code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
class lowerCAmelCase__ : '''simple docstring''' def __init__( self) -> Optional[Any]: _A : Union[str, Any] = {} def _lowerCamelCase ( self) -> None: print(self.vertex) for i in self.vertex: print(__lowerCamelCase , " -> " , " -> ".join([str(__lowerCamelCase) for j in self.vertex[i]])) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__lowerCamelCase) else: # else make a new vertex _A : Optional[Any] = [to_vertex] def _lowerCamelCase ( self) -> None: # visited array for storing already visited nodes _A : List[Any] = [False] * len(self.vertex) # call the recursive helper function for i in range(len(self.vertex)): if not visited[i]: self.dfs_recursive(__lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> None: # mark start vertex as visited _A : str = True print(__lowerCamelCase , end=" ") # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__lowerCamelCase , __lowerCamelCase) if __name__ == "__main__": lowerCAmelCase__ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
11
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: _A = tempfile.mkdtemp() _A = BlipImageProcessor() _A = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) _A = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) _A = InstructBlipProcessor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).tokenizer def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).image_processor def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).qformer_tokenizer def UpperCAmelCase ( self ) -> int: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self ) -> str: _A = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _A = self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) _A = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) self.assertIsInstance(processor.qformer_tokenizer , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> int: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = self.prepare_image_inputs() _A = image_processor(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor(images=lowerCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = """lower newer""" _A = processor(text=lowerCAmelCase_ ) _A = tokenizer(lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _A = qformer_tokenizer(lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def UpperCAmelCase ( self ) -> List[str]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = """lower newer""" _A = self.prepare_image_inputs() _A = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def UpperCAmelCase ( self ) -> int: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(lowerCAmelCase_ ) _A = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = """lower newer""" _A = self.prepare_image_inputs() _A = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
180
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Any = """bert""" def __init__( self : int , a__ : Dict=3_0522 , a__ : int=768 , a__ : Dict=12 , a__ : List[str]=12 , a__ : List[str]=3072 , a__ : int="gelu" , a__ : List[str]=0.1 , a__ : Union[str, Any]=0.1 , a__ : str=512 , a__ : List[Any]=2 , a__ : Any=0.02 , a__ : Optional[int]=1E-12 , a__ : List[Any]=0 , a__ : Dict="absolute" , a__ : Dict=True , a__ : Optional[int]=None , **a__ : Optional[int] , ): super().__init__(pad_token_id=a__ , **a__ ) __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = hidden_act __magic_name__ = intermediate_size __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = position_embedding_type __magic_name__ = use_cache __magic_name__ = classifier_dropout class _SCREAMING_SNAKE_CASE ( __a ): @property def snake_case__ ( self : List[Any] ): if self.task == "multiple-choice": __magic_name__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __magic_name__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
356
'''simple docstring''' from __future__ import annotations from fractions import Fraction def UpperCamelCase ( a , a ) -> bool: '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCamelCase ( a ) -> list[str]: '''simple docstring''' __magic_name__ = [] __magic_name__ = 11 __magic_name__ = int('''1''' + '''0''' * digit_len ) for num in range(a , a ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(a , a ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 __magic_name__ = 10 return solutions def UpperCamelCase ( a = 2 ) -> int: '''simple docstring''' __magic_name__ = 1.0 for fraction in fraction_list(a ): __magic_name__ = Fraction(a ) result *= frac.denominator / frac.numerator return int(a ) if __name__ == "__main__": print(solution())
98
0
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = set() # edges = list of graph's edges _lowerCAmelCase : Dict = get_edges(_lowerCamelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _lowerCAmelCase , _lowerCAmelCase : List[Any] = edges.pop() chosen_vertices.add(_lowerCamelCase ) chosen_vertices.add(_lowerCamelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_lowerCamelCase ) return chosen_vertices def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
36
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE :str = 'RegNetConfig' # Base docstring SCREAMING_SNAKE_CASE :List[str] = 'facebook/regnet-y-040' SCREAMING_SNAKE_CASE :Union[str, Any] = [1, 1088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE :Optional[int] = 'facebook/regnet-y-040' SCREAMING_SNAKE_CASE :Any = 'tabby, tabby cat' SCREAMING_SNAKE_CASE :Optional[int] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ,A : int ,A : int = 3 ,A : int = 1 ,A : int = 1 ,A : Optional[str] = "relu" ,**A : Dict ,): super().__init__(**A ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __A = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __A = tf.keras.layers.ConvaD( filters=A ,kernel_size=A ,strides=A ,padding="VALID" ,groups=A ,use_bias=A ,name="convolution" ,) __A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" ) __A = ACTaFN[activation] if activation is not None else tf.identity def UpperCamelCase_ ( self : List[Any] ,A : Any ): __A = self.convolution(self.padding(A ) ) __A = self.normalization(A ) __A = self.activation(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ,A : RegNetConfig ,**A : str ): super().__init__(**A ) __A = config.num_channels __A = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name="embedder" ,) def UpperCamelCase_ ( self : Tuple ,A : Optional[Any] ): __A = shape_list(A )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __A = tf.transpose(A ,perm=(0, 2, 3, 1) ) __A = self.embedder(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[int] ,A : int ,A : int = 2 ,**A : Tuple ): super().__init__(**A ) __A = tf.keras.layers.ConvaD( filters=A ,kernel_size=1 ,strides=A ,use_bias=A ,name="convolution" ) __A = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name="normalization" ) def UpperCamelCase_ ( self : Union[str, Any] ,A : tf.Tensor ,A : bool = False ): return self.normalization(self.convolution(A ) ,training=A ) class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Dict ,A : int ,A : int ,**A : str ): super().__init__(**A ) __A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" ) __A = [ tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="relu" ,name="attention.0" ), tf.keras.layers.ConvaD(filters=A ,kernel_size=1 ,activation="sigmoid" ,name="attention.2" ), ] def UpperCamelCase_ ( self : Dict ,A : List[Any] ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __A = self.pooler(A ) for layer_module in self.attention: __A = layer_module(A ) __A = hidden_state * pooled return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : Optional[int] ): super().__init__(**A ) __A = in_channels != out_channels or stride != 1 __A = max(1 ,out_channels // config.groups_width ) __A = ( TFRegNetShortCut(A ,stride=A ,name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" ,name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __A = [ TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ), TFRegNetConvLayer( A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ), TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.2" ), ] __A = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : int ,A : Optional[int] ): __A = hidden_state for layer_module in self.layers: __A = layer_module(A ) __A = self.shortcut(A ) hidden_state += residual __A = self.activation(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] ,A : RegNetConfig ,A : int ,A : int ,A : int = 1 ,**A : str ): super().__init__(**A ) __A = in_channels != out_channels or stride != 1 __A = max(1 ,out_channels // config.groups_width ) __A = ( TFRegNetShortCut(A ,stride=A ,name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" ,name="shortcut" ) ) __A = [ TFRegNetConvLayer(A ,kernel_size=1 ,activation=config.hidden_act ,name="layer.0" ), TFRegNetConvLayer( A ,stride=A ,groups=A ,activation=config.hidden_act ,name="layer.1" ), TFRegNetSELayer(A ,reduced_channels=int(round(in_channels / 4 ) ) ,name="layer.2" ), TFRegNetConvLayer(A ,kernel_size=1 ,activation=A ,name="layer.3" ), ] __A = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Dict ,A : Any ): __A = hidden_state for layer_module in self.layers: __A = layer_module(A ) __A = self.shortcut(A ) hidden_state += residual __A = self.activation(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] ,A : RegNetConfig ,A : int ,A : int ,A : int = 2 ,A : int = 2 ,**A : Optional[int] ): super().__init__(**A ) __A = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer __A = [ # downsampling is done in the first layer with stride of 2 layer(A ,A ,A ,stride=A ,name="layers.0" ), *[layer(A ,A ,A ,name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def UpperCamelCase_ ( self : Any ,A : List[str] ): for layer_module in self.layers: __A = layer_module(A ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any ,A : RegNetConfig ,**A : List[str] ): super().__init__(**A ) __A = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name="stages.0" ,) ) __A = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(A ,A ,A ,depth=A ,name=f'''stages.{i+1}''' ) ) def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor ,A : bool = False ,A : bool = True ): __A = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __A = hidden_states + (hidden_state,) __A = stage_module(A ) if output_hidden_states: __A = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A ,hidden_states=A ) @keras_serializable class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' snake_case_ = RegNetConfig def __init__( self : int ,A : Optional[int] ,**A : Dict ): super().__init__(**A ) __A = config __A = TFRegNetEmbeddings(A ,name="embedder" ) __A = TFRegNetEncoder(A ,name="encoder" ) __A = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A ,name="pooler" ) @unpack_inputs def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : bool = False ,): __A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A = return_dict if return_dict is not None else self.config.use_return_dict __A = self.embedder(A ,training=A ) __A = self.encoder( A ,output_hidden_states=A ,return_dict=A ,training=A ) __A = encoder_outputs[0] __A = self.pooler(A ) # Change to NCHW output format have uniformity in the modules __A = tf.transpose(A ,perm=(0, 3, 1, 2) ) __A = tf.transpose(A ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __A = tuple([tf.transpose(A ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A ,pooler_output=A ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = RegNetConfig snake_case_ = "regnet" snake_case_ = "pixel_values" @property def UpperCamelCase_ ( self : Optional[Any] ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )} SCREAMING_SNAKE_CASE :Dict = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' SCREAMING_SNAKE_CASE :Dict = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , __SCREAMING_SNAKE_CASE , ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] ,A : RegNetConfig ,*A : List[Any] ,**A : str ): super().__init__(A ,*A ,**A ) __A = TFRegNetMainLayer(A ,name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=A ,config_class=_CONFIG_FOR_DOC ,modality="vision" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCamelCase_ ( self : Tuple ,A : tf.Tensor ,A : Optional[bool] = None ,A : Optional[bool] = None ,A : int=False ,): __A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A = return_dict if return_dict is not None else self.config.use_return_dict __A = self.regnet( pixel_values=A ,output_hidden_states=A ,return_dict=A ,training=A ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __SCREAMING_SNAKE_CASE , ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] ,A : RegNetConfig ,*A : str ,**A : Tuple ): super().__init__(A ,*A ,**A ) __A = config.num_labels __A = TFRegNetMainLayer(A ,name="regnet" ) # classification head __A = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=A ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCamelCase_ ( self : List[str] ,A : tf.Tensor = None ,A : tf.Tensor = None ,A : bool = None ,A : bool = None ,A : Union[str, Any]=False ,): __A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A = return_dict if return_dict is not None else self.config.use_return_dict __A = self.regnet( A ,output_hidden_states=A ,return_dict=A ,training=A ) __A = outputs.pooler_output if return_dict else outputs[1] __A = self.classifier[0](A ) __A = self.classifier[1](A ) __A = None if labels is None else self.hf_compute_loss(labels=A ,logits=A ) if not return_dict: __A = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A ,logits=A ,hidden_states=outputs.hidden_states )
15
0
