training Examples ( m, n ) __a : int = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) __a : Optional[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training __a : Optional[Any] = SelfOrganizingMap() __a : Any = 3 __a : Tuple = 0.5 for _ in range(_SCREAMING_SNAKE_CASE ): for j in range(len(_SCREAMING_SNAKE_CASE ) ): # training sample __a : List[str] = training_samples[j] # Compute the winning vector __a : Union[str, Any] = self_organizing_map.get_winner(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Update the winning vector __a : int = self_organizing_map.update(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # classify test sample __a : Union[str, Any] = [0, 0, 0, 1] __a : Optional[int] = self_organizing_map.get_winner(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
27
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _SCREAMING_SNAKE_CASE : Union[str, Any] = False class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return 12 @property def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return 12 @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(a__ ) @property def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ = 12 snake_case_ = 12 snake_case_ = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } snake_case_ = TransformeraDModel(**a__ ) return model def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = "cpu" snake_case_ = self.dummy_vqvae snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_transformer snake_case_ = VQDiffusionScheduler(self.num_embed ) snake_case_ = LearnedClassifierFreeSamplingEmbeddings(learnable=a__ ) snake_case_ = VQDiffusionPipeline( vqvae=a__ , text_encoder=a__ , tokenizer=a__ , transformer=a__ , scheduler=a__ , learned_classifier_free_sampling_embeddings=a__ , ) snake_case_ = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) snake_case_ = "teddy bear playing in the pool" snake_case_ = torch.Generator(device=a__ ).manual_seed(0 ) snake_case_ = pipe([prompt] , generator=a__ , num_inference_steps=2 , output_type="np" ) snake_case_ = output.images snake_case_ = torch.Generator(device=a__ ).manual_seed(0 ) snake_case_ = pipe( [prompt] , generator=a__ , output_type="np" , return_dict=a__ , num_inference_steps=2 )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case_ = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = "cpu" snake_case_ = self.dummy_vqvae snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_transformer snake_case_ = VQDiffusionScheduler(self.num_embed ) snake_case_ = LearnedClassifierFreeSamplingEmbeddings( learnable=a__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ = VQDiffusionPipeline( vqvae=a__ , text_encoder=a__ , tokenizer=a__ , transformer=a__ , scheduler=a__ , learned_classifier_free_sampling_embeddings=a__ , ) snake_case_ = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) snake_case_ = "teddy bear playing in the pool" snake_case_ = torch.Generator(device=a__ ).manual_seed(0 ) snake_case_ = pipe([prompt] , generator=a__ , num_inference_steps=2 , output_type="np" ) snake_case_ = output.images snake_case_ = torch.Generator(device=a__ ).manual_seed(0 ) snake_case_ = pipe( [prompt] , generator=a__ , output_type="np" , return_dict=a__ , num_inference_steps=2 )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case_ = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) snake_case_ = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" ) snake_case_ = pipeline.to(a__ ) pipeline.set_progress_bar_config(disable=a__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ = torch.Generator(device=a__ ).manual_seed(0 ) snake_case_ = pipeline( "teddy bear playing in the pool" , num_images_per_prompt=1 , generator=a__ , output_type="np" , ) snake_case_ = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
85
0
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate SCREAMING_SNAKE_CASE = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} SCREAMING_SNAKE_CASE = [ { "type": "header", "text": { "type": "plain_text", "text": f'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', "emoji": True, }, } ] SCREAMING_SNAKE_CASE = 0 for log in Path().glob("*.log"): SCREAMING_SNAKE_CASE = 0 with open(log, "r") as f: for line in f: SCREAMING_SNAKE_CASE = json.loads(line) if line.get("nodeid", "") != "": SCREAMING_SNAKE_CASE = line["nodeid"] if line.get("duration", None) is not None: SCREAMING_SNAKE_CASE = f'{line["duration"]:.4f}' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) SCREAMING_SNAKE_CASE = [] log.unlink() SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = {} for test in failed_tests: SCREAMING_SNAKE_CASE = test[0].split("::") SCREAMING_SNAKE_CASE = data[0].split("/")[-1] if data[0] not in filesafailed: SCREAMING_SNAKE_CASE = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) SCREAMING_SNAKE_CASE = [test[0] for test in failed_table] SCREAMING_SNAKE_CASE = list(set(files)) # Count number of instances in failed_tests SCREAMING_SNAKE_CASE = [] for file in individual_files: table.append([file, len(filesafailed[file])]) SCREAMING_SNAKE_CASE = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: SCREAMING_SNAKE_CASE = "Too many failed tests, please see the full report in the Action results." SCREAMING_SNAKE_CASE = len(err) + 10 SCREAMING_SNAKE_CASE = message[: 3000 - offset] + f'\n...\n```\n{err}' print(f'### {message}') else: SCREAMING_SNAKE_CASE = "No failed tests! 🤗" print(f'## {message}') payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient SCREAMING_SNAKE_CASE = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": SCREAMING_SNAKE_CASE = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) SCREAMING_SNAKE_CASE = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) SCREAMING_SNAKE_CASE = { "type": "context", "elements": [ { "type": "plain_text", "text": f'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) SCREAMING_SNAKE_CASE = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) SCREAMING_SNAKE_CASE = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name SCREAMING_SNAKE_CASE = "" for i, row in enumerate(test_failures): if row[0] != test_class: SCREAMING_SNAKE_CASE = row[0] else: SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE = { "type": "section", "text": { "type": "mrkdwn", "text": f'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
230
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( A_ ): lowercase__ = ['''image_processor''', '''tokenizer'''] lowercase__ = '''ViTImageProcessor''' lowercase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Optional[Any] , snake_case_ : Union[str, Any]=None , snake_case_ : Dict=None , **snake_case_ : Optional[Any] ) -> List[str]: '''simple docstring''' A__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , snake_case_ , ) A__ = kwargs.pop("feature_extractor" ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(snake_case_ , snake_case_ ) def __call__( self : int , snake_case_ : Union[str, Any]=None , snake_case_ : int=None , snake_case_ : Dict=None , snake_case_ : int=None , **snake_case_ : List[str] ) -> Union[str, Any]: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: A__ = self.tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if visual_prompt is not None: A__ = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if images is not None: A__ = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if visual_prompt is not None and images is not None: A__ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: A__ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: A__ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def __magic_name__ ( self : Tuple , *snake_case_ : List[str] , **snake_case_ : Optional[int] ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def __magic_name__ ( self : Optional[Any] , *snake_case_ : Any , **snake_case_ : List[Any] ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def __magic_name__ ( self : int ) -> Optional[int]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , snake_case_ , ) return self.image_processor_class @property def __magic_name__ ( self : int ) -> int: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , snake_case_ , ) return self.image_processor
230
1
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : int) -> float: '''simple docstring''' return base * power(_lowerCamelCase , (exponent - 1)) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') lowercase : Optional[int] = int(input('Enter the base: ').strip()) lowercase : Tuple = int(input('Enter the exponent: ').strip()) lowercase : str = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents lowercase : Tuple = 1 / result print(f"{base} to the power of {exponent} is {result}")
232
