code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class A__ ( __snake_case , __snake_case , __snake_case ): @register_to_config def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ = False , ): '''simple docstring''' super().__init__() UpperCamelCase : Dict = nn.Embedding(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = nn.Embedding(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = False UpperCamelCase : List[str] = nn.Dropout(p=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = TaConfig( vocab_size=SCREAMING_SNAKE_CASE_ , d_model=SCREAMING_SNAKE_CASE_ , num_heads=SCREAMING_SNAKE_CASE_ , d_kv=SCREAMING_SNAKE_CASE_ , d_ff=SCREAMING_SNAKE_CASE_ , dropout_rate=SCREAMING_SNAKE_CASE_ , feed_forward_proj=SCREAMING_SNAKE_CASE_ , is_decoder=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Optional[int] = nn.ModuleList() for lyr_num in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = TaBlock(SCREAMING_SNAKE_CASE_ ) self.encoders.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = TaLayerNorm(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = nn.Dropout(p=SCREAMING_SNAKE_CASE_ ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Tuple = self.token_embedder(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = encoder_input_tokens.shape[1] UpperCamelCase : Union[str, Any] = torch.arange(SCREAMING_SNAKE_CASE_ , device=encoder_input_tokens.device ) x += self.position_encoding(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.dropout_pre(SCREAMING_SNAKE_CASE_ ) # inverted the attention mask UpperCamelCase : Optional[Any] = encoder_input_tokens.size() UpperCamelCase : Optional[int] = self.get_extended_attention_mask(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for lyr in self.encoders: UpperCamelCase : Any = lyr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase : List[Any] = self.layer_norm(SCREAMING_SNAKE_CASE_ ) return self.dropout_post(SCREAMING_SNAKE_CASE_ ), encoder_inputs_mask
52
from __future__ import annotations from collections.abc import MutableSequence class lowercase__: """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : MutableSequence[float] ) -> None: if len(SCREAMING_SNAKE_CASE_ ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = degree def __add__( self : Any , SCREAMING_SNAKE_CASE_ : Polynomial ) -> Polynomial: if self.degree > polynomial_a.degree: lowercase_ = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , SCREAMING_SNAKE_CASE_ ) else: lowercase_ = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , SCREAMING_SNAKE_CASE_ ) def __sub__( self : str , SCREAMING_SNAKE_CASE_ : Polynomial ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : int ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Any , SCREAMING_SNAKE_CASE_ : Polynomial ) -> Polynomial: lowercase_ = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : int | float ) -> int | float: lowercase_ = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Tuple ) -> str: lowercase_ = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(SCREAMING_SNAKE_CASE_ ) return polynomial def __repr__( self : Optional[Any] ) -> str: return self.__str__() def _lowercase ( self : int ) -> Polynomial: lowercase_ = [0] * self.degree for i in range(self.degree ): lowercase_ = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : int | float = 0 ) -> Polynomial: lowercase_ = [0] * (self.degree + 2) lowercase_ = constant for i in range(self.degree + 1 ): lowercase_ = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , SCREAMING_SNAKE_CASE_ ) def __eq__( self : str , SCREAMING_SNAKE_CASE_ : object ) -> bool: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[str] , SCREAMING_SNAKE_CASE_ : object ) -> bool: return not self.__eq__(SCREAMING_SNAKE_CASE_ )
30
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _UpperCamelCase = logging.getLogger(__name__) class lowercase : '''simple docstring''' def __init__(self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = False def UpperCamelCase__ (self , __a , __a , __a , __a ) -> int: """simple docstring""" if not self.initialized: UpperCAmelCase__ = RagRetriever( __a , question_encoder_tokenizer=__a , generator_tokenizer=__a , index=__a , init_retrieval=__a , ) UpperCAmelCase__ = True def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" self.retriever.index.init_index() def UpperCamelCase__ (self , __a , __a ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.retriever._main_retrieve(__a , __a ) return doc_ids, retrieved_doc_embeds class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a , __a , __a , __a , __a=None ) -> str: """simple docstring""" if index is not None and index.is_initialized() and len(__a ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( __a , question_encoder_tokenizer=__a , generator_tokenizer=__a , index=__a , init_retrieval=__a , ) UpperCAmelCase__ = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__a , __a , __a , __a ) for worker in self.retrieval_workers ] ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def UpperCamelCase__ (self , __a , __a ) -> Dict: """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. UpperCAmelCase__ = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] UpperCAmelCase__ , UpperCAmelCase__ = ray.get(random_worker.retrieve.remote(__a , __a ) ) else: UpperCAmelCase__ , UpperCAmelCase__ = self._main_retrieve(__a , __a ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__a ) @classmethod def UpperCamelCase__ (cls , __a , __a=None , **__a ) -> Optional[int]: """simple docstring""" return super(__a , cls ).get_tokenizers(__a , __a , **__a ) @classmethod def UpperCamelCase__ (cls , __a , __a , __a=None , **__a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = kwargs.pop('config' , __a ) or RagConfig.from_pretrained(__a , **__a ) UpperCAmelCase__ = RagTokenizer.from_pretrained(__a , config=__a ) UpperCAmelCase__ = rag_tokenizer.question_encoder UpperCAmelCase__ = rag_tokenizer.generator if indexed_dataset is not None: UpperCAmelCase__ = 'custom' UpperCAmelCase__ = CustomHFIndex(config.retrieval_vector_size , __a ) else: UpperCAmelCase__ = cls._build_index(__a ) return cls( __a , question_encoder_tokenizer=__a , generator_tokenizer=__a , retrieval_workers=__a , index=__a , )
335
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase_( snake_case__: int ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ ) return k def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration: UpperCAmelCase__ = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) UpperCAmelCase__ = PegasusConfig(**snake_case__ ) UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ ) UpperCAmelCase__ = torch_model.model.state_dict() UpperCAmelCase__ = {} for k, v in tf_weights.items(): UpperCAmelCase__ = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: UpperCAmelCase__ = v.T UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) UpperCAmelCase__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): UpperCAmelCase__ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array return tf_weights def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]: # save tokenizer first UpperCAmelCase__ = Path(snake_case__ ).parent.name UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ ) UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"] if dataset == "large": UpperCAmelCase__ = task_specific_params UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) UpperCAmelCase__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
335
1
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _snake_case ( *_snake_case : Dict ): with open(_snake_case , '''r''' ) as fh: fcntl.flock(_snake_case , fcntl.LOCK_EX ) try: print(*_snake_case ) finally: fcntl.flock(_snake_case , fcntl.LOCK_UN ) snake_case__ : str = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) snake_case__ : int = torch.device('''cuda''', local_rank) snake_case__ : Union[str, Any] = socket.gethostname() snake_case__ : str = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank snake_case__ : List[Any] = dist.get_rank() snake_case__ : List[str] = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
60
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowercase_ = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a__ ( snake_case ): """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a__ ( snake_case , snake_case ): """simple docstring""" if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : int = False elif args.student_type == "gpt2": __SCREAMING_SNAKE_CASE : Optional[int] = False def a__ ( snake_case , snake_case ): """simple docstring""" if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : Dict = False def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case , required=snake_case , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case , required=snake_case , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case , required=snake_case , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case , type=snake_case , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case , required=snake_case , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=snake_case , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=snake_case , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=snake_case , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case , default=4_000 , help='''Checkpoint interval.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() sanity_checks(snake_case ) # ARGS # init_gpu_params(snake_case ) set_seed(snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case ) , snake_case , indent=4 ) git_log(args.dump_path ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = MODEL_CLASSES[args.student_type] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __SCREAMING_SNAKE_CASE : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __SCREAMING_SNAKE_CASE : Optional[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __SCREAMING_SNAKE_CASE : Any = tokenizer.all_special_tokens.index(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) __SCREAMING_SNAKE_CASE : Any = special_tok_ids __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : List[str] = pickle.load(snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : Optional[Any] = pickle.load(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = np.maximum(snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __SCREAMING_SNAKE_CASE : Any = 0.0 # do not predict special tokens __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(snake_case ) else: __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Optional[Any] = LmSeqsDataset(params=snake_case , data=snake_case ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = student_config_class.from_pretrained(args.student_config ) __SCREAMING_SNAKE_CASE : Dict = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case ) else: __SCREAMING_SNAKE_CASE : str = student_model_class(snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # __SCREAMING_SNAKE_CASE : List[str] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case , snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case , snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __SCREAMING_SNAKE_CASE : int = Distiller( params=snake_case , dataset=snake_case , token_probs=snake_case , student=snake_case , teacher=snake_case ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
303
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = StableDiffusionInstructPixaPixPipeline UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} UpperCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase ( self: Tuple ): """simple docstring""" torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A__ = PNDMScheduler(skip_prk_steps=UpperCamelCase ) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) A__ = CLIPTextModel(UpperCamelCase ) A__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase ( self: str , UpperCamelCase: List[str] , UpperCamelCase: Optional[Any]=0 ): """simple docstring""" A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) A__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ = Image.fromarray(np.uinta(UpperCamelCase ) ).convert("""RGB""" ) if str(UpperCamelCase ).startswith("""mps""" ): A__ = torch.manual_seed(UpperCamelCase ) else: A__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) A__ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def UpperCamelCase ( self: int ): """simple docstring""" A__ = """cpu""" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase ) A__ = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) A__ = self.get_dummy_inputs(UpperCamelCase ) A__ = sd_pipe(**UpperCamelCase ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = """cpu""" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase ) A__ = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) A__ = self.get_dummy_inputs(UpperCamelCase ) A__ = """french fries""" A__ = sd_pipe(**UpperCamelCase , negative_prompt=UpperCamelCase ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = """cpu""" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase ) A__ = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) A__ = self.get_dummy_inputs(UpperCamelCase ) A__ = [inputs["""prompt"""]] * 2 A__ = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 A__ = torch.from_numpy(UpperCamelCase ).unsqueeze(0 ).to(UpperCamelCase ) A__ = image / 2 + 0.5 A__ = image.permute(0 , 3 , 1 , 2 ) A__ = image.repeat(2 , 1 , 1 , 1 ) A__ = sd_pipe(**UpperCamelCase ).images A__ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A__ = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = """cpu""" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase ) A__ = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) A__ = self.get_dummy_inputs(UpperCamelCase ) A__ = sd_pipe(**UpperCamelCase ).images A__ = image[0, -3:, -3:, -1] A__ = [round(UpperCamelCase , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(UpperCamelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A__ = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self: str ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCamelCase ( self: int ): """simple docstring""" A__ = self.get_dummy_components() A__ = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase ) A__ = VaeImageProcessor(do_resize=UpperCamelCase , do_normalize=UpperCamelCase ) A__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) A__ = pipe(**self.get_dummy_inputs_by_type(UpperCamelCase , input_image_type="""pt""" ) )[0] A__ = components["""vae"""] A__ = self.get_dummy_inputs_by_type(UpperCamelCase , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A__ = vae.encode(inputs[image_param] ).latent_dist.mode() A__ = pipe(**UpperCamelCase )[0] A__ = np.abs(out - out_latents_inputs ).max() self.assertLess(UpperCamelCase , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: List[Any] , UpperCamelCase: List[str]=0 ): """simple docstring""" A__ = torch.manual_seed(UpperCamelCase ) A__ = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) A__ = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def UpperCamelCase ( self: str ): """simple docstring""" A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase ).images A__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCamelCase ( self: Any ): """simple docstring""" A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase ) A__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase ).images A__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase ) A__ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase ).images A__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = 0 def callback_fn(UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: torch.FloatTensor ) -> None: A__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: A__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ = latents[0, -3:, -3:, -1] A__ = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: A__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ = latents[0, -3:, -3:, -1] A__ = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 A__ = False A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase , torch_dtype=torch.floataa ) A__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() A__ = self.get_inputs() pipe(**UpperCamelCase , callback=UpperCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase , torch_dtype=torch.floataa ) A__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ = self.get_inputs() A__ = pipe(**UpperCamelCase ) A__ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A__ = inputs["""image"""].resize((5_04, 5_04) ) A__ = """timbrooks/instruct-pix2pix""" A__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( UpperCamelCase , safety_checker=UpperCamelCase , ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() A__ = pipe(**UpperCamelCase ) A__ = output.images[0] A__ = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) A__ = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
69
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ : int = logging.get_logger(__name__) class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Optional[int] , *UpperCamelCase: Optional[int] , **UpperCamelCase: Optional[int] ): """simple docstring""" warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
69
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : List[str] = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
183
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _SCREAMING_SNAKE_CASE : Optional[int] = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class a ( unittest.TestCase , __snake_case ): def UpperCamelCase ( self : int ) -> Optional[int]: lowerCamelCase_ = load_tool('text-question-answering' ) self.tool.setup() lowerCamelCase_ = load_tool('text-question-answering' , remote=__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Dict ) -> Tuple: lowerCamelCase_ = self.tool(__SCREAMING_SNAKE_CASE , 'What did Hugging Face do in April 2021?' ) self.assertEqual(__SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop' ) def UpperCamelCase ( self : List[Any] ) -> Optional[int]: lowerCamelCase_ = self.remote_tool(__SCREAMING_SNAKE_CASE , 'What did Hugging Face do in April 2021?' ) self.assertEqual(__SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop' ) def UpperCamelCase ( self : List[str] ) -> Optional[int]: lowerCamelCase_ = self.tool(text=__SCREAMING_SNAKE_CASE , question='What did Hugging Face do in April 2021?' ) self.assertEqual(__SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop' ) def UpperCamelCase ( self : Union[str, Any] ) -> int: lowerCamelCase_ = self.remote_tool(text=__SCREAMING_SNAKE_CASE , question='What did Hugging Face do in April 2021?' ) self.assertEqual(__SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop' )
183
1
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase__ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ): """simple docstring""" @register_to_config def __init__( self : Optional[Any] , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None ): """simple docstring""" super().__init__() __UpperCAmelCase : List[str] = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __UpperCAmelCase : Optional[Any] = torch.zeros(UpperCAmelCase_ , UpperCAmelCase_ ) else: __UpperCAmelCase : int = None __UpperCAmelCase : Tuple = torch.nn.Parameter(UpperCAmelCase_ ) class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 def __init__( self : str , UpperCAmelCase_ : VQModel , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : TransformeraDModel , UpperCAmelCase_ : VQDiffusionScheduler , UpperCAmelCase_ : LearnedClassifierFreeSamplingEmbeddings , ): """simple docstring""" super().__init__() self.register_modules( vqvae=UpperCAmelCase_ , transformer=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) def lowerCamelCase_ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Dict = len(UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else 1 # get prompt text embeddings __UpperCAmelCase : Optional[Any] = self.tokenizer( UpperCAmelCase_ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __UpperCAmelCase : str = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __UpperCAmelCase : List[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __UpperCAmelCase : int = text_input_ids[:, : self.tokenizer.model_max_length] __UpperCAmelCase : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __UpperCAmelCase : Any = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCAmelCase_ ) # duplicate text embeddings for each generation per prompt __UpperCAmelCase : str = prompt_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __UpperCAmelCase : str = self.learned_classifier_free_sampling_embeddings.embeddings __UpperCAmelCase : str = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCAmelCase_ , 1 , 1 ) else: __UpperCAmelCase : int = [""] * batch_size __UpperCAmelCase : Tuple = text_input_ids.shape[-1] __UpperCAmelCase : Tuple = self.tokenizer( UpperCAmelCase_ , padding="max_length" , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="pt" , ) __UpperCAmelCase : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __UpperCAmelCase : Any = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCAmelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase : List[str] = negative_prompt_embeds.shape[1] __UpperCAmelCase : str = negative_prompt_embeds.repeat(1 , UpperCAmelCase_ , 1 ) __UpperCAmelCase : List[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCAmelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCAmelCase : List[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : List[Any] , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : float = 5.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , ): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : int = 1 elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : Any = len(UpperCAmelCase_ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase_ )}" ) __UpperCAmelCase : Union[str, Any] = batch_size * num_images_per_prompt __UpperCAmelCase : str = guidance_scale > 1.0 __UpperCAmelCase : Optional[int] = self._encode_prompt(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(UpperCAmelCase_ )}." ) # get the initial completely masked latents unless the user supplied it __UpperCAmelCase : str = (batch_size, self.transformer.num_latent_pixels) if latents is None: __UpperCAmelCase : List[Any] = self.transformer.num_vector_embeds - 1 __UpperCAmelCase : int = torch.full(UpperCAmelCase_ , UpperCAmelCase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," f" {self.transformer.num_vector_embeds - 1} (inclusive)." ) __UpperCAmelCase : Optional[Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCAmelCase_ , device=self.device ) __UpperCAmelCase : Tuple = self.scheduler.timesteps.to(self.device ) __UpperCAmelCase : Any = latents for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ): # expand the sample if we are doing classifier free guidance __UpperCAmelCase : int = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __UpperCAmelCase : Any = self.transformer(UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , timestep=UpperCAmelCase_ ).sample if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = model_output.chunk(2 ) __UpperCAmelCase : Optional[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(UpperCAmelCase_ , dim=1 , keepdim=UpperCAmelCase_ ) __UpperCAmelCase : int = self.truncate(UpperCAmelCase_ , UpperCAmelCase_ ) # remove `log(0)`'s (`-inf`s) __UpperCAmelCase : Optional[Any] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step(UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = self.vqvae.config.vq_embed_dim __UpperCAmelCase : Optional[Any] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __UpperCAmelCase : List[str] = self.vqvae.quantize.get_codebook_entry(UpperCAmelCase_ , shape=UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = self.vqvae.decode(UpperCAmelCase_ , force_not_quantize=UpperCAmelCase_ ).sample __UpperCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase : int = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : float ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : List[str] = torch.sort(UpperCAmelCase_ , 1 , descending=UpperCAmelCase_ ) __UpperCAmelCase : int = torch.exp(UpperCAmelCase_ ) __UpperCAmelCase : int = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __UpperCAmelCase : int = torch.full_like(keep_mask[:, 0:1, :] , UpperCAmelCase_ ) __UpperCAmelCase : str = torch.cat((all_true, keep_mask) , dim=1 ) __UpperCAmelCase : List[Any] = keep_mask[:, :-1, :] __UpperCAmelCase : Any = keep_mask.gather(1 , indices.argsort(1 ) ) __UpperCAmelCase : int = log_p_x_0.clone() __UpperCAmelCase : int = -torch.inf # -inf = log(0) return rv
37
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase__ : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" def __init__( self : List[Any] , **UpperCAmelCase_ : Dict ): """simple docstring""" super().__init__(**UpperCAmelCase_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : List[str] , UpperCAmelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCAmelCase_ : Tuple ): """simple docstring""" return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , **UpperCAmelCase_ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : List[Any] = {} if "candidate_labels" in kwargs: __UpperCAmelCase : Union[str, Any] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: __UpperCAmelCase : int = kwargs["hypothesis_template"] return preprocess_params, {}, {} def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]="This is a photo of {}." ): """simple docstring""" __UpperCAmelCase : Tuple = load_image(UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = self.image_processor(images=[image] , return_tensors=self.framework ) __UpperCAmelCase : Dict = candidate_labels __UpperCAmelCase : Any = [hypothesis_template.format(UpperCAmelCase_ ) for x in candidate_labels] __UpperCAmelCase : Optional[int] = self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework , padding=UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = [text_inputs] return inputs def lowerCamelCase_ ( self : Tuple , UpperCAmelCase_ : Tuple ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = model_inputs.pop("candidate_labels" ) __UpperCAmelCase : str = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , UpperCAmelCase_ ): __UpperCAmelCase : Tuple = text_inputs[0] else: # Batching case. __UpperCAmelCase : Optional[int] = text_inputs[0][0] __UpperCAmelCase : Any = self.model(**UpperCAmelCase_ , **UpperCAmelCase_ ) __UpperCAmelCase : Dict = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : Dict ): """simple docstring""" __UpperCAmelCase : Any = model_outputs.pop("candidate_labels" ) __UpperCAmelCase : Tuple = model_outputs["logits"][0] if self.framework == "pt": __UpperCAmelCase : Union[str, Any] = logits.softmax(dim=-1 ).squeeze(-1 ) __UpperCAmelCase : Dict = probs.tolist() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = [scores] elif self.framework == "tf": __UpperCAmelCase : Union[str, Any] = stable_softmax(UpperCAmelCase_ , axis=-1 ) __UpperCAmelCase : List[str] = probs.numpy().tolist() else: raise ValueError(f"Unsupported framework: {self.framework}" ) __UpperCAmelCase : Dict = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(UpperCAmelCase_ , UpperCAmelCase_ ) , key=lambda UpperCAmelCase_ : -x[0] ) ] return result
37
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : int = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : str = '''markuplm''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=3_0_5_2_2 , SCREAMING_SNAKE_CASE__ : Dict=7_6_8 , SCREAMING_SNAKE_CASE__ : Tuple=1_2 , SCREAMING_SNAKE_CASE__ : str=1_2 , SCREAMING_SNAKE_CASE__ : int=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=5_1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : Any=1E-12 , SCREAMING_SNAKE_CASE__ : Any=0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : Dict=2_5_6 , SCREAMING_SNAKE_CASE__ : List[Any]=1_0_2_4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_1_6 , SCREAMING_SNAKE_CASE__ : List[str]=1_0_0_1 , SCREAMING_SNAKE_CASE__ : Tuple=3_2 , SCREAMING_SNAKE_CASE__ : str=5_0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]="absolute" , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=None , **SCREAMING_SNAKE_CASE__ : Any , ) -> Optional[Any]: super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) a_ : List[Any] = vocab_size a_ : List[Any] = hidden_size a_ : List[str] = num_hidden_layers a_ : Dict = num_attention_heads a_ : Tuple = hidden_act a_ : Dict = intermediate_size a_ : Dict = hidden_dropout_prob a_ : Optional[Any] = attention_probs_dropout_prob a_ : Any = max_position_embeddings a_ : Union[str, Any] = type_vocab_size a_ : int = initializer_range a_ : Dict = layer_norm_eps a_ : int = position_embedding_type a_ : Optional[Any] = use_cache a_ : Optional[int] = classifier_dropout # additional properties a_ : Tuple = max_depth a_ : Union[str, Any] = max_xpath_tag_unit_embeddings a_ : List[Any] = max_xpath_subs_unit_embeddings a_ : str = tag_pad_id a_ : Optional[int] = subs_pad_id a_ : Optional[int] = xpath_unit_hidden_size
32
from __future__ import annotations UpperCAmelCase_ : Tuple = [] def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] , __A : int , __A : int ) -> bool: """simple docstring""" for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] , __A : int ) -> bool: """simple docstring""" if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): a_ : Any = 1 solve(__A , row + 1 ) a_ : Tuple = 0 return False def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] ) -> None: """simple docstring""" for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) UpperCAmelCase_ : List[str] = 8 UpperCAmelCase_ : str = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
32
1
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs snake_case = imread(r"""digital_image_processing/image_data/lena_small.jpg""") snake_case = cvtColor(img, COLOR_BGR2GRAY) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def lowerCamelCase__ ( ): """simple docstring""" with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() SCREAMING_SNAKE_CASE : int = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def lowerCamelCase__ ( ): """simple docstring""" assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) SCREAMING_SNAKE_CASE : Tuple = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def lowerCamelCase__ ( ): """simple docstring""" assert med.median_filter(lowercase , 3 ).any() def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = sp.make_sepia(lowercase , 20 ) assert sepia.all() def lowerCamelCase__ ( lowercase = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = bs.Burkes(imread(lowercase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCamelCase__ ( lowercase = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = rs.NearestNeighbour(imread(lowercase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. SCREAMING_SNAKE_CASE : Dict = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : List[str] = image[x_coordinate][y_coordinate] SCREAMING_SNAKE_CASE : Optional[Any] = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image SCREAMING_SNAKE_CASE : Union[str, Any] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): SCREAMING_SNAKE_CASE : List[Any] = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
319
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''ClapFeatureExtractor''' UpperCamelCase_ : Any = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("sampling_rate" , UpperCAmelCase_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if audios is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor( UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and audios is not None: SCREAMING_SNAKE_CASE : Optional[Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _A ( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
319
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = """▁""" __snake_case = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __snake_case = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } __snake_case = { """google/pegasus-xsum""": 512, } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES __UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : str = PegasusTokenizer __UpperCAmelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<pad>" , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<mask_2>" , UpperCamelCase__="<mask_1>" , UpperCamelCase__=None , UpperCamelCase__=103 , **UpperCamelCase__ , ) -> Any: '''simple docstring''' snake_case : str = offset if additional_special_tokens is not None: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError( F'additional_special_tokens should be of type {type(UpperCamelCase__ )}, but is' F' {type(UpperCamelCase__ )}' ) snake_case : int = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'<unk_{i}>' for i in range(len(UpperCamelCase__ ) , self.offset - 1 ) ] if len(set(UpperCamelCase__ ) ) != len(UpperCamelCase__ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" F' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) snake_case : Optional[int] = additional_special_tokens_extended else: snake_case : Optional[int] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'<unk_{i}>' for i in range(2 , self.offset )] super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , pad_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , mask_token_sent=UpperCamelCase__ , offset=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) snake_case : Tuple = vocab_file snake_case : List[str] = False if not self.vocab_file else True def lowerCamelCase ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' snake_case : Optional[int] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" F' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(UpperCamelCase__ ) elif token_ids_a is None: return self._special_token_mask(UpperCamelCase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return snake_case : List[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
203
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , UpperCamelCase__=12 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=0.02 , UpperCamelCase__=0 , UpperCamelCase__=None , ) -> Dict: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Dict = batch_size snake_case : List[str] = seq_length snake_case : Dict = is_training snake_case : Optional[Any] = use_input_mask snake_case : Optional[int] = use_labels snake_case : Tuple = vocab_size snake_case : Optional[Any] = hidden_size snake_case : Optional[Any] = projection_dim snake_case : List[Any] = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : int = intermediate_size snake_case : str = dropout snake_case : List[Any] = attention_dropout snake_case : Any = max_position_embeddings snake_case : List[Any] = initializer_range snake_case : Any = scope snake_case : Union[str, Any] = bos_token_id def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : int = None if self.use_input_mask: snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: snake_case : Tuple = input_mask.numpy() snake_case ,snake_case : str = input_mask.shape snake_case : Tuple = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCamelCase__ ): snake_case : int = 1 snake_case : Tuple = 0 snake_case : Union[str, Any] = self.get_config() return config, input_ids, tf.convert_to_tensor(UpperCamelCase__ ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' snake_case : str = TFBlipTextModel(config=UpperCamelCase__ ) snake_case : Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , training=UpperCamelCase__ ) snake_case : Optional[int] = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : Tuple = self.prepare_config_and_inputs() snake_case ,snake_case ,snake_case : Tuple = config_and_inputs snake_case : str = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( snake_case_ , unittest.TestCase ): __UpperCAmelCase : Any = (TFBlipTextModel,) if is_tf_available() else () __UpperCAmelCase : Any = False __UpperCAmelCase : Dict = False __UpperCAmelCase : List[Any] = False def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : List[Any] = BlipTextModelTester(self ) snake_case : Optional[int] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' pass @slow def lowerCamelCase ( self ) -> int: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : List[str] = TFBlipTextModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__=True ) -> Optional[int]: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=UpperCamelCase__ )
203
1
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class _SCREAMING_SNAKE_CASE( A ): def __init__( self ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) if config is None: assert isinstance(self.model ,SCREAMING_SNAKE_CASE__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = self.model.config else: __SCREAMING_SNAKE_CASE :Any = config __SCREAMING_SNAKE_CASE :str = data_args __SCREAMING_SNAKE_CASE :Tuple = self.config.tgt_vocab_size if isinstance(self.config ,SCREAMING_SNAKE_CASE__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ''' padding..''' ) if self.args.label_smoothing == 0: __SCREAMING_SNAKE_CASE :Union[str, Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __SCREAMING_SNAKE_CASE :Any = label_smoothed_nll_loss def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" if self.optimizer is None: __SCREAMING_SNAKE_CASE :str = ['''bias''', '''LayerNorm.weight'''] __SCREAMING_SNAKE_CASE :Union[str, Any] = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] __SCREAMING_SNAKE_CASE :int = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __SCREAMING_SNAKE_CASE :List[str] = Adafactor __SCREAMING_SNAKE_CASE :List[Any] = {'''scale_parameter''': False, '''relative_step''': False} else: __SCREAMING_SNAKE_CASE :List[str] = AdamW __SCREAMING_SNAKE_CASE :Tuple = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } __SCREAMING_SNAKE_CASE :List[str] = self.args.learning_rate if self.sharded_ddp: __SCREAMING_SNAKE_CASE :Dict = OSS( params=SCREAMING_SNAKE_CASE__ ,optim=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) else: __SCREAMING_SNAKE_CASE :str = optimizer_cls(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) if self.lr_scheduler is None: __SCREAMING_SNAKE_CASE :List[Any] = self._get_lr_scheduler(SCREAMING_SNAKE_CASE__ ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :int = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __SCREAMING_SNAKE_CASE :Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __SCREAMING_SNAKE_CASE :int = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: __SCREAMING_SNAKE_CASE :Optional[Any] = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=SCREAMING_SNAKE_CASE__ ) return scheduler def _UpperCamelCase ( self ) -> Optional[torch.utils.data.Sampler]: """simple docstring""" if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __SCREAMING_SNAKE_CASE :Union[str, Any] = model(**SCREAMING_SNAKE_CASE__ ,use_cache=SCREAMING_SNAKE_CASE__ )[0] __SCREAMING_SNAKE_CASE :Optional[int] = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Union[str, Any] = model(**SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ,use_cache=SCREAMING_SNAKE_CASE__ )[:2] else: # compute label smoothed loss __SCREAMING_SNAKE_CASE :str = model(**SCREAMING_SNAKE_CASE__ ,use_cache=SCREAMING_SNAKE_CASE__ )[0] __SCREAMING_SNAKE_CASE :Optional[int] = torch.nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ ,dim=-1 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Union[str, Any] = self.loss_fn(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = inputs.pop('''labels''' ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :List[str] = self._compute_loss(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return loss def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = self._prepare_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __SCREAMING_SNAKE_CASE :int = self.model.generate( inputs['''input_ids'''] ,attention_mask=inputs['''attention_mask'''] ,**SCREAMING_SNAKE_CASE__ ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __SCREAMING_SNAKE_CASE :int = self._pad_tensors_to_max_len(SCREAMING_SNAKE_CASE__ ,gen_kwargs['''max_length'''] ) __SCREAMING_SNAKE_CASE :Dict = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :str = self._compute_loss(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __SCREAMING_SNAKE_CASE :List[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __SCREAMING_SNAKE_CASE :Optional[int] = self._pad_tensors_to_max_len(SCREAMING_SNAKE_CASE__ ,gen_kwargs['''max_length'''] ) return (loss, logits, labels) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f''' padded to `max_length`={max_length}''' ) __SCREAMING_SNAKE_CASE :Optional[int] = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) __SCREAMING_SNAKE_CASE :str = tensor return padded_tensor
239
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Optional[Any] = '''xlm-prophetnet''' SCREAMING_SNAKE_CASE_ : Any = ['''past_key_values'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = { '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = "gelu" ,SCREAMING_SNAKE_CASE__ = 3_05_22 ,SCREAMING_SNAKE_CASE__ = 10_24 ,SCREAMING_SNAKE_CASE__ = 40_96 ,SCREAMING_SNAKE_CASE__ = 12 ,SCREAMING_SNAKE_CASE__ = 16 ,SCREAMING_SNAKE_CASE__ = 40_96 ,SCREAMING_SNAKE_CASE__ = 12 ,SCREAMING_SNAKE_CASE__ = 16 ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 0.1 ,SCREAMING_SNAKE_CASE__ = 5_12 ,SCREAMING_SNAKE_CASE__ = 0.0_2 ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 2 ,SCREAMING_SNAKE_CASE__ = 32 ,SCREAMING_SNAKE_CASE__ = 1_28 ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = 0.0 ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 1 ,SCREAMING_SNAKE_CASE__ = 2 ,**SCREAMING_SNAKE_CASE__ ,) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :int = vocab_size __SCREAMING_SNAKE_CASE :Tuple = hidden_size __SCREAMING_SNAKE_CASE :Optional[int] = encoder_ffn_dim __SCREAMING_SNAKE_CASE :Optional[int] = num_encoder_layers __SCREAMING_SNAKE_CASE :Tuple = num_encoder_attention_heads __SCREAMING_SNAKE_CASE :List[Any] = decoder_ffn_dim __SCREAMING_SNAKE_CASE :Union[str, Any] = num_decoder_layers __SCREAMING_SNAKE_CASE :Optional[Any] = num_decoder_attention_heads __SCREAMING_SNAKE_CASE :List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE :Dict = init_std # Normal(0, this parameter) __SCREAMING_SNAKE_CASE :List[Any] = activation_function # parameters for xlmprophetnet __SCREAMING_SNAKE_CASE :Tuple = ngram __SCREAMING_SNAKE_CASE :int = num_buckets __SCREAMING_SNAKE_CASE :Optional[int] = relative_max_distance __SCREAMING_SNAKE_CASE :Union[str, Any] = disable_ngram_loss __SCREAMING_SNAKE_CASE :Dict = eps # 3 Types of Dropout __SCREAMING_SNAKE_CASE :List[str] = attention_dropout __SCREAMING_SNAKE_CASE :Dict = activation_dropout __SCREAMING_SNAKE_CASE :Union[str, Any] = dropout __SCREAMING_SNAKE_CASE :int = use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,add_cross_attention=SCREAMING_SNAKE_CASE__ ,decoder_start_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) @property def _UpperCamelCase ( self ) -> int: """simple docstring""" return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
239
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def A ( a_ ,a_=0.999 ,a_="cosine" ,) -> List[str]: if alpha_transform_type == "cosine": def alpha_bar_fn(a_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __UpperCamelCase : List[Any] =[] for i in range(a_ ): __UpperCamelCase : List[str] =i / num_diffusion_timesteps __UpperCamelCase : Optional[int] =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a_ ) / alpha_bar_fn(a_ ) ,a_ ) ) return torch.tensor(a_ ,dtype=torch.floataa ) class __A ( a , a ): """simple docstring""" UpperCamelCase__ : Optional[Any] =[e.name for e in KarrasDiffusionSchedulers] UpperCamelCase__ : Optional[int] =2 @register_to_config def __init__( self , lowerCamelCase__ = 1000 , lowerCamelCase__ = 0.00_085 , lowerCamelCase__ = 0.012 , lowerCamelCase__ = "linear" , lowerCamelCase__ = None , lowerCamelCase__ = "epsilon" , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 1.0 , lowerCamelCase__ = "linspace" , lowerCamelCase__ = 0 , ): """simple docstring""" if trained_betas is not None: __UpperCamelCase : Optional[int] =torch.tensor(lowerCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": __UpperCamelCase : str =torch.linspace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCamelCase : Optional[Any] =( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCamelCase : Optional[int] =betas_for_alpha_bar(lowerCamelCase__ , alpha_transform_type='cosine' ) elif beta_schedule == "exp": __UpperCamelCase : str =betas_for_alpha_bar(lowerCamelCase__ , alpha_transform_type='exp' ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) __UpperCamelCase : Union[str, Any] =1.0 - self.betas __UpperCamelCase : str =torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =use_karras_sigmas def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" if schedule_timesteps is None: __UpperCamelCase : Union[str, Any] =self.timesteps __UpperCamelCase : Tuple =(schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __UpperCamelCase : Tuple =1 if len(lowerCamelCase__ ) > 1 else 0 else: __UpperCamelCase : Union[str, Any] =timestep.cpu().item() if torch.is_tensor(lowerCamelCase__ ) else timestep __UpperCamelCase : List[str] =self._index_counter[timestep_int] return indices[pos].item() @property def __lowercase ( self ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : List[str] =self.index_for_timestep(lowerCamelCase__ ) __UpperCamelCase : List[str] =self.sigmas[step_index] __UpperCamelCase : Optional[Any] =sample / ((sigma**2 + 1) ** 0.5) return sample def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , ): """simple docstring""" __UpperCamelCase : List[str] =num_inference_steps __UpperCamelCase : Union[str, Any] =num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __UpperCamelCase : Dict =np.linspace(0 , num_train_timesteps - 1 , lowerCamelCase__ , dtype=lowerCamelCase__ )[::-1].copy() elif self.config.timestep_spacing == "leading": __UpperCamelCase : List[str] =num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCamelCase : List[str] =(np.arange(0 , lowerCamelCase__ ) * step_ratio).round()[::-1].copy().astype(lowerCamelCase__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __UpperCamelCase : Optional[Any] =num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCamelCase : Any =(np.arange(lowerCamelCase__ , 0 , -step_ratio )).round().copy().astype(lowerCamelCase__ ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __UpperCamelCase : List[Any] =np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __UpperCamelCase : int =np.log(lowerCamelCase__ ) __UpperCamelCase : str =np.interp(lowerCamelCase__ , np.arange(0 , len(lowerCamelCase__ ) ) , lowerCamelCase__ ) if self.config.use_karras_sigmas: __UpperCamelCase : Optional[Any] =self._convert_to_karras(in_sigmas=lowerCamelCase__ , num_inference_steps=self.num_inference_steps ) __UpperCamelCase : List[Any] =np.array([self._sigma_to_t(lowerCamelCase__ , lowerCamelCase__ ) for sigma in sigmas] ) __UpperCamelCase : List[Any] =np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __UpperCamelCase : List[str] =torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __UpperCamelCase : List[Any] =torch.from_numpy(lowerCamelCase__ ) __UpperCamelCase : str =torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCamelCase__ ).startswith('mps' ): # mps does not support float64 __UpperCamelCase : Optional[int] =timesteps.to(lowerCamelCase__ , dtype=torch.floataa ) else: __UpperCamelCase : List[Any] =timesteps.to(device=lowerCamelCase__ ) # empty dt and derivative __UpperCamelCase : Dict =None __UpperCamelCase : Optional[Any] =None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __UpperCamelCase : List[str] =defaultdict(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =np.log(lowerCamelCase__ ) # get distribution __UpperCamelCase : Any =log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __UpperCamelCase : Any =np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __UpperCamelCase : Optional[int] =low_idx + 1 __UpperCamelCase : Optional[int] =log_sigmas[low_idx] __UpperCamelCase : Optional[int] =log_sigmas[high_idx] # interpolate sigmas __UpperCamelCase : Any =(low - log_sigma) / (low - high) __UpperCamelCase : int =np.clip(lowerCamelCase__ , 0 , 1 ) # transform interpolation to time range __UpperCamelCase : Tuple =(1 - w) * low_idx + w * high_idx __UpperCamelCase : Optional[int] =t.reshape(sigma.shape ) return t def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : float =in_sigmas[-1].item() __UpperCamelCase : float =in_sigmas[0].item() __UpperCamelCase : Dict =7.0 # 7.0 is the value used in the paper __UpperCamelCase : str =np.linspace(0 , 1 , lowerCamelCase__ ) __UpperCamelCase : int =sigma_min ** (1 / rho) __UpperCamelCase : Tuple =sigma_max ** (1 / rho) __UpperCamelCase : Dict =(max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __lowercase ( self ): """simple docstring""" return self.dt is None def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ): """simple docstring""" __UpperCamelCase : List[str] =self.index_for_timestep(lowerCamelCase__ ) # advance index counter by 1 __UpperCamelCase : Optional[int] =timestep.cpu().item() if torch.is_tensor(lowerCamelCase__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __UpperCamelCase : List[str] =self.sigmas[step_index] __UpperCamelCase : Tuple =self.sigmas[step_index + 1] else: # 2nd order / Heun's method __UpperCamelCase : Union[str, Any] =self.sigmas[step_index - 1] __UpperCamelCase : int =self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __UpperCamelCase : Any =0 __UpperCamelCase : Union[str, Any] =sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __UpperCamelCase : Optional[int] =sigma_hat if self.state_in_first_order else sigma_next __UpperCamelCase : Tuple =sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __UpperCamelCase : Dict =sigma_hat if self.state_in_first_order else sigma_next __UpperCamelCase : Union[str, Any] =model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __UpperCamelCase : Dict =model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: __UpperCamelCase : Any =pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __UpperCamelCase : int =(sample - pred_original_sample) / sigma_hat # 3. delta timestep __UpperCamelCase : List[str] =sigma_next - sigma_hat # store for 2nd order step __UpperCamelCase : Optional[Any] =derivative __UpperCamelCase : Optional[Any] =dt __UpperCamelCase : Optional[int] =sample else: # 2. 2nd order / Heun's method __UpperCamelCase : Any =(sample - pred_original_sample) / sigma_next __UpperCamelCase : List[str] =(self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __UpperCamelCase : Optional[Any] =self.dt __UpperCamelCase : Union[str, Any] =self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __UpperCamelCase : Optional[Any] =None __UpperCamelCase : Union[str, Any] =None __UpperCamelCase : str =None __UpperCamelCase : str =sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCamelCase__ ): # mps does not support float64 __UpperCamelCase : Tuple =self.timesteps.to(original_samples.device , dtype=torch.floataa ) __UpperCamelCase : Tuple =timesteps.to(original_samples.device , dtype=torch.floataa ) else: __UpperCamelCase : Optional[Any] =self.timesteps.to(original_samples.device ) __UpperCamelCase : Tuple =timesteps.to(original_samples.device ) __UpperCamelCase : List[str] =[self.index_for_timestep(lowerCamelCase__ , lowerCamelCase__ ) for t in timesteps] __UpperCamelCase : Optional[int] =sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __UpperCamelCase : List[str] =sigma.unsqueeze(-1 ) __UpperCamelCase : Tuple =original_samples + noise * sigma return noisy_samples def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