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCamelCase_ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): __magic_name__ = None def snake_case ( A__ ,A__ ,): import pyspark def generate_fn(): UpperCAmelCase_ : Union[str, Any] = df.select("*" ,pyspark.sql.functions.spark_partition_id().alias("part_id" ) ) for partition_id in partition_order: UpperCAmelCase_ : List[str] = df_with_partition_id.select("*" ).where(F"""part_id = {partition_id}""" ).drop("part_id" ) UpperCAmelCase_ : Optional[int] = partition_df.collect() UpperCAmelCase_ : int = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class UpperCamelCase_ (_BaseExamplesIterable ): def __init__( self : List[str] , lowerCAmelCase_ : "pyspark.sql.DataFrame" , lowerCAmelCase_ : Union[str, Any]=None , ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = df UpperCAmelCase_ : List[Any] = partition_order or range(self.df.rdd.getNumPartitions() ) UpperCAmelCase_ : Union[str, Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Optional[Any] ) -> str: yield from self.generate_examples_fn() def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : np.random.Generator ) -> "SparkExamplesIterable": UpperCAmelCase_ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCAmelCase_ ) return SparkExamplesIterable(self.df , partition_order=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> "SparkExamplesIterable": UpperCAmelCase_ : Dict = self.split_shard_indices_by_worker(lowerCAmelCase_ , lowerCAmelCase_ ) return SparkExamplesIterable(self.df , partition_order=lowerCAmelCase_ ) @property def _SCREAMING_SNAKE_CASE ( self : int ) -> int: return len(self.partition_order ) class UpperCamelCase_ (datasets.DatasetBuilder ): __magic_name__ = SparkConfig def __init__( self : int , lowerCAmelCase_ : "pyspark.sql.DataFrame" , lowerCAmelCase_ : str = None , lowerCAmelCase_ : str = None , **lowerCAmelCase_ : Union[str, Any] , ) -> List[Any]: import pyspark UpperCAmelCase_ : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() UpperCAmelCase_ : str = df UpperCAmelCase_ : Optional[Any] = working_dir super().__init__( cache_dir=lowerCAmelCase_ , config_name=str(self.df.semanticHash() ) , **lowerCAmelCase_ , ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: # Returns the path of the created file. def create_cache_and_write_probe(lowerCAmelCase_ : int ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCAmelCase_ , "a" ) return [probe_file] if self._spark.conf.get("spark.master" , "" ).startswith("local" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: UpperCAmelCase_ : Optional[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(lowerCAmelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return datasets.DatasetInfo(features=self.config.features ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : datasets.download.download_manager.DownloadManager ) -> List[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : List[str] ) -> Union[str, Any]: import pyspark def get_arrow_batch_size(lowerCAmelCase_ : str ): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} ) UpperCAmelCase_ : List[str] = self.df.count() UpperCAmelCase_ : Tuple = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. UpperCAmelCase_ : Optional[Any] = ( self.df.limit(lowerCAmelCase_ ) .repartition(1 ) .mapInArrow(lowerCAmelCase_ , "batch_bytes: long" ) .agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) ) .collect()[0] .sample_bytes / sample_num_rows ) UpperCAmelCase_ : Tuple = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. UpperCAmelCase_ : Union[str, Any] = min(lowerCAmelCase_ , int(approx_total_size / max_shard_size ) ) UpperCAmelCase_ : Tuple = self.df.repartition(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark UpperCAmelCase_ : List[str] = ParquetWriter if file_format == "parquet" else ArrowWriter UpperCAmelCase_ : str = os.path.join(self._working_dir , os.path.basename(lowerCAmelCase_ ) ) if self._working_dir else fpath UpperCAmelCase_ : Optional[int] = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. UpperCAmelCase_ : Any = self.config.features UpperCAmelCase_ : int = self._writer_batch_size UpperCAmelCase_ : str = self._fs.storage_options def write_arrow(lowerCAmelCase_ : List[Any] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. UpperCAmelCase_ : str = pyspark.TaskContext().taskAttemptId() UpperCAmelCase_ : List[str] = next(lowerCAmelCase_ , lowerCAmelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , ) UpperCAmelCase_ : str = 0 UpperCAmelCase_ : List[str] = writer_class( features=lowerCAmelCase_ , path=working_fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , writer_batch_size=lowerCAmelCase_ , storage_options=lowerCAmelCase_ , embed_local_files=lowerCAmelCase_ , ) UpperCAmelCase_ : int = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCAmelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) shard_id += 1 UpperCAmelCase_ : Tuple = writer_class( features=writer._features , path=working_fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , writer_batch_size=lowerCAmelCase_ , storage_options=lowerCAmelCase_ , embed_local_files=lowerCAmelCase_ , ) UpperCAmelCase_ : int = pa.Table.from_batches([batch] ) writer.write_table(lowerCAmelCase_ ) if writer._num_bytes > 0: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCAmelCase_ ) ): UpperCAmelCase_ : Optional[int] = os.path.join(os.path.dirname(lowerCAmelCase_ ) , os.path.basename(lowerCAmelCase_ ) ) shutil.move(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = ( self.df.mapInArrow(lowerCAmelCase_ , "task_id: long, num_examples: long, num_bytes: long" ) .groupBy("task_id" ) .agg( pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : "datasets.SplitGenerator" , lowerCAmelCase_ : str = "arrow" , lowerCAmelCase_ : Optional[Union[str, int]] = None , lowerCAmelCase_ : Optional[int] = None , **lowerCAmelCase_ : Union[str, Any] , ) -> int: self._validate_cache_dir() UpperCAmelCase_ : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = not is_remote_filesystem(self._fs ) UpperCAmelCase_ : int = os.path.join if is_local else posixpath.join UpperCAmelCase_ : str = "-TTTTT-SSSSS-of-NNNNN" UpperCAmelCase_ : Any = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" UpperCAmelCase_ : Any = path_join(self._output_dir , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : int = 0 UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Dict = [] for task_id, content in self._prepare_split_single(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Tuple = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = total_num_examples UpperCAmelCase_ : List[Any] = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: UpperCAmelCase_ : Any = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. UpperCAmelCase_ : List[str] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , ): rename( lowerCAmelCase_ , fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , fpath.replace("TTTTT-SSSSS" , f"""{global_shard_id:05d}""" ).replace("NNNNN" , f"""{total_shards:05d}""" ) , ) UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : int = 0 for i in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ , UpperCAmelCase_ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCAmelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCAmelCase_ , len(lowerCAmelCase_ ) ).map(lambda lowerCAmelCase_ : _rename_shard(*lowerCAmelCase_ ) ).collect() else: # don't use any pattern UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : str = task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , fpath.replace(lowerCAmelCase_ , "" ) , ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : "datasets.SplitGenerator" , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
253
"""simple docstring""" from math import factorial lowerCamelCase_ = {str(d): factorial(d) for d in range(10)} def snake_case ( A__ ): return sum(DIGIT_FACTORIAL[d] for d in str(A__ ) ) def snake_case ( ): UpperCAmelCase_ : int = 7 * factorial(9 ) + 1 return sum(i for i in range(3 ,A__ ) if sum_of_digit_factorial(A__ ) == i ) if __name__ == "__main__": print(f'{solution() = }')
253
1
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name class a__( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None): """simple docstring""" super().__init__() lowerCAmelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" lowerCAmelCase = torch.zeros(__lowerCAmelCase , __lowerCAmelCase) else: lowerCAmelCase = None lowerCAmelCase = torch.nn.Parameter(__lowerCAmelCase) class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : VQModel UpperCAmelCase_ : CLIPTextModel UpperCAmelCase_ : CLIPTokenizer UpperCAmelCase_ : TransformeraDModel UpperCAmelCase_ : LearnedClassifierFreeSamplingEmbeddings UpperCAmelCase_ : VQDiffusionScheduler def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" super().__init__() self.register_modules( vqvae=__lowerCAmelCase , transformer=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , scheduler=__lowerCAmelCase , learned_classifier_free_sampling_embeddings=__lowerCAmelCase , ) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = len(__lowerCAmelCase) if isinstance(__lowerCAmelCase , __lowerCAmelCase) else 1 # get prompt text embeddings lowerCAmelCase = self.tokenizer( __lowerCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowerCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f" {self.tokenizer.model_max_length} tokens: {removed_text}") lowerCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase = self.text_encoder(text_input_ids.to(self.device))[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 lowerCAmelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__lowerCAmelCase) # duplicate text embeddings for each generation per prompt lowerCAmelCase = prompt_embeds.repeat_interleave(__lowerCAmelCase , dim=0) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: lowerCAmelCase = self.learned_classifier_free_sampling_embeddings.embeddings lowerCAmelCase = negative_prompt_embeds.unsqueeze(0).repeat(__lowerCAmelCase , 1 , 1) else: lowerCAmelCase = [""""""] * batch_size lowerCAmelCase = text_input_ids.shape[-1] lowerCAmelCase = self.tokenizer( __lowerCAmelCase , padding="""max_length""" , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""" , ) lowerCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # See comment for normalizing text embeddings lowerCAmelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__lowerCAmelCase) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase = negative_prompt_embeds.shape[1] lowerCAmelCase = negative_prompt_embeds.repeat(1 , __lowerCAmelCase , 1) lowerCAmelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __lowerCAmelCase , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds @torch.no_grad() def __call__( self , __lowerCAmelCase , __lowerCAmelCase = 100 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = 1 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = 1 , ): """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase): lowerCAmelCase = 1 elif isinstance(__lowerCAmelCase , __lowerCAmelCase): lowerCAmelCase = len(__lowerCAmelCase) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(__lowerCAmelCase)}") lowerCAmelCase = batch_size * num_images_per_prompt lowerCAmelCase = guidance_scale > 1.0 lowerCAmelCase = self._encode_prompt(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCAmelCase , __lowerCAmelCase) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(__lowerCAmelCase)}.") # get the initial completely masked latents unless the user supplied it lowerCAmelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: lowerCAmelCase = self.transformer.num_vector_embeds - 1 lowerCAmelCase = torch.full(__lowerCAmelCase , __lowerCAmelCase).to(self.device) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f" {self.transformer.num_vector_embeds - 1} (inclusive).") lowerCAmelCase = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(__lowerCAmelCase , device=self.device) lowerCAmelCase = self.scheduler.timesteps.to(self.device) lowerCAmelCase = latents for i, t in enumerate(self.progress_bar(__lowerCAmelCase)): # expand the sample if we are doing classifier free guidance lowerCAmelCase = torch.cat([sample] * 2) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` lowerCAmelCase = self.transformer(__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , timestep=__lowerCAmelCase).sample if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase = model_output.chunk(2) lowerCAmelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__lowerCAmelCase , dim=1 , keepdim=__lowerCAmelCase) lowerCAmelCase = self.truncate(__lowerCAmelCase , __lowerCAmelCase) # remove `log(0)`'s (`-inf`s) lowerCAmelCase = model_output.clamp(-70) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase = self.scheduler.step(__lowerCAmelCase , timestep=__lowerCAmelCase , sample=__lowerCAmelCase , generator=__lowerCAmelCase).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = self.vqvae.config.vq_embed_dim lowerCAmelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) lowerCAmelCase = self.vqvae.quantize.get_codebook_entry(__lowerCAmelCase , shape=__lowerCAmelCase) lowerCAmelCase = self.vqvae.decode(__lowerCAmelCase , force_not_quantize=__lowerCAmelCase).sample lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": lowerCAmelCase = self.numpy_to_pil(__lowerCAmelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase , lowerCAmelCase = torch.sort(__lowerCAmelCase , 1 , descending=__lowerCAmelCase) lowerCAmelCase = torch.exp(__lowerCAmelCase) lowerCAmelCase = sorted_p_x_0.cumsum(dim=1) < truncation_rate # Ensure that at least the largest probability is not zeroed out lowerCAmelCase = torch.full_like(keep_mask[:, 0:1, :] , __lowerCAmelCase) lowerCAmelCase = torch.cat((all_true, keep_mask) , dim=1) lowerCAmelCase = keep_mask[:, :-1, :] lowerCAmelCase = keep_mask.gather(1 , indices.argsort(1)) lowerCAmelCase = log_p_x_0.clone() lowerCAmelCase = -torch.inf # -inf = log(0) return rv