class lowerCamelCase__ : '''simple docstring''' def __init__( self :int ) -> Dict: __UpperCamelCase : Union[str, Any] = {} def _lowerCamelCase ( self :str ) -> None: print(self.vertex ) for i in self.vertex: print(a , " -> " , " -> ".join([str(a ) for j in self.vertex[i]] ) ) def _lowerCamelCase ( self :List[Any] , a :int , a :int ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(a ) else: # else make a new vertex __UpperCamelCase : Optional[Any] = [to_vertex] def _lowerCamelCase ( self :Tuple ) -> None: # visited array for storing already visited nodes __UpperCamelCase : Dict = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(a , a ) def _lowerCamelCase ( self :Any , a :int , a :list ) -> None: # mark start vertex as visited __UpperCamelCase : int = True print(a , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(a , a ) if __name__ == "__main__": lowercase : Dict = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
232
1
from __future__ import annotations import math __magic_name__ = "2020.9.26" __magic_name__ = "xcodz-dot, cclaus, dhruvmanila" def _lowerCAmelCase ( A__: float , A__: float , A__: float , A__: float , A__: float ): '''simple docstring''' if not all(isinstance(A__ , (float, int) ) for val in locals().values() ): UpperCAmelCase = F"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(A__ ) UpperCAmelCase = ((x * distance) / (z + distance)) * scale UpperCAmelCase = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _lowerCAmelCase ( A__: float , A__: float , A__: float , A__: str , A__: float ): '''simple docstring''' if not isinstance(A__ , A__ ): raise TypeError('''Axis must be a str''' ) UpperCAmelCase = locals() del input_variables["axis"] if not all(isinstance(A__ , (float, int) ) for val in input_variables.values() ): UpperCAmelCase = ( '''Input values except axis must either be float or int: ''' F"""{list(input_variables.values() )}""" ) raise TypeError(A__ ) UpperCAmelCase = (angle % 360) / 450 * 180 / math.pi if axis == "z": UpperCAmelCase = x * math.cos(A__ ) - y * math.sin(A__ ) UpperCAmelCase = y * math.cos(A__ ) + x * math.sin(A__ ) UpperCAmelCase = z elif axis == "x": UpperCAmelCase = y * math.cos(A__ ) - z * math.sin(A__ ) UpperCAmelCase = z * math.cos(A__ ) + y * math.sin(A__ ) UpperCAmelCase = x elif axis == "y": UpperCAmelCase = x * math.cos(A__ ) - z * math.sin(A__ ) UpperCAmelCase = z * math.cos(A__ ) + x * math.sin(A__ ) UpperCAmelCase = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(f'''{rotate(1.0, 2.0, 3.0, "y", 90.0) = }''')
152
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __magic_name__ = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") __magic_name__ = ( subprocess.check_output(f'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("utf-8").split() ) __magic_name__ = "|".join(sys.argv[1:]) __magic_name__ = re.compile(rf'''^({joined_dirs}).*?\.py$''') __magic_name__ = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
152
1
from __future__ import annotations def lowercase( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None ) -> None: '''simple docstring''' if start is None: UpperCamelCase = 0 if end is None: UpperCamelCase = len(UpperCamelCase_ ) - 1 if start >= end: return UpperCamelCase = (start + end) // 2 slowsort(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) slowsort(UpperCamelCase_ , mid + 1 , UpperCamelCase_ ) if sequence[end] < sequence[mid]: UpperCamelCase , UpperCamelCase = sequence[mid], sequence[end] slowsort(UpperCamelCase_ , UpperCamelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
343
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""ConvNextFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
343
1
'''simple docstring''' from manim import * class __lowerCamelCase ( a_ ): """simple docstring""" def A ( self : Any): _A : Any = Rectangle(height=0.5 , width=0.5) _A : List[str] = Rectangle(height=0.46 , width=0.46).set_stroke(width=0) _A : List[str] = Rectangle(height=0.25 , width=0.25) _A : Optional[Any] = [mem.copy() for i in range(6)] _A : Tuple = [mem.copy() for i in range(6)] _A : Dict = VGroup(*_SCREAMING_SNAKE_CASE).arrange(_SCREAMING_SNAKE_CASE , buff=0) _A : Optional[int] = VGroup(*_SCREAMING_SNAKE_CASE).arrange(_SCREAMING_SNAKE_CASE , buff=0) _A : str = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE).arrange(_SCREAMING_SNAKE_CASE , buff=0) _A : Dict = Text('CPU' , font_size=24) _A : List[str] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE) cpu.move_to([-2.5, -0.5, 0]) self.add(_SCREAMING_SNAKE_CASE) _A : Union[str, Any] = [mem.copy() for i in range(4)] _A : Tuple = VGroup(*_SCREAMING_SNAKE_CASE).arrange(_SCREAMING_SNAKE_CASE , buff=0) _A : Union[str, Any] = Text('GPU' , font_size=24) _A : Optional[int] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE) gpu.move_to([-1, -1, 0]) self.add(_SCREAMING_SNAKE_CASE) _A : Tuple = [mem.copy() for i in range(6)] _A : List[str] = VGroup(*_SCREAMING_SNAKE_CASE).arrange(_SCREAMING_SNAKE_CASE , buff=0) _A : int = Text('Model' , font_size=24) _A : List[str] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE) model.move_to([3, -1.0, 0]) self.add(_SCREAMING_SNAKE_CASE) _A : Union[str, Any] = [] _A : str = [] for i, rect in enumerate(_SCREAMING_SNAKE_CASE): _A : Tuple = fill.copy().set_fill(_SCREAMING_SNAKE_CASE , opacity=0.8) target.move_to(_SCREAMING_SNAKE_CASE) model_arr.append(_SCREAMING_SNAKE_CASE) _A : Optional[int] = Rectangle(height=0.46 , width=0.46).set_stroke(width=0.0).set_fill(_SCREAMING_SNAKE_CASE , opacity=0.8) cpu_target.move_to(cpu_left_col_base[i]) model_cpu_arr.append(_SCREAMING_SNAKE_CASE) self.add(*_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE) _A : int = [meta_mem.copy() for i in range(6)] _A : List[str] = [meta_mem.copy() for i in range(6)] _A : Tuple = VGroup(*_SCREAMING_SNAKE_CASE).arrange(_SCREAMING_SNAKE_CASE , buff=0) _A : Optional[int] = VGroup(*_SCREAMING_SNAKE_CASE).arrange(_SCREAMING_SNAKE_CASE , buff=0) _A : Union[str, Any] = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE).arrange(_SCREAMING_SNAKE_CASE , buff=0) _A : Optional[int] = Text('Disk' , font_size=24) _A : Tuple = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE) disk.move_to([-4, -1.25, 0]) self.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) _A : Union[str, Any] = Square(side_length=2.2) key.move_to([-5, 2, 0]) _A : Optional[int] = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) _A : Dict = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(_SCREAMING_SNAKE_CASE , DOWN * 2.4 , aligned_edge=key_text.get_left()) self.add(_SCREAMING_SNAKE_CASE) _A : str = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(_SCREAMING_SNAKE_CASE)) _A : Tuple = Square(0.3) input.set_fill(_SCREAMING_SNAKE_CASE , opacity=1.0) input.set_stroke(width=0.0) input.next_to(model_base[0] , _SCREAMING_SNAKE_CASE , buff=0.5) self.play(Write(_SCREAMING_SNAKE_CASE)) input.generate_target() input.target.next_to(model_arr[0] , direction=_SCREAMING_SNAKE_CASE , buff=0.02) self.play(MoveToTarget(_SCREAMING_SNAKE_CASE)) self.play(FadeOut(_SCREAMING_SNAKE_CASE)) _A : str = Arrow(start=_SCREAMING_SNAKE_CASE , end=_SCREAMING_SNAKE_CASE , color=_SCREAMING_SNAKE_CASE , buff=0.5) a.next_to(model_arr[0].get_left() , _SCREAMING_SNAKE_CASE , buff=0.2) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0]) _A : Tuple = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=3)) _A : Optional[Any] = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(_SCREAMING_SNAKE_CASE) , Circumscribe(model_arr[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) , Circumscribe(model_cpu_arr[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) , Circumscribe(gpu_rect[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) , ) self.play(MoveToTarget(model_cpu_arr[0])) _A : int = a.copy() for i in range(6): a_c.next_to(model_arr[i].get_right() + 0.02 , _SCREAMING_SNAKE_CASE , buff=0.2) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02) _A : Optional[int] = AnimationGroup( FadeOut(_SCREAMING_SNAKE_CASE , run_time=0.5) , MoveToTarget(_SCREAMING_SNAKE_CASE , run_time=0.5) , FadeIn(_SCREAMING_SNAKE_CASE , run_time=0.5) , lag_ratio=0.2) self.play(_SCREAMING_SNAKE_CASE) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i]) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0]) if i >= 1: _A : List[Any] = 0.7 self.play( Circumscribe(model_arr[i] , **_SCREAMING_SNAKE_CASE) , Circumscribe(cpu_left_col_base[i] , **_SCREAMING_SNAKE_CASE) , Circumscribe(cpu_left_col_base[i + 1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) , Circumscribe(gpu_rect[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) , Circumscribe(model_arr[i + 1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i]) , MoveToTarget(model_cpu_arr[i + 1]) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1]) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2) self.play( Circumscribe(model_arr[-1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) , Circumscribe(cpu_left_col_base[-1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) , Circumscribe(gpu_rect[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) , ) self.play(MoveToTarget(model_cpu_arr[i])) _A : Dict = a_c _A : int = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5) self.play( FadeOut(_SCREAMING_SNAKE_CASE) , FadeOut(_SCREAMING_SNAKE_CASE , run_time=0.5) , ) _A : List[Any] = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' , font_size=24) step_a.move_to([2, 2, 0]) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=3) , MoveToTarget(_SCREAMING_SNAKE_CASE)) self.wait()