71
"""simple docstring""" import os def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = os.path.dirname(os.path.realpath(__UpperCamelCase ) ) lowerCAmelCase_ : List[str] = os.path.join(__UpperCamelCase , "triangle.txt" ) with open(__UpperCamelCase ) as f: lowerCAmelCase_ : Optional[int] = f.readlines() lowerCAmelCase_ : Union[str, Any] = [] for line in triangle: lowerCAmelCase_ : Any = [] for number in line.strip().split(" " ): numbers_from_line.append(int(__UpperCamelCase ) ) a.append(__UpperCamelCase ) for i in range(1 , len(__UpperCamelCase ) ): for j in range(len(a[i] ) ): lowerCAmelCase_ : Optional[Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase_ : int = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__UpperCamelCase , __UpperCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
241
0
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = BioGptTokenizer lowercase__ = False def _UpperCAmelCase ( self : List[str]): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowercase_ = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_)))) lowercase_ = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""") as fp: fp.write(json.dumps(lowerCAmelCase_)) with open(self.merges_file , """w""") as fp: fp.write("""\n""".join(lowerCAmelCase_)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = """lower newer""" lowercase_ = """lower newer""" return input_text, output_text def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = BioGptTokenizer(self.vocab_file , self.merges_file) lowercase_ = """lower""" lowercase_ = ["""low""", """er</w>"""] lowercase_ = tokenizer.tokenize(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = tokens + ["""<unk>"""] lowercase_ = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_) , lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = BioGptTokenizer.from_pretrained("""microsoft/biogpt""") lowercase_ = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCAmelCase_) lowercase_ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCAmelCase_) lowercase_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_) lowercase_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_) self.assertTrue(encoded_sentence == [2] + text) self.assertTrue(encoded_pair == [2] + text + [2] + text_a)
363
"""simple docstring""" from collections.abc import Sequence def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" ) lowercase_ = 0.0 for num in arr: lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
313
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowercase : '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=13 , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE__ : List[Any]=[2, 2, 3, 2] , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : List[str]=37 , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=10 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : List[str]=None , ) -> str: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = num_stages def a ( self : Tuple ) -> str: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def a ( self : Optional[int] ) -> str: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def a ( self : str ) -> List[Any]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=SCREAMING_SNAKE_CASE__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=SCREAMING_SNAKE_CASE__ , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: __lowerCAmelCase = UperNetForSemanticSegmentation(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def a ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = (UperNetForSemanticSegmentation,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[str] = False def a ( self : int ) -> Optional[int]: __lowerCAmelCase = UperNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def a ( self : Dict ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : List[Any] ) -> Optional[Any]: return def a ( self : Any ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def a ( self : List[str] ) -> Optional[int]: pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def a ( self : List[str] ) -> Union[str, Any]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def a ( self : Union[str, Any] ) -> List[str]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def a ( self : List[Any] ) -> List[Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def a ( self : str ) -> List[str]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def a ( self : List[Any] ) -> Any: pass def a ( self : Any ) -> int: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ): __lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : Any ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=SCREAMING_SNAKE_CASE__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def a ( self : List[str] ) -> List[Any]: pass @slow def a ( self : Optional[Any] ) -> Optional[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def UpperCamelCase_ ( ) -> Any: '''simple docstring''' __lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) __lowerCAmelCase = Image.open(snake_case_ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _lowercase ( unittest.TestCase ): '''simple docstring''' def a ( self : Dict ) -> Dict: __lowerCAmelCase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) def a ( self : Tuple ) -> List[str]: __lowerCAmelCase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
229
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def a ( self : int ) -> Optional[Any]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a ( self : List[Any] ) -> Any: __lowerCAmelCase = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] ) -> Tuple: __lowerCAmelCase = self._create_example_records() __lowerCAmelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(SCREAMING_SNAKE_CASE__ ): self.assertDictEqual(SCREAMING_SNAKE_CASE__ , example_records[i] ) def a ( self : Tuple ) -> List[str]: __lowerCAmelCase = self._create_example_records() __lowerCAmelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a ( self : List[str] ) -> List[str]: # checks what happens with missing columns __lowerCAmelCase = [{"""col_1""": 1}, {"""col_2""": """x"""}] __lowerCAmelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def a ( self : Dict ) -> Optional[int]: # checks if the type can be inferred from the second record __lowerCAmelCase = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __lowerCAmelCase = Dataset.from_list(SCREAMING_SNAKE_CASE__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def a ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase = Dataset.from_list([] ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
229
1
'''simple docstring''' import os import sys UpperCAmelCase_ = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCAmelCase_ = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def _UpperCamelCase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' return AutoConfig.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _UpperCamelCase ( *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' return AutoTokenizer.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoModel.__doc__ ) def _UpperCamelCase ( *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' return AutoModel.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _UpperCamelCase ( *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _UpperCamelCase ( *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _UpperCamelCase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _UpperCamelCase ( *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
61
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = BlipImageProcessor() UpperCAmelCase__ = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCAmelCase__ = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) UpperCAmelCase__ = InstructBlipProcessor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , **_UpperCAmelCase : Tuple ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).tokenizer def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : List[str] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , **_UpperCAmelCase : Dict ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).qformer_tokenizer def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCAmelCase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) UpperCAmelCase__ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_qformer_tokenizer() UpperCAmelCase__ = InstructBlipProcessor( tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) UpperCAmelCase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_qformer_tokenizer() UpperCAmelCase__ = InstructBlipProcessor( tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = processor(text=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer(_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) UpperCAmelCase__ = qformer_tokenizer(_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_qformer_tokenizer() UpperCAmelCase__ = InstructBlipProcessor( tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_qformer_tokenizer() UpperCAmelCase__ = InstructBlipProcessor( tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase__ = processor.batch_decode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_qformer_tokenizer() UpperCAmelCase__ = InstructBlipProcessor( tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = """lower newer""" UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
61
1
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex SCREAMING_SNAKE_CASE_ : List[str] = logging.getLogger(__name__) class a : """simple docstring""" def __init__( self: List[str] ): """simple docstring""" A__ = False def UpperCamelCase ( self: str , UpperCamelCase: int , UpperCamelCase: Union[str, Any] , UpperCamelCase: int , UpperCamelCase: Optional[Any] ): """simple docstring""" if not self.initialized: A__ = RagRetriever( UpperCamelCase , question_encoder_tokenizer=UpperCamelCase , generator_tokenizer=UpperCamelCase , index=UpperCamelCase , init_retrieval=UpperCamelCase , ) A__ = True def UpperCamelCase ( self: List[str] ): """simple docstring""" self.retriever.index.init_index() def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] ): """simple docstring""" A__ , A__ = self.retriever._main_retrieve(UpperCamelCase , UpperCamelCase ) return doc_ids, retrieved_doc_embeds class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Optional[int] , UpperCamelCase: int , UpperCamelCase: List[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Dict , UpperCamelCase: List[Any]=None ): """simple docstring""" if index is not None and index.is_initialized() and len(UpperCamelCase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( UpperCamelCase , question_encoder_tokenizer=UpperCamelCase , generator_tokenizer=UpperCamelCase , index=UpperCamelCase , init_retrieval=UpperCamelCase , ) A__ = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for worker in self.retrieval_workers ] ) def UpperCamelCase ( self: Any ): """simple docstring""" logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def UpperCamelCase ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: str ): """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. A__ = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] A__ , A__ = ray.get(random_worker.retrieve.remote(UpperCamelCase , UpperCamelCase ) ) else: A__ , A__ = self._main_retrieve(UpperCamelCase , UpperCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCamelCase ) @classmethod def UpperCamelCase ( cls: List[str] , UpperCamelCase: Any , UpperCamelCase: Any=None , **UpperCamelCase: List[Any] ): """simple docstring""" return super(UpperCamelCase , cls ).get_tokenizers(UpperCamelCase , UpperCamelCase , **UpperCamelCase ) @classmethod def UpperCamelCase ( cls: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Any , UpperCamelCase: Tuple=None , **UpperCamelCase: Tuple ): """simple docstring""" A__ = kwargs.pop("""config""" , UpperCamelCase ) or RagConfig.from_pretrained(UpperCamelCase , **UpperCamelCase ) A__ = RagTokenizer.from_pretrained(UpperCamelCase , config=UpperCamelCase ) A__ = rag_tokenizer.question_encoder A__ = rag_tokenizer.generator if indexed_dataset is not None: A__ = """custom""" A__ = CustomHFIndex(config.retrieval_vector_size , UpperCamelCase ) else: A__ = cls._build_index(UpperCamelCase ) return cls( UpperCamelCase , question_encoder_tokenizer=UpperCamelCase , generator_tokenizer=UpperCamelCase , retrieval_workers=UpperCamelCase , index=UpperCamelCase , )
335
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int = 10 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or n < 0: raise ValueError("""Invalid input""" ) A__ = 10**n A__ = 2_8433 * (pow(2 , 783_0457 , UpperCAmelCase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(1_0) = }""")
335
1
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _snake_case = logging.getLogger(__name__) _snake_case = 'Hello world! cécé herlolip' _snake_case = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = BertAbsConfig( temp_dir=""".""" , finetune_bert=UpperCamelCase__ , large=UpperCamelCase__ , share_emb=UpperCamelCase__ , use_bert_emb=UpperCamelCase__ , encoder="""bert""" , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) _a : List[Any] = torch.load(UpperCamelCase__ , lambda UpperCamelCase__ , UpperCamelCase__ : storage ) _a : str = AbsSummarizer(UpperCamelCase__ , torch.device("""cpu""" ) , UpperCamelCase__ ) original.eval() _a : Any = BertAbsSummarizer(UpperCamelCase__ , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) _a : str = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs _a : Optional[Any] = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(UpperCamelCase__ )) ) _a : str = torch.tensor(UpperCamelCase__ ).unsqueeze(0 ) _a : Optional[int] = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(UpperCamelCase__ )) ) _a : Optional[Any] = torch.tensor(UpperCamelCase__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _a : Any = encoder_input_ids _a : Dict = decoder_input_ids _a : Dict = None _a : int = None _a : List[Any] = None _a : List[str] = None _a : Optional[Any] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _a : List[str] = original(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )[0] _a : Optional[int] = original.generator(UpperCamelCase__ ) _a : int = new_model( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )[0] _a : List[str] = new_model.generator(UpperCamelCase__ ) _a : Dict = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(UpperCamelCase__ ) ) _a : List[str] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(UpperCamelCase__ ) ) _a : Optional[Any] = torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _snake_case = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
362
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
324
0
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class snake_case__( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self ) -> Optional[int]: lowerCAmelCase_ : int = ["a", "b", "c"] # Defaults to last layer if both are None lowerCAmelCase_ : List[str] = get_aligned_output_features_output_indices(__lowercase , __lowercase , __lowercase ) self.assertEqual(__lowercase , ['''c'''] ) self.assertEqual(__lowercase , [2] ) # Out indices set to match out features lowerCAmelCase_ : str = get_aligned_output_features_output_indices(['''a''', '''c'''] , __lowercase , __lowercase ) self.assertEqual(__lowercase , ['''a''', '''c'''] ) self.assertEqual(__lowercase , [0, 2] ) # Out features set to match out indices lowerCAmelCase_ : Union[str, Any] = get_aligned_output_features_output_indices(__lowercase , [0, 2] , __lowercase ) self.assertEqual(__lowercase , ['''a''', '''c'''] ) self.assertEqual(__lowercase , [0, 2] ) # Out features selected from negative indices lowerCAmelCase_ : List[str] = get_aligned_output_features_output_indices(__lowercase , [-3, -1] , __lowercase ) self.assertEqual(__lowercase , ['''a''', '''c'''] ) self.assertEqual(__lowercase , [-3, -1] ) def lowercase_ ( self ) -> Dict: with self.assertRaises(__lowercase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , __lowercase ) # Out features must be a list with self.assertRaises(__lowercase ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(__lowercase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(__lowercase ): verify_out_features_out_indices(__lowercase , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(__lowercase ): verify_out_features_out_indices(__lowercase , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(__lowercase ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(__lowercase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(__lowercase ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def lowercase_ ( self ) -> str: lowerCAmelCase_ : Optional[Any] = BackboneMixin() lowerCAmelCase_ : List[Any] = ["a", "b", "c"] lowerCAmelCase_ : Optional[int] = ["a", "c"] lowerCAmelCase_ : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly lowerCAmelCase_ : Optional[Any] = ["a", "b"] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) lowerCAmelCase_ : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
262
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase : Tuple ={ '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( _lowerCAmelCase ): __A = "vit_mae" def __init__( self : Any , lowercase : int=768 , lowercase : Tuple=12 , lowercase : str=12 , lowercase : Optional[Any]=3_072 , lowercase : List[Any]="gelu" , lowercase : Tuple=0.0 , lowercase : Union[str, Any]=0.0 , lowercase : str=0.02 , lowercase : Optional[int]=1e-1_2 , lowercase : List[Any]=224 , lowercase : str=16 , lowercase : List[str]=3 , lowercase : Optional[Any]=True , lowercase : int=16 , lowercase : Optional[Any]=512 , lowercase : Optional[Any]=8 , lowercase : Optional[Any]=2_048 , lowercase : List[str]=0.75 , lowercase : str=False , **lowercase : Union[str, Any] , ): """simple docstring""" super().__init__(**lowercase ) lowercase_ :Any = hidden_size lowercase_ :Optional[Any] = num_hidden_layers lowercase_ :Optional[Any] = num_attention_heads lowercase_ :int = intermediate_size lowercase_ :Optional[int] = hidden_act lowercase_ :str = hidden_dropout_prob lowercase_ :Optional[Any] = attention_probs_dropout_prob lowercase_ :str = initializer_range lowercase_ :Optional[int] = layer_norm_eps lowercase_ :str = image_size lowercase_ :Union[str, Any] = patch_size lowercase_ :Dict = num_channels lowercase_ :Any = qkv_bias lowercase_ :Optional[int] = decoder_num_attention_heads lowercase_ :Optional[Any] = decoder_hidden_size lowercase_ :Union[str, Any] = decoder_num_hidden_layers lowercase_ :List[Any] = decoder_intermediate_size lowercase_ :Optional[Any] = mask_ratio lowercase_ :Optional[Any] = norm_pix_loss
223
0
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ) -> Dict: A_ : int = parent A_ : List[Any] = batch_size A_ : Optional[Any] = image_size A_ : List[str] = patch_size A_ : Dict = num_channels A_ : str = is_training A_ : int = use_labels A_ : List[str] = hidden_size A_ : str = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : List[Any] = intermediate_size A_ : Union[str, Any] = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : int = attention_probs_dropout_prob A_ : List[str] = type_sequence_label_size A_ : str = initializer_range A_ : Dict = scope A_ : Tuple = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A_ : Optional[int] = (image_size // patch_size) ** 2 A_ : List[str] = num_patches + 2 def UpperCAmelCase_ ( self ) -> Any: A_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : List[str] = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> List[Any]: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Any = DeiTModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: A_ : Optional[Any] = DeiTForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Any = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ : Dict = 1 A_ : str = DeiTForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : List[str] = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Tuple = self.type_sequence_label_size A_ : Dict = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : int = 1 A_ : Optional[int] = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Union[str, Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Optional[Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) : int = config_and_inputs A_ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCamelCase = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : int = DeiTModelTester(self ) A_ : Dict = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> str: pass def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ , A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[int] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def UpperCAmelCase_ ( self ) -> List[str]: A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = model_class(_lowerCamelCase ) A_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Union[str, Any] = [*signature.parameters.keys()] A_ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[str]: A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> str: A_ : Dict = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase_ ( self ) -> Union[str, Any]: if not self.model_tester.is_training: return A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue A_ : Dict = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : List[str] = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> Optional[int]: A_ , A_ : str = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A_ : List[str] = False A_ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue A_ : List[Any] = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Any = model(**_lowerCamelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): A_ : str = problem_type["""title"""] A_ : int = problem_type["""num_labels"""] A_ : str = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() A_ : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if problem_type["num_labels"] > 1: A_ : Union[str, Any] = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) A_ : List[str] = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list: A_ : Union[str, Any] = model(**_lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = DeiTModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> int: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : str = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( _lowerCamelCase ) A_ : List[Any] = self.default_image_processor A_ : Tuple = prepare_img() A_ : Dict = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): A_ : int = model(**_lowerCamelCase ) # verify the logits A_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : List[str] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase_ ( self ) -> Dict: A_ : Optional[Any] = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) A_ : int = self.default_image_processor A_ : List[Any] = prepare_img() A_ : List[Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) A_ : Any = inputs.pixel_values.to(_lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A_ : Optional[Any] = model(_lowerCamelCase )
164
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> float: """simple docstring""" A_ : Optional[Any] = np.array([[1, item, train_mtch[i]] for i, item in enumerate(a_ )] ) A_ : Optional[Any] = np.array(a_ ) A_ : Optional[int] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , a_ ) ) , x.transpose() ) , a_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> float: """simple docstring""" A_ : List[str] = (1, 2, 1) A_ : Tuple = (1, 1, 0, 7) A_ : List[Any] = SARIMAX( a_ , exog=a_ , order=a_ , seasonal_order=a_ ) A_ : Tuple = model.fit(disp=a_ , maxiter=6_0_0 , method="""nm""" ) A_ : List[Any] = model_fit.predict(1 , len(a_ ) , exog=[test_match] ) return result[0] def UpperCAmelCase ( a_ , a_ , a_ ) -> float: """simple docstring""" A_ : int = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(a_ , a_ ) A_ : Tuple = regressor.predict(a_ ) return y_pred[0] def UpperCAmelCase ( a_ ) -> float: """simple docstring""" train_user.sort() A_ : Any = np.percentile(a_ , 2_5 ) A_ : Union[str, Any] = np.percentile(a_ , 7_5 ) A_ : str = qa - qa A_ : List[Any] = qa - (iqr * 0.1) return low_lim def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" A_ : Dict = 0 A_ : Optional[Any] = 0 for i in list_vote: if i > actual_result: A_ : Optional[Any] = not_safe + 1 else: if abs(abs(a_ ) - abs(a_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) UpperCamelCase__ : List[str] = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] UpperCamelCase__ : Optional[Any] = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) UpperCamelCase__ : Union[str, Any] = Normalizer().fit_transform(data_input_df.values) # split data UpperCamelCase__ : List[Any] = normalize_df[:, 2].tolist() UpperCamelCase__ : Tuple = normalize_df[:, 0].tolist() UpperCamelCase__ : Union[str, Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) UpperCamelCase__ : Any = normalize_df[:, [1, 2]].tolist() UpperCamelCase__ : Optional[int] = x[: len(x) - 1] UpperCamelCase__ : Optional[Any] = x[len(x) - 1 :] # for linear regression & sarimax UpperCamelCase__ : Optional[int] = total_date[: len(total_date) - 1] UpperCamelCase__ : str = total_user[: len(total_user) - 1] UpperCamelCase__ : Tuple = total_match[: len(total_match) - 1] UpperCamelCase__ : List[str] = total_date[len(total_date) - 1 :] UpperCamelCase__ : List[Any] = total_user[len(total_user) - 1 :] UpperCamelCase__ : Dict = total_match[len(total_match) - 1 :] # voting system with forecasting UpperCamelCase__ : List[Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data UpperCamelCase__ : Tuple = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
164
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging snake_case_ : int = logging.get_logger(__name__) def A__ ( UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , np.ndarray ): return list(tensor.shape ) _UpperCamelCase : Any = tf.shape(UpperCAmelCase_ ) if tensor.shape == tf.TensorShape(UpperCAmelCase_ ): return dynamic _UpperCamelCase : Any = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase_ )] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCAmelCase_ , name=UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=1E-5 , UpperCAmelCase_=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized _UpperCamelCase , _UpperCamelCase : Any = tf.nn.moments(UpperCAmelCase_ , axes=[axis] , keepdims=UpperCAmelCase_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _UpperCamelCase : str = [1] * inputs.shape.rank _UpperCamelCase : List[str] = shape_list(UpperCAmelCase_ )[axis] _UpperCamelCase : Optional[int] = tf.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : str = tf.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) # Compute layer normalization using the batch_normalization # function. _UpperCamelCase : str = tf.nn.batch_normalization( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , offset=UpperCAmelCase_ , scale=UpperCAmelCase_ , variance_epsilon=UpperCAmelCase_ , ) return outputs def A__ ( UpperCAmelCase_ , UpperCAmelCase_=0 , UpperCAmelCase_=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _UpperCamelCase : str = tf.shape(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _UpperCamelCase : List[str] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ , tf.Tensor ): _UpperCamelCase : str = tf.convert_to_tensor(UpperCAmelCase_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _UpperCamelCase : Tuple = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _UpperCamelCase : Union[str, Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _UpperCamelCase : List[str] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = "input_ids" ): tf.debugging.assert_less( UpperCAmelCase_ , tf.cast(UpperCAmelCase_ , dtype=tensor.dtype ) , message=( f'The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase_ )}) must be smaller than the embedding ' f'layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.' ) , ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Tuple = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _UpperCamelCase : Dict = [x for x in data if len(UpperCAmelCase_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' f'they are larger than {HDF5_OBJECT_HEADER_LIMIT} ' f'bytes: {bad_attributes}' ) _UpperCamelCase : int = np.asarray(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 1 _UpperCamelCase : Optional[Any] = np.array_split(UpperCAmelCase_ , UpperCAmelCase_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _UpperCamelCase : Optional[int] = np.array_split(UpperCAmelCase_ , UpperCAmelCase_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = chunk_data else: _UpperCamelCase : List[str] = data def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): if name in group.attrs: _UpperCamelCase : Tuple = [n.decode('utf8' ) if hasattr(UpperCAmelCase_ , 'decode' ) else n for n in group.attrs[name]] else: _UpperCamelCase : int = [] _UpperCamelCase : int = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(UpperCAmelCase_ , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def A__ ( UpperCAmelCase_ ): def _expand_single_ad_tensor(UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase_ )
83
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class lowercase__ : lowercase__ = field( metadata={"""help""": """The output directory where the model will be written."""} , ) lowercase__ = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } , ) lowercase__ = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def A__ ( ): _UpperCamelCase : Optional[Any] = HfArgumentParser((ModelArguments,) ) ((_UpperCamelCase) , ) : Optional[int] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: _UpperCamelCase : Any = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: _UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: _UpperCamelCase : str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: _UpperCamelCase : str = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed _UpperCamelCase : List[Any] = True _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : str = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=UpperCAmelCase_ , decoder_config=UpperCAmelCase_ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens _UpperCamelCase : str = decoder_config.decoder_start_token_id _UpperCamelCase : Optional[int] = decoder_config.pad_token_id if decoder_start_token_id is None: _UpperCamelCase : int = decoder_config.bos_token_id if pad_token_id is None: _UpperCamelCase : Dict = decoder_config.eos_token_id # This is necessary to make Flax's generate() work _UpperCamelCase : List[Any] = decoder_config.eos_token_id _UpperCamelCase : Dict = decoder_start_token_id _UpperCamelCase : int = pad_token_id _UpperCamelCase : List[str] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) _UpperCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
83
1
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__): lowerCAmelCase_ = ComputeEnvironment.AMAZON_SAGEMAKER lowerCAmelCase_ = True lowerCAmelCase_ = 'ml.p3.2xlarge' lowerCAmelCase_ = 'accelerate_sagemaker_execution_role' lowerCAmelCase_ = 'hf-sm' lowerCAmelCase_ = 'us-east-1' lowerCAmelCase_ = 1 lowerCAmelCase_ = 'accelerate-sagemaker-1' lowerCAmelCase_ = '1.6' lowerCAmelCase_ = '4.4' lowerCAmelCase_ = 'train.py' lowerCAmelCase_ = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] lowerCAmelCase_ = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['model_name_or_path'] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['do_train'] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['epochs'] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['learning_rate'] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['max_steps'] , _SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
364
'''simple docstring''' from ... import PretrainedConfig lowerCAmelCase : List[str] = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowerCAmelCase_ = """nezha""" def __init__( self , A_=21128 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=64 , A_=2 , A_=0.02 , A_=1e-12 , A_=0.1 , A_=0 , A_=2 , A_=3 , A_=True , **A_ , )-> List[str]: '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = max_relative_position UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = classifier_dropout UpperCamelCase = use_cache
251
0
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _A , _A=3 , _A=32 , _A=3 , _A=10 , _A=[10, 20, 30, 40] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embeddings_size __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _A ( self ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _A ( self , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = RegNetModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE = model(__UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _A ( self , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = RegNetForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : str = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () UpperCamelCase__ : Dict = ( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase__ : Union[str, Any] = False UpperCamelCase__ : Dict = False UpperCamelCase__ : str = False UpperCamelCase__ : Any = False def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = RegNetModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def _A ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A ( self ): '''simple docstring''' return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def _A ( self ): '''simple docstring''' pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def _A ( self ): '''simple docstring''' pass def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(config=__UpperCAmelCase ) for name, module in model.named_modules(): if isinstance(__UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def _A ( self ): '''simple docstring''' def check_hidden_states_output(_A , _A , _A ): __SCREAMING_SNAKE_CASE = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __SCREAMING_SNAKE_CASE = layer_type __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def _A ( self ): '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = RegNetModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __lowercase ( ) -> Tuple: __SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _A ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**__UpperCAmelCase ) # verify the logits __SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
257
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path", type=__A, default="data/dump.txt", help="The path to the data." ) parser.add_argument("--tokenizer_type", type=__A, default="bert", choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name", type=__A, default="bert-base-uncased", help="The tokenizer to use." ) parser.add_argument("--dump_file", type=__A, default="data/dump", help="The dump file prefix." ) UpperCAmelCase__ = parser.parse_args() logger.info(f"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": UpperCAmelCase__ = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `[CLS]` UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `<s>` UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` UpperCAmelCase__ = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(f"""Loading text from {args.file_path}""" ) with open(args.file_path, "r", encoding="utf8" ) as fp: UpperCAmelCase__ = fp.readlines() logger.info("Start encoding" ) logger.info(f"""{len(__A )} examples to process.""" ) UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 10_000 UpperCAmelCase__ = time.time() for text in data: UpperCAmelCase__ = f"""{bos} {text.strip()} {sep}""" UpperCAmelCase__ = tokenizer.encode(__A, add_special_tokens=__A ) rslt.append(__A ) iter += 1 if iter % interval == 0: UpperCAmelCase__ = time.time() logger.info(f"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) UpperCAmelCase__ = time.time() logger.info("Finished binarization" ) logger.info(f"""{len(__A )} examples processed.""" ) UpperCAmelCase__ = f"""{args.dump_file}.{args.tokenizer_name}.pickle""" UpperCAmelCase__ = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCAmelCase__ = [np.uintaa(__A ) for d in rslt] else: UpperCAmelCase__ = [np.intaa(__A ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"""Dump to {dp_file}""" ) with open(__A, "wb" ) as handle: pickle.dump(rslt_, __A, protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
65
0
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets UpperCamelCase__ : List[str] = datasets.logging.get_logger(__name__) UpperCamelCase__ : List[Any] = '\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n' UpperCamelCase__ : Optional[int] = '\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n' UpperCamelCase__ : Dict = '\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric(\'comet\')\n >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Dict: if self.config_name == "default": A_ : Union[str, Any] = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: A_ : Tuple = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False ) -> str: if gpus is None: A_ : Union[str, Any] = 1 if torch.cuda.is_available() else 0 A_ : Dict = {"src": sources, "mt": predictions, "ref": references} A_ : Union[str, Any] = [dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) for t in zip(*data.values() )] A_ : str = self.scorer.predict(UpperCamelCase__ , gpus=UpperCamelCase__ , progress_bar=UpperCamelCase__ ) return {"mean_score": mean_score, "scores": scores}
370
'''simple docstring''' def UpperCAmelCase ( a_ = 5_0_0_0_0_0_0_0 ) -> int: """simple docstring""" A_ : Union[str, Any] = set() A_ : List[str] = int((limit - 2_4) ** (1 / 2) ) A_ : Dict = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , a_ ) ) ) for primea in primes: A_ : Union[str, Any] = primea * primea for primea in primes: A_ : Optional[int] = primea * primea * primea if square + cube >= limit - 1_6: break for primea in primes: A_ : Tuple = primea * primea * primea * primea A_ : List[str] = square + cube + tetr if total >= limit: break ret.add(a_ ) return len(a_ ) if __name__ == "__main__": print(f'{solution() = }')
164
0
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig A =logging.get_logger(__name__) # General docstring A ='PoolFormerConfig' # Base docstring A ='sail/poolformer_s12' A =[1, 5_12, 7, 7] # Image classification docstring A ='sail/poolformer_s12' A ='tabby, tabby cat' A =[ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def snake_case_ (_a : List[str] , _a : float = 0.0 , _a : bool = False ): if drop_prob == 0.0 or not training: return input UpperCAmelCase = 1 - drop_prob UpperCAmelCase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets UpperCAmelCase = keep_prob + torch.rand(_a , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize UpperCAmelCase = input.div(_a ) * random_tensor return output class _a ( nn.Module ): def __init__( self : str , lowercase : Optional[float] = None ): '''simple docstring''' super().__init__() UpperCAmelCase = drop_prob def A ( self : Union[str, Any] , lowercase : torch.Tensor ): '''simple docstring''' return drop_path(lowercase , self.drop_prob , self.training ) def A ( self : Optional[Any] ): '''simple docstring''' return "p={}".format(self.drop_prob ) class _a ( nn.Module ): def __init__( self : Optional[int] , lowercase : Optional[int] , lowercase : int , lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : int , lowercase : Tuple=None ): '''simple docstring''' super().__init__() UpperCAmelCase = patch_size if isinstance(lowercase , collections.abc.Iterable ) else (patch_size, patch_size) UpperCAmelCase = stride if isinstance(lowercase , collections.abc.Iterable ) else (stride, stride) UpperCAmelCase = padding if isinstance(lowercase , collections.abc.Iterable ) else (padding, padding) UpperCAmelCase = nn.Convad(lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=lowercase ) UpperCAmelCase = norm_layer(lowercase ) if norm_layer else nn.Identity() def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.projection(lowercase ) UpperCAmelCase = self.norm(lowercase ) return embeddings class _a ( nn.GroupNorm ): def __init__( self : Optional[int] , lowercase : Optional[Any] , **lowercase : int ): '''simple docstring''' super().__init__(1 , lowercase , **lowercase ) class _a ( nn.Module ): def __init__( self : Dict , lowercase : Dict ): '''simple docstring''' super().__init__() UpperCAmelCase = nn.AvgPoolad(lowercase , stride=1 , padding=pool_size // 2 , count_include_pad=lowercase ) def A ( self : str , lowercase : Dict ): '''simple docstring''' return self.pool(lowercase ) - hidden_states class _a ( nn.Module ): def __init__( self : Any , lowercase : List[str] , lowercase : str , lowercase : Optional[int] , lowercase : Any ): '''simple docstring''' super().__init__() UpperCAmelCase = nn.Convad(lowercase , lowercase , 1 ) UpperCAmelCase = nn.Convad(lowercase , lowercase , 1 ) UpperCAmelCase = PoolFormerDropPath(lowercase ) if isinstance(config.hidden_act , lowercase ): UpperCAmelCase = ACTaFN[config.hidden_act] else: UpperCAmelCase = config.hidden_act def A ( self : List[str] , lowercase : int ): '''simple docstring''' UpperCAmelCase = self.conva(lowercase ) UpperCAmelCase = self.act_fn(lowercase ) UpperCAmelCase = self.drop(lowercase ) UpperCAmelCase = self.conva(lowercase ) UpperCAmelCase = self.drop(lowercase ) return hidden_states class _a ( nn.Module ): def __init__( self : Tuple , lowercase : Optional[int] , lowercase : List[Any] , lowercase : Dict , lowercase : List[Any] , lowercase : Any , lowercase : List[Any] ): '''simple docstring''' super().__init__() UpperCAmelCase = PoolFormerPooling(lowercase ) UpperCAmelCase = PoolFormerOutput(lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = PoolFormerGroupNorm(lowercase ) UpperCAmelCase = PoolFormerGroupNorm(lowercase ) # Useful for training neural nets UpperCAmelCase = PoolFormerDropPath(lowercase ) if drop_path > 0.0 else nn.Identity() UpperCAmelCase = config.use_layer_scale if config.use_layer_scale: UpperCAmelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((lowercase) ) , requires_grad=lowercase ) UpperCAmelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((lowercase) ) , requires_grad=lowercase ) def A ( self : Tuple , lowercase : str ): '''simple docstring''' if self.use_layer_scale: UpperCAmelCase = self.pooling(self.before_norm(lowercase ) ) UpperCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection UpperCAmelCase = hidden_states + self.drop_path(lowercase ) UpperCAmelCase = () UpperCAmelCase = self.output(self.after_norm(lowercase ) ) UpperCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection UpperCAmelCase = hidden_states + self.drop_path(lowercase ) UpperCAmelCase = (output,) + outputs return outputs else: UpperCAmelCase = self.drop_path(self.pooling(self.before_norm(lowercase ) ) ) # First residual connection UpperCAmelCase = pooling_output + hidden_states UpperCAmelCase = () # Second residual connection inside the PoolFormerOutput block UpperCAmelCase = self.drop_path(self.output(self.after_norm(lowercase ) ) ) UpperCAmelCase = hidden_states + layer_output UpperCAmelCase = (output,) + outputs return outputs class _a ( nn.Module ): def __init__( self : Optional[int] , lowercase : Tuple ): '''simple docstring''' super().__init__() UpperCAmelCase = config # stochastic depth decay rule UpperCAmelCase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings UpperCAmelCase = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) UpperCAmelCase = nn.ModuleList(lowercase ) # Transformer blocks UpperCAmelCase = [] UpperCAmelCase = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers UpperCAmelCase = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( lowercase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(lowercase ) ) UpperCAmelCase = nn.ModuleList(lowercase ) def A ( self : Optional[Any] , lowercase : Optional[int] , lowercase : Union[str, Any]=False , lowercase : List[Any]=True ): '''simple docstring''' UpperCAmelCase = () if output_hidden_states else None UpperCAmelCase = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): UpperCAmelCase , UpperCAmelCase = layers # Get patch embeddings from hidden_states UpperCAmelCase = embedding_layer(lowercase ) # Send the embeddings through the blocks for _, blk in enumerate(lowercase ): UpperCAmelCase = blk(lowercase ) UpperCAmelCase = layer_outputs[0] if output_hidden_states: UpperCAmelCase = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowercase , hidden_states=lowercase ) class _a ( __a ): __a : Optional[int] = PoolFormerConfig __a : Dict = """poolformer""" __a : Union[str, Any] = """pixel_values""" __a : Dict = True def A ( self : Tuple , lowercase : Any ): '''simple docstring''' if isinstance(lowercase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowercase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def A ( self : str , lowercase : str , lowercase : Dict=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): UpperCAmelCase = value A =r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' A =r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( """The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.""" , __a , ) class _a ( __a ): def __init__( self : str , lowercase : Optional[Any] ): '''simple docstring''' super().__init__(lowercase ) UpperCAmelCase = config UpperCAmelCase = PoolFormerEncoder(lowercase ) # Initialize weights and apply final processing self.post_init() def A ( self : int ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Tuple , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) UpperCAmelCase = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase , ) UpperCAmelCase = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=encoder_outputs.hidden_states , ) class _a ( nn.Module ): def __init__( self : Optional[int] , lowercase : str ): '''simple docstring''' super().__init__() UpperCAmelCase = nn.Linear(config.hidden_size , config.hidden_size ) def A ( self : str , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = self.dense(lowercase ) return output @add_start_docstrings( """ PoolFormer Model transformer with an image classification head on top """ , __a , ) class _a ( __a ): def __init__( self : str , lowercase : List[Any] ): '''simple docstring''' super().__init__(lowercase ) UpperCAmelCase = config.num_labels UpperCAmelCase = PoolFormerModel(lowercase ) # Final norm UpperCAmelCase = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head UpperCAmelCase = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : List[Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase = self.poolformer( lowercase , output_hidden_states=lowercase , return_dict=lowercase , ) UpperCAmelCase = outputs[0] UpperCAmelCase = self.classifier(self.norm(lowercase ).mean([-2, -1] ) ) UpperCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase = '''single_label_classification''' else: UpperCAmelCase = '''multi_label_classification''' if self.config.problem_type == "regression": UpperCAmelCase = MSELoss() if self.num_labels == 1: UpperCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase = CrossEntropyLoss() UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase = BCEWithLogitsLoss() UpperCAmelCase = loss_fct(lowercase , lowercase ) if not return_dict: UpperCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states )
34
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a_ = logging.get_logger(__name__) a_ = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class __snake_case ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """nat""" _lowerCamelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __lowerCamelCase=4 , __lowerCamelCase=3 , __lowerCamelCase=64 , __lowerCamelCase=[3, 4, 6, 5] , __lowerCamelCase=[2, 4, 8, 16] , __lowerCamelCase=7 , __lowerCamelCase=3.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=0.0 , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) __A : Union[str, Any] = patch_size __A : Optional[Any] = num_channels __A : Tuple = embed_dim __A : Dict = depths __A : str = len(__lowerCamelCase ) __A : Optional[Any] = num_heads __A : str = kernel_size __A : Any = mlp_ratio __A : Optional[int] = qkv_bias __A : str = hidden_dropout_prob __A : Any = attention_probs_dropout_prob __A : int = drop_path_rate __A : int = hidden_act __A : Any = layer_norm_eps __A : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __A : int = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) ) __A : Union[str, Any] = layer_scale_init_value __A : List[str] = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(__lowerCamelCase ) + 1 )] __A , __A : Any = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
179
0