272
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class a__( enum.Enum ): '''simple docstring''' UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : Any = 2 @add_end_docstrings(lowerCAmelCase__ ) class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : int = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCAmelCase = None if self.model.config.prefix is not None: lowerCAmelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCAmelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self._sanitize_parameters(prefix=__lowerCAmelCase , **self._forward_params) lowerCAmelCase = {**self._preprocess_params, **preprocess_params} lowerCAmelCase = {**self._forward_params, **forward_params} def a_ ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = {} if prefix is not None: lowerCAmelCase = prefix if prefix: lowerCAmelCase = self.tokenizer( __lowerCAmelCase , padding=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=self.framework) lowerCAmelCase = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" """ [None, 'hole']""") lowerCAmelCase = handle_long_generation preprocess_params.update(__lowerCAmelCase) lowerCAmelCase = generate_kwargs lowerCAmelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""") if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""") lowerCAmelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""") lowerCAmelCase = ReturnType.TENSORS if return_type is not None: lowerCAmelCase = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase = self.tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) if len(__lowerCAmelCase) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""") lowerCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True}) return super()._parse_and_tokenize(*__lowerCAmelCase , **__lowerCAmelCase) def __call__( self , __lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase="" , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.tokenizer( prefix + prompt_text , padding=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=self.framework) lowerCAmelCase = prompt_text if handle_long_generation == "hole": lowerCAmelCase = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCAmelCase = generate_kwargs["""max_new_tokens"""] else: lowerCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""") if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCAmelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""") lowerCAmelCase = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: lowerCAmelCase = inputs["""attention_mask"""][:, -keep_length:] return inputs def a_ ( self , __lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = model_inputs["""input_ids"""] lowerCAmelCase = model_inputs.get("""attention_mask""" , __lowerCAmelCase) # Allow empty prompts if input_ids.shape[1] == 0: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = 1 else: lowerCAmelCase = input_ids.shape[0] lowerCAmelCase = model_inputs.pop("""prompt_text""") # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCAmelCase = generate_kwargs.pop("""prefix_length""" , 0) if prefix_length > 0: lowerCAmelCase = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: lowerCAmelCase = generate_kwargs.get("""max_length""") or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCAmelCase = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCAmelCase = self.model.generate(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = generated_sequence.shape[0] if self.framework == "pt": lowerCAmelCase = generated_sequence.reshape(__lowerCAmelCase , out_b // in_b , *generated_sequence.shape[1:]) elif self.framework == "tf": lowerCAmelCase = tf.reshape(__lowerCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:])) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=ReturnType.FULL_TEXT , __lowerCAmelCase=True): """simple docstring""" lowerCAmelCase = model_outputs["""generated_sequence"""][0] lowerCAmelCase = model_outputs["""input_ids"""] lowerCAmelCase = model_outputs["""prompt_text"""] lowerCAmelCase = generated_sequence.numpy().tolist() lowerCAmelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCAmelCase = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCAmelCase = self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCAmelCase = 0 else: lowerCAmelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , )) if return_type == ReturnType.FULL_TEXT: lowerCAmelCase = prompt_text + text[prompt_length:] else: lowerCAmelCase = text[prompt_length:] lowerCAmelCase = {"""generated_text""": all_text} records.append(__lowerCAmelCase) return records
272
1
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase = 5_00_00 __UpperCAmelCase = 50_00 __UpperCAmelCase , __UpperCAmelCase = os.path.split(__file__) __UpperCAmelCase = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def __UpperCamelCase ( lowercase__ : datasets.Dataset , lowercase__ : str ) -> Dict: '''simple docstring''' for i in range(lowercase__ ): lowerCAmelCase_ : Optional[Any] = dataset[i] @get_duration def __UpperCamelCase ( lowercase__ : datasets.Dataset , lowercase__ : List[Any] , lowercase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' for i in range(0 , len(lowercase__ ) , lowercase__ ): lowerCAmelCase_ : List[str] = dataset[i : i + batch_size] @get_duration def __UpperCamelCase ( lowercase__ : datasets.Dataset , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] ) -> str: '''simple docstring''' with dataset.formatted_as(type=lowercase__ ): for i in range(lowercase__ ): lowerCAmelCase_ : Optional[int] = dataset[i] @get_duration def __UpperCamelCase ( lowercase__ : datasets.Dataset , lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : Tuple ) -> Union[str, Any]: '''simple docstring''' with dataset.formatted_as(type=lowercase__ ): for i in range(0 , lowercase__ , lowercase__ ): lowerCAmelCase_ : Union[str, Any] = dataset[i : i + batch_size] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = {"""num examples""": SPEED_TEST_N_EXAMPLES} lowerCAmelCase_ : Tuple = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] lowerCAmelCase_ : Union[str, Any] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) lowerCAmelCase_ : Any = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) lowerCAmelCase_ : str = generate_example_dataset( os.path.join(lowercase__ , """dataset.arrow""" ) , lowercase__ , num_examples=lowercase__ , seq_shapes={"""list""": (100,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = func(lowercase__ , **lowercase__ ) print("""shuffling dataset""" ) lowerCAmelCase_ : Tuple = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(lowercase__ ) ) lowerCAmelCase_ : Optional[int] = func( lowercase__ , **lowercase__ ) with open(lowercase__ , """wb""" ) as f: f.write(json.dumps(lowercase__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
28
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
1
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Tuple = PriorTransformer UpperCAmelCase__ : Tuple = '''hidden_states''' @property def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = 4 UpperCAmelCase_ = 8 UpperCAmelCase_ = 7 UpperCAmelCase_ = floats_tensor((batch_size, embedding_dim)).to(_snake_case) UpperCAmelCase_ = floats_tensor((batch_size, embedding_dim)).to(_snake_case) UpperCAmelCase_ = floats_tensor((batch_size, num_embeddings, embedding_dim)).to(_snake_case) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCamelCase ( self : int , _snake_case : List[str]=0): """simple docstring""" torch.manual_seed(_snake_case) UpperCAmelCase_ = 4 UpperCAmelCase_ = 8 UpperCAmelCase_ = 7 UpperCAmelCase_ = torch.randn((batch_size, embedding_dim)).to(_snake_case) UpperCAmelCase_ = torch.randn((batch_size, embedding_dim)).to(_snake_case) UpperCAmelCase_ = torch.randn((batch_size, num_embeddings, embedding_dim)).to(_snake_case) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowerCamelCase ( self : List[Any]): """simple docstring""" return (4, 8) @property def lowerCamelCase ( self : str): """simple docstring""" return (4, 8) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = { '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' , output_loading_info=_snake_case) self.assertIsNotNone(_snake_case) self.assertEqual(len(loading_info['''missing_keys''']) , 0) model.to(_snake_case) UpperCAmelCase_ = model(**self.dummy_input)[0] assert hidden_states is not None, "Make sure output is not None" def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = self.model_class(**_snake_case) UpperCAmelCase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''') UpperCAmelCase_ = model.to(_snake_case) if hasattr(_snake_case , '''set_default_attn_processor'''): model.set_default_attn_processor() UpperCAmelCase_ = self.get_dummy_seed_input() with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case)[0] UpperCAmelCase_ = output[0, :5].flatten().cpu() print(_snake_case) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. UpperCAmelCase_ = torch.tensor([-1.3_4_3_6, -0.2_8_7_0, 0.7_5_3_8, 0.4_3_6_8, -0.0_2_3_9]) self.assertTrue(torch_all_close(_snake_case , _snake_case , rtol=1e-2)) @slow class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[Any]=1 , _snake_case : Any=768 , _snake_case : Optional[Any]=77 , _snake_case : Optional[int]=0): """simple docstring""" torch.manual_seed(_snake_case) UpperCAmelCase_ = batch_size UpperCAmelCase_ = embedding_dim UpperCAmelCase_ = num_embeddings UpperCAmelCase_ = torch.randn((batch_size, embedding_dim)).to(_snake_case) UpperCAmelCase_ = torch.randn((batch_size, embedding_dim)).to(_snake_case) UpperCAmelCase_ = torch.randn((batch_size, num_embeddings, embedding_dim)).to(_snake_case) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCamelCase ( self : str): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_8_6_1, 0.1_2_8_3, -0.0_9_3_1, 0.0_8_8_2, 0.4_4_7_6, 0.1_3_2_9, -0.0_4_9_8, 0.0_6_4_0]], [37, [-0.4_9_1_3, 0.0_1_1_0, -0.0_4_8_3, 0.0_5_4_1, 0.4_9_5_4, -0.0_1_7_0, 0.0_3_5_4, 0.1_6_5_1]], # fmt: on ]) def lowerCamelCase ( self : List[str] , _snake_case : List[Any] , _snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' , subfolder='''prior''') model.to(_snake_case) UpperCAmelCase_ = self.get_dummy_seed_input(seed=_snake_case) with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case)[0] assert list(sample.shape) == [1, 768] UpperCAmelCase_ = sample[0, :8].flatten().cpu() print(_snake_case) UpperCAmelCase_ = torch.tensor(_snake_case) assert torch_all_close(_snake_case , _snake_case , atol=1e-3)
51
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __magic_name__ : """simple docstring""" def __init__( self :Tuple , snake_case :Optional[Any] , snake_case :Tuple=13 , snake_case :Dict=7 , snake_case :List[Any]=True , snake_case :List[Any]=True , snake_case :Dict=True , snake_case :Any=True , snake_case :Optional[int]=99 , snake_case :Any=32 , snake_case :Dict=2 , snake_case :int=4 , snake_case :Optional[int]=37 , snake_case :List[str]="gelu" , snake_case :List[Any]=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Tuple=512 , snake_case :Tuple=16 , snake_case :Tuple=2 , snake_case :Optional[int]=0.02 , snake_case :str=3 , snake_case :Optional[int]=4 , snake_case :List[str]=None , snake_case :Tuple=1_000 , ): '''simple docstring''' A_ : str = parent A_ : str = batch_size A_ : str = seq_length A_ : Any = is_training A_ : Any = use_input_mask A_ : str = use_token_type_ids A_ : Tuple = use_labels A_ : Optional[Any] = vocab_size A_ : Dict = hidden_size A_ : str = num_hidden_layers A_ : Dict = num_attention_heads A_ : str = intermediate_size A_ : int = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : Any = type_sequence_label_size A_ : Dict = initializer_range A_ : Any = num_labels A_ : Optional[int] = num_choices A_ : Optional[Any] = scope A_ : Any = range_bbox def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment A_ : Tuple = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : str = bbox[i, j, 3] A_ : Union[str, Any] = bbox[i, j, 1] A_ : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ : Any = bbox[i, j, 2] A_ : Tuple = bbox[i, j, 0] A_ : int = t A_ : int = tf.convert_to_tensor(snake_case ) A_ : Any = None if self.use_input_mask: A_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : str = None if self.use_token_type_ids: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Dict = None A_ : List[Any] = None A_ : List[str] = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : int = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self :str , snake_case :Dict , snake_case :Union[str, Any] , snake_case :int , snake_case :int , snake_case :Union[str, Any] , snake_case :Tuple , snake_case :Optional[int] , snake_case :List[Any] ): '''simple docstring''' A_ : Any = TFLayoutLMModel(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A_ : str = model(snake_case , snake_case , token_type_ids=snake_case ) A_ : List[Any] = model(snake_case , snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Any , snake_case :List[Any] , snake_case :List[str] , snake_case :Optional[Any] , snake_case :Dict , snake_case :Any , snake_case :Union[str, Any] , snake_case :List[Any] ): '''simple docstring''' A_ : Optional[int] = TFLayoutLMForMaskedLM(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :Dict , snake_case :Tuple , snake_case :Tuple , snake_case :List[str] , snake_case :Tuple , snake_case :str , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : int = TFLayoutLMForSequenceClassification(config=snake_case ) A_ : Optional[int] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict , snake_case :str , snake_case :Optional[Any] , snake_case :int , snake_case :Any , snake_case :Tuple , snake_case :List[str] , snake_case :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.num_labels A_ : str = TFLayoutLMForTokenClassification(config=snake_case ) A_ : Union[str, Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[str] , snake_case :Optional[int] , snake_case :Union[str, Any] , snake_case :List[Any] , snake_case :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering(config=snake_case ) A_ : List[Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : int = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 10 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Tuple = TFLayoutLMModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[str] = TFLayoutLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def __snake_case ( ) -> Optional[Any]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off A_ : int = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 A_ : int = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 A_ : Union[str, Any] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 A_ : List[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) A_ : Tuple = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : str = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : Tuple = prepare_layoutlm_batch_inputs() # forward pass A_ : Tuple = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the sequence output on [0, :3, :3] A_ : List[Any] = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1e-3 ) ) # test the pooled output on [1, :3] A_ : Optional[Any] = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , snake_case , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Union[str, Any] = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) A_ , A_ , A_ , A_ , A_ : Any = prepare_layoutlm_batch_inputs() # forward pass A_ : Dict = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar A_ : List[str] = outputs.loss A_ : Union[str, Any] = (2,) self.assertEqual(loss.shape , snake_case ) # test the shape of the logits A_ : Tuple = outputs.logits A_ : Tuple = (2, 2) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : int = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) A_ , A_ , A_ , A_ , A_ : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) # test the shape of the logits A_ : Dict = outputs.logits A_ : List[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : str = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the shape of the logits A_ : Union[str, Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , snake_case ) self.assertEqual(outputs.end_logits.shape , snake_case )
300
0
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _SCREAMING_SNAKE_CASE : List[Any] = str(bin(__lowerCamelCase ) )[2:] # remove the leading "0b" _SCREAMING_SNAKE_CASE : List[str] = str(bin(__lowerCamelCase ) )[2:] # remove the leading "0b" _SCREAMING_SNAKE_CASE : List[Any] = max(len(__lowerCamelCase ), len(__lowerCamelCase ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCamelCase ), b_binary.zfill(__lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
325
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 _SCREAMING_SNAKE_CASE : Optional[int] = 1 for i in range(1, n + 1 ): # to compute current row from previous row. _SCREAMING_SNAKE_CASE : Union[str, Any] = min(__lowerCamelCase, __lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig a__ : Optional[int] = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : List[str] = "tapas" def __init__( self : int , UpperCAmelCase__ : Any=3_0_5_2_2 , UpperCAmelCase__ : Dict=7_6_8 , UpperCAmelCase__ : Optional[Any]=1_2 , UpperCAmelCase__ : Optional[int]=1_2 , UpperCAmelCase__ : Any=3_0_7_2 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : str=1_0_2_4 , UpperCAmelCase__ : Dict=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0] , UpperCAmelCase__ : Union[str, Any]=0.02 , UpperCAmelCase__ : Tuple=1E-12 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Any=10.0 , UpperCAmelCase__ : Dict=0 , UpperCAmelCase__ : str=1.0 , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : str=1.0 , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Tuple=1.0 , UpperCAmelCase__ : Any=1.0 , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : str=False , UpperCAmelCase__ : List[str]="ratio" , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=6_4 , UpperCAmelCase__ : Any=3_2 , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : int=False , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Any=None , **UpperCAmelCase__ : Optional[int] , ) -> List[str]: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_sizes __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps # Fine-tuning task hyperparameters __SCREAMING_SNAKE_CASE = positive_label_weight __SCREAMING_SNAKE_CASE = num_aggregation_labels __SCREAMING_SNAKE_CASE = aggregation_loss_weight __SCREAMING_SNAKE_CASE = use_answer_as_supervision __SCREAMING_SNAKE_CASE = answer_loss_importance __SCREAMING_SNAKE_CASE = use_normalized_answer_loss __SCREAMING_SNAKE_CASE = huber_loss_delta __SCREAMING_SNAKE_CASE = temperature __SCREAMING_SNAKE_CASE = aggregation_temperature __SCREAMING_SNAKE_CASE = use_gumbel_for_cells __SCREAMING_SNAKE_CASE = use_gumbel_for_aggregation __SCREAMING_SNAKE_CASE = average_approximation_function __SCREAMING_SNAKE_CASE = cell_selection_preference __SCREAMING_SNAKE_CASE = answer_loss_cutoff __SCREAMING_SNAKE_CASE = max_num_rows __SCREAMING_SNAKE_CASE = max_num_columns __SCREAMING_SNAKE_CASE = average_logits_per_cell __SCREAMING_SNAKE_CASE = select_one_column __SCREAMING_SNAKE_CASE = allow_empty_column_selection __SCREAMING_SNAKE_CASE = init_cell_selection_weights_to_zero __SCREAMING_SNAKE_CASE = reset_position_index_per_cell __SCREAMING_SNAKE_CASE = disable_per_token_loss # Aggregation hyperparameters __SCREAMING_SNAKE_CASE = aggregation_labels __SCREAMING_SNAKE_CASE = no_aggregation_label_index if isinstance(self.aggregation_labels , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = {int(UpperCAmelCase__ ): v for k, v in aggregation_labels.items()}
54
"""simple docstring""" import os _a = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} def __a ( __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : List[str] = 0 while index < len(__lowerCamelCase ) - 1: UpperCAmelCase_ : Tuple = SYMBOLS[numerals[index]] UpperCAmelCase_ : List[str] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = "" UpperCAmelCase_ : Any = num // 1000 numerals += m_count * "M" num %= 1000 UpperCAmelCase_ : Any = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCAmelCase_ : str = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __a ( __lowerCamelCase = "/p089_roman.txt" ): UpperCAmelCase_ : int = 0 with open(os.path.dirname(__lowerCamelCase ) + roman_numerals_filename ) as filea: UpperCAmelCase_ : Optional[Any] = filea.readlines() for line in lines: UpperCAmelCase_ : Tuple = line.strip() UpperCAmelCase_ : Optional[Any] = parse_roman_numerals(__lowerCamelCase ) UpperCAmelCase_ : Tuple = generate_roman_numerals(__lowerCamelCase ) savings += len(__lowerCamelCase ) - len(__lowerCamelCase ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
61
0
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> bool: SCREAMING_SNAKE_CASE = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
38
"""simple docstring""" import operator as op def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> int: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = lambda SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(SCREAMING_SNAKE_CASE_ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(SCREAMING_SNAKE_CASE_ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(SCREAMING_SNAKE_CASE_ ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(SCREAMING_SNAKE_CASE_ ) , sep=' | ' ) SCREAMING_SNAKE_CASE = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(SCREAMING_SNAKE_CASE_ ) , sep=' | ' ) stack.append( str(opr[x](int(SCREAMING_SNAKE_CASE_ ) , int(SCREAMING_SNAKE_CASE_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(SCREAMING_SNAKE_CASE_ ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": __UpperCamelCase = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
38
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class A_ (unittest.TestCase ): def _lowercase ( self , _A ): '''simple docstring''' UpperCAmelCase = 3 UpperCAmelCase = 2_5_0 UpperCAmelCase = ids_tensor((batch_size, length) , a__ ) UpperCAmelCase = torch.ones((batch_size, length) , device=a__ , dtype=torch.float ) / length return input_ids, scores def _lowercase ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(a__ , a__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(a__ , a__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(1_0 ) self.assertTrue(criteria(a__ , a__ ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = MaxLengthCriteria(max_length=1_0 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(a__ , a__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(a__ , a__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(1_0 ) self.assertTrue(criteria(a__ , a__ ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(a__ , a__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(a__ , a__ ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(1_0 ) self.assertTrue(criteria(a__ , a__ ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(a__ , a__ ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(a__ , a__ ) ) def _lowercase ( self ): '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(a__ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(a__ ) , 1 )
273
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ["CLIPFeatureExtractor"] _SCREAMING_SNAKE_CASE : Dict = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a : Optional[int] = logging.get_logger(__name__) # General docstring a : Union[str, Any] = '''MobileNetV1Config''' # Base docstring a : List[Any] = '''google/mobilenet_v1_1.0_224''' a : Any = [1, 1024, 7, 7] # Image classification docstring a : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a : Optional[int] = '''tabby, tabby cat''' a : Any = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : List[Any] , _lowercase : List[Any]=None ) ->List[str]: '''simple docstring''' a : str = {} if isinstance(_lowercase , _lowercase ): a : Any = model.mobilenet_va else: a : Any = model a : Any = "MobilenetV1/Conv2d_0/" a : Dict = backbone.conv_stem.convolution.weight a : List[Any] = backbone.conv_stem.normalization.bias a : str = backbone.conv_stem.normalization.weight a : Optional[Any] = backbone.conv_stem.normalization.running_mean a : Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): a : List[Any] = i + 1 a : Dict = i * 2 a : List[str] = backbone.layer[pt_index] a : Dict = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" a : Optional[int] = pointer.convolution.weight a : str = pointer.normalization.bias a : Union[str, Any] = pointer.normalization.weight a : Optional[Any] = pointer.normalization.running_mean a : List[str] = pointer.normalization.running_var a : Tuple = backbone.layer[pt_index + 1] a : List[Any] = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" a : List[Any] = pointer.convolution.weight a : Dict = pointer.normalization.bias a : List[Any] = pointer.normalization.weight a : List[Any] = pointer.normalization.running_mean a : Tuple = pointer.normalization.running_var if isinstance(_lowercase , _lowercase ): a : Union[str, Any] = "MobilenetV1/Logits/Conv2d_1c_1x1/" a : List[str] = model.classifier.weight a : List[Any] = model.classifier.bias return tf_to_pt_map def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : Optional[int] ) ->List[str]: '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model a : Optional[Any] = tf.train.list_variables(_lowercase ) a : Any = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) a : Optional[Any] = tf.train.load_variable(_lowercase , _lowercase ) a : Optional[int] = array # Build TF to PyTorch weights loading map a : Optional[Any] = _build_tf_to_pytorch_map(_lowercase , _lowercase , _lowercase ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue a : List[Any] = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) a : Dict = np.transpose(_lowercase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer a : Union[str, Any] = array.squeeze().transpose() else: a : int = np.transpose(_lowercase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) a : Optional[int] = torch.from_numpy(_lowercase ) tf_weights.pop(_lowercase , _lowercase ) tf_weights.pop(name + "/RMSProp" , _lowercase ) tf_weights.pop(name + "/RMSProp_1" , _lowercase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _lowercase ) logger.info(F"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def _SCREAMING_SNAKE_CASE ( _lowercase : torch.Tensor , _lowercase : nn.Convad ) ->torch.Tensor: '''simple docstring''' a, a : Optional[Any] = features.shape[-2:] a, a : Optional[int] = conv_layer.stride a, a : List[str] = conv_layer.kernel_size if in_height % stride_height == 0: a : Optional[int] = max(kernel_height - stride_height , 0 ) else: a : List[Any] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: a : Optional[int] = max(kernel_width - stride_width , 0 ) else: a : Any = max(kernel_width - (in_width % stride_width) , 0 ) a : str = pad_along_width // 2 a : int = pad_along_width - pad_left a : Tuple = pad_along_height // 2 a : Optional[Any] = pad_along_height - pad_top a : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_lowercase , _lowercase , "constant" , 0.0 ) class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = True , ) -> None: super().