371
'''simple docstring''' from __future__ import annotations class __lowerCamelCase : """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : list[list[int]]): _A : Dict = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(SCREAMING_SNAKE_CASE) != 0: _A : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(SCREAMING_SNAKE_CASE) != cols: raise error for value in row: if not isinstance(SCREAMING_SNAKE_CASE , (int, float)): raise error _A : str = rows else: _A : Tuple = [] def A ( self : Optional[Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def A ( self : List[str]): return len(self.rows) @property def A ( self : Optional[int]): return len(self.rows[0]) @property def A ( self : Optional[int]): return (self.num_rows, self.num_columns) @property def A ( self : Any): return self.order[0] == self.order[1] def A ( self : int): _A : Union[str, Any] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(SCREAMING_SNAKE_CASE) def A ( self : List[Any]): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def A ( self : Tuple): return bool(self.determinant()) def A ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int): _A : str = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(SCREAMING_SNAKE_CASE).determinant() def A ( self : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int): if (row + column) % 2 == 0: return self.get_minor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) return -1 * self.get_minor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) def A ( self : Optional[int]): return Matrix( [ [self.get_minor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def A ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def A ( self : Tuple): _A : str = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(SCREAMING_SNAKE_CASE) def A ( self : Tuple): _A : str = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : str): return str(self.rows) def __str__( self : Optional[int]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(SCREAMING_SNAKE_CASE) for value in row]) + '.]' for row in self.rows ]) + "]" ) def A ( self : List[Any] , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int | None = None): _A : Tuple = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): raise type_error for value in row: if not isinstance(SCREAMING_SNAKE_CASE , (int, float)): raise type_error if len(SCREAMING_SNAKE_CASE) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(SCREAMING_SNAKE_CASE) else: _A : List[str] = self.rows[0:position] + [row] + self.rows[position:] def A ( self : List[Any] , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int | None = None): _A : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): raise type_error for value in column: if not isinstance(SCREAMING_SNAKE_CASE , (int, float)): raise type_error if len(SCREAMING_SNAKE_CASE) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: _A : str = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: _A : Dict = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[str] , SCREAMING_SNAKE_CASE : object): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): return NotImplemented return self.rows == other.rows def __ne__( self : Any , SCREAMING_SNAKE_CASE : object): return not self == other def __neg__( self : Optional[Any]): return self * -1 def __add__( self : Any , SCREAMING_SNAKE_CASE : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : List[str] , SCREAMING_SNAKE_CASE : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Dict , SCREAMING_SNAKE_CASE : Matrix | int | float): if isinstance(SCREAMING_SNAKE_CASE , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Any , SCREAMING_SNAKE_CASE : int): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') _A : Union[str, Any] = self for _ in range(other - 1): result *= self return result @classmethod def A ( cls : List[str] , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[int]): return sum(row[i] * column[i] for i in range(len(SCREAMING_SNAKE_CASE))) if __name__ == "__main__": import doctest doctest.testmod()
227
0
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCAmelCase (_SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase :Optional[Any] = 42 _UpperCAmelCase :Any = 42 class UpperCAmelCase (nn.Module ): """simple docstring""" _UpperCAmelCase :List[str] = 42 _UpperCAmelCase :Optional[int] = (16, 32, 96, 256) _UpperCAmelCase :List[Any] = jnp.floataa def _snake_case ( self ): lowercase__: Tuple = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase__: str = [] for i in range(len(self.block_out_channels ) - 1 ): lowercase__: Tuple = self.block_out_channels[i] lowercase__: int = self.block_out_channels[i + 1] lowercase__: Tuple = nn.Conv( _UpperCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_UpperCAmelCase ) lowercase__: Optional[Any] = nn.Conv( _UpperCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_UpperCAmelCase ) lowercase__: Tuple = blocks lowercase__: Dict = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _UpperCAmelCase ): lowercase__: Optional[Any] = self.conv_in(_UpperCAmelCase ) lowercase__: Optional[Any] = nn.silu(_UpperCAmelCase ) for block in self.blocks: lowercase__: Optional[Any] = block(_UpperCAmelCase ) lowercase__: str = nn.silu(_UpperCAmelCase ) lowercase__: Union[str, Any] = self.conv_out(_UpperCAmelCase ) return embedding @flax_register_to_config class UpperCAmelCase (nn.Module ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase :int = 32 _UpperCAmelCase :Tuple = 4 _UpperCAmelCase :List[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = (320, 640, 1280, 1280) _UpperCAmelCase :Dict = 2 _UpperCAmelCase :Dict = 8 _UpperCAmelCase :Any = None _UpperCAmelCase :Optional[int] = 1280 _UpperCAmelCase :Union[str, Any] = 0.0 _UpperCAmelCase :int = False _UpperCAmelCase :List[Any] = jnp.floataa _UpperCAmelCase :Union[str, Any] = True _UpperCAmelCase :List[Any] = 0 _UpperCAmelCase :Dict = "rgb" _UpperCAmelCase :Optional[Any] = (16, 32, 96, 256) def _snake_case ( self , _UpperCAmelCase ): # init input tensors lowercase__: Dict = (1, self.in_channels, self.sample_size, self.sample_size) lowercase__: Optional[int] = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa ) lowercase__: Optional[Any] = jnp.ones((1,) , dtype=jnp.intaa ) lowercase__: Any = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowercase__: int = (1, 3, self.sample_size * 8, self.sample_size * 8) lowercase__: Tuple = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa ) lowercase__, lowercase__: Tuple = jax.random.split(_UpperCAmelCase ) lowercase__: int = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )["params"] def _snake_case ( self ): lowercase__: List[Any] = self.block_out_channels lowercase__: List[Any] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowercase__: Tuple = self.num_attention_heads or self.attention_head_dim # input lowercase__: int = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowercase__: Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowercase__: Optional[int] = FlaxTimestepEmbedding(_UpperCAmelCase , dtype=self.dtype ) lowercase__: Optional[int] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowercase__: Dict = self.only_cross_attention if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = (num_attention_heads,) * len(self.down_block_types ) # down lowercase__: Any = [] lowercase__: Union[str, Any] = [] lowercase__: int = block_out_channels[0] lowercase__: Dict = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_UpperCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): lowercase__: List[Any] = output_channel lowercase__: str = block_out_channels[i] lowercase__: List[Any] = i == len(_UpperCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowercase__: Optional[Any] = FlaxCrossAttnDownBlockaD( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowercase__: Optional[int] = FlaxDownBlockaD( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_UpperCAmelCase ) for _ in range(self.layers_per_block ): lowercase__: Tuple = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_UpperCAmelCase ) if not is_final_block: lowercase__: Dict = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_UpperCAmelCase ) lowercase__: int = down_blocks lowercase__: Optional[Any] = controlnet_down_blocks # mid lowercase__: Tuple = block_out_channels[-1] lowercase__: Dict = FlaxUNetMidBlockaDCrossAttn( in_channels=_UpperCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowercase__: List[str] = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1.0 , _UpperCAmelCase = True , _UpperCAmelCase = False , ): lowercase__: int = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowercase__: List[Any] = jnp.flip(_UpperCAmelCase , axis=1 ) # 1. time if not isinstance(_UpperCAmelCase , jnp.ndarray ): lowercase__: Union[str, Any] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: lowercase__: Any = timesteps.astype(dtype=jnp.floataa ) lowercase__: Optional[int] = jnp.expand_dims(_UpperCAmelCase , 0 ) lowercase__: Optional[Any] = self.time_proj(_UpperCAmelCase ) lowercase__: str = self.time_embedding(_UpperCAmelCase ) # 2. pre-process lowercase__: Tuple = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) ) lowercase__: Tuple = self.conv_in(_UpperCAmelCase ) lowercase__: int = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) ) lowercase__: Optional[Any] = self.controlnet_cond_embedding(_UpperCAmelCase ) sample += controlnet_cond # 3. down lowercase__: int = (sample,) for down_block in self.down_blocks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__, lowercase__: List[str] = down_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) else: lowercase__, lowercase__: int = down_block(_UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowercase__: List[Any] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) # 5. contronet blocks lowercase__: List[str] = () for down_block_res_sample, controlnet_block in zip(_UpperCAmelCase , self.controlnet_down_blocks ): lowercase__: List[Any] = controlnet_block(_UpperCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) lowercase__: List[Any] = controlnet_down_block_res_samples lowercase__: Any = self.controlnet_mid_block(_UpperCAmelCase ) # 6. scaling lowercase__: str = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_UpperCAmelCase , mid_block_res_sample=_UpperCAmelCase )
177
'''simple docstring''' def _A (lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' if height >= 1: move_tower(height - 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) move_disk(lowerCAmelCase__ , lowerCAmelCase__ ) move_tower(height - 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _A (lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' print('moving disk from' , lowerCAmelCase__ , 'to' , lowerCAmelCase__ ) def _A () -> str: '''simple docstring''' _a = int(input('Height of hanoi: ' ).strip() ) move_tower(lowerCAmelCase__ , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
168
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __magic_name__: Dict = None __magic_name__: List[Any] = logging.get_logger(__name__) __magic_name__: Union[str, Any] = "▁" __magic_name__: Optional[int] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __magic_name__: Any = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } __magic_name__: int = { "google/pegasus-xsum": 512, } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[Any] = VOCAB_FILES_NAMES lowercase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : str = PegasusTokenizer lowercase__ : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<pad>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<mask_2>" , lowerCAmelCase__="<mask_1>" , lowerCAmelCase__=None , lowerCAmelCase__=1_03 , **lowerCAmelCase__ , ) -> Union[str, Any]: __magic_name__ : Optional[Any] = offset if additional_special_tokens is not None: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError( F'additional_special_tokens should be of type {type(lowerCAmelCase__ )}, but is' F' {type(lowerCAmelCase__ )}' ) __magic_name__ : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'<unk_{i}>' for i in range(len(lowerCAmelCase__ ) , self.offset - 1 ) ] if len(set(lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) __magic_name__ : Union[str, Any] = additional_special_tokens_extended else: __magic_name__ : Any = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'<unk_{i}>' for i in range(2 , self.offset )] super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , mask_token_sent=lowerCAmelCase__ , offset=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Any = vocab_file __magic_name__ : Tuple = False if not self.vocab_file else True def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: __magic_name__ : Union[str, Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" F' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}' ) return [1 if x in all_special_ids else 0 for x in seq] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowerCAmelCase__ ) elif token_ids_a is None: return self._special_token_mask(lowerCAmelCase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Optional[int] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
138
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case__ ( _lowerCAmelCase ): lowercase__ : torch.FloatTensor lowercase__ : Optional[torch.FloatTensor] = None def UpperCamelCase ( _A, _A=0.999, _A="cosine", ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __magic_name__ : Optional[Any] = [] for i in range(_A ): __magic_name__ : Dict = i / num_diffusion_timesteps __magic_name__ : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ), _A ) ) return torch.tensor(_A, dtype=torch.floataa ) class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self , lowerCAmelCase__ = 10_00 , lowerCAmelCase__ = "fixed_small_log" , lowerCAmelCase__ = True , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = "epsilon" , lowerCAmelCase__ = "squaredcos_cap_v2" , ) -> Union[str, Any]: if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) __magic_name__ : Tuple = betas_for_alpha_bar(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = 1.0 - self.betas __magic_name__ : str = torch.cumprod(self.alphas , dim=0 ) __magic_name__ : Any = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __magic_name__ : Tuple = 1.0 # setable values __magic_name__ : List[Any] = None __magic_name__ : int = torch.from_numpy(np.arange(0 , lowerCAmelCase__ )[::-1].copy() ) __magic_name__ : List[Any] = variance_type def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> torch.FloatTensor: return sample def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> str: __magic_name__ : List[Any] = num_inference_steps __magic_name__ : Union[str, Any] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __magic_name__ : List[Any] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __magic_name__ : Dict = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Tuple: if prev_timestep is None: __magic_name__ : int = t - 1 __magic_name__ : Optional[Any] = self.alphas_cumprod[t] __magic_name__ : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Tuple = 1 - alpha_prod_t __magic_name__ : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : List[str] = self.betas[t] else: __magic_name__ : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __magic_name__ : Dict = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __magic_name__ : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __magic_name__ : str = torch.log(torch.clamp(lowerCAmelCase__ , min=1e-2_0 ) ) __magic_name__ : Optional[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __magic_name__ : List[str] = variance.log() __magic_name__ : Optional[int] = beta.log() __magic_name__ : Any = (predicted_variance + 1) / 2 __magic_name__ : Any = frac * max_log + (1 - frac) * min_log return variance def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: __magic_name__ : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __magic_name__ ,__magic_name__ : List[Any] = torch.split(lowerCAmelCase__ , sample.shape[1] , dim=1 ) else: __magic_name__ : List[str] = None # 1. compute alphas, betas if prev_timestep is None: __magic_name__ : Union[str, Any] = t - 1 __magic_name__ : List[str] = self.alphas_cumprod[t] __magic_name__ : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Any = 1 - alpha_prod_t __magic_name__ : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : Union[str, Any] = self.betas[t] __magic_name__ : int = self.alphas[t] else: __magic_name__ : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev __magic_name__ : Tuple = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __magic_name__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __magic_name__ : Tuple = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __magic_name__ : Tuple = torch.clamp( lowerCAmelCase__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : List[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __magic_name__ : Dict = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __magic_name__ : Tuple = 0 if t > 0: __magic_name__ : Any = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowerCAmelCase__ , device=model_output.device ) __magic_name__ : Tuple = self._get_variance( lowerCAmelCase__ , predicted_variance=lowerCAmelCase__ , prev_timestep=lowerCAmelCase__ , ) if self.variance_type == "fixed_small_log": __magic_name__ : Tuple = variance elif self.variance_type == "learned_range": __magic_name__ : int = (0.5 * variance).exp() else: raise ValueError( F'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' """ for the UnCLIPScheduler.""" ) __magic_name__ : Tuple = variance * variance_noise __magic_name__ : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __magic_name__ : List[str] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __magic_name__ : Any = timesteps.to(original_samples.device ) __magic_name__ : int = alphas_cumprod[timesteps] ** 0.5 __magic_name__ : Union[str, Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : int = sqrt_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __magic_name__ : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : Any = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