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __magic_name__ ( _UpperCamelCase ): def __init__( self : List[Any] ,_UpperCAmelCase : str = "▁" ,_UpperCAmelCase : bool = True ,_UpperCAmelCase : Union[str, AddedToken] = "<unk>" ,_UpperCAmelCase : Union[str, AddedToken] = "</s>" ,_UpperCAmelCase : Union[str, AddedToken] = "<pad>" ,): _a : Union[str, Any] = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } _a : Optional[Any] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _a : Optional[Any] = token_dict['token'] _a : Optional[int] = Tokenizer(Unigram() ) _a : List[Any] = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) ,' ' ), normalizers.Lowercase(), ] ) _a : Optional[int] = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase ,add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) _a : int = decoders.Metaspace(replacement=_UpperCAmelCase ,add_prefix_space=_UpperCAmelCase ) _a : Optional[Any] = TemplateProcessing( single=F"""$A {self.special_tokens['eos']['token']}""" ,special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] ,) _a : str = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase ,_UpperCAmelCase ) def __lowercase ( self : str ,_UpperCAmelCase : Union[str, List[str]] ,_UpperCAmelCase : int = 8000 ,_UpperCAmelCase : bool = True ,): _a : int = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_UpperCAmelCase ,) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : Union[str, Any] = [files] self._tokenizer.train(_UpperCAmelCase ,trainer=_UpperCAmelCase ) self.add_unk_id() def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] ,_UpperCAmelCase : int = 8000 ,_UpperCAmelCase : bool = True ,): _a : Tuple = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_UpperCAmelCase ,) self._tokenizer.train_from_iterator(_UpperCAmelCase ,trainer=_UpperCAmelCase ) self.add_unk_id() def __lowercase ( self : Any ): _a : Optional[Any] = json.loads(self._tokenizer.to_str() ) _a : Any = self.special_tokens['unk']['id'] _a : int = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
107
'''simple docstring''' __lowerCAmelCase = range(2, 20 + 1) __lowerCAmelCase = [10**k for k in range(ks[-1] + 1)] __lowerCAmelCase = {} def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _a : Optional[int] = sum(a_i[j] for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) ) _a : List[str] = sum(a_i[j] * base[j] for j in range(min(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) ) ) _a , _a : Any = 0, 0 _a : Any = n - i _a : List[Any] = memo.get(lowerCAmelCase_ ) if sub_memo is not None: _a : Tuple = sub_memo.get(lowerCAmelCase_ ) if jumps is not None and len(lowerCAmelCase_ ) > 0: # find and make the largest jump without going over _a : Any = -1 for _k in range(len(lowerCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _a : Any = _k break if max_jump >= 0: _a , _a , _a : Tuple = jumps[max_jump] # since the difference between jumps is cached, add c _a : Union[str, Any] = diff + c for j in range(min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) ): _a , _a : Dict = divmod(lowerCAmelCase_ , 10 ) if new_c > 0: add(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: _a : Tuple = [] else: _a : Any = {c: []} _a : Optional[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _a , _a : Dict = next_term(lowerCAmelCase_ , k - 1 , i + dn , lowerCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _a , _a : Any = compute(lowerCAmelCase_ , lowerCAmelCase_ , i + dn , lowerCAmelCase_ ) diff += _diff dn += terms_jumped _a : Tuple = sub_memo[c] # keep jumps sorted by # of terms skipped _a : Any = 0 while j < len(lowerCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCAmelCase_ , (diff, dn, k) ) return (diff, dn) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: if i >= n: return 0, i if k > len(lowerCAmelCase_ ): a_i.extend([0 for _ in range(k - len(lowerCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _a : Any = i _a , _a , _a : Optional[int] = 0, 0, 0 for j in range(len(lowerCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _a : Any = ds_c + ds_b diff += addend _a : int = 0 for j in range(lowerCAmelCase_ ): _a : Optional[Any] = a_i[j] + addend _a , _a : Tuple = divmod(lowerCAmelCase_ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return diff, i - start_i def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): _a : Optional[Any] = digits[j] + addend if s >= 10: _a , _a : List[str] = divmod(lowerCAmelCase_ , 10 ) _a : List[str] = addend // 10 + quotient else: _a : Optional[Any] = s _a : Optional[Any] = addend // 10 if addend == 0: break while addend > 0: _a , _a : List[str] = divmod(lowerCAmelCase_ , 10 ) digits.append(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ = 10**15 ) -> int: _a : Dict = [1] _a : int = 1 _a : Tuple = 0 while True: _a , _a : str = next_term(lowerCAmelCase_ , 20 , i + dn , lowerCAmelCase_ ) dn += terms_jumped if dn == n - i: break _a : Union[str, Any] = 0 for j in range(len(lowerCAmelCase_ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
107
1
'''simple docstring''' class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" pass class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" pass class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> List[str]: __lowerCamelCase : str = [ [], [], [], ] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(SCREAMING_SNAKE_CASE_ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def lowercase_ ( self ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self ) -> str: return "\n".join(f'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> Dict: __lowerCamelCase : str = [] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> None: if len(self.queue ) == 1_00: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> int: if not self.queue: raise UnderFlowError('The queue is empty' ) else: __lowerCamelCase : List[Any] = min(self.queue ) self.queue.remove(SCREAMING_SNAKE_CASE_ ) return data def __str__( self ) -> str: return str(self.queue ) def UpperCAmelCase__ ( ) -> List[Any]: __lowerCamelCase : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(UpperCAmelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(UpperCAmelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def UpperCAmelCase__ ( ) -> Dict: __lowerCamelCase : str = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(UpperCAmelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(UpperCAmelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
185
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A__ : Dict = None A__ : List[Any] = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} A__ : Union[str, Any] = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } A__ : Any = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } A__ : Dict = """▁""" # Segments (not really needed) A__ : List[str] = 0 A__ : List[Any] = 1 A__ : Union[str, Any] = 2 A__ : List[Any] = 3 A__ : str = 4 class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : str = VOCAB_FILES_NAMES lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[Any] = 'left' lowerCamelCase : Optional[Any] = XLNetTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<sep>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<cls>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=["<eop>", "<eod>"] , **SCREAMING_SNAKE_CASE_ , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( vocab_file=SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , remove_space=SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : int = do_lower_case __lowerCamelCase : Optional[Any] = remove_space __lowerCamelCase : int = keep_accents __lowerCamelCase : Any = vocab_file __lowerCamelCase : Any = False if not self.vocab_file else True def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : Optional[Any] = [self.sep_token_id] __lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : int = [self.sep_token_id] __lowerCamelCase : Dict = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase : Tuple = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
185
1
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar UpperCAmelCase_ : Optional[Any] = TypeVar('T') class SCREAMING_SNAKE_CASE__ ( Generic[T] ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : bool = True ) -> None: a_ : dict[T, list[T]] = {} # dictionary of lists a_ : Tuple = directed def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : T ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE__ ) self.adj_list[destination_vertex].append(SCREAMING_SNAKE_CASE__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: a_ : Union[str, Any] = [destination_vertex] a_ : List[Any] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE__ ) a_ : int = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: a_ : List[str] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: a_ : Any = [destination_vertex] a_ : Optional[Any] = [] return self def __repr__( self : Any ) -> str: return pformat(self.adj_list )
120
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCAmelCase_ : str = 1.054571817e-34 # unit of ℏ : J * s UpperCAmelCase_ : Dict = 3e8 # unit of c : m * s^-1 def SCREAMING_SNAKE_CASE_ ( __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: a_ : Optional[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_40 * (distance) ** 4 ) return {"force": force} elif area == 0: a_ : List[str] = (2_40 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: a_ : Tuple = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
120
1
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : List[str] = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowercase : Tuple = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } __lowercase : Any = f"""{src_lang}-{tgt_lang}""" __lowercase : Union[str, Any] = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) __lowercase : Any = os.path.join(__UpperCamelCase , '''README.md''' ) print(f"""Generating {path}""" ) with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(__UpperCamelCase ) # make sure we are under the root of the project a_ = Path(__file__).resolve().parent.parent.parent a_ = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ , a_ , a_ = model_name.split('-') a_ = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
249
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase =StableDiffusionDiffEditPipeline UpperCamelCase =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} UpperCamelCase =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} UpperCamelCase =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase =frozenset([] ) def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) __lowercase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) __lowercase : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) __lowercase : Optional[int] = DDIMInverseScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_zero=UpperCamelCase_ , ) torch.manual_seed(0 ) __lowercase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowercase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) __lowercase : Optional[int] = CLIPTextModel(UpperCamelCase_ ) __lowercase : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase : str = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=0 ) -> Any: __lowercase : Any = floats_tensor((1, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowercase : Dict = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith('''mps''' ): __lowercase : List[Any] = torch.manual_seed(UpperCamelCase_ ) else: __lowercase : Any = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowercase : Any = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=0 ) -> int: __lowercase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowercase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase : List[Any] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ) if str(UpperCamelCase_ ).startswith('''mps''' ): __lowercase : List[str] = torch.manual_seed(UpperCamelCase_ ) else: __lowercase : List[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowercase : int = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=0 ) -> Union[str, Any]: __lowercase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowercase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase : Any = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ) if str(UpperCamelCase_ ).startswith('''mps''' ): __lowercase : Optional[Any] = torch.manual_seed(UpperCamelCase_ ) else: __lowercase : int = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowercase : Optional[int] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ) -> Optional[Any]: if not hasattr(self.pipeline_class , '''_optional_components''' ): return __lowercase : Optional[int] = self.get_dummy_components() __lowercase : List[str] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __lowercase : Union[str, Any] = self.get_dummy_inputs(UpperCamelCase_ ) __lowercase : Any = pipe(**UpperCamelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase_ ) __lowercase : Tuple = self.pipeline_class.from_pretrained(UpperCamelCase_ ) pipe_loaded.to(UpperCamelCase_ ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase_ , UpperCamelCase_ ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase : List[Any] = self.get_dummy_inputs(UpperCamelCase_ ) __lowercase : Any = pipe_loaded(**UpperCamelCase_ )[0] __lowercase : Any = np.abs(output - output_loaded ).max() self.assertLess(UpperCamelCase_ , 1E-4 ) def _lowerCamelCase ( self ) -> List[Any]: __lowercase : int = '''cpu''' __lowercase : Optional[int] = self.get_dummy_components() __lowercase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : str = self.get_dummy_mask_inputs(UpperCamelCase_ ) __lowercase : int = pipe.generate_mask(**UpperCamelCase_ ) __lowercase : Any = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __lowercase : List[Any] = np.array([0] * 9 ) __lowercase : str = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _lowerCamelCase ( self ) -> str: __lowercase : Optional[int] = '''cpu''' __lowercase : Dict = self.get_dummy_components() __lowercase : str = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : int = self.get_dummy_inversion_inputs(UpperCamelCase_ ) __lowercase : List[str] = pipe.invert(**UpperCamelCase_ ).images __lowercase : Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowercase : Any = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) __lowercase : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _lowerCamelCase ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def _lowerCamelCase ( self ) -> str: __lowercase : Union[str, Any] = '''cpu''' __lowercase : str = self.get_dummy_components() __lowercase : Any = {'''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''beta_schedule''': '''scaled_linear'''} __lowercase : str = DPMSolverMultistepScheduler(**UpperCamelCase_ ) __lowercase : List[str] = DPMSolverMultistepInverseScheduler(**UpperCamelCase_ ) __lowercase : int = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : str = self.get_dummy_inversion_inputs(UpperCamelCase_ ) __lowercase : str = pipe.invert(**UpperCamelCase_ ).images __lowercase : Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowercase : Union[str, Any] = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) __lowercase : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _lowerCamelCase ( cls ) -> Optional[Any]: __lowercase : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) __lowercase : Optional[int] = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) __lowercase : Any = raw_image def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : str = torch.manual_seed(0 ) __lowercase : Optional[int] = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) __lowercase : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) __lowercase : Dict = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : Tuple = '''a bowl of fruit''' __lowercase : int = '''a bowl of pears''' __lowercase : str = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase_ , target_prompt=UpperCamelCase_ , generator=UpperCamelCase_ , ) __lowercase : Dict = pipe.invert( prompt=UpperCamelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase_ ).latents __lowercase : Optional[int] = pipe( prompt=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_latents=UpperCamelCase_ , generator=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] __lowercase : int = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1 def _lowerCamelCase ( self ) -> Tuple: __lowercase : Union[str, Any] = torch.manual_seed(0 ) __lowercase : Dict = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) __lowercase : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase : str = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : List[str] = '''a bowl of fruit''' __lowercase : Union[str, Any] = '''a bowl of pears''' __lowercase : int = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCamelCase_ , target_prompt=UpperCamelCase_ , generator=UpperCamelCase_ , ) __lowercase : List[Any] = pipe.invert( prompt=UpperCamelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCamelCase_ , num_inference_steps=25 , ).latents __lowercase : Optional[int] = pipe( prompt=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_latents=UpperCamelCase_ , generator=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] __lowercase : Union[str, Any] = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1
249
1
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): @register_to_config def __init__( self : List[str], a_ : int, a_ : int, a_ : int, a_ : float, a_ : int, a_ : int, a_ : int, a_ : int, a_ : str, a_ : bool = False, ): """simple docstring""" super().__init__() UpperCamelCase__ = nn.Embedding(a_, a_ ) UpperCamelCase__ = nn.Embedding(a_, a_ ) UpperCamelCase__ = False UpperCamelCase__ = nn.Dropout(p=a_ ) UpperCamelCase__ = TaConfig( vocab_size=a_, d_model=a_, num_heads=a_, d_kv=a_, d_ff=a_, dropout_rate=a_, feed_forward_proj=a_, is_decoder=a_, is_encoder_decoder=a_, ) UpperCamelCase__ = nn.ModuleList() for lyr_num in range(a_ ): UpperCamelCase__ = TaBlock(a_ ) self.encoders.append(a_ ) UpperCamelCase__ = TaLayerNorm(a_ ) UpperCamelCase__ = nn.Dropout(p=a_ ) def lowercase_ ( self : str, a_ : Any, a_ : List[Any] ): """simple docstring""" UpperCamelCase__ = self.token_embedder(a_ ) UpperCamelCase__ = encoder_input_tokens.shape[1] UpperCamelCase__ = torch.arange(a_, device=encoder_input_tokens.device ) x += self.position_encoding(a_ ) UpperCamelCase__ = self.dropout_pre(a_ ) # inverted the attention mask UpperCamelCase__ = encoder_input_tokens.size() UpperCamelCase__ = self.get_extended_attention_mask(a_, a_ ) for lyr in self.encoders: UpperCamelCase__ = lyr(a_, a_ )[0] UpperCamelCase__ = self.layer_norm(a_ ) return self.dropout_post(a_ ), encoder_inputs_mask
364
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(_UpperCamelCase , [] , 0 , [0 for i in range(len(_UpperCamelCase ) )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] , _UpperCamelCase : list[int | str] , _UpperCamelCase : int , _UpperCamelCase : list[int] , ) -> None: '''simple docstring''' if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return for i in range(len(_UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ = True create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase ) current_sequence.pop() UpperCamelCase__ = False __lowercase: list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __lowercase: list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
31
0
from __future__ import annotations from collections.abc import Iterator class A__ : def __init__( self : List[Any] , _UpperCAmelCase : int ) -> None: """simple docstring""" __lowercase = value __lowercase = None __lowercase = None class A__ : def __init__( self : int , _UpperCAmelCase : Node ) -> None: """simple docstring""" __lowercase = tree def a__ ( self : Tuple , _UpperCAmelCase : Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Union[str, Any] ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
325
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class A__ ( unittest.TestCase ): def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) __lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(images=_UpperCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = [torch.ones((1, 3, 5, 5) )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = processor.post_process_masks( _UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowercase = [np.ones((1, 3, 5, 5) )] __lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = [[1, 0], [0, 1]] with self.assertRaises(_UpperCAmelCase ): __lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) @require_vision @require_tf class A__ ( unittest.TestCase ): def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) __lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(images=_UpperCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = [tf.ones((1, 3, 5, 5) )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = processor.post_process_masks( _UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowercase = [np.ones((1, 3, 5, 5) )] __lowercase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __lowercase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' ) @require_vision @require_torchvision class A__ ( unittest.TestCase ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __lowercase = [tf.convert_to_tensor(_UpperCAmelCase )] __lowercase = [torch.tensor(_UpperCAmelCase )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' ) __lowercase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy() __lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy() __lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy() __lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
325
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ): """simple docstring""" UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = BlipImageProcessor() UpperCamelCase = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) UpperCamelCase = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) UpperCamelCase = InstructBlipProcessor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def A ( self : List[Any] , **UpperCamelCase__ : int ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).tokenizer def A ( self : Dict , **UpperCamelCase__ : Optional[Any] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def A ( self : int , **UpperCamelCase__ : Any ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).qformer_tokenizer def A ( self : List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] UpperCamelCase = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) UpperCamelCase = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase__ ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = image_processor(UpperCamelCase__ , return_tensors='np' ) UpperCamelCase = processor(images=UpperCamelCase__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A ( self : int ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = 'lower newer' UpperCamelCase = processor(text=UpperCamelCase__ ) UpperCamelCase = tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) UpperCamelCase = qformer_tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def A ( self : List[str] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = 'lower newer' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase = processor.batch_decode(UpperCamelCase__ ) UpperCamelCase = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = 'lower newer' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
249
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase__ : int , **UpperCamelCase__ : List[str] ): """simple docstring""" warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
249
1
print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
14
_lowerCAmelCase : Dict = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _lowerCAmelCase : str = ["a", "b", "c", "d", "e"] def lowerCAmelCase ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = start # add current to visited visited.append(_lowerCAmelCase ) UpperCAmelCase__ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCAmelCase__ = topological_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(_lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): for vertice in vertices: if vertice not in visited: UpperCAmelCase__ = topological_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # return sort return sort if __name__ == "__main__": _lowerCAmelCase : Optional[int] = topological_sort("a", [], []) print(sort)
169
0
def A_ ( _lowerCAmelCase ) -> bool: if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True UpperCamelCase : List[str] = 4 UpperCamelCase : Dict = (1 << p) - 1 for _ in range(p - 2 ): UpperCamelCase : Optional[int] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
360
from pathlib import Path import numpy as np from PIL import Image def A_ ( _lowerCAmelCase ) -> np.ndarray: UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def A_ ( _lowerCAmelCase ) -> np.ndarray: return (gray > 127) & (gray <= 255) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> np.ndarray: UpperCamelCase : Dict = np.zeros_like(_lowerCAmelCase ) UpperCamelCase : List[str] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image UpperCamelCase : Tuple = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): UpperCamelCase : List[str] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() UpperCamelCase : int = int(summation > 0 ) return output if __name__ == "__main__": # read original image __lowerCamelCase : int = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" __lowerCamelCase : Tuple = np.array(Image.open(lena_path)) # kernel to be applied __lowerCamelCase : Optional[Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __lowerCamelCase : Union[str, Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __lowerCamelCase : Any = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
140
0
import unittest import numpy as np def A (__A : np.ndarray , __A : np.ndarray , __A : np.ndarray , __A : np.ndarray | None = None , ) -> np.ndarray: """simple docstring""" UpperCAmelCase_ = np.shape(__A ) UpperCAmelCase_ = np.shape(__A ) UpperCAmelCase_ = np.shape(__A ) if shape_a[0] != shape_b[0]: UpperCAmelCase_ = ( '''Expected the same number of rows for A and B. ''' F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(__A ) if shape_b[1] != shape_c[1]: UpperCAmelCase_ = ( '''Expected the same number of columns for B and C. ''' F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(__A ) UpperCAmelCase_ = pseudo_inv if a_inv is None: try: UpperCAmelCase_ = np.linalg.inv(__A ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) UpperCAmelCase_ = np.array([[0, 3], [3, 0], [2, 3]]) UpperCAmelCase_ = np.array([[2, 1], [6, 3]]) UpperCAmelCase_ = schur_complement(_snake_case , _snake_case , _snake_case) UpperCAmelCase_ = np.block([[a, b], [b.T, c]]) UpperCAmelCase_ = np.linalg.det(_snake_case) UpperCAmelCase_ = np.linalg.det(_snake_case) UpperCAmelCase_ = np.linalg.det(_snake_case) self.assertAlmostEqual(_snake_case , det_a * det_s) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) UpperCAmelCase_ = np.array([[0, 3], [3, 0], [2, 3]]) UpperCAmelCase_ = np.array([[2, 1], [6, 3]]) with self.assertRaises(_snake_case): schur_complement(_snake_case , _snake_case , _snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) UpperCAmelCase_ = np.array([[0, 3], [3, 0], [2, 3]]) UpperCAmelCase_ = np.array([[2, 1, 3], [6, 3, 5]]) with self.assertRaises(_snake_case): schur_complement(_snake_case , _snake_case , _snake_case) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
51
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
181
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Dict = """audio-spectrogram-transformer""" def __init__( self , __UpperCAmelCase=7_6_8 , __UpperCAmelCase=1_2 , __UpperCAmelCase=1_2 , __UpperCAmelCase=3_0_7_2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1_6 , __UpperCAmelCase=True , __UpperCAmelCase=1_0 , __UpperCAmelCase=1_0 , __UpperCAmelCase=1_0_2_4 , __UpperCAmelCase=1_2_8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ :Any = hidden_size lowerCAmelCase__ :Optional[int] = num_hidden_layers lowerCAmelCase__ :Any = num_attention_heads lowerCAmelCase__ :Optional[Any] = intermediate_size lowerCAmelCase__ :Tuple = hidden_act lowerCAmelCase__ :List[Any] = hidden_dropout_prob lowerCAmelCase__ :Dict = attention_probs_dropout_prob lowerCAmelCase__ :List[str] = initializer_range lowerCAmelCase__ :Dict = layer_norm_eps lowerCAmelCase__ :Any = patch_size lowerCAmelCase__ :Optional[int] = qkv_bias lowerCAmelCase__ :Any = frequency_stride lowerCAmelCase__ :int = time_stride lowerCAmelCase__ :Optional[int] = max_length lowerCAmelCase__ :List[str] = num_mel_bins
254
"""simple docstring""" __A = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __A = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = True lowerCAmelCase__ :Tuple = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) order.append(_SCREAMING_SNAKE_CASE ) return order def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[int]: """simple docstring""" lowerCAmelCase__ :Optional[int] = True lowerCAmelCase__ :Union[str, Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return component def __A (_SCREAMING_SNAKE_CASE ) ->list[list[int]]: """simple docstring""" lowerCAmelCase__ :Any = len(_SCREAMING_SNAKE_CASE ) * [False] lowerCAmelCase__ :dict[int, list[int]] = {vert: [] for vert in range(len(_SCREAMING_SNAKE_CASE ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = [] for i, was_visited in enumerate(_SCREAMING_SNAKE_CASE ): if not was_visited: order += topology_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = [] lowerCAmelCase__ :int = len(_SCREAMING_SNAKE_CASE ) * [False] for i in range(len(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase__ :Dict = order[len(_SCREAMING_SNAKE_CASE ) - i - 1] if not visited[vert]: lowerCAmelCase__ :Union[str, Any] = find_components(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) components_list.append(_SCREAMING_SNAKE_CASE ) return components_list
254
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __UpperCAmelCase = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' __UpperCAmelCase = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' __UpperCAmelCase = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def snake_case_ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), id='references' ), } ), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = 4, ) -> Any: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__UpperCAmelCase, hypotheses=__UpperCAmelCase, min_len=__UpperCAmelCase, max_len=__UpperCAmelCase ) }
119
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets lowerCamelCase_ = datasets.logging.get_logger(__name__) lowerCamelCase_ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' lowerCamelCase_ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' lowerCamelCase_ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase ( self : int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "sources": datasets.Value("string" , id="sequence" ), "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ] , ) def lowerCAmelCase ( self : Any , __UpperCAmelCase : str ): '''simple docstring''' if self.config_name == "default": _A = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da" ) ) else: _A = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCAmelCase ( self : str , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : int=False ): '''simple docstring''' if gpus is None: _A = 1 if torch.cuda.is_available() else 0 _A = {"src": sources, "mt": predictions, "ref": references} _A = [dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) for t in zip(*data.values() )] _A , _A = self.scorer.predict(__UpperCAmelCase , gpus=__UpperCAmelCase , progress_bar=__UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
79
0
'''simple docstring''' from statistics import mean, stdev def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = min(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min), _UpperCamelCase ) for x in data] def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = mean(_UpperCamelCase ) A_ = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma), _UpperCamelCase ) for x in data]
18
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
18
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _A ( unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def UpperCAmelCase ( self ): """simple docstring""" print(f"Found {torch.cuda.device_count()} devices." ) SCREAMING_SNAKE_CASE_ : List[str] = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase ( self ): """simple docstring""" print(f"Found {torch.cuda.device_count()} devices." ) SCREAMING_SNAKE_CASE_ : int = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase ( self ): """simple docstring""" print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : str = Accelerator() lowerCAmelCase : List[Any] = (accelerator.state.process_index + 2, 10) lowerCAmelCase : Tuple = torch.randint(0, 10, shape).to(accelerator.device) lowerCAmelCase : int = '' lowerCAmelCase : Any = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowerCAmelCase : Tuple = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowerCAmelCase : str = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
253
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __a = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) __a = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __a = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) __a = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) __a = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' __a = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' __a = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' __a = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' __a = '' __a = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' __a = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __a = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( "readme_md, expected_dict", [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def __UpperCAmelCase ( a_: Any, a_: Any ): assert ReadMe.from_string(a_, a_ ).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error", [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def __UpperCAmelCase ( a_: Optional[int], a_: int ): with pytest.raises(a_, match=re.escape(expected_error.format(path="root" ) ) ): _UpperCAmelCase : Union[str, Any] = ReadMe.from_string(a_, a_ ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error", [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCAmelCase ( a_: str, a_: Optional[Any] ): with pytest.raises(a_, match=re.escape(expected_error.format(path="root" ) ) ): ReadMe.from_string(a_, a_ ) @pytest.mark.parametrize( "readme_md,", [ (README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCAmelCase ( a_: str ): ReadMe.from_string(a_, a_, suppress_parsing_errors=a_ ) @pytest.mark.parametrize( "readme_md, expected_dict", [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def __UpperCAmelCase ( a_: str, a_: Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Optional[Any] = Path(a_ ) / "README.md" with open(a_, "w+" ) as readme_file: readme_file.write(a_ ) _UpperCAmelCase : Tuple = ReadMe.from_readme(a_, a_ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error", [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def __UpperCAmelCase ( a_: List[Any], a_: str ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Optional[Any] = Path(a_ ) / "README.md" with open(a_, "w+" ) as readme_file: readme_file.write(a_ ) _UpperCAmelCase : Any = expected_error.format(path=a_ ) with pytest.raises(a_, match=re.escape(a_ ) ): _UpperCAmelCase : str = ReadMe.from_readme(a_, a_ ) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error", [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCAmelCase ( a_: Tuple, a_: Optional[int] ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : List[str] = Path(a_ ) / "README.md" with open(a_, "w+" ) as readme_file: readme_file.write(a_ ) _UpperCAmelCase : Any = expected_error.format(path=a_ ) with pytest.raises(a_, match=re.escape(a_ ) ): ReadMe.from_readme(a_, a_ ) @pytest.mark.parametrize( "readme_md,", [ (README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCAmelCase ( a_: Any ): with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : List[Any] = Path(a_ ) / "README.md" with open(a_, "w+" ) as readme_file: readme_file.write(a_ ) ReadMe.from_readme(a_, a_, suppress_parsing_errors=a_ )
145
0
from __future__ import annotations def _a ( a :list , a :int , a :int , a :int ) -> list: a = [] a , a = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) a = result + left + right return input_list def _a ( a :list ) -> list: if len(a ) <= 1: return input_list a = list(a ) # iteration for two-way merging a = 2 while p <= len(a ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(a ) , a ): a = i a = i + p - 1 a = (low + high + 1) // 2 a = merge(a , a , a , a ) # final merge of last two parts if p * 2 >= len(a ): a = i a = merge(a , 0 , a , len(a ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() if user_input == "": UpperCAmelCase__ = [] else: UpperCAmelCase__ = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
364
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase__ = 10 UpperCAmelCase__ = 256 def _a ( a :List[str] ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def _a ( a :str ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class lowercase_ : '''simple docstring''' def __init__( self : Any , *, __UpperCAmelCase : float = 0.85 , ) ->Dict: """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None: """simple docstring""" a = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]: """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None: """simple docstring""" a = self.get_duplicate_clusters() with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def _a ( a :List[Any] ) -> List[Any]: a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _a ( a :Type[Dataset] ) -> List[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def _a ( a :Type[Dataset] , a :float ) -> str: a = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _a ( a :str , a :str ) -> float: a = get_tokens(a ) a = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ = None def _a ( a :Tuple , a :Tuple ) -> Any: a = [] for elementa in cluster: a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(a ) return extremes def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]: global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: a = make_duplicate_clusters(a , a ) a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element['''base_index'''] in extreme_dict if element["is_extreme"]: a = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(a )}""" ) print(F"""Number of duplicate clusters: {len(a )}""" ) print(F"""Files in duplicate cluster: {len(a )}""" ) print(F"""Unique files in duplicate cluster: {len(a )}""" ) print(F"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
26
0
def _a ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) lowerCamelCase__ : Any = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(UpperCAmelCase ) ) return round(UpperCAmelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
142
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _A : Dict = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _A : int = 25_00_04 _A : str = 25_00_20 @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Optional[Any] = MBartTokenizer _UpperCAmelCase : List[Any] = MBartTokenizerFast _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : Optional[int] = True def __lowerCamelCase ( self : Union[str, Any] ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : Optional[Any] = MBartTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self : Tuple ) ->List[str]: lowerCamelCase__ : str = MBartTokenizer(A , keep_accents=A ) lowerCamelCase__ : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCamelCase__ : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase__ : List[str] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __lowerCamelCase ( self : List[Any] ) ->List[str]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase__ : Any = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(A , **A ) lowerCamelCase__ : Any = self.tokenizer_class.from_pretrained(A , **A ) lowerCamelCase__ : List[str] = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(A ) lowerCamelCase__ : List[Any] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCamelCase__ : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way lowerCamelCase__ : Optional[int] = tokenizer_r.from_pretrained(A ) lowerCamelCase__ : Optional[Any] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True lowerCamelCase__ : List[Any] = tempfile.mkdtemp() lowerCamelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(A , legacy_format=A ) lowerCamelCase__ : str = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way lowerCamelCase__ : Optional[Any] = tokenizer_r.from_pretrained(A ) lowerCamelCase__ : List[Any] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False lowerCamelCase__ : Optional[Any] = tempfile.mkdtemp() lowerCamelCase__ : Optional[Any] = tokenizer_r.save_pretrained(A , legacy_format=A ) lowerCamelCase__ : List[str] = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase__ : Any = tokenizer_r.from_pretrained(A ) lowerCamelCase__ : Optional[Any] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): _UpperCAmelCase : Any = "facebook/mbart-large-en-ro" _UpperCAmelCase : Optional[int] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] _UpperCAmelCase : Optional[Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] _UpperCAmelCase : Tuple = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def __lowerCamelCase ( cls : Optional[Any] ) ->Dict: lowerCamelCase__ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) lowerCamelCase__ : int = 1 return cls def __lowerCamelCase ( self : int ) ->Optional[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 2_5_0_0_2_0 ) def __lowerCamelCase ( self : str ) ->Any: lowerCamelCase__ : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A ) def __lowerCamelCase ( self : Tuple ) ->Tuple: self.assertIn(A , self.tokenizer.all_special_ids ) lowerCamelCase__ : List[str] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] lowerCamelCase__ : str = self.tokenizer.decode(A , skip_special_tokens=A ) lowerCamelCase__ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A ) self.assertEqual(A , A ) self.assertNotIn(self.tokenizer.eos_token , A ) def __lowerCamelCase ( self : Optional[Any] ) ->int: lowerCamelCase__ : List[str] = ['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0] , A ) lowerCamelCase__ : str = 1_0 lowerCamelCase__ : Dict = self.tokenizer(A , max_length=A , truncation=A ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , A ) self.assertEqual(len(A ) , A ) def __lowerCamelCase ( self : List[str] ) ->str: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def __lowerCamelCase ( self : List[Any] ) ->List[Any]: lowerCamelCase__ : List[str] = tempfile.mkdtemp() lowerCamelCase__ : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A ) lowerCamelCase__ : List[Any] = MBartTokenizer.from_pretrained(A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A ) @require_torch def __lowerCamelCase ( self : Union[str, Any] ) ->Any: lowerCamelCase__ : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A , return_tensors='''pt''' ) lowerCamelCase__ : str = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __lowerCamelCase ( self : Any ) ->List[str]: lowerCamelCase__ : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A , truncation=A , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowerCamelCase__ : Optional[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(A , A ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) lowerCamelCase__ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __lowerCamelCase ( self : Any ) ->List[str]: lowerCamelCase__ : str = self.tokenizer(self.src_text , padding=A , truncation=A , max_length=3 , return_tensors='''pt''' ) lowerCamelCase__ : Any = self.tokenizer( text_target=self.tgt_text , padding=A , truncation=A , max_length=1_0 , return_tensors='''pt''' ) lowerCamelCase__ : str = targets['''input_ids'''] lowerCamelCase__ : int = shift_tokens_right(A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __lowerCamelCase ( self : Optional[Any] ) ->Optional[Any]: lowerCamelCase__ : Dict = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(A ) , { # A, test, EOS, en_XX '''input_ids''': [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_0_0_0_1, } , )
142
1
import math class __lowerCamelCase : def __init__( self , lowerCamelCase=0 ) -> int: # a graph with Node 0,1,...,N-1 snake_case_ = n snake_case_ = [ [math.inf for j in range(0 , _a )] for i in range(0 , _a ) ] # adjacency matrix for weight snake_case_ = [ [math.inf for j in range(0 , _a )] for i in range(0 , _a ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: snake_case_ = w def lowerCAmelCase_ ( self ) -> str: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): snake_case_ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: return self.dp[u][v] if __name__ == "__main__": lowerCamelCase_ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
365
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Optional[Any] = 'mobilenet_v2' def __init__( self , lowerCamelCase=3 , lowerCamelCase=224 , lowerCamelCase=1.0 , lowerCamelCase=8 , lowerCamelCase=8 , lowerCamelCase=6 , lowerCamelCase=32 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase="relu6" , lowerCamelCase=True , lowerCamelCase=0.8 , lowerCamelCase=0.02 , lowerCamelCase=0.001 , lowerCamelCase=255 , **lowerCamelCase , ) -> Union[str, Any]: super().__init__(**lowerCamelCase ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) snake_case_ = num_channels snake_case_ = image_size snake_case_ = depth_multiplier snake_case_ = depth_divisible_by snake_case_ = min_depth snake_case_ = expand_ratio snake_case_ = output_stride snake_case_ = first_layer_is_expansion snake_case_ = finegrained_output snake_case_ = hidden_act snake_case_ = tf_padding snake_case_ = classifier_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = semantic_loss_ignore_index class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Dict = version.parse('1.11' ) @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def lowerCAmelCase_ ( self ) -> float: return 1e-4
34
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowercase (a_ ): '''simple docstring''' @staticmethod @abstractmethod def _lowerCamelCase ( snake_case__ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def _lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError()
128
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _lowercase (a_ ): '''simple docstring''' lowercase__ = (IPNDMScheduler,) lowercase__ = (("""num_inference_steps""", 50),) def _lowerCamelCase ( self , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = {"num_train_timesteps": 1000} config.update(**snake_case__ ) return config def _lowerCamelCase ( self , snake_case__=0 , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = dict(self.forward_default_kwargs ) UpperCamelCase_ = kwargs.pop("num_inference_steps" , snake_case__ ) UpperCamelCase_ = self.dummy_sample UpperCamelCase_ = 0.1 * sample UpperCamelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase_ = self.get_scheduler_config(**snake_case__ ) UpperCamelCase_ = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals UpperCamelCase_ = dummy_past_residuals[:] if time_step is None: UpperCamelCase_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) UpperCamelCase_ = scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals UpperCamelCase_ = dummy_past_residuals[:] UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self ): '''simple docstring''' pass def _lowerCamelCase ( self , snake_case__=0 , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = dict(self.forward_default_kwargs ) UpperCamelCase_ = kwargs.pop("num_inference_steps" , snake_case__ ) UpperCamelCase_ = self.dummy_sample UpperCamelCase_ = 0.1 * sample UpperCamelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase_ = dummy_past_residuals[:] if time_step is None: UpperCamelCase_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) UpperCamelCase_ = scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase_ = dummy_past_residuals[:] UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config(**snake_case__ ) UpperCamelCase_ = scheduler_class(**snake_case__ ) UpperCamelCase_ = 10 UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ = model(snake_case__ , snake_case__ ) UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ = model(snake_case__ , snake_case__ ) UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = dict(self.forward_default_kwargs ) UpperCamelCase_ = kwargs.pop("num_inference_steps" , snake_case__ ) for scheduler_class in self.scheduler_classes: UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**snake_case__ ) UpperCamelCase_ = self.dummy_sample UpperCamelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , "set_timesteps" ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ , "set_timesteps" ): UpperCamelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCamelCase_ = dummy_past_residuals[:] UpperCamelCase_ = scheduler.timesteps[5] UpperCamelCase_ = scheduler.timesteps[6] UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCamelCase_ = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowerCamelCase ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ , time_step=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=snake_case__ , time_step=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.full_loop() UpperCamelCase_ = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 254_0529 ) < 10
128
1