__init__() a : Optional[Any] = config if in_channels % groups != 0: raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) a : Tuple = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) a : Optional[int] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: a : List[Any] = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9_997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: a : str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Optional[int] = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__ ): a : Tuple = ACTaFN[config.hidden_act] else: a : Optional[int] = config.hidden_act else: a : List[Any] = None def __a ( self , lowerCAmelCase__ ) -> torch.Tensor: if self.config.tf_padding: a : Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution ) a : List[Any] = self.convolution(lowerCAmelCase__ ) if self.normalization is not None: a : int = self.normalization(lowerCAmelCase__ ) if self.activation is not None: a : Dict = self.activation(lowerCAmelCase__ ) return features class __UpperCamelCase ( a__ ): lowerCamelCase : Optional[Any] =MobileNetVaConfig lowerCamelCase : Union[str, Any] =load_tf_weights_in_mobilenet_va lowerCamelCase : Optional[int] ="""mobilenet_v1""" lowerCamelCase : List[str] ="""pixel_values""" lowerCamelCase : List[str] =False def __a ( self , lowerCAmelCase__ ) -> None: if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a : Optional[Any] = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a : str = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , a__ , ) class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True ) -> Tuple: super().__init__(lowerCAmelCase__ ) a : int = config a : Optional[Any] = 32 a : Optional[int] = max(int(depth * config.depth_multiplier ) , config.min_depth ) a : int = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) a : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] a : List[str] = nn.ModuleList() for i in range(13 ): a : Any = out_channels if strides[i] == 2 or i == 0: depth *= 2 a : Any = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , ) ) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , ) ) a : Dict = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __a ( self , lowerCAmelCase__ ) -> int: raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __a ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: a : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a : int = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) a : Dict = self.conv_stem(lowerCAmelCase__ ) a : List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): a : Optional[Any] = layer_module(lowerCAmelCase__ ) if output_hidden_states: a : Dict = all_hidden_states + (hidden_states,) a : List[Any] = hidden_states if self.pooler is not None: a : List[Any] = torch.flatten(self.pooler(lowerCAmelCase__ ) , start_dim=1 ) else: a : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , a__ , ) class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ ) -> None: super().__init__(lowerCAmelCase__ ) a : Dict = config.num_labels a : str = MobileNetVaModel(lowerCAmelCase__ ) a : Any = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head a : Dict = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__ ) a : Optional[int] = nn.Linear(lowerCAmelCase__ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __a ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: a : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict a : Optional[Any] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) a : Any = outputs.pooler_output if return_dict else outputs[1] a : int = self.classifier(self.dropout(lowerCAmelCase__ ) ) a : Union[str, Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a : List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a : List[Any] = "single_label_classification" else: a : Union[str, Any] = "multi_label_classification" if self.config.problem_type == "regression": a : int = MSELoss() if self.num_labels == 1: a : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() ) else: a : Optional[int] = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": a : Optional[int] = CrossEntropyLoss() a : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": a : Dict = BCEWithLogitsLoss() a : Any = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) if not return_dict: a : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
79
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _SCREAMING_SNAKE_CASE ( ) ->List[str]: '''simple docstring''' a : Optional[Any] = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=_lowercase ) a : Optional[Any] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=_lowercase ) env_command_parser(subparsers=_lowercase ) launch_command_parser(subparsers=_lowercase ) tpu_command_parser(subparsers=_lowercase ) test_command_parser(subparsers=_lowercase ) # Let's go a : int = parser.parse_args() if not hasattr(_lowercase , "func" ): parser.print_help() exit(1 ) # Run args.func(_lowercase ) if __name__ == "__main__": main()
79
1
"""simple docstring""" def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Union[str, Any] ) ->Optional[Any]: if height >= 1: move_tower(height - 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) move_disk(__UpperCAmelCase , __UpperCAmelCase ) move_tower(height - 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Optional[Any] ) ->Any: print('moving disk from' , __UpperCAmelCase , 'to' , __UpperCAmelCase ) def lowerCAmelCase_ ( ) ->List[Any]: lowerCamelCase__ : Any =int(input('Height of hanoi: ' ).strip() ) move_tower(__UpperCAmelCase , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
126
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a : int = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' config.addinivalue_line( '''markers''', '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''', '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''', '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''', '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''', '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''', '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main snake_case_ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__UpperCAmelCase, id=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if exitstatus == 5: snake_case_ = 0 # Doctest custom flag to ignore output. a : Union[str, Any] = doctest.register_optionflag('IGNORE_RESULT') a : Optional[int] = doctest.OutputChecker class a ( _lowerCamelCase ): def A_ ( self : List[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Optional[int] ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase_ , lowercase_ , lowercase_ ) a : List[Any] = CustomOutputChecker a : Optional[int] = HfDoctestModule a : Tuple = HfDocTestParser
56
0
from math import factorial lowerCamelCase__ : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: if not isinstance(_lowercase , _lowercase ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_lowercase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : int = 60 , __UpperCAmelCase : int = 1_00_00_00 ) -> int: if not isinstance(_lowercase , _lowercase ) or not isinstance(_lowercase , _lowercase ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length SCREAMING_SNAKE_CASE_ = 0 # the cached sizes of the previous chains SCREAMING_SNAKE_CASE_ = {} for start_chain_element in range(1 , _lowercase ): # The temporary set will contain the elements of the chain SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. SCREAMING_SNAKE_CASE_ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_lowercase ) chain_set_length += 1 SCREAMING_SNAKE_CASE_ = digit_factorial_sum(_lowercase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] SCREAMING_SNAKE_CASE_ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
363
import cva import numpy as np class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : float , _lowerCAmelCase : int ): if k in (0.04, 0.06): SCREAMING_SNAKE_CASE_ = k SCREAMING_SNAKE_CASE_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : Tuple ): return str(self.k ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = cva.imread(_lowerCAmelCase , 0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = img.copy() SCREAMING_SNAKE_CASE_ = cva.cvtColor(_lowerCAmelCase , cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.gradient(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = dx**2 SCREAMING_SNAKE_CASE_ = dy**2 SCREAMING_SNAKE_CASE_ = dx * dy SCREAMING_SNAKE_CASE_ = 0.04 SCREAMING_SNAKE_CASE_ = self.window_size // 2 for y in range(_lowerCAmelCase , h - offset ): for x in range(_lowerCAmelCase , w - offset ): SCREAMING_SNAKE_CASE_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE_ = wxx + wyy SCREAMING_SNAKE_CASE_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase__ : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase__ , lowerCamelCase__ : str = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
210
0
"""simple docstring""" from math import factorial, pi def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 30 ) ->float: if not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) a__: int = float(_SCREAMING_SNAKE_CASE ) a__: int = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_SCREAMING_SNAKE_CASE ) ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 30 ) ->float: if not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) a__: Dict = float(_SCREAMING_SNAKE_CASE ) a__: List[Any] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
290
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) ->str: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: Optional[int] = F'Expected string as input, found {type(_SCREAMING_SNAKE_CASE )}' raise ValueError(_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: List[str] = F'Expected boolean as use_pascal parameter, found {type(_SCREAMING_SNAKE_CASE )}' raise ValueError(_SCREAMING_SNAKE_CASE ) a__: int = input_str.split('_' ) a__: List[str] = 0 if use_pascal else 1 a__: List[str] = words[start_index:] a__: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] a__: List[str] = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
290
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class UpperCAmelCase ( UpperCamelCase__ ): def __init__( self :Tuple )-> List[Any]: # test for the above condition self.test() def UpperCAmelCase_ ( self :Dict )-> Any: A__ = 0 A__ = False while not completed: if counter == 1: self.reset() A__ = self.advance() if not self.does_advance(lowercase_ ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) A__, A__, A__ = self.update(lowercase_ ) counter += 1 if counter > 1_00_00: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def UpperCAmelCase_ ( self :str )-> Optional[int]: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCAmelCase_ ( self :str , lowercase_ :int )-> Optional[Any]: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :int )-> Optional[Any]: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCAmelCase_ ( self :str )-> List[str]: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCAmelCase_ ( self :Any )-> List[str]: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCAmelCase_ ( self :Dict , lowercase_ :List[Any]=False )-> List[Any]: raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class UpperCAmelCase ( UpperCamelCase__ ): def __init__( self :Dict , lowercase_ :List[int] )-> Optional[Any]: super(lowercase_ , self ).__init__() if not isinstance(lowercase_ , lowercase_ ) or len(lowercase_ ) == 0: raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(lowercase_ , lowercase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) A__ = token_ids A__ = len(self.token_ids ) A__ = -1 # the index of the currently fulfilled step A__ = False def UpperCAmelCase_ ( self :int )-> int: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCAmelCase_ ( self :str , lowercase_ :int )-> int: if not isinstance(lowercase_ , lowercase_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(lowercase_ )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCAmelCase_ ( self :List[Any] , lowercase_ :int )-> Dict: if not isinstance(lowercase_ , lowercase_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(lowercase_ )}" ) A__ = False A__ = False A__ = False if self.does_advance(lowercase_ ): self.fulfilled_idx += 1 A__ = True if self.fulfilled_idx == (self.seqlen - 1): A__ = True A__ = completed else: # failed to make progress. A__ = True self.reset() return stepped, completed, reset def UpperCAmelCase_ ( self :Optional[int] )-> List[Any]: A__ = False A__ = 0 def UpperCAmelCase_ ( self :int )-> Optional[Any]: return self.seqlen - (self.fulfilled_idx + 1) def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :Dict=False )-> List[Any]: A__ = PhrasalConstraint(self.token_ids ) if stateful: A__ = self.seqlen A__ = self.fulfilled_idx A__ = self.completed return new_constraint class UpperCAmelCase : def __init__( self :Any , lowercase_ :List[List[int]] , lowercase_ :List[Any]=True )-> Tuple: A__ = max([len(lowercase_ ) for one in nested_token_ids] ) A__ = {} for token_ids in nested_token_ids: A__ = root for tidx, token_id in enumerate(lowercase_ ): if token_id not in level: A__ = {} A__ = level[token_id] if no_subsets and self.has_subsets(lowercase_ , lowercase_ ): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" F" {nested_token_ids}." ) A__ = root def UpperCAmelCase_ ( self :List[str] , lowercase_ :Optional[Any] )-> Any: A__ = self.trie for current_token in current_seq: A__ = start[current_token] A__ = list(start.keys() ) return next_tokens def UpperCAmelCase_ ( self :Dict , lowercase_ :Optional[Any] )-> Any: A__ = self.next_tokens(lowercase_ ) return len(lowercase_ ) == 0 def UpperCAmelCase_ ( self :Any , lowercase_ :Tuple )-> List[str]: A__ = list(root.values() ) if len(lowercase_ ) == 0: return 1 else: return sum([self.count_leaves(lowercase_ ) for nn in next_nodes] ) def UpperCAmelCase_ ( self :List[str] , lowercase_ :Union[str, Any] , lowercase_ :List[Any] )-> Any: A__ = self.count_leaves(lowercase_ ) return len(lowercase_ ) != leaf_count class UpperCAmelCase ( UpperCamelCase__ ): def __init__( self :str , lowercase_ :List[List[int]] )-> List[str]: super(lowercase_ , self ).