138
1
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model SCREAMING_SNAKE_CASE_: Dict ='0.12' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any]=None ) -> List[str]: '''simple docstring''' if rng is None: UpperCAmelCase_ = random.Random() UpperCAmelCase_ = 1 for dim in shape: total_dims *= dim UpperCAmelCase_ = [] for _ in range(lowerCAmelCase__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) UpperCAmelCase_ = np.array(lowerCAmelCase__ , dtype=jnp.intaa ).reshape(lowerCAmelCase__ ) return output def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Tuple=None ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = ids_tensor(lowerCAmelCase__ , vocab_size=2 , rng=lowerCAmelCase__ ) # make sure that at least one token is attended to for each batch UpperCAmelCase_ = 1 return attn_mask @require_flax class __A : a__ : Any = None a__ : Union[str, Any] = () def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 UpperCAmelCase_ = 2 UpperCAmelCase_ = inputs["""input_ids"""].shape[-1] // 2 UpperCAmelCase_ = inputs["""input_ids"""][:max_batch_size, :sequence_length] UpperCAmelCase_ = jnp.ones_like(__UpperCAmelCase ) UpperCAmelCase_ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens UpperCAmelCase_ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` UpperCAmelCase_ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _lowercase (self : str ): UpperCAmelCase_ = self._get_input_ids_and_config() UpperCAmelCase_ = False UpperCAmelCase_ = max_length UpperCAmelCase_ = 0 for model_class in self.all_generative_model_classes: UpperCAmelCase_ = model_class(__UpperCAmelCase ) UpperCAmelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase_ = getattr(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = pt_model_class(__UpperCAmelCase ).eval() UpperCAmelCase_ = load_flax_weights_in_pytorch_model(__UpperCAmelCase , flax_model.params ) UpperCAmelCase_ = flax_model.generate(__UpperCAmelCase ).sequences UpperCAmelCase_ = pt_model.generate(torch.tensor(__UpperCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: UpperCAmelCase_ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self._get_input_ids_and_config() UpperCAmelCase_ = False UpperCAmelCase_ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase_ = model_class(__UpperCAmelCase ) UpperCAmelCase_ = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) UpperCAmelCase_ = jit(model.generate ) UpperCAmelCase_ = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase (self : int ): UpperCAmelCase_ = self._get_input_ids_and_config() UpperCAmelCase_ = True UpperCAmelCase_ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase_ = model_class(__UpperCAmelCase ) UpperCAmelCase_ = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) UpperCAmelCase_ = jit(model.generate ) UpperCAmelCase_ = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self._get_input_ids_and_config() UpperCAmelCase_ = False UpperCAmelCase_ = max_length UpperCAmelCase_ = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase_ = model_class(__UpperCAmelCase ) UpperCAmelCase_ = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) UpperCAmelCase_ = jit(model.generate ) UpperCAmelCase_ = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase (self : Any ): UpperCAmelCase_ = self._get_input_ids_and_config() UpperCAmelCase_ = False UpperCAmelCase_ = max_length UpperCAmelCase_ = 2 UpperCAmelCase_ = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase_ = model_class(__UpperCAmelCase ) UpperCAmelCase_ = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self._get_input_ids_and_config() UpperCAmelCase_ = True UpperCAmelCase_ = max_length UpperCAmelCase_ = 0.8 UpperCAmelCase_ = 10 UpperCAmelCase_ = 0.3 UpperCAmelCase_ = 1 UpperCAmelCase_ = 8 UpperCAmelCase_ = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase_ = model_class(__UpperCAmelCase ) UpperCAmelCase_ = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) UpperCAmelCase_ = jit(model.generate ) UpperCAmelCase_ = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase (self : List[str] ): UpperCAmelCase_ = self._get_input_ids_and_config() UpperCAmelCase_ = max_length UpperCAmelCase_ = 1 UpperCAmelCase_ = 8 UpperCAmelCase_ = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase_ = model_class(__UpperCAmelCase ) UpperCAmelCase_ = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) UpperCAmelCase_ = jit(model.generate ) UpperCAmelCase_ = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase (self : Tuple ): UpperCAmelCase_ = self._get_input_ids_and_config() UpperCAmelCase_ = max_length UpperCAmelCase_ = 2 UpperCAmelCase_ = 1 UpperCAmelCase_ = 8 UpperCAmelCase_ = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase_ = model_class(__UpperCAmelCase ) UpperCAmelCase_ = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) UpperCAmelCase_ = jit(model.generate ) UpperCAmelCase_ = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase_ = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase_ = False UpperCAmelCase_ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase_ = model_class(__UpperCAmelCase ) UpperCAmelCase_ = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) UpperCAmelCase_ = jit(model.generate ) UpperCAmelCase_ = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase_ = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase_ = True UpperCAmelCase_ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase_ = model_class(__UpperCAmelCase ) UpperCAmelCase_ = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) UpperCAmelCase_ = jit(model.generate ) UpperCAmelCase_ = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase (self : Tuple ): UpperCAmelCase_ = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase_ = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase_ = 2 UpperCAmelCase_ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase_ = model_class(__UpperCAmelCase ) UpperCAmelCase_ = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) UpperCAmelCase_ = jit(model.generate ) UpperCAmelCase_ = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class __A ( unittest.TestCase ): def _lowercase (self : List[str] ): UpperCAmelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) UpperCAmelCase_ = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) UpperCAmelCase_ = """Hello world""" UpperCAmelCase_ = tokenizer(__UpperCAmelCase , return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__UpperCAmelCase , "do_samples" ): model.generate(__UpperCAmelCase , do_samples=__UpperCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__UpperCAmelCase , "foo" ): UpperCAmelCase_ = {"""foo""": """bar"""} model.generate(__UpperCAmelCase , **__UpperCAmelCase )
1
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int = 50 ): """simple docstring""" __UpperCAmelCase : Optional[int] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
254
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ (__A : List[Any] , __A : Any , __A : Union[str, Any] ) -> Tuple: # Initialise PyTorch model __lowerCAmelCase : Tuple = BertConfig.from_json_file(__A ) print(f'''Building PyTorch model from configuration: {config}''' ) __lowerCAmelCase : List[Any] = BertForPreTraining(__A ) # Load weights from tf checkpoint load_tf_weights_in_bert(__A , __A , __A ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
363