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase = "true" def _a ( _lowerCamelCase , _lowerCamelCase=82 , _lowerCamelCase=16 ) -> str: """simple docstring""" set_seed(42 ) __snake_case : int = RegressionModel() __snake_case : Any = deepcopy(_lowerCamelCase ) __snake_case : List[str] = RegressionDataset(length=_lowerCamelCase ) __snake_case : Any = DataLoader(_lowerCamelCase , batch_size=_lowerCamelCase ) model.to(accelerator.device ) __snake_case , __snake_case : List[Any] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) return model, ddp_model, dataloader def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) __snake_case : List[Any] = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(_lowerCamelCase ): __snake_case : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs with accelerator.main_process_first(): __snake_case : Union[str, Any] = dataset.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) __snake_case : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowerCamelCase ): if use_longest: return tokenizer.pad(_lowerCamelCase , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(_lowerCamelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(_lowerCamelCase , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=16 ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = Accelerator(dispatch_batches=_lowerCamelCase , split_batches=_lowerCamelCase ) __snake_case : List[str] = get_dataloader(_lowerCamelCase , not dispatch_batches ) __snake_case : int = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=_lowerCamelCase ) __snake_case , __snake_case : Any = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Tuple = [] for batch in dataloader: __snake_case , __snake_case : Dict = batch.values() with torch.no_grad(): __snake_case : Optional[Any] = model(_lowerCamelCase ) __snake_case , __snake_case : int = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __snake_case , __snake_case : str = [], [] for logit, targ in logits_and_targets: logits.append(_lowerCamelCase ) targs.append(_lowerCamelCase ) __snake_case , __snake_case : Optional[Any] = torch.cat(_lowerCamelCase ), torch.cat(_lowerCamelCase ) return logits, targs def _a ( _lowerCamelCase , _lowerCamelCase=82 , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=16 ) -> Union[str, Any]: """simple docstring""" __snake_case , __snake_case , __snake_case : Optional[int] = get_basic_setup(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Optional[Any] = generate_predictions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) assert ( len(_lowerCamelCase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_lowerCamelCase )}''' def _a ( _lowerCamelCase = False , _lowerCamelCase = False ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) __snake_case , __snake_case : Dict = get_mrpc_setup(_lowerCamelCase , _lowerCamelCase ) # First do baseline __snake_case , __snake_case , __snake_case : Optional[Any] = setup["""no"""] model.to(_lowerCamelCase ) model.eval() for batch in dataloader: batch.to(_lowerCamelCase ) with torch.inference_mode(): __snake_case : List[Any] = model(**_lowerCamelCase ) __snake_case : Tuple = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_lowerCamelCase , references=batch["""labels"""] ) __snake_case : Optional[int] = metric.compute() # Then do distributed __snake_case , __snake_case , __snake_case : Optional[int] = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): __snake_case : Union[str, Any] = model(**_lowerCamelCase ) __snake_case : Optional[Any] = outputs.logits.argmax(dim=-1 ) __snake_case : List[str] = batch["""labels"""] __snake_case , __snake_case : Optional[Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_lowerCamelCase , references=_lowerCamelCase ) __snake_case : Union[str, Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def _a ( ) -> str: """simple docstring""" __snake_case : str = Accelerator(split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(_lowerCamelCase , _lowerCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __snake_case : Tuple = Accelerator(split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(_lowerCamelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) __snake_case : Optional[Any] = Accelerator() test_torch_metrics(_lowerCamelCase , 512 ) accelerator.state._reset_state() def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
13
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) __snake_case : List[str] = None def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __snake_case : List[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case : List[str] = str(distributed_port + 1 ) __snake_case : Any = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : int ) -> int: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=torch.floataa ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def lowercase__ ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __snake_case , __snake_case : List[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training __snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic __snake_case : Tuple = None if self._is_main(): __snake_case : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic __snake_case : Optional[int] = question_hidden_states.shape[0] __snake_case : Optional[Any] = [] __snake_case : Any = [] if self._is_main(): assert len(__magic_name__ ) == world_size __snake_case , __snake_case : Optional[int] = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) __snake_case , __snake_case : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) __snake_case : Optional[Any] = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) __snake_case : Any = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
13
1
UpperCamelCase = [ (1000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[int] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} lowercase__ : Optional[Any] = 0 lowercase__ : Any = 0 while place < len(_lowerCamelCase): if (place + 1 < len(_lowerCamelCase)) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowercase_ ( _lowerCamelCase : int): lowercase__ : Union[str, Any] = [] for arabic, roman in ROMAN: ((lowercase__) , (lowercase__)) : Union[str, Any] = divmod(_lowerCamelCase , _lowerCamelCase) result.append(roman * factor) if number == 0: break return "".join(_lowerCamelCase) if __name__ == "__main__": import doctest doctest.testmod()
87
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Optional[int]: super().setUp() lowercase__ : List[Any] = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] lowercase__ : Any = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowercase__ : Optional[Any] = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] lowercase__ : Dict = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} lowercase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> Tuple: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: lowercase__ : str = '''adapt act apte''' lowercase__ : Any = '''adapt act apte''' return input_text, output_text def _lowerCAmelCase( self ) -> str: lowercase__ : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : Tuple = '''adapt act apte''' lowercase__ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te'''] lowercase__ : Union[str, Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Any = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowercase__ : int = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> str: lowercase__ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] lowercase__ : str = '''I am a small frog.''' lowercase__ : Union[str, Any] = tok([src_text] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase )['''input_ids'''] lowercase__ : List[str] = tok.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Optional[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) lowercase__ : Optional[Any] = '''I am a small frog .''' lowercase__ : Any = '''.''' lowercase__ : List[Any] = tok(__lowerCAmelCase )['''input_ids'''] lowercase__ : Optional[Any] = tok(__lowerCAmelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
198
0
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __lowerCAmelCase = 1_0 def UpperCAmelCase_ (__a : int , __a : int , __a : list[int] , __a : int ): """simple docstring""" for i in range(__a , __a ): if array[i] == target: return i return -1 def UpperCAmelCase_ (__a : list[int] , __a : int ): """simple docstring""" _a : Union[str, Any] = 0 _a : List[Any] = len(__a ) while left <= right: if right - left < precision: return lin_search(__a , __a , __a , __a ) _a : Tuple = (left + right) // 3 + 1 _a : str = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _a : Optional[int] = one_third - 1 elif array[two_third] < target: _a : Tuple = two_third + 1 else: _a : Optional[Any] = one_third + 1 _a : Any = two_third - 1 else: return -1 def UpperCAmelCase_ (__a : int , __a : int , __a : list[int] , __a : int ): """simple docstring""" if left < right: if right - left < precision: return lin_search(__a , __a , __a , __a ) _a : List[str] = (left + right) // 3 + 1 _a : int = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__a , one_third - 1 , __a , __a ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __a , __a , __a ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __a , __a ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = input("""Enter numbers separated by comma:\n""").strip() __lowerCAmelCase = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." __lowerCAmelCase = int(input("""Enter the number to be found in the list:\n""").strip()) __lowerCAmelCase = ite_ternary_search(collection, target) __lowerCAmelCase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
5
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase_ (__a : str , __a : Dict=0.999 , __a : List[str]="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__a : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__a : int ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _a : Tuple = [] for i in range(__a ): _a : Union[str, Any] = i / num_diffusion_timesteps _a : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__a ) / alpha_bar_fn(__a ) , __a ) ) return torch.tensor(__a , dtype=torch.floataa ) class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Dict = 2 @register_to_config def __init__( self : str ,_a : int = 1000 ,_a : float = 0.0_0085 ,_a : float = 0.012 ,_a : str = "linear" ,_a : Optional[Union[np.ndarray, List[float]]] = None ,_a : str = "epsilon" ,_a : Optional[bool] = False ,_a : Optional[bool] = False ,_a : float = 1.0 ,_a : str = "linspace" ,_a : int = 0 ,): '''simple docstring''' if trained_betas is not None: _a : List[str] = torch.tensor(_a ,dtype=torch.floataa ) elif beta_schedule == "linear": _a : Tuple = torch.linspace(_a ,_a ,_a ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a : List[str] = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,_a ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a : Dict = betas_for_alpha_bar(_a ,alpha_transform_type='cosine' ) elif beta_schedule == "exp": _a : Tuple = betas_for_alpha_bar(_a ,alpha_transform_type='exp' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _a : Optional[Any] = 1.0 - self.betas _a : Optional[int] = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(_a ,_a ,_a ) _a : Optional[int] = use_karras_sigmas def __lowercase ( self : Any ,_a : Union[str, Any] ,_a : Optional[Any]=None ): '''simple docstring''' if schedule_timesteps is None: _a : List[Any] = self.timesteps _a : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a : int = 1 if len(_a ) > 1 else 0 else: _a : str = timestep.cpu().item() if torch.is_tensor(_a ) else timestep _a : str = self._index_counter[timestep_int] return indices[pos].item() @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Union[float, torch.FloatTensor] ,): '''simple docstring''' _a : List[Any] = self.index_for_timestep(_a ) _a : Tuple = self.sigmas[step_index] _a : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowercase ( self : Any ,_a : int ,_a : Union[str, torch.device] = None ,_a : Optional[int] = None ,): '''simple docstring''' _a : Optional[Any] = num_inference_steps _a : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a : Optional[Any] = np.linspace(0 ,num_train_timesteps - 1 ,_a ,dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": _a : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : int = (np.arange(0 ,_a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a : Any = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a : Union[str, Any] = (np.arange(_a ,0 ,-step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _a : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a : Union[str, Any] = np.log(_a ) _a : str = np.interp(_a ,np.arange(0 ,len(_a ) ) ,_a ) if self.config.use_karras_sigmas: _a : List[Any] = self._convert_to_karras(in_sigmas=_a ,num_inference_steps=self.num_inference_steps ) _a : Dict = np.array([self._sigma_to_t(_a ,_a ) for sigma in sigmas] ) _a : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a : Union[str, Any] = torch.from_numpy(_a ).to(device=_a ) _a : Any = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _a : List[Any] = torch.from_numpy(_a ) _a : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_a ).startswith('mps' ): # mps does not support float64 _a : Tuple = timesteps.to(_a ,dtype=torch.floataa ) else: _a : Dict = timesteps.to(device=_a ) # empty dt and derivative _a : Tuple = None _a : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a : Union[str, Any] = defaultdict(_a ) def __lowercase ( self : str ,_a : Dict ,_a : Dict ): '''simple docstring''' _a : Optional[int] = np.log(_a ) # get distribution _a : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _a : List[Any] = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _a : Tuple = low_idx + 1 _a : Union[str, Any] = log_sigmas[low_idx] _a : Optional[Any] = log_sigmas[high_idx] # interpolate sigmas _a : Optional[Any] = (low - log_sigma) / (low - high) _a : List[str] = np.clip(_a ,0 ,1 ) # transform interpolation to time range _a : Union[str, Any] = (1 - w) * low_idx + w * high_idx _a : List[str] = t.reshape(sigma.shape ) return t def __lowercase ( self : int ,_a : torch.FloatTensor ,_a : Tuple ): '''simple docstring''' _a : float = in_sigmas[-1].item() _a : float = in_sigmas[0].item() _a : Tuple = 7.0 # 7.0 is the value used in the paper _a : str = np.linspace(0 ,1 ,_a ) _a : Optional[Any] = sigma_min ** (1 / rho) _a : Union[str, Any] = sigma_max ** (1 / rho) _a : str = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.dt is None def __lowercase ( self : int ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : Union[float, torch.FloatTensor] ,_a : Union[torch.FloatTensor, np.ndarray] ,_a : bool = True ,): '''simple docstring''' _a : Union[str, Any] = self.index_for_timestep(_a ) # advance index counter by 1 _a : Any = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a : Tuple = self.sigmas[step_index] _a : int = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _a : List[str] = self.sigmas[step_index - 1] _a : List[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a : Optional[int] = 0 _a : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a : Dict = sigma_hat if self.state_in_first_order else sigma_next _a : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a : List[Any] = sigma_hat if self.state_in_first_order else sigma_next _a : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _a : Union[str, Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _a : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a : Optional[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a : Any = sigma_next - sigma_hat # store for 2nd order step _a : int = derivative _a : List[str] = dt _a : Union[str, Any] = sample else: # 2. 2nd order / Heun's method _a : Dict = (sample - pred_original_sample) / sigma_next _a : Tuple = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _a : Optional[Any] = self.dt _a : Union[str, Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _a : List[Any] = None _a : Union[str, Any] = None _a : Dict = None _a : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __lowercase ( self : Optional[int] ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,_a : torch.FloatTensor ,): '''simple docstring''' _a : str = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 _a : Dict = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _a : Optional[Any] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _a : int = self.timesteps.to(original_samples.device ) _a : Optional[Any] = timesteps.to(original_samples.device ) _a : Any = [self.index_for_timestep(_a ,_a ) for t in timesteps] _a : Optional[int] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a : Optional[Any] = sigma.unsqueeze(-1 ) _a : Any = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
5
1
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A_ ( self ): _lowerCamelCase : List[Any] = ort.SessionOptions() _lowerCamelCase : Any = False return options def A_ ( self ): _lowerCamelCase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) _lowerCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) _lowerCamelCase : Optional[int] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Dict = 'A red cat sitting on a park bench' _lowerCamelCase : str = np.random.RandomState(0 ) _lowerCamelCase : Optional[Any] = pipe( prompt=lowercase , image=lowercase , mask_image=lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase , output_type='np' , ) _lowerCamelCase : Union[str, Any] = output.images _lowerCamelCase : List[str] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.25_14, 0.30_07, 0.35_17, 0.17_90, 0.23_82, 0.31_67, 0.19_44, 0.22_73, 0.24_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A_ ( self ): _lowerCamelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) _lowerCamelCase : str = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) _lowerCamelCase : Any = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Dict = 'A red cat sitting on a park bench' _lowerCamelCase : str = np.random.RandomState(0 ) _lowerCamelCase : str = pipe( prompt=lowercase , image=lowercase , mask_image=lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase , output_type='np' , ) _lowerCamelCase : Any = output.images _lowerCamelCase : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _lowerCamelCase : int = np.array([0.00_86, 0.00_77, 0.00_83, 0.00_93, 0.01_07, 0.01_39, 0.00_94, 0.00_97, 0.01_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
96
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Any = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } __UpperCamelCase : Optional[Any] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def a_ ( _A , _A=1 , _A=256 ) -> str: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def a_ ( _A ) -> int: """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def a_ ( _A , _A ) -> int: """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def a_ ( _A , _A , _A , _A=True ) -> List[str]: """simple docstring""" os.makedirs(_A , exist_ok=_A ) snake_case__ = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) snake_case__ = read_json(os.path.join(_A , 'params.json' ) ) snake_case__ = NUM_SHARDS[model_size] snake_case__ = params['n_layers'] snake_case__ = params['n_heads'] snake_case__ = n_heads // num_shards snake_case__ = params['dim'] snake_case__ = dim // n_heads snake_case__ = 10000.0 snake_case__ = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: snake_case__ = params['n_kv_heads'] # for GQA / MQA snake_case__ = n_heads_per_shard // num_key_value_heads snake_case__ = dim // num_key_value_heads else: # compatibility with other checkpoints snake_case__ = n_heads snake_case__ = n_heads_per_shard snake_case__ = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) snake_case__ = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded snake_case__ = [ torch.load(os.path.join(_A , f'''consolidated.{i:02d}.pth''' ) , map_location='cpu' ) for i in range(_A ) ] snake_case__ = 0 snake_case__ = {'weight_map': {}} for layer_i in range(_A ): snake_case__ = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. snake_case__ = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) snake_case__ = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = inv_freq for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) snake_case__ = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: snake_case__ = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs snake_case__ = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) snake_case__ = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 snake_case__ = params['multiple_of'] if 'multiple_of' in params else 256 snake_case__ = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) snake_case__ = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def a_ ( _A , _A ) -> Tuple: """simple docstring""" # Initialize the tokenizer based on the `spm` model snake_case__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) snake_case__ = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def a_ ( ) -> str: """simple docstring""" snake_case__ = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) snake_case__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) snake_case__ = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
307
0
from collections import defaultdict class A_ : '''simple docstring''' def __init__( self: Tuple , a: int , a: Any ): __lowerCamelCase : str = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 __lowerCamelCase : Any = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(a ) ) ] __lowerCamelCase : List[str] = defaultdict(a ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 __lowerCamelCase : Any = (1 << len(a )) - 1 def _snake_case ( self: Dict , a: str , a: Any ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement __lowerCamelCase : str = self.count_ways_until(a , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. __lowerCamelCase : Union[str, Any] = total_ways_util return self.dp[mask][task_no] def _snake_case ( self: Tuple , a: Any ): # Store the list of persons for each task for i in range(len(a ) ): for j in task_performed[i]: self.task[j].append(a ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": lowercase_ = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. lowercase_ = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
194
import datasets lowercase_ = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' lowercase_ = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' lowercase_ = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def _snake_case ( self: Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def _snake_case ( self: int , a: Optional[Any] , a: Optional[Any] ): return {"accuracy": simple_accuracy(a , a )}
194
1
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """hidden_sizes""")) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """num_attention_heads""")) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """num_encoder_blocks""")) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=6_4 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=[2, 2, 2, 2] , lowerCAmelCase__=[8, 4, 2, 1] , lowerCAmelCase__=[1_6, 3_2, 6_4, 1_2_8] , lowerCAmelCase__=[1, 4, 8, 1_6] , lowerCAmelCase__=[1, 2, 4, 8] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=None , ): __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = num_encoder_blocks __SCREAMING_SNAKE_CASE = sr_ratios __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = downsampling_rates __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope def snake_case_ ( self): __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def snake_case_ ( self): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = SegformerModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = SegformerForSemanticSegmentation(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = SegformerForSemanticSegmentation(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertGreater(result.loss , 0.0) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __a , __a , unittest.TestCase ): """simple docstring""" __lowercase : int = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __lowercase : int = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Tuple = True __lowercase : List[str] = False __lowercase : Optional[int] = False __lowercase : Tuple = False def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SegformerModelTester(self) __SCREAMING_SNAKE_CASE = SegformerConfigTester(self , config_class=lowerCAmelCase__) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowerCAmelCase__) @unittest.skip("""SegFormer does not use inputs_embeds""") def snake_case_ ( self): pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""") def snake_case_ ( self): pass def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = outputs.attentions __SCREAMING_SNAKE_CASE = sum(self.model_tester.depths) self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) # check that output_attentions also work using config del inputs_dict["output_attentions"] __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = outputs.attentions self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) # verify the first attentions (first block, first layer) __SCREAMING_SNAKE_CASE = (self.model_tester.image_size // 4) ** 2 __SCREAMING_SNAKE_CASE = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __SCREAMING_SNAKE_CASE = (self.model_tester.image_size // 3_2) ** 2 __SCREAMING_SNAKE_CASE = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __SCREAMING_SNAKE_CASE = len(lowerCAmelCase__) # Check attention is always last and order is fine __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) self.assertEqual(out_len + 1 , len(lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = outputs.attentions self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) # verify the first attentions (first block, first layer) __SCREAMING_SNAKE_CASE = (self.model_tester.image_size // 4) ** 2 __SCREAMING_SNAKE_CASE = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def snake_case_ ( self): def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_encoder_blocks self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def snake_case_ ( self): if not self.model_tester.is_training: return __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase__): continue __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.train() __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def snake_case_ ( self): pass @slow def snake_case_ ( self): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = SegformerModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self): # only resize + normalize __SCREAMING_SNAKE_CASE = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""").to( lowerCAmelCase__) __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""") __SCREAMING_SNAKE_CASE = encoded_inputs.pixel_values.to(lowerCAmelCase__) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def snake_case_ ( self): # only resize + normalize __SCREAMING_SNAKE_CASE = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""").to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""") __SCREAMING_SNAKE_CASE = encoded_inputs.pixel_values.to(lowerCAmelCase__) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1E-1)) @slow def snake_case_ ( self): # only resize + normalize __SCREAMING_SNAKE_CASE = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""").to( lowerCAmelCase__) __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""") __SCREAMING_SNAKE_CASE = encoded_inputs.pixel_values.to(lowerCAmelCase__) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = outputs.logits.detach().cpu() __SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ , target_sizes=[(5_0_0, 3_0_0)]) __SCREAMING_SNAKE_CASE = torch.Size((5_0_0, 3_0_0)) self.assertEqual(segmentation[0].shape , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.Size((1_2_8, 1_2_8)) self.assertEqual(segmentation[0].shape , lowerCAmelCase__)
100
"""simple docstring""" from __future__ import annotations import math def A ( snake_case__ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = str(snake_case__ ) SCREAMING_SNAKE_CASE__ = [n] for i in range(1 , len(snake_case__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def A ( snake_case__ ): '''simple docstring''' if len(str(snake_case__ ) ) > 3: if not is_prime(int(str(snake_case__ )[-3:] ) ) or not is_prime(int(str(snake_case__ )[:3] ) ): return False return True def A ( snake_case__ = 11 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 13 while len(snake_case__ ) != count: if validate(snake_case__ ): SCREAMING_SNAKE_CASE__ = list_truncated_nums(snake_case__ ) if all(is_prime(snake_case__ ) for i in list_nums ): list_truncated_primes.append(snake_case__ ) num += 2 return list_truncated_primes def A ( ): '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'{sum(compute_truncated_primes(11)) = }')
165
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A_ ( _UpperCAmelCase ): '''simple docstring''' __snake_case = """blenderbot-small""" __snake_case = ["""past_key_values"""] __snake_case = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: Optional[int] , a: Any=5_0265 , a: Tuple=512 , a: Tuple=8 , a: Optional[int]=2048 , a: Optional[int]=16 , a: Dict=8 , a: str=2048 , a: List[Any]=16 , a: Dict=0.0 , a: int=0.0 , a: Optional[Any]=True , a: Tuple=True , a: List[Any]="gelu" , a: Optional[int]=512 , a: Tuple=0.1 , a: List[str]=0.0 , a: int=0.0 , a: Dict=0.0_2 , a: Any=1 , a: Any=False , a: List[Any]=0 , a: Tuple=1 , a: int=2 , a: Tuple=2 , **a: List[Any] , ): __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : List[Any] = d_model __lowerCamelCase : Optional[int] = encoder_ffn_dim __lowerCamelCase : List[Any] = encoder_layers __lowerCamelCase : List[str] = encoder_attention_heads __lowerCamelCase : List[Any] = decoder_ffn_dim __lowerCamelCase : Optional[Any] = decoder_layers __lowerCamelCase : List[str] = decoder_attention_heads __lowerCamelCase : int = dropout __lowerCamelCase : Optional[int] = attention_dropout __lowerCamelCase : int = activation_dropout __lowerCamelCase : int = activation_function __lowerCamelCase : Any = init_std __lowerCamelCase : str = encoder_layerdrop __lowerCamelCase : List[str] = decoder_layerdrop __lowerCamelCase : Optional[int] = use_cache __lowerCamelCase : Any = encoder_layers __lowerCamelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , ) class A_ ( _UpperCAmelCase ): '''simple docstring''' @property def _snake_case ( self: int ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase : List[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowerCamelCase : Any = {0: """batch"""} __lowerCamelCase : List[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __lowerCamelCase : List[str] = {0: """batch""", 1: """decoder_sequence"""} __lowerCamelCase : Optional[int] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowerCamelCase : List[str] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowerCamelCase : Optional[Any] = self.num_layers for i in range(lowercase_ ): __lowerCamelCase : List[Any] = {0: """batch""", 2: """past_sequence + sequence"""} __lowerCamelCase : Any = {0: """batch""", 2: """past_sequence + sequence"""} else: __lowerCamelCase : str = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def _snake_case ( self: str ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase : List[str] = super().outputs else: __lowerCamelCase : str = super(lowercase_ , self ).outputs if self.use_past: __lowerCamelCase : int = self.num_layers for i in range(lowercase_ ): __lowerCamelCase : str = {0: """batch""", 2: """past_sequence + sequence"""} __lowerCamelCase : str = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _snake_case ( self: int , a: PreTrainedTokenizer , a: int = -1 , a: int = -1 , a: bool = False , a: Optional[TensorType] = None , ): __lowerCamelCase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Generate decoder inputs __lowerCamelCase : Dict = seq_length if not self.use_past else 1 __lowerCamelCase : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) __lowerCamelCase : Any = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __lowerCamelCase : Optional[int] = dict(**lowercase_ , **lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowerCamelCase : Optional[int] = common_inputs["""input_ids"""].shape __lowerCamelCase : str = common_inputs["""decoder_input_ids"""].shape[1] __lowerCamelCase : Optional[int] = self.num_attention_heads __lowerCamelCase : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCamelCase : Dict = decoder_seq_length + 3 __lowerCamelCase : Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowerCamelCase : Optional[int] = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowercase_ , lowercase_ )] , dim=1 ) __lowerCamelCase : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowerCamelCase : Dict = self.num_layers __lowerCamelCase : Any = min(lowercase_ , lowercase_ ) __lowerCamelCase : Optional[Any] = max(lowercase_ , lowercase_ ) - min_num_layers __lowerCamelCase : int = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowercase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), ) ) # TODO: test this. __lowerCamelCase : Union[str, Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowercase_ , lowercase_ ): common_inputs["past_key_values"].append((torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) ) return common_inputs def _snake_case ( self: Any , a: PreTrainedTokenizer , a: int = -1 , a: int = -1 , a: bool = False , a: Optional[TensorType] = None , ): __lowerCamelCase : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowerCamelCase : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCamelCase : List[str] = seqlen + 2 __lowerCamelCase : List[str] = self.num_layers __lowerCamelCase : Optional[Any] = self.num_attention_heads __lowerCamelCase : Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCamelCase : Optional[Any] = common_inputs["""attention_mask"""].dtype __lowerCamelCase : List[Any] = torch.cat( [common_inputs['attention_mask'], torch.ones(lowercase_ , lowercase_ , dtype=lowercase_ )] , dim=1 ) __lowerCamelCase : List[Any] = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(lowercase_ ) ] return common_inputs def _snake_case ( self: List[str] , a: PreTrainedTokenizer , a: int = -1 , a: int = -1 , a: bool = False , a: Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowerCamelCase : Tuple = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowerCamelCase : Dict = tokenizer.num_special_tokens_to_add(lowercase_ ) __lowerCamelCase : Optional[Any] = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence __lowerCamelCase : List[str] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowerCamelCase : str = dict(tokenizer(lowercase_ , return_tensors=lowercase_ ) ) return common_inputs def _snake_case ( self: int , a: PreTrainedTokenizer , a: int = -1 , a: int = -1 , a: bool = False , a: Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) elif self.task == "causal-lm": __lowerCamelCase : List[Any] = self._generate_dummy_inputs_for_causal_lm( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) else: __lowerCamelCase : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) return common_inputs def _snake_case ( self: int , a: Union[str, Any] , a: List[Any] , a: Union[str, Any] , a: str ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase : Tuple = super()._flatten_past_key_values_(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: __lowerCamelCase : List[Any] = super(lowercase_ , self )._flatten_past_key_values_( lowercase_ , lowercase_ , lowercase_ , lowercase_ )
371
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[str] = np.inf def set_batch_size(SCREAMING_SNAKE_CASE__ ) -> None: nonlocal batch_size if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[Any] = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and feature.dtype == "binary": __lowerCamelCase : List[str] = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return None if batch_size is np.inf else batch_size class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: Tuple , a: NestedDataStructureLike[PathLike] , a: Optional[NamedSplit] = None , a: Optional[Features] = None , a: str = None , a: bool = False , a: bool = False , a: Optional[int] = None , **a: Optional[Any] , ): super().__init__( a , split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) __lowerCamelCase : List[Any] = path_or_paths if isinstance(a , a ) else {self.split: path_or_paths} __lowerCamelCase : Optional[Any] = _PACKAGED_DATASETS_MODULES['parquet'][1] __lowerCamelCase : List[str] = Parquet( cache_dir=a , data_files=a , features=a , hash=a , **a , ) def _snake_case ( self: List[str] ): # Build iterable dataset if self.streaming: __lowerCamelCase : str = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowerCamelCase : str = None __lowerCamelCase : Optional[Any] = None __lowerCamelCase : Union[str, Any] = None __lowerCamelCase : int = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) __lowerCamelCase : Tuple = self.builder.as_dataset( split=self.split , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class A_ : '''simple docstring''' def __init__( self: Optional[int] , a: Dataset , a: Union[PathLike, BinaryIO] , a: Optional[int] = None , **a: List[Any] , ): __lowerCamelCase : Optional[int] = dataset __lowerCamelCase : List[Any] = path_or_buf __lowerCamelCase : List[str] = batch_size or get_writer_batch_size(dataset.features ) __lowerCamelCase : List[Any] = parquet_writer_kwargs def _snake_case ( self: Union[str, Any] ): __lowerCamelCase : Optional[int] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: __lowerCamelCase : Optional[int] = self._write(file_obj=a , batch_size=a , **self.parquet_writer_kwargs ) else: __lowerCamelCase : Any = self._write(file_obj=self.path_or_buf , batch_size=a , **self.parquet_writer_kwargs ) return written def _snake_case ( self: Optional[int] , a: BinaryIO , a: int , **a: str ): __lowerCamelCase : Dict = 0 __lowerCamelCase : Union[str, Any] = parquet_writer_kwargs.pop('path_or_buf' , a ) __lowerCamelCase : str = self.dataset.features.arrow_schema __lowerCamelCase : Any = pq.ParquetWriter(a , schema=a , **a ) for offset in logging.tqdm( range(0 , len(self.dataset ) , a ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __lowerCamelCase : Any = query_table( table=self.dataset._data , key=slice(a , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(a ) written += batch.nbytes writer.close() return written
194
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class a__ ( unittest.TestCase ): def __init__( self : Any,_A : int,_A : Tuple=7,_A : Tuple=3,_A : int=30,_A : str=400,_A : Any=True,_A : Optional[Any]=None,_A : Optional[Any]=True,_A : Dict=[0.5, 0.5, 0.5],_A : Dict=[0.5, 0.5, 0.5],_A : str=True,_A : Optional[int]=1 / 255,_A : Dict=True,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} SCREAMING_SNAKE_CASE_ : int = parent SCREAMING_SNAKE_CASE_ : Dict = batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_channels SCREAMING_SNAKE_CASE_ : Dict = min_resolution SCREAMING_SNAKE_CASE_ : List[str] = max_resolution SCREAMING_SNAKE_CASE_ : List[str] = do_resize SCREAMING_SNAKE_CASE_ : Union[str, Any] = size SCREAMING_SNAKE_CASE_ : Dict = do_normalize SCREAMING_SNAKE_CASE_ : Any = image_mean SCREAMING_SNAKE_CASE_ : Any = image_std SCREAMING_SNAKE_CASE_ : Optional[Any] = do_rescale SCREAMING_SNAKE_CASE_ : str = rescale_factor SCREAMING_SNAKE_CASE_ : Optional[Any] = do_pad def __UpperCamelCase ( self : Dict ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCamelCase ( self : Union[str, Any],_A : List[str],_A : Tuple=False ): """simple docstring""" if not batched: SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_inputs[0] if isinstance(_A,Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_ : Tuple = int(self.size["shortest_edge"] * h / w ) SCREAMING_SNAKE_CASE_ : int = self.size["shortest_edge"] elif w > h: SCREAMING_SNAKE_CASE_ : int = self.size["shortest_edge"] SCREAMING_SNAKE_CASE_ : int = int(self.size["shortest_edge"] * w / h ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.size["shortest_edge"] SCREAMING_SNAKE_CASE_ : Optional[int] = self.size["shortest_edge"] else: SCREAMING_SNAKE_CASE_ : List[Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_ : Tuple = max(_A,key=lambda _A : item[0] )[0] SCREAMING_SNAKE_CASE_ : Dict = max(_A,key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( A__ , unittest.TestCase ): A = DetaImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = DetaImageProcessingTester(self ) @property def __UpperCamelCase ( self : str ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A,"image_mean" ) ) self.assertTrue(hasattr(_A,"image_std" ) ) self.assertTrue(hasattr(_A,"do_normalize" ) ) self.assertTrue(hasattr(_A,"do_resize" ) ) self.assertTrue(hasattr(_A,"do_rescale" ) ) self.assertTrue(hasattr(_A,"do_pad" ) ) self.assertTrue(hasattr(_A,"size" ) ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size,{"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad,_A ) def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" pass def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : List[str] = prepare_image_inputs(self.image_processor_tester,equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processor_tester.get_expected_values(_A,batched=_A ) SCREAMING_SNAKE_CASE_ : Tuple = image_processing(_A,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : Any = prepare_image_inputs(self.image_processor_tester,equal_resolution=_A,numpify=_A ) for image in image_inputs: self.assertIsInstance(_A,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Any = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processing(_A,return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.image_processor_tester.get_expected_values(_A,batched=_A ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester,equal_resolution=_A,torchify=_A ) for image in image_inputs: self.assertIsInstance(_A,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Tuple = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched SCREAMING_SNAKE_CASE_ : int = image_processing(_A,return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.image_processor_tester.get_expected_values(_A,batched=_A ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),) @slow def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt","r" ) as f: SCREAMING_SNAKE_CASE_ : Any = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Optional[int] = {"image_id": 3_9769, "annotations": target} # encode them SCREAMING_SNAKE_CASE_ : Union[str, Any] = DetaImageProcessor() SCREAMING_SNAKE_CASE_ : Dict = image_processing(images=_A,annotations=_A,return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE_ : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape,_A ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3],_A,atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ : int = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"],_A ) ) # verify boxes SCREAMING_SNAKE_CASE_ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape,_A ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0],_A,atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"],_A ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"],_A ) ) # verify class_labels SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"],_A ) ) # verify orig_size SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"],_A ) ) # verify size SCREAMING_SNAKE_CASE_ : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"],_A ) ) @slow def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt","r" ) as f: SCREAMING_SNAKE_CASE_ : str = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} SCREAMING_SNAKE_CASE_ : Optional[int] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them SCREAMING_SNAKE_CASE_ : Union[str, Any] = DetaImageProcessor(format="coco_panoptic" ) SCREAMING_SNAKE_CASE_ : Any = image_processing(images=_A,annotations=_A,masks_path=_A,return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE_ : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape,_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3],_A,atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"],_A ) ) # verify boxes SCREAMING_SNAKE_CASE_ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape,_A ) SCREAMING_SNAKE_CASE_ : str = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0],_A,atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"],_A ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"],_A ) ) # verify class_labels SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"],_A ) ) # verify masks SCREAMING_SNAKE_CASE_ : str = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item(),_A ) # verify orig_size SCREAMING_SNAKE_CASE_ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"],_A ) ) # verify size SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"],_A ) )
18
from collections import defaultdict def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Tuple = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase ) if ret % 2 == 0: cuts.append(lowerCAmelCase ) return ret def _snake_case ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Union[str, Any] = 10, 9 __lowerCamelCase : Optional[int] = defaultdict(list) __lowerCamelCase : dict[int, bool] = {} __lowerCamelCase : list[int] = [] __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class lowerCamelCase_ : def __init__( self : str , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = str(id_ ) UpperCAmelCase__ : int = None UpperCAmelCase__ : int = None UpperCAmelCase__ : Any = [] UpperCAmelCase__ : Any = {} # {vertex:distance} def __lt__( self : Optional[int] , _A : List[Any] ): '''simple docstring''' return self.key < other.key def __repr__( self : Optional[Any] ): '''simple docstring''' return self.id def lowercase_ ( self : Dict , _A : List[str] ): '''simple docstring''' self.neighbors.append(_A ) def lowercase_ ( self : Any , _A : Tuple , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = weight def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCAmelCase__ ) graph[b - 1].add_edge(graph[a - 1] , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> list: UpperCAmelCase__ : Optional[int] = [] for u in graph: UpperCAmelCase__ : str = math.inf UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : str = 0 UpperCAmelCase__ : List[str] = graph[:] while q: UpperCAmelCase__ : Union[str, Any] = min(lowerCAmelCase__ ) q.remove(lowerCAmelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase__ : List[str] = u UpperCAmelCase__ : List[str] = u.edges[v.id] for i in range(1 , len(lowerCAmelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Iterator[tuple]: for u in graph: UpperCAmelCase__ : List[str] = math.inf UpperCAmelCase__ : int = None UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : List[str] = list(lowerCAmelCase__ ) hq.heapify(lowerCAmelCase__ ) while h: UpperCAmelCase__ : List[str] = hq.heappop(lowerCAmelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase__ : int = u UpperCAmelCase__ : Tuple = u.edges[v.id] hq.heapify(lowerCAmelCase__ ) for i in range(1 , len(lowerCAmelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def a__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
299
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCamelCase__ = logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : str = 3 UpperCAmelCase__ : str = (32, 32) UpperCAmelCase__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Tuple = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : int ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : Dict ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = 4 UpperCAmelCase__ : Dict = 4 UpperCAmelCase__ : List[str] = (32, 32) UpperCAmelCase__ : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : List[Any] = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : Tuple ): '''simple docstring''' return (4, 32, 32) @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (4, 32, 32) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } UpperCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() UpperCAmelCase__ : Tuple = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : Union[str, Any] = noise.to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(_A ) UpperCAmelCase__ : Any = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase__ , UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() UpperCAmelCase__ : Optional[int] = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1e-3 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : str = noise.to(_A ) UpperCAmelCase__ : str = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-3 ) ) class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any , _A : str=(32, 32) ): '''simple docstring''' UpperCAmelCase__ : Tuple = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Dict = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : List[Any] ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : List[str] = self.dummy_input UpperCAmelCase__ : Dict = floats_tensor((4, 3) + (256, 256) ).to(_A ) UpperCAmelCase__ : Optional[Any] = noise UpperCAmelCase__ : Any = model(**_A ) assert image is not None, "Make sure output is not None" @slow def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : Dict = (256, 256) UpperCAmelCase__ : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) UpperCAmelCase__ : str = 4 UpperCAmelCase__ : Any = 3 UpperCAmelCase__ : int = (32, 32) UpperCAmelCase__ : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : int = model(_A , _A ).sample UpperCAmelCase__ : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Any = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass
299
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''PerceiverFeatureExtractor'''] a_ = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'spiece.model'} _snake_case = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class UpperCamelCase ( snake_case_ ): def __init__( self : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=False , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Any="</s>" , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : int="<sep>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : Any="<cls>" , UpperCAmelCase__ : Optional[Any]="<mask>" , UpperCAmelCase__ : int=["<eop>", "<eod>"] , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : List[str] , ) -> None: _a : Optional[int] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token _a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase__ , remove_space=UpperCAmelCase__ , keep_accents=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) _a : Optional[Any] = 3 _a : Tuple = do_lower_case _a : Tuple = remove_space _a : Tuple = keep_accents _a : Tuple = vocab_file _a : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) _a : int = jieba _a : Tuple = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowercase ( self : Optional[Any] ) -> Any: return len(self.sp_model ) def _lowercase ( self : str ) -> Union[str, Any]: _a : int = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> List[str]: _a : Tuple = self.__dict__.copy() _a : Tuple = None return state def __setstate__( self : Any , UpperCAmelCase__ : Dict ) -> Dict: _a : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _a : Tuple = {} _a : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self : List[str] , UpperCAmelCase__ : Union[str, Any] ) -> Dict: if self.remove_space: _a : Optional[int] = """ """.join(inputs.strip().split() ) else: _a : List[Any] = inputs _a : int = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _a : Optional[Any] = unicodedata.normalize("""NFKD""" , UpperCAmelCase__ ) _a : Dict = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase__ )] ) if self.do_lower_case: _a : Union[str, Any] = outputs.lower() return outputs def _lowercase ( self : List[str] , UpperCAmelCase__ : str ) -> List[str]: _a : str = self.preprocess_text(UpperCAmelCase__ ) _a : Dict = self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) _a : Union[str, Any] = [] for piece in pieces: if len(UpperCAmelCase__ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _a : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase__ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _a : Dict = cur_pieces[1:] else: _a : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase__ ) else: new_pieces.append(UpperCAmelCase__ ) return new_pieces def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : int ) -> int: return self.sp_model.PieceToId(UpperCAmelCase__ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] ) -> Any: return self.sp_model.IdToPiece(UpperCAmelCase__ ) def _lowercase ( self : Any , UpperCAmelCase__ : Any ) -> Dict: _a : Dict = """""".join(UpperCAmelCase__ ).replace(UpperCAmelCase__ , """ """ ).strip() return out_string def _lowercase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Optional[Any] = [self.sep_token_id] _a : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self : Tuple , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1, 1] return ([0] * len(UpperCAmelCase__ )) + [1, 1] def _lowercase ( self : str , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Any = [self.sep_token_id] _a : Optional[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Union[str, Any] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , """wb""" ) as fi: _a : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,) def _lowercase ( self : Any , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[str] ) -> List[str]: _a : Tuple = super()._decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Optional[Any] = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