__init__() if not isinstance(lowercase_ , lowercase_ ) or len(lowercase_ ) == 0: raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(lowercase_ , lowercase_ ) for token_ids in nested_token_ids ): raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(lowercase_ , lowercase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) A__ = DisjunctiveTrie(lowercase_ ) A__ = nested_token_ids A__ = self.trie.max_height A__ = [] A__ = False def UpperCAmelCase_ ( self :Union[str, Any] )-> str: A__ = self.trie.next_tokens(self.current_seq ) if len(lowercase_ ) == 0: return None else: return token_list def UpperCAmelCase_ ( self :List[str] , lowercase_ :int )-> Optional[int]: if not isinstance(lowercase_ , lowercase_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowercase_ )}" ) A__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCAmelCase_ ( self :List[Any] , lowercase_ :int )-> List[Any]: if not isinstance(lowercase_ , lowercase_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowercase_ )}" ) A__ = False A__ = False A__ = False if self.does_advance(lowercase_ ): self.current_seq.append(lowercase_ ) A__ = True else: A__ = True self.reset() A__ = self.trie.reached_leaf(self.current_seq ) A__ = completed return stepped, completed, reset def UpperCAmelCase_ ( self :str )-> Union[str, Any]: A__ = False A__ = [] def UpperCAmelCase_ ( self :List[str] )-> Optional[int]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCAmelCase_ ( self :Tuple , lowercase_ :Any=False )-> Dict: A__ = DisjunctiveConstraint(self.token_ids ) if stateful: A__ = self.seqlen A__ = self.current_seq A__ = self.completed return new_constraint class UpperCAmelCase : def __init__( self :int , lowercase_ :List[Constraint] )-> Union[str, Any]: A__ = constraints # max # of steps required to fulfill a given constraint A__ = max([c.seqlen for c in constraints] ) A__ = len(lowercase_ ) A__ = False self.init_state() def UpperCAmelCase_ ( self :int )-> Dict: A__ = [] A__ = None A__ = [constraint.copy(stateful=lowercase_ ) for constraint in self.constraints] def UpperCAmelCase_ ( self :Any )-> Union[str, Any]: A__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCAmelCase_ ( self :List[str] )-> Any: A__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" A__ = constraint.advance() if isinstance(lowercase_ , lowercase_ ): token_list.append(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): token_list.extend(lowercase_ ) else: A__ = self.inprogress_constraint.advance() if isinstance(lowercase_ , lowercase_ ): token_list.append(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): token_list.extend(lowercase_ ) if len(lowercase_ ) == 0: return None else: return token_list def UpperCAmelCase_ ( self :int , lowercase_ :Optional[List[int]] )-> int: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint A__, A__ = self.add(lowercase_ ) # the entire list of constraints are fulfilled if self.completed: break def UpperCAmelCase_ ( self :str , lowercase_ :int )-> Optional[Any]: if not isinstance(lowercase_ , lowercase_ ): raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." ) A__, A__ = False, False if self.completed: A__ = True A__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state A__, A__, A__ = self.inprogress_constraint.update(lowercase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=lowercase_ ) ) A__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) A__ = None if len(self.pending_constraints ) == 0: # we're done! A__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(lowercase_ ): A__, A__, A__ = pending_constraint.update(lowercase_ ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(lowercase_ ) A__ = None if not complete and stepped: A__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". A__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. A__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCAmelCase_ ( self :int , lowercase_ :Union[str, Any]=True )-> Dict: A__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: A__ = [ constraint.copy(stateful=lowercase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: A__ = self.inprogress_constraint.copy(stateful=lowercase_ ) A__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
123
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : Optional[int] =[ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def UpperCamelCase ( _lowerCamelCase : int ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: A__ = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("encoder" ): A__ = k.replace(".attn" , ".self_attn" ) A__ = k.replace("norm1" , "self_attn_layer_norm" ) A__ = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): A__ = k.replace("norm1" , "self_attn_layer_norm" ) A__ = k.replace("norm2" , "encoder_attn_layer_norm" ) A__ = k.replace("norm3" , "final_layer_norm" ) return k def UpperCamelCase ( _lowerCamelCase : int ): A__ = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: A__ = sd.pop(_lowerCamelCase ) A__ = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd A__ = v __lowerCAmelCase : Optional[int] =["START"] @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] ): A__ = torch.load(_lowerCamelCase , map_location="cpu" ) A__ = model["model"] A__ = BlenderbotConfig.from_json_file(_lowerCamelCase ) A__ = BlenderbotForConditionalGeneration(_lowerCamelCase ) A__ = m.model.state_dict().keys() A__ = [] A__ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue A__ = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: A__ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __lowerCAmelCase : Union[str, Any] =parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
123
1
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCAmelCase ( snake_case__ , snake_case__ ): assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Tuple = tmp_path / "cache" __UpperCamelCase : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCamelCase : Any = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : List[Any] = tmp_path / "cache" __UpperCamelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __UpperCamelCase : int = features.copy() if features else default_expected_features __UpperCamelCase : int = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase : int = ParquetDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Union[str, Any] = tmp_path / "cache" __UpperCamelCase : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __UpperCamelCase : List[str] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): if issubclass(snake_case__ , snake_case__ ): __UpperCamelCase : Union[str, Any] = parquet_path elif issubclass(snake_case__ , snake_case__ ): __UpperCamelCase : Tuple = [parquet_path] __UpperCamelCase : Optional[int] = tmp_path / "cache" __UpperCamelCase : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __UpperCamelCase : List[str] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__=("train",) ): assert isinstance(snake_case__ , snake_case__ ) for split in splits: __UpperCamelCase : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Tuple = tmp_path / "cache" __UpperCamelCase : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCamelCase : Dict = ParquetDatasetReader( {"train": parquet_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Tuple = tmp_path / "cache" __UpperCamelCase : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __UpperCamelCase : Optional[Any] = features.copy() if features else default_expected_features __UpperCamelCase : Optional[Any] = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase : str = ParquetDatasetReader({"train": parquet_path} , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): if split: __UpperCamelCase : Optional[int] = {split: parquet_path} else: __UpperCamelCase : Optional[Any] = "train" __UpperCamelCase : Tuple = {"train": parquet_path, "test": parquet_path} __UpperCamelCase : Optional[int] = tmp_path / "cache" __UpperCamelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __UpperCamelCase : List[str] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __lowerCAmelCase ( snake_case__ , snake_case__ ): __UpperCamelCase : Optional[int] = ParquetDatasetWriter(snake_case__ , tmp_path / "foo.parquet" ) assert writer.write() > 0 __UpperCamelCase : Optional[Any] = pq.ParquetFile(tmp_path / "foo.parquet" ) __UpperCamelCase : Optional[int] = pf.read() assert dataset.data.table == output_table def __lowerCAmelCase ( snake_case__ , snake_case__ ): __UpperCamelCase : Optional[int] = str(shared_datadir / "test_image_rgb.jpg" ) __UpperCamelCase : Any = {"image": [image_path]} __UpperCamelCase : List[str] = Features({"image": Image()} ) __UpperCamelCase : Optional[int] = Dataset.from_dict(snake_case__ , features=snake_case__ ) __UpperCamelCase : Tuple = ParquetDatasetWriter(snake_case__ , tmp_path / "foo.parquet" ) assert writer.write() > 0 __UpperCamelCase : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features __UpperCamelCase : Optional[int] = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=snake_case__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __lowerCAmelCase ( snake_case__ , snake_case__ ): assert get_writer_batch_size(snake_case__ ) == expected
298
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
338
0
"""simple docstring""" def lowerCamelCase () -> int: return [ a * b * (1000 - a - b) for a in range(1 , 999) for b in range(a_ , 999) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F"""{solution() = }""")
358
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class __magic_name__ ( __UpperCAmelCase ): __A : Tuple = "swin2sr" __A : Dict = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[str] , snake_case__ : List[str]=6_4 , snake_case__ : Union[str, Any]=1 , snake_case__ : Tuple=3 , snake_case__ : int=1_8_0 , snake_case__ : Union[str, Any]=[6, 6, 6, 6, 6, 6] , snake_case__ : List[str]=[6, 6, 6, 6, 6, 6] , snake_case__ : Tuple=8 , snake_case__ : List[Any]=2.0 , snake_case__ : Any=True , snake_case__ : Dict=0.0 , snake_case__ : Dict=0.0 , snake_case__ : Dict=0.1 , snake_case__ : Dict="gelu" , snake_case__ : Optional[int]=False , snake_case__ : Any=0.02 , snake_case__ : Any=1e-5 , snake_case__ : Optional[int]=2 , snake_case__ : Optional[int]=1.0 , snake_case__ : Optional[Any]="1conv" , snake_case__ : List[str]="pixelshuffle" , **snake_case__ : Tuple , ): '''simple docstring''' super().__init__(**snake_case__ ) lowercase :Dict = image_size lowercase :List[str] = patch_size lowercase :Tuple = num_channels lowercase :int = embed_dim lowercase :Any = depths lowercase :Union[str, Any] = len(snake_case__ ) lowercase :List[str] = num_heads lowercase :int = window_size lowercase :Tuple = mlp_ratio lowercase :List[Any] = qkv_bias lowercase :Optional[int] = hidden_dropout_prob lowercase :Tuple = attention_probs_dropout_prob lowercase :Tuple = drop_path_rate lowercase :Optional[Any] = hidden_act lowercase :Union[str, Any] = use_absolute_embeddings lowercase :Dict = layer_norm_eps lowercase :Optional[Any] = initializer_range lowercase :Optional[Any] = upscale lowercase :Any = img_range lowercase :Optional[int] = resi_connection lowercase :Union[str, Any] = upsampler
172
0
"""simple docstring""" def _snake_case ( _snake_case : Dict ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError('''only integers accepted as input''' ) else: lowerCAmelCase : str = str(abs(__SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : List[str] = [list(__SCREAMING_SNAKE_CASE ) for char in range(len(__SCREAMING_SNAKE_CASE ) )] for index in range(len(__SCREAMING_SNAKE_CASE ) ): num_transpositions[index].pop(__SCREAMING_SNAKE_CASE ) return max( int(''''''.join(list(__SCREAMING_SNAKE_CASE ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
60
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Tuple = BloomTokenizerFast SCREAMING_SNAKE_CASE_ : str = BloomTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : int = """tokenizer_file""" SCREAMING_SNAKE_CASE_ : List[str] = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def lowercase_ ( self : List[Any])-> Dict: '''simple docstring''' super().setUp() __lowerCAmelCase: Optional[Any] = BloomTokenizerFast.from_pretrained("bigscience/tokenizer") tokenizer.save_pretrained(self.tmpdirname) def lowercase_ ( self : List[Any] , **UpperCamelCase__ : Union[str, Any])-> Optional[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__) def lowercase_ ( self : Union[str, Any])-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: str = self.get_rust_tokenizer() __lowerCAmelCase: int = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] __lowerCAmelCase: List[str] = [[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]] __lowerCAmelCase: List[str] = tokenizer.batch_encode_plus(UpperCamelCase__)["input_ids"] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) __lowerCAmelCase: List[Any] = tokenizer.batch_decode(UpperCamelCase__) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : Tuple=6)-> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): __lowerCAmelCase: Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __lowerCAmelCase: Dict = "This is a simple input" __lowerCAmelCase: str = ["This is a simple input 1", "This is a simple input 2"] __lowerCAmelCase: int = ("This is a simple input", "This is a pair") __lowerCAmelCase: Union[str, Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.batch_encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.encode(UpperCamelCase__ , max_length=UpperCamelCase__) tokenizer_r.batch_encode_plus(UpperCamelCase__ , max_length=UpperCamelCase__) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding") __lowerCAmelCase: Tuple = None # Hotfixing padding = None self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Simple input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Simple input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" , ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Pair input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" , ) def lowercase_ ( self : Optional[Any])-> List[str]: '''simple docstring''' __lowerCAmelCase: Dict = self.get_rust_tokenizer() __lowerCAmelCase: List[str] = load_dataset("xnli" , "all_languages" , split="test" , streaming=UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = next(iter(UpperCamelCase__))["premise"] # pick up one data __lowerCAmelCase: Any = list(sample_data.values()) __lowerCAmelCase: int = list(map(tokenizer.encode , UpperCamelCase__)) __lowerCAmelCase: str = [tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__) for x in output_tokens] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Optional[int])-> str: '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map) , 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]) , 1)