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def snake_case_ (__A : Optional[int] , __A : Any ) -> Any: __lowerCAmelCase : Union[str, Any] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''encoder.deit.blocks.{i}.norm1.weight''', f'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm1.bias''', f'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.weight''', f'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.bias''', f'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.norm2.weight''', f'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm2.bias''', f'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.weight''', f'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.bias''', f'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc2.weight''', f'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.mlp.fc2.bias''', f'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def snake_case_ (__A : List[str] , __A : str ) -> Optional[Any]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __lowerCAmelCase : Optional[Any] = state_dict.pop(f'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) __lowerCAmelCase : Tuple = in_proj_weight[ : encoder_config.hidden_size, : ] __lowerCAmelCase : str = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __lowerCAmelCase : str = in_proj_weight[ -encoder_config.hidden_size :, : ] def snake_case_ (__A : Union[str, Any] , __A : str , __A : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase : Any = dct.pop(__A ) __lowerCAmelCase : str = val def snake_case_ (__A : int ) -> Tuple: if "handwritten" in checkpoint_url: __lowerCAmelCase : Tuple = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __lowerCAmelCase : Optional[Any] = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" __lowerCAmelCase : Dict = Image.open(requests.get(__A , stream=__A ).raw ).convert("""RGB""" ) return im @torch.no_grad() def snake_case_ (__A : Any , __A : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase : List[Any] = ViTConfig(image_size=3_8_4 , qkv_bias=__A ) __lowerCAmelCase : List[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __lowerCAmelCase : Union[str, Any] = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __lowerCAmelCase : Any = 1_0_2_4 __lowerCAmelCase : Any = 4_0_9_6 __lowerCAmelCase : Optional[int] = 2_4 __lowerCAmelCase : str = 1_6 __lowerCAmelCase : List[Any] = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __lowerCAmelCase : Tuple = False __lowerCAmelCase : Union[str, Any] = """relu""" __lowerCAmelCase : List[Any] = 1_0_2_4 __lowerCAmelCase : Any = True __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Dict = False # load HuggingFace model __lowerCAmelCase : Dict = ViTModel(__A , add_pooling_layer=__A ) __lowerCAmelCase : Union[str, Any] = TrOCRForCausalLM(__A ) __lowerCAmelCase : Any = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() # load state_dict of original model, rename some keys __lowerCAmelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" , check_hash=__A )["""model"""] __lowerCAmelCase : Any = create_rename_keys(__A , __A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __lowerCAmelCase : Tuple = state_dict.pop(__A ) if key.startswith("""decoder""" ) and "output_projection" not in key: __lowerCAmelCase : str = val else: __lowerCAmelCase : Tuple = val # load state dict model.load_state_dict(__A ) # Check outputs on an image __lowerCAmelCase : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) __lowerCAmelCase : List[str] = RobertaTokenizer.from_pretrained("""roberta-large""" ) __lowerCAmelCase : List[Any] = TrOCRProcessor(__A , __A ) __lowerCAmelCase : List[str] = processor(images=prepare_img(__A ) , return_tensors="""pt""" ).pixel_values # verify logits __lowerCAmelCase : List[str] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __lowerCAmelCase : List[str] = model(pixel_values=__A , decoder_input_ids=__A ) __lowerCAmelCase : Optional[Any] = outputs.logits __lowerCAmelCase : Union[str, Any] = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __lowerCAmelCase : Dict = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: __lowerCAmelCase : List[Any] = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: __lowerCAmelCase : Tuple = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: __lowerCAmelCase : List[Any] = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , __A , atol=1e-3 ), "First elements of logits not as expected" Path(__A ).mkdir(exist_ok=__A ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __UpperCAmelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
139
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __snake_case : Tuple ={'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict =['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int =['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __snake_case : List[str] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
129
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""Speech2TextFeatureExtractor""" snake_case_ ="""Speech2TextTokenizer""" def __init__(self ,__lowerCamelCase ,__lowerCamelCase ) -> str: """simple docstring""" super().__init__(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : int = self.feature_extractor lowerCAmelCase__ : List[str] = False def __call__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Dict: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase ,**__lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowerCAmelCase__ : Optional[Any] = kwargs.pop('''raw_speech''' ) else: lowerCAmelCase__ : str = kwargs.pop('''audio''' ,__lowerCamelCase ) lowerCAmelCase__ : List[str] = kwargs.pop('''sampling_rate''' ,__lowerCamelCase ) lowerCAmelCase__ : List[str] = kwargs.pop('''text''' ,__lowerCamelCase ) if len(__lowerCamelCase ) > 0: lowerCAmelCase__ : Union[str, Any] = args[0] lowerCAmelCase__ : str = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowerCAmelCase__ : str = self.feature_extractor(__lowerCamelCase ,*__lowerCamelCase ,sampling_rate=__lowerCamelCase ,**__lowerCamelCase ) if text is not None: lowerCAmelCase__ : Any = self.tokenizer(__lowerCamelCase ,**__lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase__ : str = encodings['''input_ids'''] return inputs def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__lowerCamelCase ,**__lowerCamelCase ) @contextmanager def lowerCAmelCase__ (self ) -> Any: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowerCAmelCase__ : int = True lowerCAmelCase__ : Union[str, Any] = self.tokenizer yield lowerCAmelCase__ : List[str] = self.feature_extractor lowerCAmelCase__ : Any = False
129
1
'''simple docstring''' UpperCAmelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase : str = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase : Optional[int] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
369
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase : int = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(a__ ) ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , """words.txt""" ) __SCREAMING_SNAKE_CASE = """""" with open(a__ ) as f: __SCREAMING_SNAKE_CASE = f.readline() __SCREAMING_SNAKE_CASE = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] __SCREAMING_SNAKE_CASE = [ word for word in [sum(ord(a__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(a__ ) if __name__ == "__main__": print(solution())
331
0
def a ( snake_case__: int ): '''simple docstring''' lowercase_ = [0] * len(snake_case__ ) lowercase_ = [] lowercase_ = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: lowercase_ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase_ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph __a = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
30
'''simple docstring''' import argparse import os import re _snake_case = 'src/transformers' # Pattern that looks at the indentation in a line. _snake_case = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _snake_case = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _snake_case = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _snake_case = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _snake_case = re.compile(r'\[([^\]]+)\]') def _A ( snake_case ) -> str: _lowercase : Union[str, Any] = _re_indent.search(snake_case ) return "" if search is None else search.groups()[0] def _A ( snake_case , snake_case="" , snake_case=None , snake_case=None ) -> Optional[int]: _lowercase : List[str] = 0 _lowercase : str = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(snake_case ): index += 1 _lowercase : Optional[int] = ["\n".join(lines[:index] )] else: _lowercase : Dict = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowercase : Any = [lines[index]] index += 1 while index < len(snake_case ) and (end_prompt is None or not lines[index].startswith(snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(snake_case ) ) if index < len(snake_case ) - 1: _lowercase : int = [lines[index + 1]] index += 1 else: _lowercase : Optional[int] = [] else: blocks.append("\n".join(snake_case ) ) _lowercase : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case ) > 0: blocks.append("\n".join(snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case ): blocks.append("\n".join(lines[index:] ) ) return blocks def _A ( snake_case ) -> Optional[int]: def _inner(snake_case ): return key(snake_case ).lower().replace("_" , "" ) return _inner def _A ( snake_case , snake_case=None ) -> List[str]: # If no key is provided, we use a noop. def noop(snake_case ): return x if key is None: _lowercase : Optional[int] = noop # Constants are all uppercase, they go first. _lowercase : Dict = [obj for obj in objects if key(snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowercase : int = [obj for obj in objects if key(snake_case )[0].isupper() and not key(snake_case ).isupper()] # Functions begin with a lowercase, they go last. _lowercase : Dict = [obj for obj in objects if not key(snake_case )[0].isupper()] _lowercase : Union[str, Any] = ignore_underscore(snake_case ) return sorted(snake_case , key=snake_case ) + sorted(snake_case , key=snake_case ) + sorted(snake_case , key=snake_case ) def _A ( snake_case ) -> List[Any]: # This inner function sort imports between [ ]. def _replace(snake_case ): _lowercase : Optional[Any] = match.groups()[0] if "," not in