294
0
A : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] A : Any = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
33
import sys def __lowerCAmelCase ( a__ ) -> Optional[int]: __a = len(a__ ) __a = [[0 for x in range(a__ )] for x in range(a__ )] __a = [[0 for x in range(a__ )] for x in range(a__ )] for chain_length in range(2 , a__ ): for a in range(1 , n - chain_length + 1 ): __a = a + chain_length - 1 __a = sys.maxsize for c in range(a__ , a__ ): __a = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __a = cost __a = c return matrix, sol def __lowerCAmelCase ( a__ , a__ , a__ ) -> Any: if i == j: print('''A''' + str(a__ ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(a__ , a__ , optimal_solution[i][j] ) print_optiomal_solution(a__ , optimal_solution[i][j] + 1 , a__ ) print(''')''' , end=''' ''' ) def __lowerCAmelCase ( ) -> int: __a = [30, 35, 15, 5, 10, 20, 25] __a = len(a__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __a , __a = matrix_chain_order(a__ ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(a__ , 1 , n - 1 ) if __name__ == "__main__": main()
33
1
from math import factorial def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: int , lowerCAmelCase__: float ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) UpperCAmelCase_: int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! UpperCAmelCase_: List[Any] = float(factorial(lowerCAmelCase__ ) ) coefficient /= factorial(lowerCAmelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.7_5))
147
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer a : Dict = logging.get_logger(__name__) a : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp a : Tuple = { 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } a : Optional[int] = { 'RUCAIBox/mvp': 1_024, } class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['''input_ids''', '''attention_mask'''] A = MvpTokenizer def __init__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Union[str, Any]: super().__init__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, trim_offsets=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""", SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCAmelCase_: str = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop("""type""" ) ) UpperCAmelCase_: Dict = add_prefix_space UpperCAmelCase_: List[str] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase_: Optional[int] = """post_processor""" UpperCAmelCase_: Any = getattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: UpperCAmelCase_: Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase_: Optional[int] = tuple(state["""sep"""] ) if "cls" in state: UpperCAmelCase_: int = tuple(state["""cls"""] ) UpperCAmelCase_: Any = False if state.get("""add_prefix_space""", SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCAmelCase_: Tuple = add_prefix_space UpperCAmelCase_: Union[str, Any] = True if state.get("""trim_offsets""", SCREAMING_SNAKE_CASE_ ) != trim_offsets: UpperCAmelCase_: Optional[Any] = trim_offsets UpperCAmelCase_: Dict = True if changes_to_apply: UpperCAmelCase_: Tuple = getattr(SCREAMING_SNAKE_CASE_, state.pop("""type""" ) ) UpperCAmelCase_: Dict = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) @property def __snake_case (self ) -> str: if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCAmelCase_: List[Any] = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else value UpperCAmelCase_: str = value def __snake_case (self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCAmelCase_: int = kwargs.get("""is_split_into_words""", SCREAMING_SNAKE_CASE_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCAmelCase_: Union[str, Any] = kwargs.get("""is_split_into_words""", SCREAMING_SNAKE_CASE_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCAmelCase_: Any = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> int: UpperCAmelCase_: Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCAmelCase_: Dict = [self.sep_token_id] UpperCAmelCase_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
147
1
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def a__ ( ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Tuple = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) UpperCAmelCase_ : str = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(lowercase__ ) DownloadCommand.register_subcommand(lowercase__ ) EnvironmentCommand.register_subcommand(lowercase__ ) RunCommand.register_subcommand(lowercase__ ) ServeCommand.register_subcommand(lowercase__ ) UserCommands.register_subcommand(lowercase__ ) AddNewModelCommand.register_subcommand(lowercase__ ) AddNewModelLikeCommand.register_subcommand(lowercase__ ) LfsCommands.register_subcommand(lowercase__ ) PTtoTFCommand.register_subcommand(lowercase__ ) # Let's go UpperCAmelCase_ : List[str] = parser.parse_args() if not hasattr(lowercase__ , "func" ): parser.print_help() exit(1 ) # Run UpperCAmelCase_ : Any = args.func(lowercase__ ) service.run() if __name__ == "__main__": main()
363
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def a__ ( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
67
0
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowerCAmelCase : Union[str, Any] = """true""" def A_ ( _UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=16 ): set_seed(42 ) SCREAMING_SNAKE_CASE_: Optional[int] = RegressionModel() SCREAMING_SNAKE_CASE_: List[str] = deepcopy(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = RegressionDataset(length=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase ) model.to(accelerator.device ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return model, ddp_model, dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: Dict = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) SCREAMING_SNAKE_CASE_: int = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: int = dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) SCREAMING_SNAKE_CASE_: Dict = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): if use_longest: return tokenizer.pad(_UpperCAmelCase , padding="longest" , return_tensors="pt" ) return tokenizer.pad(_UpperCAmelCase , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=16 ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = Accelerator(dispatch_batches=_UpperCAmelCase , split_batches=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = get_dataloader(_UpperCAmelCase , not dispatch_batches ) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = [] for batch in dataloader: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCAmelCase ) targs.append(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = torch.cat(_UpperCAmelCase ), torch.cat(_UpperCAmelCase ) return logits, targs def A_ ( _UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=16 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = get_basic_setup(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = generate_predictions(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) assert ( len(_UpperCAmelCase ) == num_samples ), f"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCAmelCase )}" def A_ ( _UpperCAmelCase = False , _UpperCAmelCase = False ): SCREAMING_SNAKE_CASE_: int = evaluate.load("glue" , "mrpc" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = get_mrpc_setup(_UpperCAmelCase , _UpperCAmelCase ) # First do baseline SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = setup["no"] model.to(_UpperCAmelCase ) model.eval() for batch in dataloader: batch.to(_UpperCAmelCase ) with torch.inference_mode(): SCREAMING_SNAKE_CASE_: Optional[Any] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_UpperCAmelCase , references=batch["labels"] ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Then do distributed SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE_: Union[str, Any] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_: Any = batch["labels"] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_UpperCAmelCase , references=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def A_ ( ): SCREAMING_SNAKE_CASE_: Tuple = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(_UpperCAmelCase , _UpperCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE_: int = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(_UpperCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) SCREAMING_SNAKE_CASE_: Optional[int] = Accelerator() test_torch_metrics(_UpperCAmelCase , 5_12 ) accelerator.state._reset_state() def A_ ( _UpperCAmelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
13
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
1
def UpperCAmelCase_ (_lowerCAmelCase : int = 1_00 ): __UpperCamelCase : Any = set() __UpperCamelCase : List[Any] = 0 __UpperCamelCase : Tuple = n + 1 # maximum limit for a in range(2 , _lowerCAmelCase ): for b in range(2 , _lowerCAmelCase ): __UpperCamelCase : Optional[int] = a**b # calculates the current power collect_powers.add(_lowerCAmelCase ) # adds the result to the set return len(_lowerCAmelCase ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
171
from typing import TYPE_CHECKING from ..utils import _LazyModule lowercase : Union[str, Any] = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
171
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. UpperCAmelCase__ = 10 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> int: """simple docstring""" for i in range(__snake_case , __snake_case ): if array[i] == target: return i return -1 def UpperCAmelCase_ ( __snake_case , __snake_case ) -> int: """simple docstring""" _lowercase =0 _lowercase =len(__snake_case ) while left <= right: if right - left < precision: return lin_search(__snake_case , __snake_case , __snake_case , __snake_case ) _lowercase =(left + right) // 3 + 1 _lowercase =2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowercase =one_third - 1 elif array[two_third] < target: _lowercase =two_third + 1 else: _lowercase =one_third + 1 _lowercase =two_third - 1 else: return -1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> int: """simple docstring""" if left < right: if right - left < precision: return lin_search(__snake_case , __snake_case , __snake_case , __snake_case ) _lowercase =(left + right) // 3 + 1 _lowercase =2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__snake_case , one_third - 1 , __snake_case , __snake_case ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __snake_case , __snake_case , __snake_case ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __snake_case , __snake_case ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = input('''Enter numbers separated by comma:\n''').strip() UpperCAmelCase__ = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." UpperCAmelCase__ = int(input('''Enter the number to be found in the list:\n''').strip()) UpperCAmelCase__ = ite_ternary_search(collection, target) UpperCAmelCase__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
5
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( ) -> int: for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[Any]: lowercase__: Optional[int] = 1 lowercase__: List[Any] = 2 while i * i <= n: lowercase__: Any = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def SCREAMING_SNAKE_CASE__ ( ) -> int: return next(i for i in triangle_number_generator() if count_divisors(__UpperCAmelCase ) > 5_0_0 ) if __name__ == "__main__": print(solution())
2
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
2
1
"""simple docstring""" __A : str = tuple[float, float, float] __A : str = tuple[float, float, float] def lowercase ( __snake_case : Pointad , __snake_case : Pointad ): lowercase_ : List[Any] = end_pointa[0] - end_pointa[0] lowercase_ : List[Any] = end_pointa[1] - end_pointa[1] lowercase_ : List[str] = end_pointa[2] - end_pointa[2] return (x, y, z) def lowercase ( __snake_case : Vectorad , __snake_case : Vectorad ): lowercase_ : Any = ab[1] * ac[2] - ab[2] * ac[1] # *i lowercase_ : Optional[Any] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j lowercase_ : int = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def lowercase ( __snake_case : Vectorad , __snake_case : int ): return tuple(round(__snake_case , __snake_case ) for x in vector ) == (0, 0, 0) def lowercase ( __snake_case : Pointad , __snake_case : Pointad , __snake_case : Pointad , __snake_case : int = 1_0 ): lowercase_ : Any = create_vector(__snake_case , __snake_case ) lowercase_ : Any = create_vector(__snake_case , __snake_case ) return is_zero_vector(get_ad_vectors_cross(__snake_case , __snake_case ) , __snake_case )
33
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase (lowercase_: int , lowercase_: Dict , lowercase_: Tuple ) -> Any: # Construct model if gpta_config_file == "": A__ : Dict = GPTaConfig() else: A__ : List[Any] = GPTaConfig.from_json_file(lowercase_ ) A__ : Tuple = GPTaModel(lowercase_ ) # Load weights from numpy load_tf_weights_in_gpta(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model A__ : Optional[Any] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME A__ : Optional[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , lowercase_ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) A_ : str = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
192
0
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( lowercase ): def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__ ,'embed_dim' ) ) self.parent.assertTrue(hasattr(lowerCamelCase__ ,'num_heads' ) ) class lowercase__ : def __init__( self : int ,lowerCamelCase__ : str ,lowerCamelCase__ : List[Any]=13 ,lowerCamelCase__ : Tuple=64 ,lowerCamelCase__ : Optional[int]=3 ,lowerCamelCase__ : List[str]=[16, 48, 96] ,lowerCamelCase__ : Union[str, Any]=[1, 3, 6] ,lowerCamelCase__ : Dict=[1, 2, 10] ,lowerCamelCase__ : int=[7, 3, 3] ,lowerCamelCase__ : Tuple=[4, 2, 2] ,lowerCamelCase__ : int=[2, 1, 1] ,lowerCamelCase__ : Optional[Any]=[2, 2, 2] ,lowerCamelCase__ : Optional[int]=[False, False, True] ,lowerCamelCase__ : int=[0.0, 0.0, 0.0] ,lowerCamelCase__ : str=0.0_2 ,lowerCamelCase__ : Optional[int]=1E-12 ,lowerCamelCase__ : str=True ,lowerCamelCase__ : List[str]=True ,lowerCamelCase__ : Optional[Any]=2 ,): '''simple docstring''' _UpperCamelCase : Tuple = parent _UpperCamelCase : Any = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : List[str] = patch_sizes _UpperCamelCase : str = patch_stride _UpperCamelCase : Union[str, Any] = patch_padding _UpperCamelCase : List[str] = is_training _UpperCamelCase : List[str] = use_labels _UpperCamelCase : Tuple = num_labels _UpperCamelCase : List[str] = num_channels _UpperCamelCase : Optional[int] = embed_dim _UpperCamelCase : int = num_heads _UpperCamelCase : Dict = stride_kv _UpperCamelCase : Optional[Any] = depth _UpperCamelCase : str = cls_token _UpperCamelCase : Tuple = attention_drop_rate _UpperCamelCase : List[Any] = initializer_range _UpperCamelCase : Tuple = layer_norm_eps def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Optional[int] = None if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return CvtConfig( image_size=self.image_size ,num_labels=self.num_labels ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,num_heads=self.num_heads ,patch_sizes=self.patch_sizes ,patch_padding=self.patch_padding ,patch_stride=self.patch_stride ,stride_kv=self.stride_kv ,depth=self.depth ,cls_token=self.cls_token ,attention_drop_rate=self.attention_drop_rate ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : str = CvtModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : Union[str, Any] = model(lowerCamelCase__ ) _UpperCamelCase : Dict = (self.image_size, self.image_size) _UpperCamelCase : str = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCamelCase : Any = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCamelCase : Optional[int] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.embed_dim[-1], height, width) ) def UpperCamelCase_ ( self : int ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.num_labels _UpperCamelCase : int = CvtForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCamelCase : Optional[Any] = model(lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() _UpperCamelCase : List[Any] = config_and_inputs _UpperCamelCase : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( lowercase , lowercase , unittest.TestCase ): lowercase__ = (CvtModel, CvtForImageClassification) if is_torch_available() else () lowercase__ = ( {"""feature-extraction""": CvtModel, """image-classification""": CvtForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : str = CvtModelTester(self ) _UpperCamelCase : int = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : int ): '''simple docstring''' return @unittest.skip(reason='Cvt does not output attentions' ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Tuple = model_class(lowerCamelCase__ ) _UpperCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : str = [*signature.parameters.keys()] _UpperCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : str ): _UpperCamelCase : int = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase : Any = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) _UpperCamelCase : Union[str, Any] = outputs.hidden_states _UpperCamelCase : str = len(self.model_tester.depth ) self.assertEqual(len(lowerCamelCase__ ) ,lowerCamelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) ,[ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] ,) _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : str = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[Any] = CvtModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A__ ( ): _UpperCamelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase__ ) _UpperCamelCase : Dict = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : List[str] = image_processor(images=lowerCamelCase__ ,return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase : Tuple = model(**lowerCamelCase__ ) # verify the logits _UpperCamelCase : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) _UpperCamelCase : Tuple = torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1E-4 ) )
358
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : List[str] = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowercase__ ( lowercase ): lowercase__ = """gptj""" lowercase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any ,lowerCamelCase__ : Optional[Any]=50400 ,lowerCamelCase__ : Tuple=2048 ,lowerCamelCase__ : Tuple=4096 ,lowerCamelCase__ : int=28 ,lowerCamelCase__ : Optional[Any]=16 ,lowerCamelCase__ : Optional[Any]=64 ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : List[Any]="gelu_new" ,lowerCamelCase__ : Optional[Any]=0.0 ,lowerCamelCase__ : List[str]=0.0 ,lowerCamelCase__ : List[Any]=0.0 ,lowerCamelCase__ : Tuple=1E-5 ,lowerCamelCase__ : int=0.0_2 ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : str=50256 ,lowerCamelCase__ : Any=50256 ,lowerCamelCase__ : Tuple=False ,**lowerCamelCase__ : Optional[Any] ,): '''simple docstring''' _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : Optional[Any] = n_positions _UpperCamelCase : Union[str, Any] = n_embd _UpperCamelCase : Any = n_layer _UpperCamelCase : Optional[int] = n_head _UpperCamelCase : List[str] = n_inner _UpperCamelCase : List[Any] = rotary_dim _UpperCamelCase : int = activation_function _UpperCamelCase : Dict = resid_pdrop _UpperCamelCase : Any = embd_pdrop _UpperCamelCase : Union[str, Any] = attn_pdrop _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : str = use_cache _UpperCamelCase : Union[str, Any] = bos_token_id _UpperCamelCase : Any = eos_token_id super().__init__( bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,tie_word_embeddings=lowerCamelCase__ ,**lowerCamelCase__ ) class lowercase__ ( lowercase ): def __init__( self : Tuple ,lowerCamelCase__ : PretrainedConfig ,lowerCamelCase__ : str = "default" ,lowerCamelCase__ : List[PatchingSpec] = None ,lowerCamelCase__ : bool = False ,): '''simple docstring''' super().__init__(lowerCamelCase__ ,task=lowerCamelCase__ ,patching_specs=lowerCamelCase__ ,use_past=lowerCamelCase__ ) if not getattr(self._config ,'pad_token_id' ,lowerCamelCase__ ): # TODO: how to do that better? _UpperCamelCase : int = 0 @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : List[str] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ ,direction='inputs' ) _UpperCamelCase : Tuple = {0: 'batch', 1: 'past_sequence + sequence'} else: _UpperCamelCase : Any = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self._config.n_layer @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return self._config.n_head def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : PreTrainedTokenizer ,lowerCamelCase__ : int = -1 ,lowerCamelCase__ : int = -1 ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : Optional[TensorType] = None ,): '''simple docstring''' _UpperCamelCase : Union[str, Any] = super(lowerCamelCase__ ,self ).generate_dummy_inputs( lowerCamelCase__ ,batch_size=lowerCamelCase__ ,seq_length=lowerCamelCase__ ,is_pair=lowerCamelCase__ ,framework=lowerCamelCase__ ) # We need to order the input in the way they appears in the forward() _UpperCamelCase : Tuple = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _UpperCamelCase , _UpperCamelCase : str = common_inputs['input_ids'].shape # Not using the same length for past_key_values _UpperCamelCase : Optional[int] = seqlen + 2 _UpperCamelCase : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _UpperCamelCase : Optional[Any] = [ (torch.zeros(lowerCamelCase__ ), torch.zeros(lowerCamelCase__ )) for _ in range(self.num_layers ) ] _UpperCamelCase : Union[str, Any] = common_inputs['attention_mask'] if self.use_past: _UpperCamelCase : Any = ordered_inputs['attention_mask'].dtype _UpperCamelCase : List[str] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCamelCase__ ,lowerCamelCase__ ,dtype=lowerCamelCase__ )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return 13
236
0
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="resnet50" , _lowerCAmelCase=3 , _lowerCAmelCase=32 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , ) -> Optional[Any]: _lowerCAmelCase = parent _lowerCAmelCase = out_indices if out_indices is not None else [4] _lowerCAmelCase = stage_names _lowerCAmelCase = out_features _lowerCAmelCase = backbone _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = use_pretrained_backbone _lowerCAmelCase = is_training def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = self.get_config() return config, pixel_values def _snake_case ( self ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: _lowerCAmelCase = TimmBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(_UpperCAmelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase_ ( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): __lowerCamelCase : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () __lowerCamelCase : int = {"feature-extraction": TimmBackbone} if is_torch_available() else {} __lowerCamelCase : List[Any] = False __lowerCamelCase : Any = False __lowerCamelCase : List[Any] = False __lowerCamelCase : List[str] = False def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = TimmBackboneModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _snake_case ( self ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self ) -> List[str]: _lowerCAmelCase = '''resnet18''' _lowerCAmelCase = '''microsoft/resnet-18''' _lowerCAmelCase = AutoBackbone.from_pretrained(_UpperCAmelCase , use_timm_backbone=_UpperCAmelCase ) _lowerCAmelCase = AutoBackbone.from_pretrained(_UpperCAmelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _lowerCAmelCase = AutoBackbone.from_pretrained(_UpperCAmelCase , use_timm_backbone=_UpperCAmelCase , out_indices=[1, 2, 3] ) _lowerCAmelCase = AutoBackbone.from_pretrained(_UpperCAmelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn\'t support feed forward chunking" ) def _snake_case ( self ) -> str: pass @unittest.skip("TimmBackbone doesn\'t have num_hidden_layers attribute" ) def _snake_case ( self ) -> Optional[Any]: pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def _snake_case ( self ) -> Optional[Any]: pass @unittest.skip("TimmBackbone models doesn\'t have inputs_embeds" ) def _snake_case ( self ) -> List[Any]: pass @unittest.skip("TimmBackbone models doesn\'t have inputs_embeds" ) def _snake_case ( self ) -> Optional[Any]: pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def _snake_case ( self ) -> str: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def _snake_case ( self ) -> Optional[int]: pass @unittest.skip("model weights aren\'t tied in TimmBackbone." ) def _snake_case ( self ) -> Any: pass @unittest.skip("model weights aren\'t tied in TimmBackbone." ) def _snake_case ( self ) -> int: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def _snake_case ( self ) -> int: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def _snake_case ( self ) -> Union[str, Any]: pass @unittest.skip("TimmBackbone doesn\'t have hidden size info in its configuration." ) def _snake_case ( self ) -> Optional[int]: pass @unittest.skip("TimmBackbone doesn\'t support output_attentions." ) def _snake_case ( self ) -> List[Any]: pass @unittest.skip("Safetensors is not supported by timm." ) def _snake_case ( self ) -> Optional[int]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self ) -> str: pass def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_UpperCAmelCase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality _lowerCAmelCase = self.all_model_classes[0] _lowerCAmelCase = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) _lowerCAmelCase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase = model(**_UpperCAmelCase ) _lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models _lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase = model(**_UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _lowerCAmelCase = copy.deepcopy(_UpperCAmelCase ) _lowerCAmelCase = None _lowerCAmelCase = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase = model(**_UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _lowerCAmelCase = copy.deepcopy(_UpperCAmelCase ) _lowerCAmelCase = False _lowerCAmelCase = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase = model(**_UpperCAmelCase )
158
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml A = NewType('''DataClass''', Any) A = NewType('''DataClassType''', Any) def __A ( a_ :List[str]) -> Tuple: if isinstance(a_ , a_): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""") def __A ( a_ :list) -> Callable[[str], Any]: __a : Any = {str(a_): choice for choice in choices} return lambda a_: str_to_choice.get(a_ , a_) def __A ( *, a_ :Union[str, List[str]] = None , a_ :str = None , a_ :Any = dataclasses.MISSING , a_ :Callable[[], Any] = dataclasses.MISSING , a_ :dict = None , **a_ :str , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __a : List[Any] = {} if aliases is not None: __a : Optional[Any] = aliases if help is not None: __a : int = help return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 42 def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ): # To make the default appear when using --help if "formatter_class" not in kwargs: __a : str = ArgumentDefaultsHelpFormatter super().__init__(**_UpperCAmelCase ) if dataclasses.is_dataclass(_UpperCAmelCase ): __a : int = [dataclass_types] __a : Optional[Any] = list(_UpperCAmelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_UpperCAmelCase ) @staticmethod def _lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = f"""--{field.name}""" __a : Optional[int] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _UpperCAmelCase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __a : Dict = kwargs.pop('''aliases''' , [] ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = [aliases] __a : Tuple = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(_UpperCAmelCase , '''UnionType''' ) and isinstance(_UpperCAmelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_UpperCAmelCase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f""" Problem encountered in field '{field.name}'.""" ) if type(_UpperCAmelCase ) not in field.type.__args__: # filter `str` in Union __a : List[str] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __a : List[str] = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __a : List[str] = ( field.type.__args__[0] if isinstance(_UpperCAmelCase , field.type.__args__[1] ) else field.type.__args__[1] ) __a : Optional[Any] = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __a : Optional[int] = {} if origin_type is Literal or (isinstance(field.type , _UpperCAmelCase ) and issubclass(field.type , _UpperCAmelCase )): if origin_type is Literal: __a : int = field.type.__args__ else: __a : List[str] = [x.value for x in field.type] __a : Any = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __a : Tuple = field.default else: __a : Optional[int] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __a : Any = copy(_UpperCAmelCase ) # Hack because type=bool in argparse does not behave as we want. __a : List[str] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __a : Union[str, Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __a : List[Any] = default # This tells argparse we accept 0 or 1 value after --field_name __a : Union[str, Any] = '''?''' # This is the value that will get picked if we do --field_name (without value) __a : List[Any] = True elif isclass(_UpperCAmelCase ) and issubclass(_UpperCAmelCase , _UpperCAmelCase ): __a : Dict = field.type.__args__[0] __a : Optional[int] = '''+''' if field.default_factory is not dataclasses.MISSING: __a : Union[str, Any] = field.default_factory() elif field.default is dataclasses.MISSING: __a : List[Any] = True else: __a : int = field.type if field.default is not dataclasses.MISSING: __a : Optional[Any] = field.default elif field.default_factory is not dataclasses.MISSING: __a : Optional[int] = field.default_factory() else: __a : Union[str, Any] = True parser.add_argument(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __a : Any = False parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): if hasattr(_UpperCAmelCase , '''_argument_group_name''' ): __a : Any = self.add_argument_group(dtype._argument_group_name ) else: __a : Optional[Any] = self try: __a : Dict[str, type] = get_type_hints(_UpperCAmelCase ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_UpperCAmelCase ): __a : Union[str, Any] = '''.'''.join(map(_UpperCAmelCase , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(_UpperCAmelCase ): if not field.init: continue __a : str = type_hints[field.name] self._parse_dataclass_field(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __a : int = [] if args_filename: args_files.append(Path(_UpperCAmelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __a : Optional[Any] = ArgumentParser() args_file_parser.add_argument(_UpperCAmelCase , type=_UpperCAmelCase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __a , __a : List[Any] = args_file_parser.parse_known_args(args=_UpperCAmelCase ) __a : Union[str, Any] = vars(_UpperCAmelCase ).get(args_file_flag.lstrip('''-''' ) , _UpperCAmelCase ) if cmd_args_file_paths: args_files.extend([Path(_UpperCAmelCase ) for p in cmd_args_file_paths] ) __a : Union[str, Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __a : Dict = file_args + args if args is not None else file_args + sys.argv[1:] __a , __a : str = self.parse_known_args(args=_UpperCAmelCase ) __a : Optional[int] = [] for dtype in self.dataclass_types: __a : Optional[int] = {f.name for f in dataclasses.fields(_UpperCAmelCase ) if f.init} __a : List[str] = {k: v for k, v in vars(_UpperCAmelCase ).items() if k in keys} for k in keys: delattr(_UpperCAmelCase , _UpperCAmelCase ) __a : int = dtype(**_UpperCAmelCase ) outputs.append(_UpperCAmelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_UpperCAmelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): __a : Tuple = set(args.keys() ) __a : List[str] = [] for dtype in self.dataclass_types: __a : Dict = {f.name for f in dataclasses.fields(_UpperCAmelCase ) if f.init} __a : Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __a : Tuple = dtype(**_UpperCAmelCase ) outputs.append(_UpperCAmelCase ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(_UpperCAmelCase )}""" ) return tuple(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): with open(Path(_UpperCAmelCase ) , encoding='''utf-8''' ) as open_json_file: __a : int = json.loads(open_json_file.read() ) __a : str = self.parse_dict(_UpperCAmelCase , allow_extra_keys=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ): __a : Tuple = self.parse_dict(yaml.safe_load(Path(_UpperCAmelCase ).read_text() ) , allow_extra_keys=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
160
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1_00 ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"{solution() = }")
313
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]: '''simple docstring''' lowercase_ = {} lowercase_ = 2 while True: lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase ) if factor: lowercase_ = factor + prime while x in factor_map: x += factor lowercase_ = factor else: lowercase_ = prime yield prime prime += 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int: '''simple docstring''' lowercase_ = sieve() lowercase_ = 1 while True: lowercase_ = next(__lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
313
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class A__ ( A__ ): A__ = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) A__ = 'CIDAS/clipseg-rd64-refined' A__ = 'image_segmenter' A__ = CLIPSegForImageSegmentation A__ = ['image', 'text'] A__ = ['image'] def __init__( self : Any , *_a : Dict , **_a : str ) -> Any: '''simple docstring''' requires_backends(self , ['vision'] ) super().__init__(*_a , **_a ) def A ( self : int , _a : "Image" , _a : str ) -> Optional[Any]: '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=_a , return_tensors='pt' ) def A ( self : Dict , _a : Dict ) -> str: '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE =self.model(**_a ).logits return logits def A ( self : Any , _a : str ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =outputs.cpu().detach().numpy() _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =1 return Image.fromarray((array * 255).astype(np.uinta ) )
47
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase : List[Any] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowerCamelCase : Any = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowerCamelCase : Optional[Any] = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowerCamelCase : Optional[Any] = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def A ( self : Tuple ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def A ( self : Union[str, Any] , _a : Union[str, Any] ) -> Optional[int]: '''simple docstring''' import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def A ( self : int , _a : Tuple , _a : List[str] , _a : List[str]=0.9 , _a : Dict=3 , _a : Optional[int]=0.5 ) -> Optional[int]: '''simple docstring''' if NLTK_VERSION >= version.Version('3.6.5' ): _SCREAMING_SNAKE_CASE =[ meteor_score.single_meteor_score( word_tokenize(_a ) , word_tokenize(_a ) , alpha=_a , beta=_a , gamma=_a ) for ref, pred in zip(_a , _a ) ] else: _SCREAMING_SNAKE_CASE =[ meteor_score.single_meteor_score(_a , _a , alpha=_a , beta=_a , gamma=_a ) for ref, pred in zip(_a , _a ) ] return {"meteor": np.mean(_a )}
47
1
'''simple docstring''' import random from typing import Any def _lowerCAmelCase ( lowercase ) -> list[Any]: for _ in range(len(lowercase ) ): __lowerCAmelCase = random.randint(0 , len(lowercase ) - 1 ) __lowerCAmelCase = random.randint(0 , len(lowercase ) - 1 ) __lowerCAmelCase , __lowerCAmelCase = data[b], data[a] return data if __name__ == "__main__": _a : Optional[Any] = [0, 1, 2, 3, 4, 5, 6, 7] _a : Tuple = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
46
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : int = logging.get_logger(__name__) _a : List[str] = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""decision_transformer""" a : List[Any] =["""past_key_values"""] a : Dict ={ """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=17,__SCREAMING_SNAKE_CASE=4,__SCREAMING_SNAKE_CASE=1_28,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=10_24,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="relu",__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = state_dim __lowerCAmelCase = act_dim __lowerCAmelCase = hidden_size __lowerCAmelCase = max_ep_len __lowerCAmelCase = action_tanh __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = scale_attn_weights __lowerCAmelCase = use_cache __lowerCAmelCase = scale_attn_by_inverse_layer_idx __lowerCAmelCase = reorder_and_upcast_attn __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
46
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm __A : List[str] = logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Any = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : str , **A : List[Any] ) -> Union[str, Any]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ : List[str] = deprecated_arg[3:] setattr(self , A , not kwargs.pop(A ) ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ : Optional[Any] = kwargs.pop('''torchscript''' , self.torchscript ) lowercase_ : Tuple = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) lowercase_ : Any = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**A ) SCREAMING_SNAKE_CASE_ : bool = field(default=_A , metadata={"help": "Trace the models using torchscript"} ) SCREAMING_SNAKE_CASE_ : bool = field(default=_A , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) SCREAMING_SNAKE_CASE_ : str = field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def A ( self : Optional[Any] ) -> Tuple["torch.device", int]: requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: lowercase_ : List[Any] = torch.device('''cpu''' ) lowercase_ : Optional[int] = 0 elif is_torch_tpu_available(): lowercase_ : Optional[Any] = xm.xla_device() lowercase_ : Union[str, Any] = 0 else: lowercase_ : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowercase_ : str = torch.cuda.device_count() return device, n_gpu @property def A ( self : Any ) -> str: return is_torch_tpu_available() and self.tpu @property def A ( self : str ) -> int: requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def A ( self : int ) -> "torch.device": requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def A ( self : List[str] ) -> str: requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def A ( self : List[str] ) -> Optional[Any]: return self.n_gpu > 0
33
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A : List[str] = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ['''MobileNetV2FeatureExtractor'''] __A : Optional[int] = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
33
1
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder SCREAMING_SNAKE_CASE__ = 'base_with_context' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Any: UpperCamelCase = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): UpperCamelCase = weights[F"layers_{lyr_num}"] UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) UpperCamelCase = ly_weight["""attention"""] UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Optional[Any]: UpperCamelCase = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): UpperCamelCase = weights[F"layers_{lyr_num}"] UpperCamelCase = ly_weight["""attention"""] UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> List[Any]: UpperCamelCase = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCamelCase ) UpperCamelCase = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): UpperCamelCase = weights[F"layers_{lyr_num}"] UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) UpperCamelCase = ly_weight["""self_attention"""] UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) UpperCamelCase = ly_weight["""MultiHeadDotProductAttention_0"""] UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def lowercase__ ( __UpperCamelCase )-> Union[str, Any]: UpperCamelCase = checkpoints.load_tax_checkpoint(args.checkpoint_path ) UpperCamelCase = jnp.tree_util.tree_map(onp.array , __UpperCamelCase ) UpperCamelCase = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] UpperCamelCase = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) UpperCamelCase = inference.parse_training_gin_file(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase = inference.InferenceModel(args.checkpoint_path , __UpperCamelCase ) UpperCamelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) UpperCamelCase = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) UpperCamelCase = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) UpperCamelCase = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) UpperCamelCase = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , __UpperCamelCase ) UpperCamelCase = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , __UpperCamelCase ) UpperCamelCase = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , __UpperCamelCase ) UpperCamelCase = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) UpperCamelCase = SpectrogramDiffusionPipeline( notes_encoder=__UpperCamelCase , continuous_encoder=__UpperCamelCase , decoder=__UpperCamelCase , scheduler=__UpperCamelCase , melgan=__UpperCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=f'{MODEL}/checkpoint_500000', type=str, required=False, help='Path to the original jax model checkpoint.', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() main(args)
183
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class a_ ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Any: """simple docstring""" UpperCamelCase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_pad def A__ ( self ) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: """simple docstring""" if not batched: UpperCamelCase = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): UpperCamelCase ,UpperCamelCase = image.size else: UpperCamelCase ,UpperCamelCase = image.shape[1], image.shape[2] if w < h: UpperCamelCase = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase = self.size["""shortest_edge"""] elif w > h: UpperCamelCase = self.size["""shortest_edge"""] UpperCamelCase = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase = self.size["""shortest_edge"""] UpperCamelCase = self.size["""shortest_edge"""] else: UpperCamelCase = [] for image in image_inputs: UpperCamelCase ,UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] UpperCamelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a_ ( lowerCamelCase , unittest.TestCase ): lowercase = ConditionalDetrImageProcessor if is_vision_available() else None def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = ConditionalDetrImageProcessingTester(self ) @property def A__ ( self ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """image_std""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """size""" ) ) def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" pass def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values UpperCamelCase ,UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {"""image_id""": 39769, """annotations""": target} # encode them UpperCamelCase = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) UpperCamelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area UpperCamelCase = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _SCREAMING_SNAKE_CASE ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _SCREAMING_SNAKE_CASE ) ) # verify orig_size UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _SCREAMING_SNAKE_CASE ) ) # verify size UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _SCREAMING_SNAKE_CASE ) ) @slow def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} UpperCamelCase = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) UpperCamelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area UpperCamelCase = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _SCREAMING_SNAKE_CASE ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _SCREAMING_SNAKE_CASE ) ) # verify masks UpperCamelCase = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _SCREAMING_SNAKE_CASE ) # verify orig_size UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _SCREAMING_SNAKE_CASE ) ) # verify size UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _SCREAMING_SNAKE_CASE ) )
183
1
'''simple docstring''' from collections.abc import Sequence def _a( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Optional[int] ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(lowerCamelCase_ ) ) def _a( UpperCamelCase__ : Any, UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =0.0 for coeff in reversed(lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ : int =result * x + coeff return result if __name__ == "__main__": a_ = (0.0, 0.0, 5.0, 9.3, 7.0) a_ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
152
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class UpperCamelCase__ : """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=14 , lowerCamelCase_ : Optional[Any]=7 , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : str=False , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : int=99 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : int=4 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : List[str]=4 , lowerCamelCase_ : Union[str, Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=5_12 , lowerCamelCase_ : Union[str, Any]=0.02 , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : List[Any] = rotary_dim SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = vocab_size - 1 SCREAMING_SNAKE_CASE : str = vocab_size - 1 SCREAMING_SNAKE_CASE : List[Any] = vocab_size - 1 def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[str] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 20 SCREAMING_SNAKE_CASE : Any = model_class_name(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE : Any = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE : str = model( input_ids[:, -1:] , attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 20 SCREAMING_SNAKE_CASE : Dict = model_class_name(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) SCREAMING_SNAKE_CASE : str = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE : Any = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE : Dict = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class UpperCamelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () SCREAMING_SNAKE_CASE__ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxGPTJModelTester(self ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @tooslow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=lowerCamelCase_ , truncation=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Optional[Any] = model.config.eos_token_id SCREAMING_SNAKE_CASE : str = jax.jit(model.generate ) SCREAMING_SNAKE_CASE : str = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @is_pt_flax_cross_test def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : Optional[int] = pt_model_class(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = fx_state with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = pt_model(**lowerCamelCase_ ).to_tuple() SCREAMING_SNAKE_CASE : Any = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model_class.from_pretrained(lowerCamelCase_ , from_pt=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = fx_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = pt_model_class(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : List[Any] = load_flax_weights_in_pytorch_model(lowerCamelCase_ , fx_model.params ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Tuple = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = pt_model(**lowerCamelCase_ ).to_tuple() SCREAMING_SNAKE_CASE : Optional[Any] = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = pt_model_class.from_pretrained(lowerCamelCase_ , from_flax=lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = pt_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ )
323
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __snake_case ( __lowerCAmelCase ): a__ = """yolos""" def __init__( self , lowercase=7_68 , lowercase=12 , lowercase=12 , lowercase=30_72 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1e-12 , lowercase=[5_12, 8_64] , lowercase=16 , lowercase=3 , lowercase=True , lowercase=1_00 , lowercase=True , lowercase=False , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=5 , lowercase=2 , lowercase=0.1 , **lowercase , ) -> Dict: '''simple docstring''' super().__init__(**lowercase) a__: int = hidden_size a__: Optional[Any] = num_hidden_layers a__: str = num_attention_heads a__: List[str] = intermediate_size a__: Optional[Any] = hidden_act a__: str = hidden_dropout_prob a__: Union[str, Any] = attention_probs_dropout_prob a__: Optional[int] = initializer_range a__: int = layer_norm_eps a__: List[str] = image_size a__: Optional[int] = patch_size a__: Optional[int] = num_channels a__: List[str] = qkv_bias a__: List[Any] = num_detection_tokens a__: Dict = use_mid_position_embeddings a__: Optional[Any] = auxiliary_loss # Hungarian matcher a__: Dict = class_cost a__: str = bbox_cost a__: List[Any] = giou_cost # Loss coefficients a__: Union[str, Any] = bbox_loss_coefficient a__: Tuple = giou_loss_coefficient a__: Any = eos_coefficient class __snake_case ( __lowerCAmelCase ): a__ = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def lowerCamelCase_ ( self) -> float: '''simple docstring''' return 1e-4 @property def lowerCamelCase_ ( self) -> int: '''simple docstring''' return 12