217
0
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int = 100 ) -> int: _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Union[str, Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
352
from __future__ import annotations from random import choice def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Optional[int]: return choice(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[int] , lowerCAmelCase: int ) -> int: _UpperCAmelCase : List[Any] = random_pivot(lowerCAmelCase ) # partition based on pivot # linear time _UpperCAmelCase : List[str] = [e for e in lst if e < pivot] _UpperCAmelCase : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowerCAmelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowerCAmelCase ) < k - 1: return kth_number(lowerCAmelCase , k - len(lowerCAmelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
189
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = """gpt_neox_japanese""" def __init__( self : Optional[int] , a_ : List[str]=3_20_00 , a_ : Tuple=25_60 , a_ : List[Any]=32 , a_ : Tuple=32 , a_ : str=4 , a_ : Dict="gelu" , a_ : Optional[int]=1.0_0 , a_ : int=1_00_00 , a_ : str=20_48 , a_ : str=0.0_2 , a_ : int=1e-5 , a_ : Any=True , a_ : Union[str, Any]=3_19_96 , a_ : Tuple=3_19_99 , a_ : Any=0.1 , a_ : str=0.0 , **a_ : List[Any] , ): '''simple docstring''' super().__init__(bos_token_id=a_ , eos_token_id=a_ , **a_ ) __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : int = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_multiple_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Dict = rotary_pct __UpperCAmelCase : Optional[int] = rotary_emb_base __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = layer_norm_eps __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : Optional[int] = attention_dropout __UpperCAmelCase : List[Any] = hidden_dropout
226
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A =logging.get_logger(__name__) def a ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict ): '''simple docstring''' __UpperCAmelCase : List[str] = b.T __UpperCAmelCase : Any = np.sum(np.square(_UpperCAmelCase ) , axis=1 ) __UpperCAmelCase : int = np.sum(np.square(_UpperCAmelCase ) , axis=0 ) __UpperCAmelCase : Optional[int] = np.matmul(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : List[str] = aa[:, None] - 2 * ab + ba[None, :] return d def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : str = x.reshape(-1 , 3 ) __UpperCAmelCase : Optional[int] = squared_euclidean_distance(_UpperCAmelCase , _UpperCAmelCase ) return np.argmin(_UpperCAmelCase , axis=1 ) class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = ["""pixel_values"""] def __init__( self : str , a_ : Optional[Union[List[List[int]], np.ndarray]] = None , a_ : bool = True , a_ : Dict[str, int] = None , a_ : PILImageResampling = PILImageResampling.BILINEAR , a_ : bool = True , a_ : bool = True , **a_ : List[str] , ): '''simple docstring''' super().__init__(**a_ ) __UpperCAmelCase : Optional[int] = size if size is not None else {'''height''': 2_56, '''width''': 2_56} __UpperCAmelCase : List[str] = get_size_dict(a_ ) __UpperCAmelCase : str = np.array(a_ ) if clusters is not None else None __UpperCAmelCase : Dict = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = resample __UpperCAmelCase : Tuple = do_normalize __UpperCAmelCase : Optional[int] = do_color_quantize def snake_case__ ( self : Optional[Any] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : PILImageResampling = PILImageResampling.BILINEAR , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Dict , ): '''simple docstring''' __UpperCAmelCase : Tuple = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(F'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( a_ , size=(size['''height'''], size['''width''']) , resample=a_ , data_format=a_ , **a_ ) def snake_case__ ( self : Tuple , a_ : np.ndarray , a_ : Optional[Union[str, ChannelDimension]] = None , ): '''simple docstring''' __UpperCAmelCase : Dict = rescale(image=a_ , scale=1 / 1_2_7.5 , data_format=a_ ) __UpperCAmelCase : Union[str, Any] = image - 1 return image def snake_case__ ( self : int , a_ : ImageInput , a_ : bool = None , a_ : Dict[str, int] = None , a_ : PILImageResampling = None , a_ : bool = None , a_ : Optional[bool] = None , a_ : Optional[Union[List[List[int]], np.ndarray]] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **a_ : Any , ): '''simple docstring''' __UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : List[str] = size if size is not None else self.size __UpperCAmelCase : Any = get_size_dict(a_ ) __UpperCAmelCase : Optional[int] = resample if resample is not None else self.resample __UpperCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : int = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase : Optional[int] = clusters if clusters is not None else self.clusters __UpperCAmelCase : Any = np.array(a_ ) __UpperCAmelCase : Optional[int] = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase : List[Any] = [to_numpy_array(a_ ) for image in images] if do_resize: __UpperCAmelCase : List[str] = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_normalize: __UpperCAmelCase : Dict = [self.normalize(image=a_ ) for image in images] if do_color_quantize: __UpperCAmelCase : int = [to_channel_dimension_format(a_ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase : List[str] = np.array(a_ ) __UpperCAmelCase : Dict = color_quantize(a_ , a_ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase : Any = images.shape[0] __UpperCAmelCase : Any = images.reshape(a_ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase : List[Any] = list(a_ ) else: __UpperCAmelCase : int = [to_channel_dimension_format(a_ , a_ ) for image in images] __UpperCAmelCase : int = {'''input_ids''': images} return BatchFeature(data=a_ , tensor_type=a_ )
226
1
from math import asin, atan, cos, radians, sin, sqrt, tan lowerCamelCase : Union[str, Any] = 637_8137.0 lowerCamelCase : Dict = 635_6752.31_4245 lowerCamelCase : Dict = 6_3_7_8_1_3_7 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> float: snake_case : Union[str, Any] = (AXIS_A - AXIS_B) / AXIS_A snake_case : Union[str, Any] = atan((1 - flattening) * tan(radians(lowercase ) ) ) snake_case : Union[str, Any] = atan((1 - flattening) * tan(radians(lowercase ) ) ) snake_case : List[str] = radians(lowercase ) snake_case : Dict = radians(lowercase ) # Equation snake_case : Union[str, Any] = sin((phi_a - phi_a) / 2 ) snake_case : List[Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda snake_case : Tuple = sqrt(sin_sq_phi + (cos(lowercase ) * cos(lowercase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
176
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: return ConvertCommand( args.model_type ,args.tf_checkpoint ,args.pytorch_dump_output ,args.config ,args.finetuning_task_name ) lowerCamelCase : Tuple = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class __lowercase (UpperCamelCase__ ): """simple docstring""" @staticmethod def UpperCAmelCase ( A ) -> List[str]: snake_case : Union[str, Any] = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=A , required=A , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=A , required=A , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=A , required=A , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=A , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=A , default=A , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=A ) def __init__( self , A , A , A , A , A , *A , ) -> List[Any]: snake_case : Any = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(f"""Loading model {model_type}""" ) snake_case : int = model_type snake_case : Any = tf_checkpoint snake_case : int = pytorch_dump_output snake_case : List[str] = config snake_case : Tuple = finetuning_task_name def UpperCAmelCase ( self ) -> int: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) if "ckpt" in self._tf_checkpoint.lower(): snake_case : List[Any] = self._tf_checkpoint snake_case : Tuple = """""" else: snake_case : Tuple = self._tf_checkpoint snake_case : Tuple = """""" convert_transfo_xl_checkpoint_to_pytorch( A , self._config , self._pytorch_dump_output , A ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
176
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCamelCase__ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def lowerCAmelCase_ ( __A ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = {} with open(UpperCamelCase__, "r" ) as file: for line_number, line in enumerate(UpperCamelCase__ ): UpperCAmelCase__ = line.strip() if line: UpperCAmelCase__ = line.split() UpperCAmelCase__ = line_number UpperCAmelCase__ = words[0] UpperCAmelCase__ = value return result def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> int: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase__ = getattr(UpperCamelCase__, UpperCamelCase__ ) UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCamelCase__ ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split("." )[-1]] UpperCAmelCase__ = """param""" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = getattr(UpperCamelCase__, UpperCamelCase__ ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = hf_pointer for attribute in hf_param_name.split("." ): UpperCAmelCase__ = getattr(UpperCamelCase__, UpperCamelCase__ ) UpperCAmelCase__ = shape_pointer.shape # let's reduce dimension UpperCAmelCase__ = value[0] else: UpperCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ = value elif weight_type == "weight_g": UpperCAmelCase__ = value elif weight_type == "weight_v": UpperCAmelCase__ = value elif weight_type == "bias": UpperCAmelCase__ = value elif weight_type == "param": for attribute in hf_param_name.split("." ): UpperCAmelCase__ = getattr(UpperCamelCase__, UpperCamelCase__ ) UpperCAmelCase__ = value else: UpperCAmelCase__ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCamelCase__ ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split("." )[-1]] UpperCAmelCase__ = """param""" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = """.""".join([key, hf_param_name] ) else: UpperCAmelCase__ = key UpperCAmelCase__ = value if """lm_head""" in full_key else value[0] UpperCamelCase__ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def lowerCAmelCase_ ( __A, __A, __A=None, __A=None ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = False for key, mapped_key in MAPPING.items(): UpperCAmelCase__ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase__ = True if "*" in mapped_key: UpperCAmelCase__ = name.split(UpperCamelCase__ )[0].split("." )[-2] UpperCAmelCase__ = mapped_key.replace("*", UpperCamelCase__ ) if "weight_g" in name: UpperCAmelCase__ = """weight_g""" elif "weight_v" in name: UpperCAmelCase__ = """weight_v""" elif "bias" in name: UpperCAmelCase__ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ = """weight""" else: UpperCAmelCase__ = None if hf_dict is not None: rename_dict(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) else: set_recursively(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) return is_used return is_used def lowerCAmelCase_ ( __A, __A, __A ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = fairseq_model.state_dict() UpperCAmelCase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, hf_model.config.feat_extract_norm == "group", ) UpperCAmelCase__ = True else: UpperCAmelCase__ = load_wavaveca_layer(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = full_name.split("conv_layers." )[-1] UpperCAmelCase__ = name.split("." ) UpperCAmelCase__ = int(items[0] ) UpperCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCAmelCase_ ( __A, __A, __A=None, __A=None, __A=True, __A=False ) -> Tuple: '''simple docstring''' if config_path is not None: UpperCAmelCase__ = WavaVecaConfig.from_pretrained(UpperCamelCase__ ) else: UpperCAmelCase__ = WavaVecaConfig() if is_seq_class: UpperCAmelCase__ = read_txt_into_dict(UpperCamelCase__ ) UpperCAmelCase__ = idalabel UpperCAmelCase__ = WavaVecaForSequenceClassification(UpperCamelCase__ ) UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16_000, padding_value=0, do_normalize=UpperCamelCase__, return_attention_mask=UpperCamelCase__, ) feature_extractor.save_pretrained(UpperCamelCase__ ) elif is_finetuned: if dict_path: UpperCAmelCase__ = Dictionary.load(UpperCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ = target_dict.pad_index UpperCAmelCase__ = target_dict.bos_index UpperCAmelCase__ = target_dict.eos_index UpperCAmelCase__ = len(target_dict.symbols ) UpperCAmelCase__ = os.path.join(UpperCamelCase__, "vocab.json" ) if not os.path.isdir(UpperCamelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCamelCase__ ) ) return os.makedirs(UpperCamelCase__, exist_ok=UpperCamelCase__ ) UpperCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 with open(UpperCamelCase__, "w", encoding="utf-8" ) as vocab_handle: json.dump(UpperCamelCase__, UpperCamelCase__ ) UpperCAmelCase__ = WavaVecaCTCTokenizer( UpperCamelCase__, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=UpperCamelCase__, ) UpperCAmelCase__ = True if config.feat_extract_norm == """layer""" else False UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16_000, padding_value=0, do_normalize=UpperCamelCase__, return_attention_mask=UpperCamelCase__, ) UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=UpperCamelCase__, tokenizer=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) UpperCAmelCase__ = WavaVecaForCTC(UpperCamelCase__ ) else: UpperCAmelCase__ = WavaVecaForPreTraining(UpperCamelCase__ ) if is_finetuned or is_seq_class: UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase__ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase__ = fairseq.tasks.setup_task(UpperCamelCase__ ) UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=UpperCamelCase__ ) UpperCAmelCase__ = model[0].eval() recursively_load_weights(UpperCamelCase__, UpperCamelCase__, not is_finetuned ) hf_wavavec.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