imports: return F'''[{imports}]''' _lowercase : str = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase : Optional[int] = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(snake_case )] ) + "]" _lowercase : Tuple = import_statement.split("\n" ) if len(snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowercase : Union[str, Any] = 2 if lines[1].strip() == "[" else 1 _lowercase : Optional[int] = [(i, _re_strip_line.search(snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowercase : Any = sort_objects(snake_case , key=lambda snake_case : x[1] ) _lowercase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowercase : Dict = _re_bracket_content.sub(_replace , lines[1] ) else: _lowercase : Optional[Any] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase : Optional[int] = keys[:-1] _lowercase : Optional[Any] = get_indent(lines[1] ) + ", ".join([F'''"{k}"''' for k in sort_objects(snake_case )] ) return "\n".join(snake_case ) else: # Finally we have to deal with imports fitting on one line _lowercase : Optional[Any] = _re_bracket_content.sub(_replace , snake_case ) return import_statement def _A ( snake_case , snake_case=True ) -> Dict: with open(snake_case , encoding="utf-8" ) as f: _lowercase : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowercase : Optional[Any] = split_code_in_indented_blocks( snake_case , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowercase : Dict = main_blocks[block_idx] _lowercase : Union[str, Any] = block.split("\n" ) # Get to the start of the imports. _lowercase : int = 0 while line_idx < len(snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowercase : Optional[Any] = len(snake_case ) else: line_idx += 1 if line_idx >= len(snake_case ): continue # Ignore beginning and last line: they don't contain anything. _lowercase : Any = "\n".join(block_lines[line_idx:-1] ) _lowercase : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowercase : Optional[int] = split_code_in_indented_blocks(snake_case , indent_level=snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend _lowercase : Union[str, Any] = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowercase : str = [(pattern.search(snake_case ).groups()[0] if pattern.search(snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowercase : List[str] = [(i, key) for i, key in enumerate(snake_case ) if key is not None] _lowercase : Tuple = [x[0] for x in sorted(snake_case , key=lambda snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowercase : Any = 0 _lowercase : str = [] for i in range(len(snake_case ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowercase : Tuple = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(snake_case ) count += 1 # And we put our main block back together with its first and last line. _lowercase : int = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write("\n".join(snake_case ) ) def _A ( snake_case=True ) -> str: _lowercase : List[Any] = [] for root, _, files in os.walk(snake_case ): if "__init__.py" in files: _lowercase : Tuple = sort_imports(os.path.join(snake_case , "__init__.py" ) , check_only=snake_case ) if result: _lowercase : Any = [os.path.join(snake_case , "__init__.py" )] if len(snake_case ) > 0: raise ValueError(F'''Would overwrite {len(snake_case )} files, run `make style`.''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _snake_case = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
250
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BICUBIC , _a = True , _a = None , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , _a = True , **_a , ): """simple docstring""" super().__init__(**_a ) lowerCamelCase = size if size is not None else {"""shortest_edge""": 224} lowerCamelCase = get_size_dict(_a , default_to_square=_a ) lowerCamelCase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowerCamelCase = get_size_dict(_a , default_to_square=_a , param_name="""crop_size""" ) lowerCamelCase = do_resize lowerCamelCase = size lowerCamelCase = resample lowerCamelCase = do_center_crop lowerCamelCase = crop_size lowerCamelCase = do_rescale lowerCamelCase = rescale_factor lowerCamelCase = do_normalize lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase = do_convert_rgb def _lowerCAmelCase ( self , _a , _a , _a = PILImageResampling.BICUBIC , _a = None , **_a , ): """simple docstring""" lowerCamelCase = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCamelCase = get_resize_output_image_size(_a , size=size["""shortest_edge"""] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def _lowerCAmelCase ( self , _a , _a , _a = None , **_a , ): """simple docstring""" lowerCamelCase = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_a , size=(size["""height"""], size["""width"""]) , data_format=_a , **_a ) def _lowerCAmelCase ( self , _a , _a , _a = None , **_a , ): """simple docstring""" return rescale(_a , scale=_a , data_format=_a , **_a ) def _lowerCAmelCase ( self , _a , _a , _a , _a = None , **_a , ): """simple docstring""" return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def _lowerCAmelCase ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ): """simple docstring""" lowerCamelCase = do_resize if do_resize is not None else self.do_resize lowerCamelCase = size if size is not None else self.size lowerCamelCase = get_size_dict(_a , param_name="""size""" , default_to_square=_a ) lowerCamelCase = resample if resample is not None else self.resample lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase = crop_size if crop_size is not None else self.crop_size lowerCamelCase = get_size_dict(_a , param_name="""crop_size""" , default_to_square=_a ) lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase = image_mean if image_mean is not None else self.image_mean lowerCamelCase = image_std if image_std is not None else self.image_std lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. lowerCamelCase = [to_numpy_array(_a ) for image in images] if do_resize: lowerCamelCase = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: lowerCamelCase = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: lowerCamelCase = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: lowerCamelCase = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] lowerCamelCase = [to_channel_dimension_format(_a , _a ) for image in images] lowerCamelCase = {"""pixel_values""": images} return BatchFeature(data=_a , tensor_type=_a )
365
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : int = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "blip_2_vision_model" def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.00_001 , _a=0.0 , _a=1e-1_0 , _a=True , **_a , ): """simple docstring""" super().__init__(**_a ) lowerCamelCase = hidden_size lowerCamelCase = intermediate_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = patch_size lowerCamelCase = image_size lowerCamelCase = initializer_range lowerCamelCase = attention_dropout lowerCamelCase = layer_norm_eps lowerCamelCase = hidden_act lowerCamelCase = qkv_bias @classmethod def _lowerCAmelCase ( cls , _a , **_a ): """simple docstring""" cls._set_token_in_kwargs(_a ) lowerCamelCase , lowerCamelCase = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowerCamelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a , **_a ) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "blip_2_qformer" def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1e-1_2 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): """simple docstring""" super().__init__(pad_token_id=_a , **_a ) lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = hidden_act lowerCamelCase = intermediate_size lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = initializer_range lowerCamelCase = layer_norm_eps lowerCamelCase = position_embedding_type lowerCamelCase = cross_attention_frequency lowerCamelCase = encoder_hidden_size @classmethod def _lowerCAmelCase ( cls , _a , **_a ): """simple docstring""" cls._set_token_in_kwargs(_a ) lowerCamelCase , lowerCamelCase = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowerCamelCase = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a , **_a ) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "blip-2" __UpperCamelCase = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): """simple docstring""" super().__init__(**_a ) if vision_config is None: lowerCamelCase = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: lowerCamelCase = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: lowerCamelCase = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) lowerCamelCase = BlipaVisionConfig(**_a ) lowerCamelCase = BlipaQFormerConfig(**_a ) lowerCamelCase = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowerCamelCase = CONFIG_MAPPING[text_model_type](**_a ) lowerCamelCase = self.text_config.tie_word_embeddings lowerCamelCase = self.text_config.is_encoder_decoder lowerCamelCase = num_query_tokens lowerCamelCase = self.vision_config.hidden_size lowerCamelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase = 1.0 lowerCamelCase = 0.02 @classmethod def _lowerCAmelCase ( cls , _a , _a , _a , **_a , ): """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = copy.deepcopy(self.__dict__ ) lowerCamelCase = self.vision_config.to_dict() lowerCamelCase = self.qformer_config.to_dict() lowerCamelCase = self.text_config.to_dict() lowerCamelCase = self.__class__.model_type return output