203
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: lowercase__ = None try: import msvcrt except ImportError: lowercase__ = None try: import fcntl except ImportError: lowercase__ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowercase__ = OSError # Data # ------------------------------------------------ lowercase__ = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] lowercase__ = '3.0.12' lowercase__ = None def __a ( ) ->List[Any]: global _logger a__: str = _logger or logging.getLogger(__name__ ) return _logger class __snake_case ( __lowerCAmelCase ): def __init__( self , lowercase) -> Any: '''simple docstring''' a__: List[Any] = lock_file return None def __str__( self) -> List[str]: '''simple docstring''' a__: int = f'The file lock \'{self.lock_file}\' could not be acquired.' return temp class __snake_case : def __init__( self , lowercase) -> Union[str, Any]: '''simple docstring''' a__: Any = lock return None def __enter__( self) -> List[Any]: '''simple docstring''' return self.lock def __exit__( self , lowercase , lowercase , lowercase) -> int: '''simple docstring''' self.lock.release() return None class __snake_case : def __init__( self , lowercase , lowercase=-1 , lowercase=None) -> Dict: '''simple docstring''' a__: Union[str, Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long a__: Tuple = self.hash_filename_if_too_long(lowercase , lowercase) # The path to the lock file. a__: Any = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. a__: Dict = None # The default timeout value. a__: Union[str, Any] = timeout # We use this lock primarily for the lock counter. a__: Any = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. a__: Tuple = 0 return None @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' return self._lock_file @property def lowerCamelCase_ ( self) -> int: '''simple docstring''' return self._timeout @timeout.setter def lowerCamelCase_ ( self , lowercase) -> List[str]: '''simple docstring''' a__: Optional[int] = float(lowercase) return None def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' raise NotImplementedError() def lowerCamelCase_ ( self) -> int: '''simple docstring''' raise NotImplementedError() @property def lowerCamelCase_ ( self) -> str: '''simple docstring''' return self._lock_file_fd is not None def lowerCamelCase_ ( self , lowercase=None , lowercase=0.05) -> int: '''simple docstring''' if timeout is None: a__: int = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 a__: Optional[int] = id(self) a__: Union[str, Any] = self._lock_file a__: Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}') self._acquire() if self.is_locked: logger().debug(f'Lock {lock_id} acquired on {lock_filename}') break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}') raise Timeout(self._lock_file) else: logger().debug( f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...') time.sleep(lowercase) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: a__: Optional[int] = max(0 , self._lock_counter - 1) raise return _Acquire_ReturnProxy(lock=self) def lowerCamelCase_ ( self , lowercase=False) -> Tuple: '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: a__: List[str] = id(self) a__: List[Any] = self._lock_file logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}') self._release() a__: List[str] = 0 logger().debug(f'Lock {lock_id} released on {lock_filename}') return None def __enter__( self) -> Dict: '''simple docstring''' self.acquire() return self def __exit__( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' self.release() return None def __del__( self) -> Optional[int]: '''simple docstring''' self.release(force=lowercase) return None def lowerCamelCase_ ( self , lowercase , lowercase) -> str: '''simple docstring''' a__: List[str] = os.path.basename(lowercase) if len(lowercase) > max_length and max_length > 0: a__: str = os.path.dirname(lowercase) a__: Optional[int] = str(hash(lowercase)) a__: List[str] = filename[: max_length - len(lowercase) - 8] + '...' + hashed_filename + '.lock' return os.path.join(lowercase , lowercase) else: return path class __snake_case ( __lowerCAmelCase ): def __init__( self , lowercase , lowercase=-1 , lowercase=None) -> Dict: '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(lowercase , timeout=lowercase , max_filename_length=lowercase) a__: List[Any] = '\\\\?\\' + relative_to_absolute_path(self.lock_file) def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: str = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: a__: Tuple = os.open(self._lock_file , lowercase) except OSError: pass else: try: msvcrt.locking(lowercase , msvcrt.LK_NBLCK , 1) except OSError: os.close(lowercase) else: a__: Dict = fd return None def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: int = self._lock_file_fd a__: Union[str, Any] = None msvcrt.locking(lowercase , msvcrt.LK_UNLCK , 1) os.close(lowercase) try: os.remove(self._lock_file) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __snake_case ( __lowerCAmelCase ): def __init__( self , lowercase , lowercase=-1 , lowercase=None) -> Dict: '''simple docstring''' a__: Union[str, Any] = os.statvfs(os.path.dirname(lowercase)).f_namemax super().__init__(lowercase , timeout=lowercase , max_filename_length=lowercase) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Optional[int] = os.O_RDWR | os.O_CREAT | os.O_TRUNC a__: int = os.open(self._lock_file , lowercase) try: fcntl.flock(lowercase , fcntl.LOCK_EX | fcntl.LOCK_NB) except OSError: os.close(lowercase) else: a__: Any = fd return None def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: str = self._lock_file_fd a__: Tuple = None fcntl.flock(lowercase , fcntl.LOCK_UN) os.close(lowercase) return None class __snake_case ( __lowerCAmelCase ): def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: int = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: a__: Optional[Any] = os.open(self._lock_file , lowercase) except OSError: pass else: a__: Union[str, Any] = fd return None def lowerCamelCase_ ( self) -> str: '''simple docstring''' os.close(self._lock_file_fd) a__: int = None try: os.remove(self._lock_file) # The file is already deleted and that's what we want. except OSError: pass return None lowercase__ = None if msvcrt: lowercase__ = WindowsFileLock elif fcntl: lowercase__ = UnixFileLock else: lowercase__ = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
203
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Optional[Any] = """▁""" _UpperCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertGenerationTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def A_ ( self : List[Any] ) -> List[str]: super().setUp() lowerCamelCase__ : Dict = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[Any] ) -> Dict: lowerCamelCase__ : List[str] = '<s>' lowerCamelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : List[str] ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase ) , 1002 ) def A_ ( self : List[Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) lowerCamelCase__ : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A_ ( self : Dict ) -> Tuple: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A_ ( self : Optional[int] ) -> List[str]: lowerCamelCase__ : Union[str, Any] = 'Hello World!' lowerCamelCase__ : Dict = [18536, 2260, 101] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A_ ( self : Optional[Any] ) -> str: lowerCamelCase__ : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCamelCase__ : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def A_ ( self : int ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase__ : str = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase__ : int = ' '.join(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Tuple = BertGenerationConfig() lowerCamelCase__ : Optional[Any] = BertGenerationEncoder(UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> List[Any]: # fmt: off lowerCamelCase__ : Any = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
50
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : int = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ) -> List[Any]: for attribute in key.split("." ): A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: A_ : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": A_ : Optional[int] = value elif weight_type == "weight_g": A_ : Optional[int] = value elif weight_type == "weight_v": A_ : Any = value elif weight_type == "bias": A_ : str = value else: A_ : Any = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ) -> List[str]: A_ : Optional[Any] = [] A_ : Any = fairseq_model.state_dict() A_ : Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight A_ : str = None for name, value in fairseq_dict.items(): A_ : Tuple = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) A_ : Optional[Any] = True elif name.split("." )[0] == "proj": A_ : Dict = fairseq_model.proj A_ : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A_ : int = True if "*" in mapped_key: A_ : Optional[Any] = name.split(_lowerCAmelCase )[0].split("." )[-2] A_ : int = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: A_ : List[Any] = "weight_g" elif "weight_v" in name: A_ : List[Any] = "weight_v" elif "bias" in name: A_ : Dict = "bias" elif "weight" in name: A_ : List[Any] = "weight" else: A_ : Dict = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> str: A_ : Any = full_name.split("conv_layers." )[-1] A_ : Optional[int] = name.split("." ) A_ : Optional[Any] = int(items[0] ) A_ : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A_ : List[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A_ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) A_ : List[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) A_ : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Optional[int] ) -> str: A_ , A_ : List[str] = emb.weight.shape A_ : Optional[int] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) A_ : List[Any] = emb.weight.data return lin_layer def __snake_case ( _lowerCAmelCase : str ) -> Tuple: with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: A_ : int = f.readlines() A_ : Dict = [line.split(" " )[0] for line in lines] A_ : Tuple = len(_lowerCAmelCase ) A_ : Union[str, Any] = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(_lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , ) -> Tuple: A_ : Optional[int] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) A_ : str = SpeechaTextaConfig.from_pretrained( _lowerCAmelCase , vocab_size=_lowerCAmelCase , decoder_layers=_lowerCAmelCase , do_stable_layer_norm=_lowerCAmelCase ) A_ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) A_ , A_ , A_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) A_ : Union[str, Any] = model[0].eval() # set weights for wav2vec2 encoder A_ : Tuple = WavaVecaModel(_lowerCAmelCase ) A_ : str = recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) A_ : Tuple = SpeechaTextaForCausalLM(_lowerCAmelCase ) A_ , A_ : List[str] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) # set output linear layer unexpected_keys.remove("embed_out" ) A_ : Union[str, Any] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) A_ : str = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) A_ : Optional[Any] = False # add projection layer A_ : Optional[Any] = nn.Parameter(projection_layer.weight ) A_ : int = nn.Parameter(projection_layer.bias ) A_ : str = create_vocab_dict(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "vocab.json" ) , "w" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) A_ : Any = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase , "vocab.json" ) ) tokenizer.save_pretrained(_lowerCAmelCase ) A_ : Optional[int] = hf_wavavec.config.to_dict() A_ : int = tokenizer.pad_token_id A_ : List[str] = tokenizer.bos_token_id A_ : List[str] = tokenizer.eos_token_id A_ : List[str] = "speech_to_text_2" A_ : Tuple = "wav2vec2" A_ : str = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=10_224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
300
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) class lowercase_ ( __snake_case ): def __init__( self , *lowercase_ , **lowercase_ ): warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
284
def snake_case (__lowercase ) -> list[int]: '''simple docstring''' if num <= 0: raise ValueError("Input must be a positive integer" ) _snake_case : Any = [True] * (num + 1) _snake_case : str = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowercase ): _snake_case : Optional[int] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : Any = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
284
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE () -> Any: """simple docstring""" for n in range(1 , 1_000_000 ): yield n * (n + 1) // 2 def _SCREAMING_SNAKE_CASE (A ) -> List[Any]: """simple docstring""" lowercase__ = 1 lowercase__ = 2 while i * i <= n: lowercase__ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _SCREAMING_SNAKE_CASE () -> Tuple: """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(A ) > 500 ) if __name__ == "__main__": print(solution())
2
'''simple docstring''' class __lowerCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__(self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = row lowercase__ = col lowercase__ = graph def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : list[list[bool]] ): '''simple docstring''' lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): # And finally, count all islands. '''simple docstring''' lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase , UpperCamelCase , UpperCamelCase ) count += 1 return count
2
1
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCAmelCase__ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __snake_case : def __init__( self : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : int=1_6 , __lowerCAmelCase : Tuple=1_3 , __lowerCAmelCase : Tuple=7 , __lowerCAmelCase : List[Any]=1_4 , __lowerCAmelCase : str=1_0 , __lowerCAmelCase : Union[str, Any]=1_9 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Union[str, Any]=1_6 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Optional[Any]=4 , __lowerCAmelCase : List[str]=4 , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Tuple=[1, 2, 3, 4, 5] , __lowerCAmelCase : Any=2_5 , __lowerCAmelCase : Tuple=5 , ): """simple docstring""" _lowerCamelCase : Optional[Any] = d_model _lowerCamelCase : Dict = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : str = prediction_length _lowerCamelCase : Dict = context_length _lowerCamelCase : List[str] = cardinality _lowerCamelCase : Any = num_time_features _lowerCamelCase : Optional[Any] = lags_sequence _lowerCamelCase : List[str] = embedding_dimension _lowerCamelCase : Union[str, Any] = is_training _lowerCamelCase : str = hidden_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Optional[int] = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = context_length _lowerCamelCase : Tuple = prediction_length + label_length _lowerCamelCase : Optional[Any] = label_length _lowerCamelCase : int = moving_average _lowerCamelCase : List[Any] = autocorrelation_factor def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : int = config.context_length + max(config.lags_sequence ) _lowerCamelCase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _lowerCamelCase : Tuple = floats_tensor([self.batch_size, _past_length] ) _lowerCamelCase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _lowerCamelCase : Any = floats_tensor([self.batch_size, config.prediction_length] ) _lowerCamelCase : Optional[int] = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_config() _lowerCamelCase : Optional[Any] = self.prepare_autoformer_inputs_dict(__lowerCAmelCase ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = AutoformerModel(config=__lowerCAmelCase ).to(__lowerCAmelCase ).eval() _lowerCamelCase : Optional[int] = model(**__lowerCAmelCase ) _lowerCamelCase : int = outputs.encoder_last_hidden_state _lowerCamelCase : str = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Any = model.get_encoder() encoder.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = AutoformerEncoder.from_pretrained(__lowerCAmelCase ).to(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model.create_network_inputs(**__lowerCAmelCase ) _lowerCamelCase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _lowerCamelCase : Any = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _lowerCamelCase : int = encoder(inputs_embeds=__lowerCAmelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _lowerCamelCase : Any = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _lowerCamelCase : int = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _lowerCamelCase : Optional[Any] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _lowerCamelCase : List[Any] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = AutoformerDecoder.from_pretrained(__lowerCAmelCase ).to(__lowerCAmelCase ) _lowerCamelCase : str = decoder( trend=__lowerCAmelCase , inputs_embeds=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : List[Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () snake_case__ : int = (AutoformerForPrediction,) if is_torch_available() else () snake_case__ : Any = {"feature-extraction": AutoformerModel} if is_torch_available() else {} snake_case__ : Any = False snake_case__ : Tuple = False snake_case__ : List[str] = False snake_case__ : Union[str, Any] = False snake_case__ : Dict = False snake_case__ : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = AutoformerModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = model_class.from_pretrained(__lowerCAmelCase , output_loading_info=__lowerCAmelCase ) self.assertEqual(info['''missing_keys'''] , [] ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__lowerCAmelCase ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = inspect.signature(getattr(__lowerCAmelCase , '''forward''' ) ) # The main input is the name of the argument after `self` _lowerCamelCase : int = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Any = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(__lowerCAmelCase )] , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = getattr(self.model_tester , '''seq_length''' , __lowerCAmelCase ) _lowerCamelCase : List[str] = getattr(self.model_tester , '''decoder_seq_length''' , __lowerCAmelCase ) _lowerCamelCase : List[str] = getattr(self.model_tester , '''encoder_seq_length''' , __lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = getattr(self.model_tester , '''d_model''' , __lowerCAmelCase ) _lowerCamelCase : int = getattr(self.model_tester , '''num_attention_heads''' , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = d_model // num_attention_heads for model_class in self.all_model_classes: _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = False _lowerCamelCase : int = True _lowerCamelCase : Tuple = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _lowerCamelCase : List[Any] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCamelCase : Any = True _lowerCamelCase : int = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _lowerCamelCase : List[str] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase : List[str] = outputs.encoder_attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) # decoder attentions _lowerCamelCase : int = outputs.decoder_attentions self.assertIsInstance(__lowerCAmelCase , (list, tuple) ) self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _lowerCamelCase : Tuple = outputs.cross_attentions self.assertIsInstance(__lowerCAmelCase , (list, tuple) ) self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _lowerCamelCase : Tuple = True _lowerCamelCase : List[Any] = True _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertEqual(out_len + 2 , len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( A_ : int="train-batch.pt" ): '''simple docstring''' _lowerCamelCase : List[Any] = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''', filename=A_, repo_type='''dataset''' ) _lowerCamelCase : Tuple = torch.load(A_, map_location=A_ ) return batch @require_torch @slow class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Any = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(__lowerCAmelCase ) _lowerCamelCase : str = prepare_batch() with torch.no_grad(): _lowerCamelCase : List[Any] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _lowerCamelCase : int = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = torch.tensor( [[0.35_93, -1.33_98, 0.63_30], [0.22_79, 1.53_96, -0.17_92], [0.04_50, 1.32_25, -0.23_35]] , device=__lowerCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : str = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(__lowerCAmelCase ) _lowerCamelCase : str = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _lowerCamelCase : int = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _lowerCamelCase : Any = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __lowerCAmelCase ) _lowerCamelCase : Any = torch.tensor( [[-0.07_34, -0.90_36, 0.83_58], [4.71_86, 2.41_13, 1.95_81], [1.79_53, 2.35_58, 1.29_70]] , device=__lowerCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : str = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(__lowerCAmelCase ) _lowerCamelCase : List[Any] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _lowerCamelCase : Tuple = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _lowerCamelCase : str = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __lowerCAmelCase ) _lowerCamelCase : Any = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=__lowerCAmelCase ) _lowerCamelCase : List[str] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __lowerCAmelCase , rtol=1E-1 ) )
362
"""simple docstring""" def snake_case_ ( A_ : list ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = len(A_ ) for i in range(1, A_ ): _lowerCamelCase : Tuple = collection[i] _lowerCamelCase : Dict = 0 _lowerCamelCase : Any = i - 1 while low <= high: _lowerCamelCase : Optional[int] = (low + high) // 2 if val < collection[mid]: _lowerCamelCase : List[str] = mid - 1 else: _lowerCamelCase : Dict = mid + 1 for j in range(A_, A_, -1 ): _lowerCamelCase : Optional[int] = collection[j - 1] _lowerCamelCase : Tuple = val return collection if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
175
0
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _A : int =argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Optional[int]: if string == "True": return True elif string == "False": return False else: raise ValueError(f'''could not parse string as bool {string}''' ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) _A : Optional[int] =parser.parse_args() _A : Optional[Any] =download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
41
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _lowerCAmelCase = logging.get_logger(__name__) # General docstring _lowerCAmelCase = '''RegNetConfig''' # Base docstring _lowerCAmelCase = '''facebook/regnet-y-040''' _lowerCAmelCase = [1, 1088, 7, 7] # Image classification docstring _lowerCAmelCase = '''facebook/regnet-y-040''' _lowerCAmelCase = '''tabby, tabby cat''' _lowerCAmelCase = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase = 3 , _UpperCAmelCase = 1 , _UpperCAmelCase = 1 , _UpperCAmelCase = "relu" , **_UpperCAmelCase , ) -> Optional[int]: super().__init__(**_UpperCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __UpperCamelCase : List[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __UpperCamelCase : Tuple = tf.keras.layers.ConvaD( filters=_UpperCAmelCase , kernel_size=_UpperCAmelCase , strides=_UpperCAmelCase , padding="VALID" , groups=_UpperCAmelCase , use_bias=_UpperCAmelCase , name="convolution" , ) __UpperCamelCase : int = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) __UpperCamelCase : List[str] = ACTaFN[activation] if activation is not None else tf.identity def a_ (self , _UpperCAmelCase ) -> Dict: __UpperCamelCase : str = self.convolution(self.padding(_UpperCAmelCase ) ) __UpperCamelCase : Dict = self.normalization(_UpperCAmelCase ) __UpperCamelCase : Dict = self.activation(_UpperCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , **_UpperCAmelCase ) -> Optional[Any]: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : Any = config.num_channels __UpperCamelCase : str = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def a_ (self , _UpperCAmelCase ) -> Tuple: __UpperCamelCase : Dict = shape_list(_UpperCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __UpperCamelCase : Any = tf.transpose(_UpperCAmelCase , perm=(0, 2, 3, 1) ) __UpperCamelCase : List[Any] = self.embedder(_UpperCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase = 2 , **_UpperCAmelCase ) -> Any: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : Any = tf.keras.layers.ConvaD( filters=_UpperCAmelCase , kernel_size=1 , strides=_UpperCAmelCase , use_bias=_UpperCAmelCase , name="convolution" ) __UpperCamelCase : Tuple = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase = False ) -> tf.Tensor: return self.normalization(self.convolution(_UpperCAmelCase ) , training=_UpperCAmelCase ) class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> Any: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCAmelCase , name="pooler" ) __UpperCamelCase : Optional[Any] = [ tf.keras.layers.ConvaD(filters=_UpperCAmelCase , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=_UpperCAmelCase , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def a_ (self , _UpperCAmelCase ) -> Tuple: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __UpperCamelCase : List[str] = self.pooler(_UpperCAmelCase ) for layer_module in self.attention: __UpperCamelCase : str = layer_module(_UpperCAmelCase ) __UpperCamelCase : List[Any] = hidden_state * pooled return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , **_UpperCAmelCase ) -> int: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : List[Any] = in_channels != out_channels or stride != 1 __UpperCamelCase : List[str] = max(1 , out_channels // config.groups_width ) __UpperCamelCase : List[Any] = ( TFRegNetShortCut(_UpperCAmelCase , stride=_UpperCAmelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __UpperCamelCase : Optional[Any] = [ TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase , name="layer.2" ), ] __UpperCamelCase : Dict = ACTaFN[config.hidden_act] def a_ (self , _UpperCAmelCase ) -> Union[str, Any]: __UpperCamelCase : List[Any] = hidden_state for layer_module in self.layers: __UpperCamelCase : Dict = layer_module(_UpperCAmelCase ) __UpperCamelCase : List[Any] = self.shortcut(_UpperCAmelCase ) hidden_state += residual __UpperCamelCase : Tuple = self.activation(_UpperCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , **_UpperCAmelCase ) -> Any: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : str = in_channels != out_channels or stride != 1 __UpperCamelCase : Optional[int] = max(1 , out_channels // config.groups_width ) __UpperCamelCase : Union[str, Any] = ( TFRegNetShortCut(_UpperCAmelCase , stride=_UpperCAmelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) __UpperCamelCase : Union[str, Any] = [ TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase , name="layer.3" ), ] __UpperCamelCase : Union[str, Any] = ACTaFN[config.hidden_act] def a_ (self , _UpperCAmelCase ) -> int: __UpperCamelCase : str = hidden_state for layer_module in self.layers: __UpperCamelCase : Any = layer_module(_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = self.shortcut(_UpperCAmelCase ) hidden_state += residual __UpperCamelCase : Union[str, Any] = self.activation(_UpperCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , **_UpperCAmelCase ) -> int: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : List[str] = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer __UpperCamelCase : Tuple = [ # downsampling is done in the first layer with stride of 2 layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , name="layers.0" ), *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , name=f"layers.{i+1}" ) for i in range(depth - 1 )], ] def a_ (self , _UpperCAmelCase ) -> Any: for layer_module in self.layers: __UpperCamelCase : Dict = layer_module(_UpperCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , **_UpperCAmelCase ) -> str: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : Dict = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) __UpperCamelCase : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_UpperCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase , name=f"stages.{i+1}" ) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = True ) -> TFBaseModelOutputWithNoAttention: __UpperCamelCase : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCamelCase : Any = hidden_states + (hidden_state,) __UpperCamelCase : Any = stage_module(_UpperCAmelCase ) if output_hidden_states: __UpperCamelCase : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) @keras_serializable class A ( tf.keras.layers.Layer ): '''simple docstring''' A = RegNetConfig def __init__(self , _UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : Optional[int] = config __UpperCamelCase : List[Any] = TFRegNetEmbeddings(_UpperCAmelCase , name="embedder" ) __UpperCamelCase : Union[str, Any] = TFRegNetEncoder(_UpperCAmelCase , name="encoder" ) __UpperCamelCase : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCAmelCase , name="pooler" ) @unpack_inputs def a_ (self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __UpperCamelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase : Dict = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase : Union[str, Any] = self.embedder(_UpperCAmelCase , training=_UpperCAmelCase ) __UpperCamelCase : str = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase ) __UpperCamelCase : List[str] = encoder_outputs[0] __UpperCamelCase : Tuple = self.pooler(_UpperCAmelCase ) # Change to NCHW output format have uniformity in the modules __UpperCamelCase : List[str] = tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) __UpperCamelCase : List[Any] = tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __UpperCamelCase : List[str] = tuple([tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = RegNetConfig A = "regnet" A = "pixel_values" @property def a_ (self ) -> List[Any]: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} _lowerCAmelCase = R''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCAmelCase = R''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) -> Tuple: super().__init__(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = TFRegNetMainLayer(_UpperCAmelCase , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __UpperCamelCase : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase : Tuple = self.regnet( pixel_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) -> int: super().__init__(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = config.num_labels __UpperCamelCase : Any = TFRegNetMainLayer(_UpperCAmelCase , name="regnet" ) # classification head __UpperCamelCase : List[str] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a_ (self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __UpperCamelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase : str = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase : Dict = self.regnet( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase ) __UpperCamelCase : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] __UpperCamelCase : List[str] = self.classifier[0](_UpperCAmelCase ) __UpperCamelCase : Optional[int] = self.classifier[1](_UpperCAmelCase ) __UpperCamelCase : str = None if labels is None else self.hf_compute_loss(labels=_UpperCAmelCase , logits=_UpperCAmelCase ) if not return_dict: __UpperCamelCase : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
298
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _a ( __lowercase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = DDIMPipeline UpperCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCamelCase__ = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } UpperCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS UpperCamelCase__ = False def lowercase__ ( self : Any )->List[Any]: torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'''unet''': unet, '''scheduler''': scheduler} return components def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int=0 )->List[Any]: if str(_a ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_a ) else: _UpperCAmelCase = torch.Generator(device=_a ).manual_seed(_a ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self : Optional[Any] )->Optional[int]: _UpperCAmelCase = '''cpu''' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _UpperCAmelCase = self.get_dummy_inputs(_a ) _UpperCAmelCase = pipe(**_a ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 3_2, 3_2, 3) ) _UpperCAmelCase = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def lowercase__ ( self : Any )->Tuple: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def lowercase__ ( self : Optional[Any] )->Union[str, Any]: super().test_save_load_local(expected_max_difference=3e-3 ) def lowercase__ ( self : Any )->Dict: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def lowercase__ ( self : int )->Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : int )->Optional[int]: _UpperCAmelCase = '''google/ddpm-cifar10-32''' _UpperCAmelCase = UNetaDModel.from_pretrained(_a ) _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = DDIMPipeline(unet=_a , scheduler=_a ) ddim.to(_a ) ddim.set_progress_bar_config(disable=_a ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ddim(generator=_a , eta=0.0 , output_type='''numpy''' ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _UpperCAmelCase = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Optional[int] )->Optional[Any]: _UpperCAmelCase = '''google/ddpm-ema-bedroom-256''' _UpperCAmelCase = UNetaDModel.from_pretrained(_a ) _UpperCAmelCase = DDIMScheduler.from_pretrained(_a ) _UpperCAmelCase = DDIMPipeline(unet=_a , scheduler=_a ) ddpm.to(_a ) ddpm.set_progress_bar_config(disable=_a ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ddpm(generator=_a , output_type='''numpy''' ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) _UpperCAmelCase = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
350
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase_ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCamelCase_ = {'''facebook/blenderbot_small-90M''': 5_12} def __lowercase ( __lowercase ) -> List[str]: '''simple docstring''' _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char _A = set(__lowercase ) return pairs class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : str="__start__" , __UpperCAmelCase : Dict="__end__" , __UpperCAmelCase : str="__unk__" , __UpperCAmelCase : List[str]="__null__" , **__UpperCAmelCase : List[str] , ): '''simple docstring''' super().__init__(unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , **__UpperCAmelCase ) with open(__UpperCAmelCase , encoding="utf-8" ) as vocab_handle: _A = json.load(__UpperCAmelCase ) _A = {v: k for k, v in self.encoder.items()} with open(__UpperCAmelCase , encoding="utf-8" ) as merges_handle: _A = merges_handle.read().split("\n" )[1:-1] _A = [tuple(merge.split() ) for merge in merges] _A = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _A = {} @property def lowerCAmelCase ( self : Any ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase ( self : str ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] _A = re.sub("([.,!?()])" , R" \1" , __UpperCAmelCase ) _A = re.sub("(')" , R" \1 " , __UpperCAmelCase ) _A = re.sub(R"\s{2,}" , " " , __UpperCAmelCase ) if "\n" in token: _A = token.replace("\n" , " __newln__" ) _A = token.split(" " ) _A = [] for token in tokens: if not len(__UpperCAmelCase ): continue _A = token.lower() _A = tuple(__UpperCAmelCase ) _A = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) _A = get_pairs(__UpperCAmelCase ) if not pairs: words.append(__UpperCAmelCase ) continue while True: _A = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__UpperCAmelCase ): try: _A = word.index(__UpperCAmelCase , __UpperCAmelCase ) new_word.extend(word[i:j] ) _A = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__UpperCAmelCase ) _A = new_word if len(__UpperCAmelCase ) == 1: break else: _A = get_pairs(__UpperCAmelCase ) _A = "@@ ".join(__UpperCAmelCase ) _A = word[:-4] _A = word words.append(__UpperCAmelCase ) return " ".join(__UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : str ): '''simple docstring''' _A = [] _A = re.findall(R"\S+\n?" , __UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(" " ) ) ) return split_tokens def lowerCAmelCase ( self : Any , __UpperCAmelCase : str ): '''simple docstring''' _A = token.lower() return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int ): '''simple docstring''' return self.decoder.get(__UpperCAmelCase , self.unk_token ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[str] ): '''simple docstring''' _A = " ".join(__UpperCAmelCase ).replace("@@ " , "" ).strip() return out_string def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + "\n" ) _A = 0 with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) _A = token_index writer.write(" ".join(__UpperCAmelCase ) + "\n" ) index += 1 return vocab_file, merge_file
79
'''simple docstring''' def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> float: '''simple docstring''' _a = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _A () -> Tuple: '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
168
0
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[int] ,lowerCamelCase__ : NestedDataStructureLike[PathLike] ,lowerCamelCase__ : Optional[NamedSplit] = None ,lowerCamelCase__ : Optional[Features] = None ,lowerCamelCase__ : str = None ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : Optional[int] = None ,**lowerCamelCase__ : Union[str, Any] ,) -> str: '''simple docstring''' super().__init__( lowerCamelCase__ ,split=lowerCamelCase__ ,features=lowerCamelCase__ ,cache_dir=lowerCamelCase__ ,keep_in_memory=lowerCamelCase__ ,streaming=lowerCamelCase__ ,num_proc=lowerCamelCase__ ,**lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = field SCREAMING_SNAKE_CASE = path_or_paths if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE = Json( cache_dir=lowerCamelCase__ ,data_files=lowerCamelCase__ ,features=lowerCamelCase__ ,field=lowerCamelCase__ ,**lowerCamelCase__ ,) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]: '''simple docstring''' if self.streaming: SCREAMING_SNAKE_CASE = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None self.builder.download_and_prepare( download_config=lowerCamelCase__ ,download_mode=lowerCamelCase__ ,verification_mode=lowerCamelCase__ ,base_path=lowerCamelCase__ ,num_proc=self.num_proc ,) SCREAMING_SNAKE_CASE = self.builder.as_dataset( split=self.split ,verification_mode=lowerCamelCase__ ,in_memory=self.keep_in_memory ) return dataset class UpperCamelCase__ : '''simple docstring''' def __init__( self : Optional[int] ,lowerCamelCase__ : Dataset ,lowerCamelCase__ : Union[PathLike, BinaryIO] ,lowerCamelCase__ : Optional[int] = None ,lowerCamelCase__ : Optional[int] = None ,**lowerCamelCase__ : str ,) -> Optional[int]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = path_or_buf SCREAMING_SNAKE_CASE = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE SCREAMING_SNAKE_CASE = num_proc SCREAMING_SNAKE_CASE = """utf-8""" SCREAMING_SNAKE_CASE = to_json_kwargs def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("""path_or_buf""" ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("""orient""" ,"""records""" ) SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("""lines""" ,True if orient == """records""" else False ) SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("""index""" ,False if orient in ["""split""", """table"""] else True ) SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("""compression""" ,lowerCamelCase__ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf ,"""wb""" ,compression=lowerCamelCase__ ) as buffer: SCREAMING_SNAKE_CASE = self._write(file_obj=lowerCamelCase__ ,orient=lowerCamelCase__ ,lines=lowerCamelCase__ ,index=lowerCamelCase__ ,**self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" """ was passed. Please provide a local path instead.""" ) SCREAMING_SNAKE_CASE = self._write( file_obj=self.path_or_buf ,orient=lowerCamelCase__ ,lines=lowerCamelCase__ ,index=lowerCamelCase__ ,**self.to_json_kwargs ) return written def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = args SCREAMING_SNAKE_CASE = query_table( table=self.dataset.data ,key=slice(lowerCamelCase__ ,offset + self.batch_size ) ,indices=self.dataset._indices ,) SCREAMING_SNAKE_CASE = batch.to_pandas().to_json( path_or_buf=lowerCamelCase__ ,orient=lowerCamelCase__ ,lines=lowerCamelCase__ ,index=lowerCamelCase__ ,**lowerCamelCase__ ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ,lowerCamelCase__ : BinaryIO ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[Any] ,**lowerCamelCase__ : Any ,) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 ,len(self.dataset ) ,self.batch_size ) ,unit="""ba""" ,disable=not logging.is_progress_bar_enabled() ,desc="""Creating json from Arrow format""" ,): SCREAMING_SNAKE_CASE = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json ,[(offset, orient, lines, index, to_json_kwargs) for offset in range(0 ,lowerCamelCase__ ,lowerCamelCase__ )] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit="""ba""" ,disable=not logging.is_progress_bar_enabled() ,desc="""Creating json from Arrow format""" ,): written += file_obj.write(lowerCamelCase__ ) return written
371
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : int = ComputeEnvironment.AMAZON_SAGEMAKER __snake_case : List[Any] = True __snake_case : Optional[int] = "ml.p3.2xlarge" __snake_case : List[str] = "accelerate_sagemaker_execution_role" __snake_case : Tuple = "hf-sm" __snake_case : Any = "us-east-1" __snake_case : Union[str, Any] = 1 __snake_case : Dict = "accelerate-sagemaker-1" __snake_case : Tuple = "1.6" __snake_case : List[str] = "4.4" __snake_case : str = "train.py" __snake_case : List[str] = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] __snake_case : Optional[int] = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""do_train"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""epochs"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""learning_rate"""] ,lowerCamelCase__ ) assert isinstance(converted_args["""max_steps"""] ,lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
193
0
"""simple docstring""" import torch from torch import nn class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 , lowerCAmelCase__=False ) -> Dict: super().__init__() a : Union[str, Any] = n_token a : List[str] = d_embed a : Dict = d_proj a : Tuple = cutoffs + [n_token] a : Union[str, Any] = [0] + self.cutoffs a : Optional[int] = div_val a : Optional[int] = self.cutoffs[0] a : int = len(self.cutoffs ) - 1 a : Tuple = self.shortlist_size + self.n_clusters if self.n_clusters > 0: a : Dict = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) a : int = nn.Parameter(torch.zeros(self.n_clusters ) ) a : int = nn.ModuleList() a : Dict = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) else: self.out_projs.append(lowerCAmelCase_ ) self.out_layers.append(nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) ) else: for i in range(len(self.cutoffs ) ): a, a : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] a : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) self.out_layers.append(nn.Linear(lowerCAmelCase_ , r_idx - l_idx ) ) a : Tuple = keep_order def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if proj is None: a : List[Any] = nn.functional.linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: a : Union[str, Any] = nn.functional.linear(lowerCAmelCase_ , proj.t().contiguous() ) a : Tuple = nn.functional.linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def __a ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=False ) -> Tuple: if labels is not None: # Shift so that tokens < n predict n a : str = hidden[..., :-1, :].contiguous() a : Optional[int] = labels[..., 1:].contiguous() a : Any = hidden.view(-1 , hidden.size(-1 ) ) a : List[str] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: a : int = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: a : List[str] = self._compute_logit(lowerCAmelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: a : Any = labels != -100 a : Optional[int] = torch.zeros_like(lowerCAmelCase_ , dtype=hidden.dtype , device=hidden.device ) a : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: a : Optional[int] = nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 ) else: # construct weights and biases a, a : str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: a, a : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] a : Dict = self.out_layers[0].weight[l_idx:r_idx] a : Optional[Any] = self.out_layers[0].bias[l_idx:r_idx] else: a : Optional[int] = self.out_layers[i].weight a : Dict = self.out_layers[i].bias if i == 0: a : List[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) a : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCAmelCase_ ) biases.append(lowerCAmelCase_ ) a, a, a : int = weights[0], biases[0], self.out_projs[0] a : Optional[int] = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) a : Optional[int] = nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) if labels is None: a : List[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: a : Dict = torch.zeros_like(lowerCAmelCase_ , dtype=hidden.dtype , device=hidden.device ) a : List[Any] = 0 a : int = [0] + self.cutoffs for i in range(len(lowerCAmelCase_ ) - 1 ): a, a : List[Any] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: a : Optional[int] = (labels >= l_idx) & (labels < r_idx) a : List[Any] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue a : List[str] = labels.index_select(0 , lowerCAmelCase_ ) - l_idx a : Any = head_logprob.index_select(0 , lowerCAmelCase_ ) a : int = hidden.index_select(0 , lowerCAmelCase_ ) else: a : str = hidden if i == 0: if labels is not None: a : Optional[int] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: a : Optional[int] = head_logprob[:, : self.cutoffs[0]] else: a, a, a : List[Any] = weights[i], biases[i], self.out_projs[i] a : Optional[Any] = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) a : List[str] = nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) a : Tuple = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: a : List[Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: a : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i a : int = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase_ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def __a ( self , lowerCAmelCase__ ) -> List[str]: if self.n_clusters == 0: a : Tuple = self._compute_logit(lowerCAmelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 ) else: # construct weights and biases a, a : Optional[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: a, a : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] a : List[Any] = self.out_layers[0].weight[l_idx:r_idx] a : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: a : List[str] = self.out_layers[i].weight a : Tuple = self.out_layers[i].bias if i == 0: a : List[str] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) a : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCAmelCase_ ) biases.append(lowerCAmelCase_ ) a, a, a : Optional[Any] = weights[0], biases[0], self.out_projs[0] a : Any = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) a : Optional[int] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) a : Dict = nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) a : str = [0] + self.cutoffs for i in range(len(lowerCAmelCase_ ) - 1 ): a, a : Optional[Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: a : Optional[int] = head_logprob[:, : self.cutoffs[0]] else: a, a, a : Optional[int] = weights[i], biases[i], self.out_projs[i] a : str = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) a : Tuple = nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) a : str = head_logprob[:, -i] + tail_logprob_i a : Optional[Any] = logprob_i return out
105