168
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : Optional[int] = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class lowercase__ ( __UpperCAmelCase ): '''simple docstring''' A_ : Union[PIL.Image.Image, np.ndarray] class lowercase__ ( __UpperCAmelCase ): '''simple docstring''' def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): super().__init__() self.register_modules( prior=__snake_case , image_encoder=__snake_case , image_processor=__snake_case , scheduler=__snake_case , renderer=__snake_case , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): if latents is None: _SCREAMING_SNAKE_CASE : List[Any] = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) _SCREAMING_SNAKE_CASE : List[str] = latents.to(__snake_case ) _SCREAMING_SNAKE_CASE : Dict = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase_ ( self , __snake_case=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _SCREAMING_SNAKE_CASE : Any = torch.device(f"""cuda:{gpu_id}""" ) _SCREAMING_SNAKE_CASE : Optional[Any] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__snake_case , __snake_case ) @property def UpperCAmelCase_ ( self ): if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__snake_case , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , ): if isinstance(__snake_case , __snake_case ) and isinstance(image[0] , torch.Tensor ): _SCREAMING_SNAKE_CASE : Dict = torch.cat(__snake_case , axis=0 ) if image[0].ndim == 4 else torch.stack(__snake_case , axis=0 ) if not isinstance(__snake_case , torch.Tensor ): _SCREAMING_SNAKE_CASE : List[Any] = self.image_processor(__snake_case , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _SCREAMING_SNAKE_CASE : Optional[Any] = image.to(dtype=self.image_encoder.dtype , device=__snake_case ) _SCREAMING_SNAKE_CASE : int = self.image_encoder(__snake_case )['last_hidden_state'] _SCREAMING_SNAKE_CASE : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _SCREAMING_SNAKE_CASE : Optional[int] = image_embeds.repeat_interleave(__snake_case , dim=0 ) if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(__snake_case ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _SCREAMING_SNAKE_CASE : int = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__snake_case ) def __call__( self , __snake_case , __snake_case = 1 , __snake_case = 25 , __snake_case = None , __snake_case = None , __snake_case = 4.0 , __snake_case = 64 , __snake_case = "pil" , __snake_case = True , ): if isinstance(__snake_case , PIL.Image.Image ): _SCREAMING_SNAKE_CASE : List[str] = 1 elif isinstance(__snake_case , torch.Tensor ): _SCREAMING_SNAKE_CASE : List[str] = image.shape[0] elif isinstance(__snake_case , __snake_case ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _SCREAMING_SNAKE_CASE : List[str] = len(__snake_case ) else: raise ValueError( f"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__snake_case )}""" ) _SCREAMING_SNAKE_CASE : Tuple = self._execution_device _SCREAMING_SNAKE_CASE : List[Any] = batch_size * num_images_per_prompt _SCREAMING_SNAKE_CASE : Optional[Any] = guidance_scale > 1.0 _SCREAMING_SNAKE_CASE : Optional[int] = self._encode_image(__snake_case , __snake_case , __snake_case , __snake_case ) # prior self.scheduler.set_timesteps(__snake_case , device=__snake_case ) _SCREAMING_SNAKE_CASE : str = self.scheduler.timesteps _SCREAMING_SNAKE_CASE : Tuple = self.prior.config.num_embeddings _SCREAMING_SNAKE_CASE : Optional[int] = self.prior.config.embedding_dim _SCREAMING_SNAKE_CASE : Dict = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __snake_case , __snake_case , __snake_case , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _SCREAMING_SNAKE_CASE : Tuple = latents.reshape(latents.shape[0] , __snake_case , __snake_case ) for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance _SCREAMING_SNAKE_CASE : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.scale_model_input(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : Tuple = self.prior( __snake_case , timestep=__snake_case , proj_embedding=__snake_case , ).predicted_image_embedding # remove the variance _SCREAMING_SNAKE_CASE : Any = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _SCREAMING_SNAKE_CASE : Any = noise_pred.chunk(2 ) _SCREAMING_SNAKE_CASE : str = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _SCREAMING_SNAKE_CASE : List[str] = self.scheduler.step( __snake_case , timestep=__snake_case , sample=__snake_case , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__snake_case ) _SCREAMING_SNAKE_CASE : List[Any] = [] for i, latent in enumerate(__snake_case ): print() _SCREAMING_SNAKE_CASE : Dict = self.renderer.decode( latent[None, :] , __snake_case , size=__snake_case , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(__snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack(__snake_case ) if output_type not in ["np", "pil"]: raise ValueError(f"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) _SCREAMING_SNAKE_CASE : List[Any] = images.cpu().numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE : Any = [self.numpy_to_pil(__snake_case ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__snake_case )
200
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def A_ ( A__ ) -> Tuple: # A local function to see if a dot lands in the circle. def is_in_circle(A__ , A__ ) -> bool: a__ : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle a__ : List[str] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(A__ ) ) # The ratio of the area for circle to square is pi/4. a__ : Optional[Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def A_ ( A__ , A__ , A__ = 0.0 , A__ = 1.0 , ) -> float: return mean( function_to_integrate(uniform(A__ , A__ ) ) for _ in range(A__ ) ) * (max_value - min_value) def A_ ( A__ , A__ = 0.0 , A__ = 1.0 ) -> None: def identity_function(A__ ) -> float: return x a__ : List[Any] = area_under_curve_estimator( A__ , A__ , A__ , A__ ) a__ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def A_ ( A__ ) -> None: def function_to_integrate(A__ ) -> float: return sqrt(4.0 - x * x ) a__ : Dict = area_under_curve_estimator( A__ , A__ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
99
0
__A = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def snake_case_(_UpperCamelCase ) -> bytes: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): _snake_case = F"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_UpperCamelCase ) _snake_case = ''''''.join(bin(_UpperCamelCase )[2:].zfill(8 ) for byte in data ) _snake_case = len(_UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later _snake_case = b'''=''' * ((6 - len(_UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_UpperCamelCase ) % 6) else: _snake_case = b'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_UpperCamelCase ) , 6 ) ).encode() + padding ) def snake_case_(_UpperCamelCase ) -> bytes: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ): _snake_case = ( '''argument should be a bytes-like object or ASCII string, ''' F"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_UpperCamelCase , _UpperCamelCase ): try: _snake_case = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) _snake_case = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _snake_case = encoded_data[:-padding] _snake_case = ''''''.join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _snake_case = ''''''.join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) _snake_case = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_UpperCamelCase ) , 8 ) ] return bytes(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
278
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __A = {'''allegro/herbert-base-cased''': 5_14} __A = {} class lowercase_ ( __lowercase ): UpperCamelCase_ : Any = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = HerbertTokenizer def __init__( self : Tuple , A__ : str=None , A__ : Optional[Any]=None , A__ : Union[str, Any]=None , A__ : Optional[int]="<s>" , A__ : Optional[int]="<unk>" , A__ : str="<pad>" , A__ : List[Any]="<mask>" , A__ : Dict="</s>" , **A__ : Optional[int] , ) -> Optional[int]: super().__init__( A__ , A__ , tokenizer_file=A__ , cls_token=A__ , unk_token=A__ , pad_token=A__ , mask_token=A__ , sep_token=A__ , **A__ , ) def UpperCamelCase_ ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : Tuple , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) if token_ids_a is None: return [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1] + ([0] * len(A__ )) + [1] def UpperCamelCase_ ( self : Any , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: _snake_case = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
278
1