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors UpperCAmelCase : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "sequence-classification" def __init__( self : Optional[Any] , lowerCAmelCase_ : int): """simple docstring""" if type(lowerCAmelCase_) == dict: lowercase_ = Namespace(**lowerCAmelCase_) lowercase_ = glue_output_modes[hparams.task] lowercase_ = glue_tasks_num_labels[hparams.task] super().__init__(lowerCAmelCase_ , lowerCAmelCase_ , self.mode) def _UpperCAmelCase ( self : Optional[int] , **lowerCAmelCase_ : Optional[int]): """simple docstring""" return self.model(**lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase_ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowercase_ = self(**lowerCAmelCase_) lowercase_ = outputs[0] lowercase_ = self.trainer.lr_schedulers[0]["""scheduler"""] lowercase_ = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.hparams lowercase_ = processors[args.task]() lowercase_ = processor.get_labels() for mode in ["train", "dev"]: lowercase_ = self._feature_file(lowerCAmelCase_) if os.path.exists(lowerCAmelCase_) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , lowerCAmelCase_) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir) lowercase_ = ( processor.get_dev_examples(args.data_dir) if mode == """dev""" else processor.get_train_examples(args.data_dir) ) lowercase_ = convert_examples_to_features( lowerCAmelCase_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , lowerCAmelCase_) torch.save(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : bool = False): """simple docstring""" lowercase_ = """dev""" if mode == """test""" else mode lowercase_ = self._feature_file(lowerCAmelCase_) logger.info("""Loading features from cached file %s""" , lowerCAmelCase_) lowercase_ = torch.load(lowerCAmelCase_) lowercase_ = torch.tensor([f.input_ids for f in features] , dtype=torch.long) lowercase_ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) lowercase_ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) if self.hparams.glue_output_mode == "classification": lowercase_ = torch.tensor([f.label for f in features] , dtype=torch.long) elif self.hparams.glue_output_mode == "regression": lowercase_ = torch.tensor([f.label for f in features] , dtype=torch.float) return DataLoader( TensorDataset(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) , batch_size=lowerCAmelCase_ , shuffle=lowerCAmelCase_ , ) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase_ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowercase_ = self(**lowerCAmelCase_) lowercase_ , lowercase_ = outputs[:2] lowercase_ = logits.detach().cpu().numpy() lowercase_ = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _UpperCAmelCase ( self : str , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = torch.stack([x["""val_loss"""] for x in outputs]).mean().detach().cpu().item() lowercase_ = np.concatenate([x["""pred"""] for x in outputs] , axis=0) if self.hparams.glue_output_mode == "classification": lowercase_ = np.argmax(lowerCAmelCase_ , axis=1) elif self.hparams.glue_output_mode == "regression": lowercase_ = np.squeeze(lowerCAmelCase_) lowercase_ = np.concatenate([x["""target"""] for x in outputs] , axis=0) lowercase_ = [[] for _ in range(out_label_ids.shape[0])] lowercase_ = [[] for _ in range(out_label_ids.shape[0])] lowercase_ = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , lowerCAmelCase_ , lowerCAmelCase_)} lowercase_ = dict(results.items()) lowercase_ = results return ret, preds_list, out_label_list def _UpperCAmelCase ( self : int , lowerCAmelCase_ : list): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._eval_end(lowerCAmelCase_) lowercase_ = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : int): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._eval_end(lowerCAmelCase_) lowercase_ = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str): """simple docstring""" BaseTransformer.add_model_specific_args(lowerCAmelCase_ , lowerCAmelCase_) parser.add_argument( """--max_seq_length""" , default=1_2_8 , type=lowerCAmelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=lowerCAmelCase_ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""") return parser def _SCREAMING_SNAKE_CASE () -> str: '''simple docstring''' lowercase_ = argparse.ArgumentParser() add_generic_args(__lowerCAmelCase , os.getcwd() ) lowercase_ = GLUETransformer.add_model_specific_args(__lowerCAmelCase , os.getcwd() ) lowercase_ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowercase_ = os.path.join( """./results""" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) lowercase_ = GLUETransformer(__lowerCAmelCase ) lowercase_ = generic_train(__lowerCAmelCase , __lowerCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowercase_ = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=__lowerCAmelCase ) ) lowercase_ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowerCAmelCase ) if __name__ == "__main__": main()
136
0
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''AutoImageProcessor''' snake_case_ = '''AutoTokenizer''' def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) __a = self.image_processor __a = False def __call__( self , *_snake_case , **_snake_case ) -> Union[str, Any]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_snake_case , **_snake_case ) __a = kwargs.pop('''images''' , _snake_case ) __a = kwargs.pop('''text''' , _snake_case ) if len(_snake_case ) > 0: __a = args[0] __a = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: __a = self.image_processor(_snake_case , *_snake_case , **_snake_case ) if text is not None: __a = self.tokenizer(_snake_case , **_snake_case ) if text is None: return inputs elif images is None: return encodings else: __a = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @contextmanager def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) __a = True __a = self.tokenizer yield __a = self.image_processor __a = False def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=False , _snake_case=None ) -> List[Any]: '''simple docstring''' if added_vocab is None: __a = self.tokenizer.get_added_vocab() __a = {} while tokens: __a = re.search(r'''<s_(.*?)>''' , _snake_case , re.IGNORECASE ) if start_token is None: break __a = start_token.group(1 ) __a = re.search(rF"""</s_{key}>""" , _snake_case , re.IGNORECASE ) __a = start_token.group() if end_token is None: __a = tokens.replace(_snake_case , '''''' ) else: __a = end_token.group() __a = re.escape(_snake_case ) __a = re.escape(_snake_case ) __a = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _snake_case , re.IGNORECASE ) if content is not None: __a = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __a = self.tokenajson(_snake_case , is_inner_value=_snake_case , added_vocab=_snake_case ) if value: if len(_snake_case ) == 1: __a = value[0] __a = value else: # leaf nodes __a = [] for leaf in content.split(r'''<sep/>''' ): __a = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __a = leaf[1:-2] # for categorical special tokens output[key].append(_snake_case ) if len(output[key] ) == 1: __a = output[key][0] __a = tokens[tokens.find(_snake_case ) + len(_snake_case ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_snake_case , added_vocab=_snake_case ) if len(_snake_case ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _snake_case , ) return self.image_processor
33
import sys def __lowerCAmelCase ( a__ ) -> Optional[int]: __a = len(a__ ) __a = [[0 for x in range(a__ )] for x in range(a__ )] __a = [[0 for x in range(a__ )] for x in range(a__ )] for chain_length in range(2 , a__ ): for a in range(1 , n - chain_length + 1 ): __a = a + chain_length - 1 __a = sys.maxsize for c in range(a__ , a__ ): __a = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __a = cost __a = c return matrix, sol def __lowerCAmelCase ( a__ , a__ , a__ ) -> Any: if i == j: print('''A''' + str(a__ ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(a__ , a__ , optimal_solution[i][j] ) print_optiomal_solution(a__ , optimal_solution[i][j] + 1 , a__ ) print(''')''' , end=''' ''' ) def __lowerCAmelCase ( ) -> int: __a = [30, 35, 15, 5, 10, 20, 25] __a = len(a__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __a , __a = matrix_chain_order(a__ ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(a__ , 1 , n - 1 ) if __name__ == "__main__": main()
33
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any]=10 ) -> str: """simple docstring""" __lowerCamelCase = [] for _ in range(UpperCamelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any=10 ) -> Any: """simple docstring""" __lowerCamelCase = [] for step in range(UpperCamelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = os.path.join(UpperCamelCase__ , 'schedule.bin' ) torch.save(scheduler.state_dict() , UpperCamelCase__ ) __lowerCamelCase = torch.load(UpperCamelCase__ ) scheduler.load_state_dict(UpperCamelCase__ ) return lrs @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for a, b in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertAlmostEqual(lowerCamelCase__ , lowerCamelCase__ , delta=lowerCamelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCamelCase__ ) __lowerCamelCase = torch.tensor([0.4, 0.2, -0.5] ) __lowerCamelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowerCamelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): __lowerCamelCase = criterion(lowerCamelCase__ , lowerCamelCase__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCamelCase__ ) __lowerCamelCase = torch.tensor([0.4, 0.2, -0.5] ) __lowerCamelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowerCamelCase = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCamelCase__ , weight_decay=0.0 , relative_step=lowerCamelCase__ , scale_parameter=lowerCamelCase__ , warmup_init=lowerCamelCase__ , ) for _ in range(1_000 ): __lowerCamelCase = criterion(lowerCamelCase__ , lowerCamelCase__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = nn.Linear(50 , 50 ) if is_torch_available() else None snake_case_ = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None snake_case_ = 10 def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> Any: '''simple docstring''' self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for a, b in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertAlmostEqual(lowerCamelCase__ , lowerCamelCase__ , delta=lowerCamelCase__ , msg=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __lowerCamelCase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): __lowerCamelCase , __lowerCamelCase = data __lowerCamelCase = scheduler_func(self.optimizer , **lowerCamelCase__ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __lowerCamelCase = unwrap_schedule(lowerCamelCase__ , self.num_steps ) self.assertListAlmostEqual( lowerCamelCase__ , lowerCamelCase__ , tol=1e-2 , msg=f"""failed for {scheduler_func} in normal scheduler""" , ) __lowerCamelCase = scheduler_func(self.optimizer , **lowerCamelCase__ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCamelCase__ ) # wrap to test picklability of the schedule __lowerCamelCase = unwrap_and_save_reload_schedule(lowerCamelCase__ , self.num_steps ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ , msg=f"""failed for {scheduler_func} in save and reload""" ) class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = fn def __call__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' return self.fn(*lowerCamelCase__ , **lowerCamelCase__ ) @classmethod def lowercase_ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = list(map(self , scheduler.lr_lambdas ) )
90
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __A = { "gpt-neox-20b": 20_48, } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__=False , **lowerCamelCase__ , ) -> int: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space: __lowerCamelCase = getattr(lowerCamelCase__ , pre_tok_state.pop('type' ) ) __lowerCamelCase = add_prefix_space __lowerCamelCase = pre_tok_class(**lowerCamelCase__ ) __lowerCamelCase = add_prefix_space def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' __lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[int]: '''simple docstring''' __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) + [self.eos_token_id] ) if len(lowerCamelCase__ ) > self.model_max_length: __lowerCamelCase = input_ids[-self.model_max_length :] return input_ids
90
1
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCAmelCase__ : Optional[Any] ={ '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class __A ( a ): """simple docstring""" __A = """ernie_m""" __A = {"""dropout""": """classifier_dropout""", """num_classes""": """num_labels"""} def __init__( self , UpperCAmelCase_ = 250002 , UpperCAmelCase_ = 768 , UpperCAmelCase_ = 12 , UpperCAmelCase_ = 12 , UpperCAmelCase_ = 3072 , UpperCAmelCase_ = "gelu" , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 514 , UpperCAmelCase_ = 0.0_2 , UpperCAmelCase_ = 1 , UpperCAmelCase_ = 1E-05 , UpperCAmelCase_=None , UpperCAmelCase_=False , UpperCAmelCase_=0.0 , **UpperCAmelCase_ , ): super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase =vocab_size lowerCamelCase =hidden_size lowerCamelCase =num_hidden_layers lowerCamelCase =num_attention_heads lowerCamelCase =intermediate_size lowerCamelCase =hidden_act lowerCamelCase =hidden_dropout_prob lowerCamelCase =attention_probs_dropout_prob lowerCamelCase =max_position_embeddings lowerCamelCase =initializer_range lowerCamelCase =layer_norm_eps lowerCamelCase =classifier_dropout lowerCamelCase =is_decoder lowerCamelCase =act_dropout
362
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ : List[Any] =logging.get_logger(__name__) UpperCAmelCase__ : Dict ={'''vocab_file''': '''spiece.model'''} UpperCAmelCase__ : Dict ={ '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } UpperCAmelCase__ : List[str] ={ '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) UpperCAmelCase__ : Any =0 UpperCAmelCase__ : List[Any] =1 UpperCAmelCase__ : Union[str, Any] =2 UpperCAmelCase__ : Tuple =3 UpperCAmelCase__ : int =4 class __A ( a ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = """left""" def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_="<s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="<unk>" , UpperCAmelCase_="<sep>" , UpperCAmelCase_="<pad>" , UpperCAmelCase_="<cls>" , UpperCAmelCase_="<mask>" , UpperCAmelCase_=["<eop>", "<eod>"] , UpperCAmelCase_ = None , **UpperCAmelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token lowerCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) lowerCamelCase =3 lowerCamelCase =do_lower_case lowerCamelCase =remove_space lowerCamelCase =keep_accents lowerCamelCase =vocab_file lowerCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def _snake_case ( self ): return len(self.sp_model ) def _snake_case ( self ): lowerCamelCase ={self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowerCamelCase =self.__dict__.copy() lowerCamelCase =None return state def __setstate__( self , UpperCAmelCase_ ): lowerCamelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase ={} lowerCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , UpperCAmelCase_ ): if self.remove_space: lowerCamelCase =""" """.join(inputs.strip().split() ) else: lowerCamelCase =inputs lowerCamelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: lowerCamelCase =unicodedata.normalize("""NFKD""" , UpperCAmelCase_ ) lowerCamelCase ="""""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: lowerCamelCase =outputs.lower() return outputs def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =self.preprocess_text(UpperCAmelCase_ ) lowerCamelCase =self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) lowerCamelCase =[] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCamelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase =cur_pieces[1:] else: lowerCamelCase =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def _snake_case ( self , UpperCAmelCase_ ): return self.sp_model.PieceToId(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): return self.sp_model.IdToPiece(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase ="""""".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , """ """ ).strip() return out_string def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = True , **UpperCAmelCase_ , ): lowerCamelCase =kwargs.pop("""use_source_tokenizer""" , UpperCAmelCase_ ) lowerCamelCase =self.convert_ids_to_tokens(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase =[] lowerCamelCase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) ) lowerCamelCase =[] sub_texts.append(UpperCAmelCase_ ) else: current_sub_text.append(UpperCAmelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCamelCase ="""""".join(UpperCAmelCase_ ) lowerCamelCase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase =self.clean_up_tokenization(UpperCAmelCase_ ) return clean_text else: return text def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCamelCase =[self.sep_token_id] lowerCamelCase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] return ([0] * len(UpperCAmelCase_ )) + [1, 1] def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCamelCase =[self.sep_token_id] lowerCamelCase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase =os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: lowerCamelCase =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
262
0
import logging from transformers.configuration_utils import PretrainedConfig lowercase : Union[str, Any] = logging.getLogger(__name__) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : int = '''masked_bert''' def __init__( self , lowercase=3_0522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1e-12 , lowercase=0 , lowercase="topK" , lowercase="constant" , lowercase=0.0 , **lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowercase , **lowercase) a__ : Optional[Any] = vocab_size a__ : Union[str, Any] = hidden_size a__ : Optional[int] = num_hidden_layers a__ : List[Any] = num_attention_heads a__ : Optional[Any] = hidden_act a__ : List[Any] = intermediate_size a__ : Optional[int] = hidden_dropout_prob a__ : List[Any] = attention_probs_dropout_prob a__ : Optional[int] = max_position_embeddings a__ : Optional[int] = type_vocab_size a__ : List[Any] = initializer_range a__ : List[str] = layer_norm_eps a__ : Optional[int] = pruning_method a__ : int = mask_init a__ : List[str] = mask_scale
99
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int ="dpr" def __init__( self , snake_case__=30_522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__="absolute" , snake_case__ = 0 , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Optional[int] = num_attention_heads lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = projection_dim lowerCAmelCase : Dict = position_embedding_type
108
0
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): _lowerCamelCase = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: _lowerCamelCase = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( _SCREAMING_SNAKE_CASE : Dict ) -> Dict: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ : Any = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ : List[Any] = numpy_to_pil(_SCREAMING_SNAKE_CASE ) return images def a__ ( _SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" if images.ndim == 3: UpperCAmelCase_ : Dict = images[None, ...] UpperCAmelCase_ : Optional[Any] = (images * 2_55).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ : int = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ : int = [Image.fromarray(_SCREAMING_SNAKE_CASE ) for image in images] return pil_images
67
'''simple docstring''' from __future__ import annotations _lowerCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def a__ ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" UpperCAmelCase_ : int = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the reference grid UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the action grid UpperCAmelCase_ : Tuple = init[0] UpperCAmelCase_ : List[Any] = init[1] UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Optional[Any] = g + heuristic[x][y] # cost from starting cell to destination cell UpperCAmelCase_ : List[str] = [[f, g, x, y]] UpperCAmelCase_ : Tuple = False # flag that is set when search is complete UpperCAmelCase_ : Union[str, Any] = False # flag set if we can't find expand while not found and not resign: if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() UpperCAmelCase_ : Dict = cell.pop() UpperCAmelCase_ : Tuple = next_cell[2] UpperCAmelCase_ : str = next_cell[3] UpperCAmelCase_ : List[Any] = next_cell[1] if x == goal[0] and y == goal[1]: UpperCAmelCase_ : Optional[Any] = True else: for i in range(len(_SCREAMING_SNAKE_CASE ) ): # to try out different valid actions UpperCAmelCase_ : Union[str, Any] = x + DIRECTIONS[i][0] UpperCAmelCase_ : Optional[Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_SCREAMING_SNAKE_CASE ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: UpperCAmelCase_ : Any = g + cost UpperCAmelCase_ : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[str] = i UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : List[Any] = goal[0] UpperCAmelCase_ : str = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: UpperCAmelCase_ : Optional[int] = x - DIRECTIONS[action[x][y]][0] UpperCAmelCase_ : Optional[int] = y - DIRECTIONS[action[x][y]][1] UpperCAmelCase_ : Optional[Any] = xa UpperCAmelCase_ : List[str] = ya invpath.append([x, y] ) UpperCAmelCase_ : Tuple = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): path.append(invpath[len(_SCREAMING_SNAKE_CASE ) - 1 - i] ) return path, action if __name__ == "__main__": _lowerCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _lowerCamelCase = [0, 0] # all coordinates are given in format [y,x] _lowerCamelCase = [len(grid) - 1, len(grid[0]) - 1] _lowerCamelCase = 1 # the cost map which pushes the path closer to the goal _lowerCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _lowerCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _lowerCamelCase = 99 _lowerCamelCase , _lowerCamelCase = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
67
1
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="resnet50" , UpperCAmelCase=3 , UpperCAmelCase=3_2 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=True , ) -> str: _lowercase =parent _lowercase =out_indices if out_indices is not None else [4] _lowercase =stage_names _lowercase =out_features _lowercase =backbone _lowercase =batch_size _lowercase =image_size _lowercase =num_channels _lowercase =use_pretrained_backbone _lowercase =is_training def __A (self ) -> Tuple: _lowercase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase =self.get_config() return config, pixel_values def __A (self ) -> Optional[Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> int: _lowercase =TimmBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _lowercase =model(UpperCAmelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def __A (self ) -> List[str]: _lowercase =self.prepare_config_and_inputs() _lowercase , _lowercase =config_and_inputs _lowercase ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = (TimmBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Optional[int]: _lowercase =TimmBackboneModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def __A (self ) -> Tuple: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A (self ) -> Optional[Any]: _lowercase ='''resnet18''' _lowercase ='''microsoft/resnet-18''' _lowercase =AutoBackbone.from_pretrained(UpperCAmelCase , use_timm_backbone=UpperCAmelCase ) _lowercase =AutoBackbone.from_pretrained(UpperCAmelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _lowercase =AutoBackbone.from_pretrained(UpperCAmelCase , use_timm_backbone=UpperCAmelCase , out_indices=[1, 2, 3] ) _lowercase =AutoBackbone.from_pretrained(UpperCAmelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def __A (self ) -> Optional[Any]: pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def __A (self ) -> Tuple: pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def __A (self ) -> List[Any]: pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __A (self ) -> Tuple: pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __A (self ) -> Any: pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def __A (self ) -> Any: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A (self ) -> Optional[Any]: pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __A (self ) -> Tuple: pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __A (self ) -> int: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A (self ) -> Tuple: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A (self ) -> Tuple: pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def __A (self ) -> int: pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def __A (self ) -> List[str]: pass @unittest.skip('''Safetensors is not supported by timm.''' ) def __A (self ) -> Dict: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A (self ) -> List[Any]: pass def __A (self ) -> str: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(UpperCAmelCase ) _lowercase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase =[*signature.parameters.keys()] _lowercase =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def __A (self ) -> Union[str, Any]: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =True _lowercase =self.has_attentions # no need to test all models as different heads yield the same functionality _lowercase =self.all_model_classes[0] _lowercase =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) _lowercase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _lowercase =model(**UpperCAmelCase ) _lowercase =outputs[0][-1] # Encoder-/Decoder-only models _lowercase =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _lowercase =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __A (self ) -> str: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(**UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _lowercase =copy.deepcopy(UpperCAmelCase ) _lowercase =None _lowercase =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(**UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _lowercase =copy.deepcopy(UpperCAmelCase ) _lowercase =False _lowercase =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(**UpperCAmelCase )
5
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __lowerCamelCase ( ) -> Any: raise RuntimeError("""CUDA out of memory.""" ) class UpperCamelCase_ ( nn.Module ): def __init__( self ) -> Any: super().__init__() UpperCAmelCase : Tuple = nn.Linear(3 , 4 ) UpperCAmelCase : Tuple = nn.BatchNormad(4 ) UpperCAmelCase : int = nn.Linear(4 , 5 ) def _lowercase( self , A ) -> Any: return self.lineara(self.batchnorm(self.lineara(A ) ) ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(A ): nonlocal batch_sizes batch_sizes.append(A ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(A , [128, 64, 32, 16, 8] ) def _lowercase( self ) -> Any: UpperCAmelCase : Optional[Any] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(A , A ): nonlocal batch_sizes batch_sizes.append(A ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCAmelCase , UpperCAmelCase : Optional[int] = mock_training_loop_function("""hello""" ) self.assertListEqual(A , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def _lowercase( self ) -> Any: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(A ): pass with self.assertRaises(A ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _lowercase( self ) -> Optional[int]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(A ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(A ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _lowercase( self ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(A , A , A ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(A ) as cm: mock_training_loop_function(128 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] ) def _lowercase( self ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(A ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(A ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = torch.cuda.memory_allocated() UpperCAmelCase : List[str] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , A ) UpperCAmelCase : Tuple = release_memory(A ) self.assertEqual(torch.cuda.memory_allocated() , A )
265
0
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __A : Union[str, Any] = 16 __A : List[Any] = 32 def A_ ( snake_case_ : List[Any] ): '''simple docstring''' return int(x / 2**2_0 ) class lowerCamelCase : def __enter__( self ): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero UpperCamelCase : Tuple = torch.cuda.memory_allocated() return self def __exit__( self , *SCREAMING_SNAKE_CASE_ ): gc.collect() torch.cuda.empty_cache() UpperCamelCase : Optional[int] = torch.cuda.memory_allocated() UpperCamelCase : List[Any] = torch.cuda.max_memory_allocated() UpperCamelCase : Any = bamb(self.end - self.begin ) UpperCamelCase : Optional[int] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def A_ ( snake_case_ : Accelerator ,snake_case_ : int = 1_6 ,snake_case_ : str = "bert-base-cased" ,snake_case_ : int = 3_2_0 ,snake_case_ : int = 1_6_0 ,): '''simple docstring''' UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained(snake_case_ ) UpperCamelCase : Tuple = load_dataset( """glue""" ,"""mrpc""" ,split={"""train""": f'train[:{n_train}]', """validation""": f'validation[:{n_val}]'} ) def tokenize_function(snake_case_ : Dict ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase : Any = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case_ ,max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase : int = datasets.map( snake_case_ ,batched=snake_case_ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase : str = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(snake_case_ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ ,padding="""max_length""" ,max_length=1_2_8 ,return_tensors="""pt""" ) return tokenizer.pad(snake_case_ ,padding="""longest""" ,return_tensors="""pt""" ) # Instantiate dataloaders. UpperCamelCase : Any = DataLoader( tokenized_datasets["""train"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ ) UpperCamelCase : int = DataLoader( tokenized_datasets["""validation"""] ,shuffle=snake_case_ ,collate_fn=snake_case_ ,batch_size=snake_case_ ) return train_dataloader, eval_dataloader def A_ ( snake_case_ : int ,snake_case_ : Any ): '''simple docstring''' UpperCamelCase : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase : Optional[int] = config["""lr"""] UpperCamelCase : int = int(config["""num_epochs"""] ) UpperCamelCase : Optional[Any] = int(config["""seed"""] ) UpperCamelCase : str = int(config["""batch_size"""] ) UpperCamelCase : str = args.model_name_or_path set_seed(snake_case_ ) UpperCamelCase : str = get_dataloaders(snake_case_ ,snake_case_ ,snake_case_ ,args.n_train ,args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(snake_case_ ,return_dict=snake_case_ ) # Instantiate optimizer UpperCamelCase : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase : List[Any] = optimizer_cls(params=model.parameters() ,lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCamelCase : Any = 1 UpperCamelCase : Union[str, Any] = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=snake_case_ ,num_warmup_steps=0 ,num_training_steps=snake_case_ ,) else: UpperCamelCase : Tuple = DummyScheduler(snake_case_ ,total_num_steps=snake_case_ ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase : List[Any] = accelerator.prepare( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) # We need to keep track of how many total steps we have iterated over UpperCamelCase : Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase : Dict = 0 # Now we train the model UpperCamelCase : List[str] = {} for epoch in range(snake_case_ ,snake_case_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case_ ): UpperCamelCase : Optional[Any] = model(**snake_case_ ) UpperCamelCase : Dict = outputs.loss UpperCamelCase : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) UpperCamelCase : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'epoch-{epoch}'] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,"""peak_memory_utilization.json""" ) ,"""w""" ) as f: json.dump(snake_case_ ,snake_case_ ) def A_ ( ): '''simple docstring''' UpperCamelCase : int = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" ,type=snake_case_ ,default="""bert-base-cased""" ,help="""Path to pretrained model or model identifier from huggingface.co/models.""" ,required=snake_case_ ,) parser.add_argument( """--output_dir""" ,type=snake_case_ ,default=""".""" ,help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" ,) parser.add_argument( """--peak_memory_upper_bound""" ,type=snake_case_ ,default=snake_case_ ,help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" ,) parser.add_argument( """--n_train""" ,type=snake_case_ ,default=3_2_0 ,help="""Number of training examples to use.""" ,) parser.add_argument( """--n_val""" ,type=snake_case_ ,default=1_6_0 ,help="""Number of validation examples to use.""" ,) parser.add_argument( """--num_epochs""" ,type=snake_case_ ,default=1 ,help="""Number of train epochs.""" ,) UpperCamelCase : List[str] = parser.parse_args() UpperCamelCase : str = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 4_2, """batch_size""": 1_6} training_function(snake_case_ ,snake_case_ ) if __name__ == "__main__": main()
355
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowercase : Any = AudioLDMPipeline lowercase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS lowercase : List[str] = TEXT_TO_AUDIO_BATCH_PARAMS lowercase : Tuple = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def a_ ( self ): torch.manual_seed(0 ) UpperCamelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Optional[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) UpperCamelCase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase : int = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) UpperCamelCase : Optional[int] = ClapTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) UpperCamelCase : Tuple = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Tuple = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def a_ ( self ): UpperCamelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Any = self.get_dummy_components() UpperCamelCase : int = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 256 UpperCamelCase : Tuple = audio[:10] UpperCamelCase : Dict = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def a_ ( self ): UpperCamelCase : str = self.get_dummy_components() UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = 3 * [inputs["""prompt"""]] # forward UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = output.audios[0] UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = 3 * [inputs.pop("""prompt""" )] UpperCamelCase : List[str] = audioldm_pipe.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase : Optional[int] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audioldm_pipe.text_encoder( SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : str = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 ) UpperCamelCase : Tuple = prompt_embeds # forward UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def a_ ( self ): UpperCamelCase : List[str] = self.get_dummy_components() UpperCamelCase : List[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = 3 * ["""this is a negative prompt"""] UpperCamelCase : List[Any] = negative_prompt UpperCamelCase : str = 3 * [inputs["""prompt"""]] # forward UpperCamelCase : str = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] UpperCamelCase : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 3 * [inputs.pop("""prompt""" )] UpperCamelCase : List[Any] = [] for p in [prompt, negative_prompt]: UpperCamelCase : int = audioldm_pipe.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase : Union[str, Any] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audioldm_pipe.text_encoder( SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Tuple = text_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 ) embeds.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase : Tuple = embeds # forward UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def a_ ( self ): UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Optional[int] = self.get_dummy_components() UpperCamelCase : List[str] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = """egg cracking""" UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 256 UpperCamelCase : Union[str, Any] = audio[:10] UpperCamelCase : Dict = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def a_ ( self ): UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Union[str, Any] = self.get_dummy_components() UpperCamelCase : Tuple = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) UpperCamelCase : List[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts UpperCamelCase : Dict = 2 UpperCamelCase : List[str] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt UpperCamelCase : List[str] = 2 UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts UpperCamelCase : Any = 2 UpperCamelCase : str = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def a_ ( self ): UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Tuple = self.get_dummy_components() UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = audioldm_pipe.vocoder.config.sampling_rate UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = audioldm_pipe(audio_length_in_s=0.016 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.016 UpperCamelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.032 def a_ ( self ): UpperCamelCase : str = self.get_dummy_components() UpperCamelCase : Optional[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = ["""hey"""] UpperCamelCase : Dict = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 ) UpperCamelCase : str = output.audios.shape assert audio_shape == (1, 256) UpperCamelCase : Optional[Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 UpperCamelCase : str = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 ) UpperCamelCase : List[str] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def a_ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) def a_ ( self ): self._test_inference_batch_single_identical(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def a_ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) @slow class lowerCamelCase ( unittest.TestCase ): def a_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="cpu" , SCREAMING_SNAKE_CASE_=torch.floataa , SCREAMING_SNAKE_CASE_=0 ): UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 8, 128, 16) ) UpperCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def a_ ( self ): UpperCamelCase : Optional[int] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.get_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = 25 UpperCamelCase : Optional[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920 UpperCamelCase : Union[str, Any] = audio[7_7230:7_7240] UpperCamelCase : Optional[Any] = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) UpperCamelCase : Any = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def a_ ( self ): UpperCamelCase : Any = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) UpperCamelCase : str = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.get_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920 UpperCamelCase : Union[str, Any] = audio[2_7780:2_7790] UpperCamelCase : Tuple = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) UpperCamelCase : Tuple = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
27
0
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Dict[Optional[str], Type[Formatter]] = {} __UpperCamelCase : Dict[Optional[str], str] = {} __UpperCamelCase : Dict[Optional[str], Exception] = {} def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , ) -> Optional[int]: a = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) a = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) a = format_type def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None ) -> List[str]: a = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): a = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: __UpperCamelCase : str = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: __UpperCamelCase : List[str] = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: __UpperCamelCase : List[str] = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def __A ( __lowerCamelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __A ( __lowerCamelCase , **__lowerCamelCase ) -> Formatter: a = get_format_type_from_alias(__lowerCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__lowerCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
228
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Any = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __UpperCamelCase : Dict = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def __A ( __lowerCamelCase ) -> List[str]: a = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): a = line.strip() if line: a = line.split() a = line_number a = words[0] a = value return result def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: for attribute in key.split(""".""" ): a = getattr(__lowerCamelCase , __lowerCamelCase ) a = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): a = PARAM_MAPPING[full_name.split(""".""" )[-1]] a = """param""" if weight_type is not None and weight_type != "param": a = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": a = hf_pointer for attribute in hf_param_name.split(""".""" ): a = getattr(__lowerCamelCase , __lowerCamelCase ) a = shape_pointer.shape # let's reduce dimension a = value[0] else: a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): a = getattr(__lowerCamelCase , __lowerCamelCase ) a = value else: a = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: a = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): a = PARAM_MAPPING[full_name.split(""".""" )[-1]] a = """param""" if weight_type is not None and weight_type != "param": a = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a = """.""".join([key, hf_param_name] ) else: a = key a = value if """lm_head""" in full_key else value[0] __UpperCamelCase : List[Any] = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ) -> Optional[Any]: a = False for key, mapped_key in MAPPING.items(): a = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: a = True if "*" in mapped_key: a = name.split(__lowerCamelCase )[0].split(""".""" )[-2] a = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: a = """weight_g""" elif "weight_v" in name: a = """weight_v""" elif "bias" in name: a = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj a = """weight""" else: a = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: a = [] a = fairseq_model.state_dict() a = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) a = True else: a = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: a = full_name.split("""conv_layers.""" )[-1] a = name.split(""".""" ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=False ) -> List[Any]: if config_path is not None: a = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: a = WavaVecaConfig() if is_seq_class: a = read_txt_into_dict(__lowerCamelCase ) a = idalabel a = WavaVecaForSequenceClassification(__lowerCamelCase ) a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: a = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a = target_dict.pad_index a = target_dict.bos_index a = target_dict.eos_index a = len(target_dict.symbols ) a = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) a = target_dict.indices # fairseq has the <pad> and <s> switched a = 0 a = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) a = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) a = True if config.feat_extract_norm == """layer""" else False a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) a = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) a = WavaVecaForCTC(__lowerCamelCase ) else: a = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: a = argparse.Namespace(task="""audio_pretraining""" ) a = fairseq.tasks.setup_task(__lowerCamelCase ) a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) a = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __UpperCamelCase : Union[str, Any] = parser.parse_args() __UpperCamelCase : Any = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
228
1
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): lowercase__ = [] for old_item in old_list: lowercase__ = old_item.replace("in_layers.0" , "norm1" ) lowercase__ = new_item.replace("in_layers.2" , "conv1" ) lowercase__ = new_item.replace("out_layers.0" , "norm2" ) lowercase__ = new_item.replace("out_layers.3" , "conv2" ) lowercase__ = new_item.replace("emb_layers.1" , "time_emb_proj" ) lowercase__ = new_item.replace("skip_connection" , "conv_shortcut" ) lowercase__ = shave_segments(SCREAMING_SNAKE_CASE_ , n_shave_prefix_segments=SCREAMING_SNAKE_CASE_ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): lowercase__ = [] for old_item in old_list: lowercase__ = old_item lowercase__ = new_item.replace("norm.weight" , "group_norm.weight" ) lowercase__ = new_item.replace("norm.bias" , "group_norm.bias" ) lowercase__ = new_item.replace("proj_out.weight" , "proj_attn.weight" ) lowercase__ = new_item.replace("proj_out.bias" , "proj_attn.bias" ) lowercase__ = shave_segments(SCREAMING_SNAKE_CASE_ , n_shave_prefix_segments=SCREAMING_SNAKE_CASE_ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ): assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowercase__ = old_checkpoint[path] lowercase__ = old_tensor.shape[0] // 3 lowercase__ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowercase__ = old_tensor.shape[0] // config["num_head_channels"] // 3 lowercase__ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowercase__ , lowercase__ , lowercase__ = old_tensor.split(channels // num_heads , dim=1 ) lowercase__ = query.reshape(SCREAMING_SNAKE_CASE_ ) lowercase__ = key.reshape(SCREAMING_SNAKE_CASE_ ) lowercase__ = value.reshape(SCREAMING_SNAKE_CASE_ ) for path in paths: lowercase__ = path["new"] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowercase__ = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) lowercase__ = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) lowercase__ = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: lowercase__ = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowercase__ = old_checkpoint[path["old"]][:, :, 0] else: lowercase__ = old_checkpoint[path["old"]] def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = {} lowercase__ = checkpoint["time_embed.0.weight"] lowercase__ = checkpoint["time_embed.0.bias"] lowercase__ = checkpoint["time_embed.2.weight"] lowercase__ = checkpoint["time_embed.2.bias"] lowercase__ = checkpoint["input_blocks.0.0.weight"] lowercase__ = checkpoint["input_blocks.0.0.bias"] lowercase__ = checkpoint["out.0.weight"] lowercase__ = checkpoint["out.0.bias"] lowercase__ = checkpoint["out.2.weight"] lowercase__ = checkpoint["out.2.bias"] # Retrieves the keys for the input blocks only lowercase__ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) lowercase__ = { layer_id: [key for key in checkpoint if f'''input_blocks.{layer_id}''' in key] for layer_id in range(SCREAMING_SNAKE_CASE_ ) } # Retrieves the keys for the middle blocks only lowercase__ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) lowercase__ = { layer_id: [key for key in checkpoint if f'''middle_block.{layer_id}''' in key] for layer_id in range(SCREAMING_SNAKE_CASE_ ) } # Retrieves the keys for the output blocks only lowercase__ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) lowercase__ = { layer_id: [key for key in checkpoint if f'''output_blocks.{layer_id}''' in key] for layer_id in range(SCREAMING_SNAKE_CASE_ ) } for i in range(1 , SCREAMING_SNAKE_CASE_ ): lowercase__ = (i - 1) // (config["num_res_blocks"] + 1) lowercase__ = (i - 1) % (config["num_res_blocks"] + 1) lowercase__ = [key for key in input_blocks[i] if f'''input_blocks.{i}.0''' in key] lowercase__ = [key for key in input_blocks[i] if f'''input_blocks.{i}.1''' in key] if f'''input_blocks.{i}.0.op.weight''' in checkpoint: lowercase__ = checkpoint[ f'''input_blocks.{i}.0.op.weight''' ] lowercase__ = checkpoint[ f'''input_blocks.{i}.0.op.bias''' ] continue lowercase__ = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) lowercase__ = {"old": f'''input_blocks.{i}.0''', "new": f'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} lowercase__ = {"old": "resnets.2.op", "new": "downsamplers.0.op"} assign_to_checkpoint( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path, resnet_op] , config=SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ): lowercase__ = renew_attention_paths(SCREAMING_SNAKE_CASE_ ) lowercase__ = { "old": f'''input_blocks.{i}.1''', "new": f'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } lowercase__ = { f'''input_blocks.{i}.1.qkv.bias''': { "key": f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', "query": f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', "value": f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, f'''input_blocks.{i}.1.qkv.weight''': { "key": f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', "query": f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', "value": f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path] , attention_paths_to_split=SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ , ) lowercase__ = middle_blocks[0] lowercase__ = middle_blocks[1] lowercase__ = middle_blocks[2] lowercase__ = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) assign_to_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ ) lowercase__ = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) assign_to_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ ) lowercase__ = renew_attention_paths(SCREAMING_SNAKE_CASE_ ) lowercase__ = { "middle_block.1.qkv.bias": { "key": "mid_block.attentions.0.key.bias", "query": "mid_block.attentions.0.query.bias", "value": "mid_block.attentions.0.value.bias", }, "middle_block.1.qkv.weight": { "key": "mid_block.attentions.0.key.weight", "query": "mid_block.attentions.0.query.weight", "value": "mid_block.attentions.0.value.weight", }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , attention_paths_to_split=SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): lowercase__ = i // (config["num_res_blocks"] + 1) lowercase__ = i % (config["num_res_blocks"] + 1) lowercase__ = [shave_segments(SCREAMING_SNAKE_CASE_ , 2 ) for name in output_blocks[i]] lowercase__ = {} for layer in output_block_layers: lowercase__ , lowercase__ = layer.split("." )[0], shave_segments(SCREAMING_SNAKE_CASE_ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(SCREAMING_SNAKE_CASE_ ) else: lowercase__ = [layer_name] if len(SCREAMING_SNAKE_CASE_ ) > 1: lowercase__ = [key for key in output_blocks[i] if f'''output_blocks.{i}.0''' in key] lowercase__ = [key for key in output_blocks[i] if f'''output_blocks.{i}.1''' in key] lowercase__ = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) lowercase__ = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) lowercase__ = {"old": f'''output_blocks.{i}.0''', "new": f'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE_ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowercase__ = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) lowercase__ = checkpoint[ f'''output_blocks.{i}.{index}.conv.weight''' ] lowercase__ = checkpoint[ f'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(SCREAMING_SNAKE_CASE_ ) == 2: lowercase__ = [] if len(SCREAMING_SNAKE_CASE_ ): lowercase__ = renew_attention_paths(SCREAMING_SNAKE_CASE_ ) lowercase__ = { "old": f'''output_blocks.{i}.1''', "new": f'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } lowercase__ = { f'''output_blocks.{i}.1.qkv.bias''': { "key": f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', "query": f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', "value": f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, f'''output_blocks.{i}.1.qkv.weight''': { "key": f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', "query": f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', "value": f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=SCREAMING_SNAKE_CASE_ , ) else: lowercase__ = renew_resnet_paths(SCREAMING_SNAKE_CASE_ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowercase__ = ".".join(["output_blocks", str(SCREAMING_SNAKE_CASE_ ), path["old"]] ) lowercase__ = ".".join(["up_blocks", str(SCREAMING_SNAKE_CASE_ ), "resnets", str(SCREAMING_SNAKE_CASE_ ), path["new"]] ) lowercase__ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowercase_ = parser.parse_args() lowercase_ = torch.load(args.checkpoint_path) with open(args.config_file) as f: lowercase_ = json.loads(f.read()) lowercase_ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] lowercase_ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: lowercase_ = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) lowercase_ = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) lowercase_ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
224
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off lowercase_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] lowercase_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class _snake_case ( lowercase__): UpperCamelCase__ : Optional[int] ="""whisper""" UpperCamelCase__ : Optional[int] =["""past_key_values"""] UpperCamelCase__ : Optional[Any] ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any], __lowercase : List[str]=5_1865, __lowercase : Dict=80, __lowercase : List[Any]=6, __lowercase : Union[str, Any]=4, __lowercase : Tuple=6, __lowercase : Dict=4, __lowercase : List[Any]=1536, __lowercase : Tuple=1536, __lowercase : Any=0.0, __lowercase : List[str]=0.0, __lowercase : List[Any]=5_0257, __lowercase : List[str]=True, __lowercase : str=True, __lowercase : int="gelu", __lowercase : Tuple=256, __lowercase : Tuple=0.0, __lowercase : List[Any]=0.0, __lowercase : Optional[int]=0.0, __lowercase : List[Any]=0.02, __lowercase : Union[str, Any]=False, __lowercase : str=1500, __lowercase : Optional[int]=448, __lowercase : Optional[Any]=5_0256, __lowercase : Tuple=5_0256, __lowercase : Any=5_0256, __lowercase : Union[str, Any]=None, __lowercase : Any=[220, 5_0256], __lowercase : List[Any]=False, __lowercase : int=256, __lowercase : int=False, __lowercase : Tuple=0.05, __lowercase : int=10, __lowercase : Dict=2, __lowercase : List[Any]=0.0, __lowercase : Optional[int]=10, __lowercase : Union[str, Any]=0, __lowercase : Tuple=7, **__lowercase : Union[str, Any], ): lowercase__ = vocab_size lowercase__ = num_mel_bins lowercase__ = d_model lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = encoder_ffn_dim lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowercase__ = classifier_proj_size lowercase__ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = apply_spec_augment lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks lowercase__ = median_filter_width super().__init__( pad_token_id=__lowercase, bos_token_id=__lowercase, eos_token_id=__lowercase, is_encoder_decoder=__lowercase, decoder_start_token_id=__lowercase, suppress_tokens=__lowercase, begin_suppress_tokens=__lowercase, **__lowercase, ) class _snake_case ( lowercase__): @property def A__ ( self : str ): lowercase__ = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: lowercase__ = {0: "batch"} else: lowercase__ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__lowercase, direction="inputs" ) return common_inputs def A__ ( self : int, __lowercase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], __lowercase : int = -1, __lowercase : int = -1, __lowercase : bool = False, __lowercase : Optional["TensorType"] = None, __lowercase : int = 2_2050, __lowercase : float = 5.0, __lowercase : int = 220, ): lowercase__ = OrderedDict() lowercase__ = OnnxConfig.generate_dummy_inputs( self, preprocessor=preprocessor.feature_extractor, batch_size=__lowercase, framework=__lowercase, sampling_rate=__lowercase, time_duration=__lowercase, frequency=__lowercase, ) lowercase__ = encoder_inputs["input_features"].shape[2] lowercase__ = encoder_sequence_length // 2 if self.use_past else seq_length lowercase__ = super().generate_dummy_inputs( preprocessor.tokenizer, __lowercase, __lowercase, __lowercase, __lowercase ) lowercase__ = encoder_inputs.pop("input_features" ) lowercase__ = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: lowercase__ = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def A__ ( self : int ): return 1e-3
224
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ ( __lowercase : list[float] , __lowercase : list[float] ) -> float: '''simple docstring''' _UpperCAmelCase = sorted(numsa + numsa ) _UpperCAmelCase , _UpperCAmelCase = divmod(len(__lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE :Tuple = [float(x) for x in input('''Enter the elements of first array: ''').split()] __SCREAMING_SNAKE_CASE :Any = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
22
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
0
from __future__ import annotations def __a ( lowerCAmelCase_ : list[int | float] ,lowerCAmelCase_ : int ,lowerCAmelCase_ : int ) -> Tuple: '''simple docstring''' if len(__a ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(__a ) or left < -len(__a ) or right >= len(__a ) or right < -len(__a ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] UpperCAmelCase_= (left + right) >> 1 # the middle UpperCAmelCase_= find_max(__a ,__a ,__a ) # find max in range[left, mid] UpperCAmelCase_= find_max(__a ,mid + 1 ,__a ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
350
import pytest import datasets # Import fixture modules as plugins __A = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def __a ( lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : Any ) -> Tuple: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def __a ( lowerCAmelCase_ : Tuple ) -> Optional[Any]: '''simple docstring''' config.addinivalue_line("""markers""" ,"""torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=lowerCAmelCase_ ) def __a ( lowerCAmelCase_ : List[str] ,lowerCAmelCase_ : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_= tmp_path_factory.getbasetemp() / """cache""" UpperCAmelCase_= test_hf_cache_home / """datasets""" UpperCAmelCase_= test_hf_cache_home / """metrics""" UpperCAmelCase_= test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" ,str(lowerCAmelCase_ ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" ,str(lowerCAmelCase_ ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" ,str(lowerCAmelCase_ ) ) UpperCAmelCase_= test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" ,str(lowerCAmelCase_ ) ) UpperCAmelCase_= test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" ,str(lowerCAmelCase_ ) ) @pytest.fixture(autouse=lowerCAmelCase_ ,scope="""session""" ) def __a ( ) -> Optional[int]: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCAmelCase_ ) def __a ( lowerCAmelCase_ : int ) -> str: '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" ,lowerCAmelCase_ ) @pytest.fixture def __a ( lowerCAmelCase_ : List[str] ) -> Union[str, Any]: '''simple docstring''' monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" ,lowerCAmelCase_ )
277
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __a = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(_a ) , torch_builtin(_a ) ) ) self.assertFalse(torch.allclose(gelu_python(_a ) , gelu_new(_a ) ) ) def __UpperCAmelCase ( self ): __a = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __a = get_activation('''gelu''' ) __a = get_activation('''gelu_10''' ) __a = torch_builtin(_a ) __a = geluaa(_a ) __a = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(_a ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __UpperCAmelCase ( self ): get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(_a ): get_activation('''bogus''' ) with self.assertRaises(_a ): get_activation(_a ) def __UpperCAmelCase ( self ): __a = get_activation('''gelu''' ) __a = 1 __a = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_a ): __a = acta.a
45
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
0
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _lowerCAmelCase = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") _lowerCAmelCase = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _lowerCAmelCase = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _lowerCAmelCase = sorted(arg_to_scheduler.keys()) _lowerCAmelCase = "{" + ", ".join(arg_to_scheduler_choices) + "}" class _SCREAMING_SNAKE_CASE ( pl.LightningModule ): def __init__( self : List[Any] , a__ : argparse.Namespace , a__ : Any=None , a__ : Tuple="base" , a__ : int=None , a__ : List[str]=None , a__ : Any=None , **a__ : List[str] , ): super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(a__ ) __magic_name__ = 0 __magic_name__ = Path(self.hparams.output_dir ) __magic_name__ = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __magic_name__ = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=a__ , **a__ , ) else: __magic_name__ = config __magic_name__ = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , a__ , a__ ): assert hasattr(self.config , a__ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , a__ , getattr(self.hparams , a__ ) ) if tokenizer is None: __magic_name__ = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=a__ , ) else: __magic_name__ = tokenizer __magic_name__ = MODEL_MODES[mode] if model is None: __magic_name__ = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=a__ , ) else: __magic_name__ = model def snake_case__ ( self : Any , *a__ : Optional[Any] , **a__ : Any ): __magic_name__ = self.model_type.from_pretrained(*a__ , **a__ ) def snake_case__ ( self : Optional[int] ): __magic_name__ = arg_to_scheduler[self.hparams.lr_scheduler] __magic_name__ = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __magic_name__ = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def snake_case__ ( self : str ): __magic_name__ = self.model __magic_name__ = ['''bias''', '''LayerNorm.weight'''] __magic_name__ = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: __magic_name__ = Adafactor( a__ , lr=self.hparams.learning_rate , scale_parameter=a__ , relative_step=a__ ) else: __magic_name__ = AdamW( a__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __magic_name__ = optimizer __magic_name__ = self.get_lr_scheduler() return [optimizer], [scheduler] def snake_case__ ( self : List[Any] , a__ : List[str] , a__ : List[str] ): return self.validation_step(a__ , a__ ) def snake_case__ ( self : str , a__ : Any ): return self.validation_end(a__ ) def snake_case__ ( self : List[str] ): __magic_name__ = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __magic_name__ = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def snake_case__ ( self : Union[str, Any] , a__ : List[Any] ): if stage == "test": __magic_name__ = len(self.test_dataloader().dataset ) else: __magic_name__ = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=a__ ) __magic_name__ = len(self.train_dataloader().dataset ) def snake_case__ ( self : List[str] , a__ : str , a__ : int , a__ : bool = False ): raise NotImplementedError('''You must implement this for your task''' ) def snake_case__ ( self : Any ): return self.train_loader def snake_case__ ( self : str ): return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=a__ ) def snake_case__ ( self : Dict ): return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=a__ ) def snake_case__ ( self : str , a__ : Any ): return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( a__ , list(filter(a__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def snake_case__ ( self : Optional[int] , a__ : Dict[str, Any] ): __magic_name__ = self.output_dir.joinpath('''best_tfmr''' ) __magic_name__ = self.step_count self.model.save_pretrained(a__ ) self.tokenizer.save_pretrained(a__ ) @staticmethod def snake_case__ ( a__ : List[Any] , a__ : Any ): parser.add_argument( '''--model_name_or_path''' , default=a__ , type=a__ , required=a__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=a__ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=a__ , type=a__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(a__ ).parent / '''test_run''' / '''cache''' ) , type=a__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=a__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=a__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=a__ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=a__ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=a__ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=a__ , metavar=a__ , type=a__ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=a__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=a__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=a__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=a__ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=a__ ) parser.add_argument('''--train_batch_size''' , default=32 , type=a__ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=a__ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class _SCREAMING_SNAKE_CASE ( pl.Callback ): def snake_case__ ( self : str , a__ : Dict , a__ : List[Any] ): if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _SCREAMING_SNAKE_CASE ( pl.Callback ): def snake_case__ ( self : Optional[int] , a__ : Optional[int] , a__ : Tuple ): # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(a__ ) class _SCREAMING_SNAKE_CASE ( pl.Callback ): def snake_case__ ( self : Tuple , a__ : Dict , a__ : Optional[Any] ): __magic_name__ = trainer.lr_schedulers[0]['''scheduler'''] __magic_name__ = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(a__ ) def snake_case__ ( self : Optional[int] , a__ : pl.Trainer , a__ : pl.LightningModule ): rank_zero_info('''***** Validation results *****''' ) __magic_name__ = trainer.callback_metrics # Log results for key in sorted(a__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(a__ , str(metrics[key] ) ) ) def snake_case__ ( self : Union[str, Any] , a__ : pl.Trainer , a__ : pl.LightningModule ): rank_zero_info('''***** Test results *****''' ) __magic_name__ = trainer.callback_metrics # Log and save results to file __magic_name__ = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(a__ , '''w''' ) as writer: for key in sorted(a__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(a__ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(a__ , str(metrics[key] ) ) ) def UpperCamelCase ( a , a ) -> None: '''simple docstring''' parser.add_argument( '''--output_dir''' , default=str(Path(a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=a , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=a ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=a , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=a , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def UpperCamelCase ( a , a , a=None , a=True , a=[] , a=None , a=None , **a , ) -> Union[str, Any]: '''simple docstring''' pl.seed_everything(args.seed ) # init model __magic_name__ = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=a ) # add custom checkpoints if checkpoint_callback is None: __magic_name__ = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(a ) if logging_callback is None: __magic_name__ = LoggingCallback() __magic_name__ = {} if args.fpaa: __magic_name__ = 16 if args.gpus > 1: __magic_name__ = '''auto''' __magic_name__ = '''ddp''' __magic_name__ = args.accumulate_grad_batches __magic_name__ = None __magic_name__ = '''auto''' __magic_name__ = pl.Trainer.from_argparse_args( a , weights_summary=a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=a , val_check_interval=1 , num_sanity_val_steps=2 , **a , ) if args.do_train: trainer.fit(a ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
368
'''simple docstring''' import functools def UpperCamelCase ( a , a ) -> int: '''simple docstring''' __magic_name__ = len(a ) __magic_name__ = len(a ) @functools.cache def min_distance(a , a ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __magic_name__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , a ) , 1 + min_distance(a , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
98
0
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @slow def A ( self : List[Any] ) -> Tuple: lowercase_ : Union[str, Any] = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) lowercase_ : Tuple = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(UpperCamelCase__ ) from datasets import load_dataset lowercase_ : List[str] = load_dataset('''nielsr/rvlcdip-demo''' ) lowercase_ : Tuple = dataset['''train'''][0]['''image'''].convert('''RGB''' ) lowercase_ : Tuple = image_processor(UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ : Dict = model(**UpperCamelCase__ ) lowercase_ : List[Any] = outputs.logits lowercase_ : Any = torch.Size((1, 16) ) self.assertEqual(logits.shape , UpperCamelCase__ ) lowercase_ : Optional[int] = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=UpperCamelCase__ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
33
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class A ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) lowerCAmelCase_ = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(UpperCamelCase__ ) from datasets import load_dataset lowerCAmelCase_ = load_dataset('''nielsr/rvlcdip-demo''' ) lowerCAmelCase_ = dataset['''train'''][0]['''image'''].convert('''RGB''' ) lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**UpperCamelCase__ ) lowerCAmelCase_ = outputs.logits lowerCAmelCase_ = torch.Size((1, 16) ) self.assertEqual(logits.shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347], device=UpperCamelCase__, dtype=torch.float, ) self.assertTrue(torch.allclose(logits[0, :3], UpperCamelCase__, atol=1E-4 ) )
278
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __a ( A__ ): _lowerCAmelCase : str = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCAmelCase : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) _lowerCAmelCase : ClassVar[Features] = Features({} ) _lowerCAmelCase : str = "text" @property def __lowercase ( self : str ): '''simple docstring''' return {self.text_column: "text"}
366
lowerCamelCase : Optional[int] ={ '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[str]: UpperCamelCase__ : Optional[Any] = set() # keep track of all the paths to be checked UpperCamelCase__ : Optional[Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase__ : int = queue.pop(0 ) # get the last node from the path UpperCamelCase__ : Dict = path[-1] if node not in explored: UpperCamelCase__ : Tuple = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase__ : List[str] = list(__lowerCAmelCase ) new_path.append(__lowerCAmelCase ) queue.append(__lowerCAmelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__lowerCAmelCase ) # in case there's no path between the 2 nodes return [] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase__ : Tuple = [start] UpperCamelCase__ : Optional[int] = set(__lowerCAmelCase ) # Keep tab on distances from `start` node. UpperCamelCase__ : str = {start: 0, target: -1} while queue: UpperCamelCase__ : Any = queue.pop(0 ) if node == target: UpperCamelCase__ : Union[str, Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__lowerCAmelCase ) queue.append(__lowerCAmelCase ) UpperCamelCase__ : List[Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
196
0
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __magic_name__ : """simple docstring""" def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' torch.manual_seed(0 ) A_ : Any = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) A_ : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) A_ : Optional[int] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A_ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=_a , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) A_ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) A_ : Optional[int] = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) A_ : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) A_ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A_ : Any = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=_a , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) A_ : Any = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) A_ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : int = self.get_dummy_components() A_ : int = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : Union[str, Any] = self.get_dummy_inputs(_a ) A_ : Optional[Any] = inputs["prompt"] A_ : Any = inputs["generator"] A_ : str = inputs["num_inference_steps"] A_ : Optional[Any] = inputs["output_type"] if "image" in inputs: A_ : str = inputs["image"] else: A_ : int = None if "mask_image" in inputs: A_ : Optional[Any] = inputs["mask_image"] else: A_ : Union[str, Any] = None if "original_image" in inputs: A_ : Optional[int] = inputs["original_image"] else: A_ : Dict = None A_ , A_ : List[str] = pipe.encode_prompt(_a ) # inputs with prompt converted to embeddings A_ : List[Any] = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: A_ : List[str] = image if mask_image is not None: A_ : int = mask_image if original_image is not None: A_ : Optional[int] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_a , _a , _a ) A_ : Optional[Any] = pipe(**_a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_a ) A_ : List[str] = self.pipeline_class.from_pretrained(_a ) pipe_loaded.to(_a ) pipe_loaded.set_progress_bar_config(disable=_a ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_a , _a ) is None , f"`{optional_component}` did not stay set to None after loading." , ) A_ : Dict = self.get_dummy_inputs(_a ) A_ : Optional[Any] = inputs["generator"] A_ : int = inputs["num_inference_steps"] A_ : Tuple = inputs["output_type"] # inputs with prompt converted to embeddings A_ : Optional[int] = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: A_ : List[Any] = image if mask_image is not None: A_ : Optional[Any] = mask_image if original_image is not None: A_ : str = original_image A_ : Union[str, Any] = pipe_loaded(**_a )[0] A_ : Tuple = np.abs(to_np(_a ) - to_np(_a ) ).max() self.assertLess(_a , 1e-4 ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[int] = self.get_dummy_components() A_ : List[str] = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A_ : List[Any] = self.get_dummy_inputs(_a ) A_ : Optional[int] = pipe(**_a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_a ) A_ : int = self.pipeline_class.from_pretrained(_a ) pipe_loaded.to(_a ) pipe_loaded.set_progress_bar_config(disable=_a ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests A_ : Any = self.get_dummy_inputs(_a ) A_ : List[str] = pipe_loaded(**_a )[0] A_ : Dict = np.abs(to_np(_a ) - to_np(_a ) ).max() self.assertLess(_a , 1e-4 )
300
"""simple docstring""" lowercase_ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowercase_ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowercase_ = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> str: assert len(str(lowerCAmelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __a = year // 100 __a = (5 * (century % 4) + 2) % 7 __a = year % 100 __a = centurian % 12 __a = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __a = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __a = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
45
0
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __a , unittest.TestCase ): UpperCamelCase__ : Tuple =LongformerTokenizer UpperCamelCase__ : Any =True UpperCamelCase__ : Dict =LongformerTokenizerFast UpperCamelCase__ : List[str] =True def __a ( self :Optional[Any]) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase_ = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__)))) UpperCAmelCase_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase_ = {'''unk_token''': '''<unk>'''} UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(UpperCamelCase__) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(UpperCamelCase__)) def __a ( self :Optional[int] , **_lowercase :str) -> Dict: kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__) def __a ( self :List[str] , **_lowercase :Optional[int]) -> Union[str, Any]: kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__) def __a ( self :List[str] , _lowercase :List[str]) -> Optional[Any]: UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = '''lower newer''' return input_text, output_text def __a ( self :int) -> List[Any]: UpperCAmelCase_ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCAmelCase_ = tokenizer.tokenize(UpperCamelCase__) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) UpperCAmelCase_ = tokens + [tokenizer.unk_token] UpperCAmelCase_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__) , UpperCamelCase__) def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=UpperCamelCase__) , [0, 31414, 232, 328, 2]) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=UpperCamelCase__) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''') UpperCAmelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase__) UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase__) UpperCAmelCase_ = tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__) UpperCAmelCase_ = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __a ( self :int) -> Dict: UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = '''Encode this sequence.''' UpperCAmelCase_ = tokenizer.byte_encoder[''' '''.encode('''utf-8''')[0]] # Testing encoder arguments UpperCAmelCase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__) UpperCAmelCase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''}) UpperCAmelCase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(encoded[1])[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__) # Testing spaces after special tokens UpperCAmelCase_ = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__)}) # mask token has a left space UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__) UpperCAmelCase_ = '''Encode <mask> sequence''' UpperCAmelCase_ = '''Encode <mask>sequence''' UpperCAmelCase_ = tokenizer.encode(UpperCamelCase__) UpperCAmelCase_ = encoded.index(UpperCamelCase__) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__) UpperCAmelCase_ = tokenizer.encode(UpperCamelCase__) UpperCAmelCase_ = encoded.index(UpperCamelCase__) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__) def __a ( self :int) -> Dict: pass def __a ( self :Union[str, Any]) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__) UpperCAmelCase_ = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__) UpperCAmelCase_ = '''A, <mask> AllenNLP sentence.''' UpperCAmelCase_ = tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__) UpperCAmelCase_ = tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids''']) , sum(tokens_p['''token_type_ids'''])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask''']) / len(tokens_r['''attention_mask''']) , sum(tokens_p['''attention_mask''']) / len(tokens_p['''attention_mask''']) , ) UpperCAmelCase_ = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids''']) UpperCAmelCase_ = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids''']) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>''']) self.assertSequenceEqual( UpperCamelCase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>''']) def __a ( self :Union[str, Any]) -> Optional[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__) UpperCAmelCase_ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__()) UpperCAmelCase_ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__()) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , UpperCamelCase__) self.assertEqual(post_processor_state['''add_prefix_space'''] , UpperCamelCase__) self.assertEqual(post_processor_state['''trim_offsets'''] , UpperCamelCase__) def __a ( self :List[Any]) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): UpperCAmelCase_ = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase_ = f"{text_of_1_token} {text_of_1_token}" UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__) UpperCAmelCase_ = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__) + 1, len(UpperCamelCase__) + 1 + len(UpperCamelCase__)) , ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__) UpperCAmelCase_ = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__) + 1, len(UpperCamelCase__) + 1 + len(UpperCamelCase__)) , ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__) UpperCAmelCase_ = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__), len(UpperCamelCase__) + 1 + len(UpperCamelCase__)) , ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__) UpperCAmelCase_ = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__), len(UpperCamelCase__) + 1 + len(UpperCamelCase__)) , ) UpperCAmelCase_ = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__) UpperCAmelCase_ = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase__))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__) + 1, 1 + len(UpperCamelCase__) + 1 + len(UpperCamelCase__)) , ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__) UpperCAmelCase_ = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__), 1 + len(UpperCamelCase__) + 1 + len(UpperCamelCase__)) , ) UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__) UpperCAmelCase_ = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__), 1 + len(UpperCamelCase__) + 1 + len(UpperCamelCase__)) , )
369
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
0
'''simple docstring''' import math def lowerCamelCase ( __lowerCamelCase : int ) ->str: _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 while num > 0: _SCREAMING_SNAKE_CASE = num % 8 _SCREAMING_SNAKE_CASE = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) )) counter += 1 _SCREAMING_SNAKE_CASE = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'0o{int(__lowerCamelCase )}' def lowerCamelCase ( ) ->None: print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(216 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(512 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
58
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase A_ : Any = logging.get_logger(__name__) A_ : Optional[int] = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """longformer""" def __init__( self ,a_ = 512 ,a_ = 2 ,a_ = 1 ,a_ = 0 ,a_ = 2 ,a_ = 30_522 ,a_ = 768 ,a_ = 12 ,a_ = 12 ,a_ = 3_072 ,a_ = "gelu" ,a_ = 0.1 ,a_ = 0.1 ,a_ = 512 ,a_ = 2 ,a_ = 0.02 ,a_ = 1E-1_2 ,a_ = False ,**a_ ,) -> List[Any]: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = attention_window _UpperCAmelCase : Any = sep_token_id _UpperCAmelCase : Dict = bos_token_id _UpperCAmelCase : Tuple = eos_token_id _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : Optional[int] = type_vocab_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Union[str, Any] = onnx_export class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = "default" ,a_ = None ) -> int: super().__init__(a_ ,a_ ,a_ ) _UpperCAmelCase : Tuple = True @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: _UpperCAmelCase : str = super().outputs if self.task == "default": _UpperCAmelCase : int = {0: """batch"""} return outputs @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset ,14 ) def _snake_case ( self ,a_ ,a_ = -1 ,a_ = -1 ,a_ = False ,a_ = None ,) -> Mapping[str, Any]: _UpperCAmelCase : List[str] = super().generate_dummy_inputs( preprocessor=a_ ,batch_size=a_ ,seq_length=a_ ,is_pair=a_ ,framework=a_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _UpperCAmelCase : int = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global _UpperCAmelCase : List[str] = 1 return inputs
215
0
class A : '''simple docstring''' def __init__(self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = 0 lowercase__ = 0 lowercase__ = {} def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" if vertex not in self.adjacency: lowercase__ = {} self.num_vertices += 1 def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> int: """simple docstring""" self.add_vertex(_UpperCAmelCase ) self.add_vertex(_UpperCAmelCase ) if head == tail: return lowercase__ = weight lowercase__ = weight def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCAmelCase ) ): lowercase__ = list(edges[i] ) edges.sort(key=lambda _UpperCAmelCase : e[2] ) for i in range(len(_UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = weight lowercase__ = weight def __str__(self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCamelCase__ (self : Tuple ) -> List[str]: """simple docstring""" return self.adjacency.keys() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None ) -> List[str]: """simple docstring""" lowercase__ = Graph() if vertices is None: lowercase__ = [] if edges is None: lowercase__ = [] for vertex in vertices: g.add_vertex(_UpperCAmelCase ) for edge in edges: g.add_edge(*_UpperCAmelCase ) return g class A : '''simple docstring''' def __init__(self : int ) -> int: """simple docstring""" lowercase__ = {} lowercase__ = {} def __len__(self : Any ) -> Dict: """simple docstring""" return len(self.parent ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : str ) -> int: """simple docstring""" if item in self.parent: return self.find(_UpperCAmelCase ) lowercase__ = item lowercase__ = 0 return item def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" if item not in self.parent: return self.make_set(_UpperCAmelCase ) if item != self.parent[item]: lowercase__ = self.find(self.parent[item] ) return self.parent[item] def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.find(_UpperCAmelCase ) lowercase__ = self.find(_UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ = roota return roota return None @staticmethod def lowerCamelCase__ (_UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = graph.num_vertices lowercase__ = Graph.UnionFind() lowercase__ = [] while num_components > 1: lowercase__ = {} for vertex in graph.get_vertices(): lowercase__ = -1 lowercase__ = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = union_find.find(_UpperCAmelCase ) lowercase__ = union_find.find(_UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ = cheap_edge[vertex] if union_find.find(_UpperCAmelCase ) != union_find.find(_UpperCAmelCase ): union_find.union(_UpperCAmelCase , _UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase__ = num_components - 1 lowercase__ = Graph.build(edges=_UpperCAmelCase ) return mst
146
def UpperCamelCase ( __magic_name__ : str ) -> List[str]: # noqa: E741 """simple docstring""" lowercase__ = len(__magic_name__ ) lowercase__ = 0 lowercase__ = [0] * n lowercase__ = [False] * n lowercase__ = [False] * n def dfs(__magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Any ): if parent == root: out_edge_count += 1 lowercase__ = True lowercase__ = at for to in l[at]: if to == parent: pass elif not visited[to]: lowercase__ = dfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowercase__ = True # AP found via cycle if at == low[to]: lowercase__ = True else: lowercase__ = min(low[at] , __magic_name__ ) return out_edge_count for i in range(__magic_name__ ): if not visited[i]: lowercase__ = 0 lowercase__ = dfs(__magic_name__ , __magic_name__ , -1 , __magic_name__ ) lowercase__ = out_edge_count > 1 for x in range(len(__magic_name__ ) ): if is_art[x] is True: print(__magic_name__ ) # Adjacency list of graph A : List[str] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
146
1
'''simple docstring''' from numpy import exp, pi, sqrt def snake_case__ ( _A: Tuple , _A: float = 0.0 , _A: float = 1.0 ) -> int: '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
272
'''simple docstring''' def snake_case__ ( _A: str ) -> list[int]: '''simple docstring''' lowerCAmelCase = [0 for i in range(len(_A ) )] # initialize interval's left pointer and right pointer lowerCAmelCase , lowerCAmelCase = 0, 0 for i in range(1 , len(_A ) ): # case when current index is inside the interval if i <= right_pointer: lowerCAmelCase = min(right_pointer - i + 1 , z_result[i - left_pointer] ) lowerCAmelCase = min_edge while go_next(_A , _A , _A ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: lowerCAmelCase , lowerCAmelCase = i, i + z_result[i] - 1 return z_result def snake_case__ ( _A: int , _A: list[int] , _A: str ) -> bool: '''simple docstring''' return i + z_result[i] < len(_A ) and s[z_result[i]] == s[i + z_result[i]] def snake_case__ ( _A: str , _A: str ) -> int: '''simple docstring''' lowerCAmelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string lowerCAmelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_A ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
272
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split(), encoding='utf-8', check=A, ) assert hasattr(self, 'env' ) def UpperCamelCase_ ( self, A=1 ): '''simple docstring''' return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"{self.env.base_job_name}-single", instance_count=A, instance_type=self.instance_type, debugger_hook_config=A, hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path}, metric_definitions=self.env.metric_definitions, py_version='py36', ) def UpperCamelCase_ ( self, A ): '''simple docstring''' TrainingJobAnalytics(A ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.create_estimator() # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE : str = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE : Any = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) SCREAMING_SNAKE_CASE : Any = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE : Union[str, Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds', 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json", 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss}, A )
371
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class _a : '''simple docstring''' A : Tuple = BlenderbotSmallConfig A : Optional[int] = {} A : Any = '''gelu''' def __init__( self, A, A=13, A=7, A=True, A=False, A=99, A=32, A=2, A=4, A=37, A=0.1, A=0.1, A=20, A=2, A=1, A=0, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : Dict = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_labels SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id SCREAMING_SNAKE_CASE : List[str] = pad_token_id SCREAMING_SNAKE_CASE : Union[str, Any] = bos_token_id def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) SCREAMING_SNAKE_CASE : str = tf.concat([input_ids, eos_tensor], axis=1 ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) SCREAMING_SNAKE_CASE : List[str] = prepare_blenderbot_small_inputs_dict(A, A, A ) return config, inputs_dict def UpperCamelCase_ ( self, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = TFBlenderbotSmallModel(config=A ).get_decoder() SCREAMING_SNAKE_CASE : Optional[int] = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE : List[Any] = input_ids[:1, :] SCREAMING_SNAKE_CASE : List[Any] = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE : Dict = inputs_dict['head_mask'] SCREAMING_SNAKE_CASE : int = 1 # first forward pass SCREAMING_SNAKE_CASE : Union[str, Any] = model(A, attention_mask=A, head_mask=A, use_cache=A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE : List[Any] = ids_tensor((self.batch_size, 3), config.vocab_size ) SCREAMING_SNAKE_CASE : Tuple = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE : Union[str, Any] = tf.concat([input_ids, next_tokens], axis=-1 ) SCREAMING_SNAKE_CASE : str = tf.concat([attention_mask, next_attn_mask], axis=-1 ) SCREAMING_SNAKE_CASE : Any = model(A, attention_mask=A )[0] SCREAMING_SNAKE_CASE : List[str] = model(A, attention_mask=A, past_key_values=A )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE : str = int(ids_tensor((1,), output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE : List[str] = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A, A, rtol=1E-3 ) def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: int ,__UpperCamelCase: Optional[Any]=None ,__UpperCamelCase: List[str]=None ,__UpperCamelCase: int=None ,__UpperCamelCase: Any=None ,__UpperCamelCase: Union[str, Any]=None ,): """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(tf.math.not_equal(__UpperCamelCase ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE : Any = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: SCREAMING_SNAKE_CASE : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : List[str] = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) A : List[str] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () A : List[str] = ( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) A : int = True A : Optional[int] = False A : str = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = TFBlenderbotSmallModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self, config_class=A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_tokenizers @require_tf class _a ( unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = [ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] A : List[Any] = '''facebook/blenderbot_small-90M''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.tokenizer(self.src_text, return_tensors='tf' ) SCREAMING_SNAKE_CASE : int = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, use_cache=A, ) SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=A )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
246
0
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } SCREAMING_SNAKE_CASE : List[str] = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } SCREAMING_SNAKE_CASE : int = { "facebook/blenderbot_small-90M": 512, } class _lowerCamelCase( _a ): lowercase_ : Tuple = VOCAB_FILES_NAMES lowercase_ : int = PRETRAINED_VOCAB_FILES_MAP lowercase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : List[Any] = BlenderbotSmallTokenizer def __init__( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase="<|endoftext|>", lowerCamelCase="<|endoftext|>", lowerCamelCase="<|endoftext|>", lowerCamelCase=False, lowerCamelCase=True, **lowerCamelCase, ) -> Tuple: """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=lowerCamelCase, merges=lowerCamelCase, add_prefix_space=lowerCamelCase, trim_offsets=lowerCamelCase, ), bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, **lowerCamelCase, ) _lowercase : Tuple = add_prefix_space def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=None) -> int: """simple docstring""" _lowercase : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" _lowercase : Tuple = [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
21
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( lowerCamelCase__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] =ort.SessionOptions() UpperCAmelCase : Optional[int] =False return options def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Optional[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : List[str] =OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Dict ='''A red cat sitting on a park bench''' UpperCAmelCase : int =np.random.RandomState(0 ) UpperCAmelCase : Any =pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type='''np''' , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : Optional[int] =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Tuple =np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Tuple =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : List[str] =LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCAmelCase : int =OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Union[str, Any] ='''A red cat sitting on a park bench''' UpperCAmelCase : int =np.random.RandomState(0 ) UpperCAmelCase : str =pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type='''np''' , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : int =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] =np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
348
0
'''simple docstring''' from __future__ import annotations lowercase__ = tuple[int, int, int] lowercase__ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase lowercase__ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- lowercase__ = 'EGZWVONAHDCLFQMSIPJBYUKXTR' lowercase__ = 'FOBHMDKEXQNRAULPGSJVTYICZW' lowercase__ = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- lowercase__ = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- lowercase__ = 'RMDJXFUWGISLHVTCQNKYPBEZOA' lowercase__ = 'SGLCPQWZHKXAREONTFBVIYJUDM' lowercase__ = 'HVSICLTYKQUBXDWAJZOMFGPREN' lowercase__ = 'RZWQHFMVDBKICJLNTUXAGYPSOE' lowercase__ = 'LFKIJODBEGAMQPXVUHYSTCZRWN' lowercase__ = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: '''simple docstring''' if (unique_rotsel := len(set(lowerCamelCase_ ) )) < 3: snake_case : Any = F'Please use 3 unique rotors (not {unique_rotsel})' raise Exception(lowerCamelCase_ ) # Checks if rotor positions are valid snake_case : Union[str, Any] = rotpos if not 0 < rotorposa <= len(lowerCamelCase_ ): snake_case : List[Any] = F'First rotor position is not within range of 1..26 ({rotorposa}' raise ValueError(lowerCamelCase_ ) if not 0 < rotorposa <= len(lowerCamelCase_ ): snake_case : Optional[int] = F'Second rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(lowerCamelCase_ ) if not 0 < rotorposa <= len(lowerCamelCase_ ): snake_case : Union[str, Any] = F'Third rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(lowerCamelCase_ ) # Validates string and returns dict snake_case : str = _plugboard(lowerCamelCase_ ) return rotpos, rotsel, pbdict def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): snake_case : List[str] = F'Plugboard setting isn\'t type string ({type(lowerCamelCase_ )})' raise TypeError(lowerCamelCase_ ) elif len(lowerCamelCase_ ) % 2 != 0: snake_case : Any = F'Odd number of symbols ({len(lowerCamelCase_ )})' raise Exception(lowerCamelCase_ ) elif pbstring == "": return {} pbstring.replace(''' ''' , '''''' ) # Checks if all characters are unique snake_case : Union[str, Any] = set() for i in pbstring: if i not in abc: snake_case : int = F'\'{i}\' not in list of symbols' raise Exception(lowerCamelCase_ ) elif i in tmppbl: snake_case : List[str] = F'Duplicate symbol ({i})' raise Exception(lowerCamelCase_ ) else: tmppbl.add(lowerCamelCase_ ) del tmppbl # Created the dictionary snake_case : Optional[int] = {} for j in range(0 , len(lowerCamelCase_ ) - 1 , 2 ): snake_case : Any = pbstring[j + 1] snake_case : Union[str, Any] = pbstring[j] return pb def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = (rotora, rotora, rotora) , SCREAMING_SNAKE_CASE__ = "" , ) -> Optional[Any]: '''simple docstring''' snake_case : int = text.upper() snake_case : Union[str, Any] = _validator( lowerCamelCase_ , lowerCamelCase_ , plugb.upper() ) snake_case : str = rotor_position snake_case : Tuple = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 snake_case : Tuple = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: snake_case : Any = plugboard[symbol] # rotor ra -------------------------- snake_case : Union[str, Any] = abc.index(lowerCamelCase_ ) + rotorposa snake_case : Union[str, Any] = rotora[index % len(lowerCamelCase_ )] # rotor rb -------------------------- snake_case : List[Any] = abc.index(lowerCamelCase_ ) + rotorposa snake_case : Union[str, Any] = rotora[index % len(lowerCamelCase_ )] # rotor rc -------------------------- snake_case : Optional[int] = abc.index(lowerCamelCase_ ) + rotorposa snake_case : Optional[Any] = rotora[index % len(lowerCamelCase_ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher snake_case : Tuple = reflector[symbol] # 2nd rotors snake_case : Dict = abc[rotora.index(lowerCamelCase_ ) - rotorposa] snake_case : Any = abc[rotora.index(lowerCamelCase_ ) - rotorposa] snake_case : Tuple = abc[rotora.index(lowerCamelCase_ ) - rotorposa] # 2nd plugboard if symbol in plugboard: snake_case : int = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowerCamelCase_ ): snake_case : List[str] = 0 rotorposa += 1 if rotorposa >= len(lowerCamelCase_ ): snake_case : str = 0 rotorposa += 1 if rotorposa >= len(lowerCamelCase_ ): snake_case : Union[str, Any] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowerCamelCase_ ) return "".join(lowerCamelCase_ ) if __name__ == "__main__": lowercase__ = 'This is my Python script that emulates the Enigma machine from WWII.' lowercase__ = (1, 1, 1) lowercase__ = 'pictures' lowercase__ = (rotora, rotora, rotora) lowercase__ = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
355
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) lowercase__ = logging.getLogger(__name__) lowercase__ = {"facebook/bart-base": BartForConditionalGeneration} lowercase__ = {"facebook/bart-base": BartTokenizer} def _UpperCamelCase ( ) -> int: '''simple docstring''' snake_case : int = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=SCREAMING_SNAKE_CASE__ , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=SCREAMING_SNAKE_CASE__ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=SCREAMING_SNAKE_CASE__ , ) parser.add_argument( '''--config_name''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=SCREAMING_SNAKE_CASE__ , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='''Where to store the final ONNX file.''' ) snake_case : List[str] = parser.parse_args() return args def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="cpu" ) -> int: '''simple docstring''' snake_case : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case : Any = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ ) if model_name in ["facebook/bart-base"]: snake_case : Dict = 0 snake_case : Optional[Any] = None snake_case : int = 0 return huggingface_model, tokenizer def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: '''simple docstring''' model.eval() snake_case : List[Any] = None snake_case : Tuple = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE__ ) ) with torch.no_grad(): snake_case : Optional[int] = '''My friends are cool but they eat too many carbs.''' snake_case : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='''pt''' ).to(model.device ) snake_case : Dict = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , early_stopping=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE__ , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE__ , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=SCREAMING_SNAKE_CASE__ , ) logger.info('''Model exported to {}'''.format(SCREAMING_SNAKE_CASE__ ) ) snake_case : Any = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE__ ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(SCREAMING_SNAKE_CASE__ ) ) snake_case : int = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE__ ) snake_case : Optional[int] = ort_sess.run( SCREAMING_SNAKE_CASE__ , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(SCREAMING_SNAKE_CASE__ ), '''max_length''': np.array(SCREAMING_SNAKE_CASE__ ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def _UpperCamelCase ( ) -> Any: '''simple docstring''' snake_case : List[str] = parse_args() snake_case : Tuple = 5 snake_case : int = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() snake_case : str = torch.device(args.device ) snake_case ,snake_case : Any = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE__ ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(SCREAMING_SNAKE_CASE__ ) if args.max_length: snake_case : Tuple = args.max_length if args.num_beams: snake_case : List[Any] = args.num_beams if args.output_file_path: snake_case : str = args.output_file_path else: snake_case : int = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
83
0