65
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'vocab.json'} _snake_case = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _snake_case = {'mgp-str': 27} class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[str] = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any]="[GO]" , UpperCAmelCase__ : Tuple="[GO]" , UpperCAmelCase__ : Optional[int]="[s]" , UpperCAmelCase__ : int="[GO]" , **UpperCAmelCase__ : Dict ) -> int: super().__init__( unk_token=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) with open(UpperCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: _a : int = json.load(UpperCAmelCase__ ) _a : Optional[int] = {v: k for k, v in self.vocab.items()} @property def _lowercase ( self : Dict ) -> Union[str, Any]: return len(self.vocab ) def _lowercase ( self : Union[str, Any] ) -> str: return dict(self.vocab , **self.added_tokens_encoder ) def _lowercase ( self : Dict , UpperCAmelCase__ : str ) -> Union[str, Any]: _a : Tuple = [] for s in text: char_tokens.extend(UpperCAmelCase__ ) return char_tokens def _lowercase ( self : List[Any] , UpperCAmelCase__ : str ) -> Dict: return self.vocab.get(UpperCAmelCase__ , self.vocab.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Tuple ) -> List[Any]: return self.decoder.get(UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error("""Vocabulary path ({}) should be a directory""".format(UpperCAmelCase__ ) ) return _a : Tuple = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) with open(UpperCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ ) + """\n""" ) return (vocab_file,)
294
0
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): __a: Dict = True from torch.cuda.amp import autocast __a: str = logging.getLogger(__name__) def __UpperCamelCase ( UpperCAmelCase=None , UpperCAmelCase=None ): return field(default_factory=lambda: default , metadata=UpperCAmelCase ) @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) SCREAMING_SNAKE_CASE = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) SCREAMING_SNAKE_CASE = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) SCREAMING_SNAKE_CASE = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def __call__( self , __lowerCAmelCase ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods lowercase__ : int = [{'''input_values''': feature['''input_values''']} for feature in features] lowercase__ : List[Any] = [{'''input_ids''': feature['''labels''']} for feature in features] lowercase__ : Tuple = self.processor.pad( __lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) lowercase__ : List[str] = self.processor.pad( labels=__lowerCAmelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly lowercase__ : Any = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) lowercase__ : Dict = labels return batch class UpperCAmelCase ( a__ ): '''simple docstring''' def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> torch.Tensor: model.train() lowercase__ : Union[str, Any] = self._prepare_inputs(__lowerCAmelCase ) if self.use_amp: with autocast(): lowercase__ : Optional[int] = self.compute_loss(__lowerCAmelCase , __lowerCAmelCase ) else: lowercase__ : Optional[Any] = self.compute_loss(__lowerCAmelCase , __lowerCAmelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": lowercase__ : Union[str, Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowercase__ : List[Any] = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: lowercase__ : Union[str, Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__lowerCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(__lowerCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__lowerCAmelCase ) else: loss.backward() return loss.detach() def __UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowercase__ : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: lowercase__ : int = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) lowercase__ : Optional[Any] = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer lowercase__ : Any = F"""[{''.join(data_args.chars_to_ignore )}]""" def remove_special_characters(UpperCAmelCase ): lowercase__ : Union[str, Any] = re.sub(UpperCAmelCase , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch lowercase__ : Optional[int] = train_dataset.map(UpperCAmelCase , remove_columns=['''sentence'''] ) lowercase__ : Tuple = eval_dataset.map(UpperCAmelCase , remove_columns=['''sentence'''] ) def extract_all_chars(UpperCAmelCase ): lowercase__ : str = ''' '''.join(batch['''text'''] ) lowercase__ : Optional[Any] = list(set(UpperCAmelCase ) ) return {"vocab": [vocab], "all_text": [all_text]} lowercase__ : str = train_dataset.map( UpperCAmelCase , batched=UpperCAmelCase , batch_size=-1 , keep_in_memory=UpperCAmelCase , remove_columns=train_dataset.column_names , ) lowercase__ : Tuple = train_dataset.map( UpperCAmelCase , batched=UpperCAmelCase , batch_size=-1 , keep_in_memory=UpperCAmelCase , remove_columns=eval_dataset.column_names , ) lowercase__ : int = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) lowercase__ : Any = {v: k for k, v in enumerate(UpperCAmelCase )} lowercase__ : Union[str, Any] = vocab_dict[''' '''] del vocab_dict[" "] lowercase__ : Dict = len(UpperCAmelCase ) lowercase__ : str = len(UpperCAmelCase ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(UpperCAmelCase , UpperCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[Any] = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) lowercase__ : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0.0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase ) lowercase__ : Union[str, Any] = WavaVecaProcessor(feature_extractor=UpperCAmelCase , tokenizer=UpperCAmelCase ) lowercase__ : Optional[Any] = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: lowercase__ : str = min(len(UpperCAmelCase ) , data_args.max_train_samples ) lowercase__ : Optional[int] = train_dataset.select(range(UpperCAmelCase ) ) if data_args.max_val_samples is not None: lowercase__ : List[Any] = eval_dataset.select(range(data_args.max_val_samples ) ) lowercase__ : int = torchaudio.transforms.Resample(4_8000 , 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(UpperCAmelCase ): lowercase__ , lowercase__ : Any = torchaudio.load(batch['''path'''] ) lowercase__ : List[str] = resampler(UpperCAmelCase ).squeeze().numpy() lowercase__ : Optional[Any] = 1_6000 lowercase__ : List[str] = batch['''text'''] return batch lowercase__ : Any = train_dataset.map( UpperCAmelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) lowercase__ : List[Any] = eval_dataset.map( UpperCAmelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(UpperCAmelCase ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" lowercase__ : Optional[Any] = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(UpperCAmelCase ) return batch lowercase__ : Tuple = train_dataset.map( UpperCAmelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , ) lowercase__ : List[str] = eval_dataset.map( UpperCAmelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , ) # Metric lowercase__ : Tuple = datasets.load_metric('''wer''' ) def compute_metrics(UpperCAmelCase ): lowercase__ : Dict = pred.predictions lowercase__ : Any = np.argmax(UpperCAmelCase , axis=-1 ) lowercase__ : Union[str, Any] = processor.tokenizer.pad_token_id lowercase__ : Optional[int] = processor.batch_decode(UpperCAmelCase ) # we do not want to group tokens when computing the metrics lowercase__ : List[str] = processor.batch_decode(pred.label_ids , group_tokens=UpperCAmelCase ) lowercase__ : Optional[int] = wer_metric.compute(predictions=UpperCAmelCase , references=UpperCAmelCase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator lowercase__ : Union[str, Any] = DataCollatorCTCWithPadding(processor=UpperCAmelCase , padding=UpperCAmelCase ) # Initialize our Trainer lowercase__ : Optional[int] = CTCTrainer( model=UpperCAmelCase , data_collator=UpperCAmelCase , args=UpperCAmelCase , compute_metrics=UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: lowercase__ : List[Any] = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): lowercase__ : Optional[Any] = model_args.model_name_or_path else: lowercase__ : Union[str, Any] = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) lowercase__ : Tuple = trainer.train(resume_from_checkpoint=UpperCAmelCase ) trainer.save_model() lowercase__ : Union[str, Any] = train_result.metrics lowercase__ : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase ) ) lowercase__ : List[str] = min(UpperCAmelCase , len(UpperCAmelCase ) ) trainer.log_metrics('''train''' , UpperCAmelCase ) trainer.save_metrics('''train''' , UpperCAmelCase ) trainer.save_state() # Evaluation lowercase__ : List[Any] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase__ : Optional[int] = trainer.evaluate() lowercase__ : Dict = data_args.max_val_samples if data_args.max_val_samples is not None else len(UpperCAmelCase ) lowercase__ : Optional[Any] = min(UpperCAmelCase , len(UpperCAmelCase ) ) trainer.log_metrics('''eval''' , UpperCAmelCase ) trainer.save_metrics('''eval''' , UpperCAmelCase ) return results if __name__ == "__main__": main()
214
'''simple docstring''' import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a: List[str] = logging.get_logger(__name__) __a: int = """▁""" __a: Optional[int] = {"""vocab_file""": """prophetnet.tokenizer"""} __a: Optional[int] = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __a: List[str] = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __a: Tuple = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Dict = collections.OrderedDict() with open(UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as reader: lowercase__ : List[Any] = reader.readlines() for index, token in enumerate(UpperCAmelCase ): lowercase__ : List[Any] = token.rstrip('''\n''' ) lowercase__ : Tuple = index return vocab class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self , __lowerCAmelCase , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="[UNK]" , __lowerCAmelCase="[PAD]" , __lowerCAmelCase="[CLS]" , __lowerCAmelCase="[MASK]" , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> None: lowercase__ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise lowercase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) lowercase__ : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowercase__ : str = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(10 ): lowercase__ : Tuple = F"""[unused{i}]""" lowercase__ : List[Any] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowercase__ : Optional[Any] = 12 lowercase__ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(__lowerCAmelCase ) def __getstate__( self ) -> Union[str, Any]: lowercase__ : Dict = self.__dict__.copy() lowercase__ : Optional[Any] = None return state def __setstate__( self , __lowerCAmelCase ) -> Dict: lowercase__ : Any = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ : List[Any] = {} lowercase__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return ([0] * len(__lowerCAmelCase )) + [1] return ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) + [1] def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase( self ) -> List[Any]: return len(self.sp_model ) + self.fairseq_offset def _lowerCAmelCase( self ) -> List[str]: lowercase__ : str = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase( self , __lowerCAmelCase ) -> str: return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(__lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCAmelCase( self , __lowerCAmelCase ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Union[str, Any]: lowercase__ : Optional[Any] = ''''''.join(__lowerCAmelCase ).replace(__lowerCAmelCase , ''' ''' ).strip() return out_string def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : str = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: lowercase__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowercase__ : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
214
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar _UpperCamelCase = TypeVar('''T''') class _lowerCamelCase ( Generic[T] ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> None: '''simple docstring''' __snake_case : Any | T = None __snake_case : int = len(UpperCAmelCase ) __snake_case : list[T] = [any_type for _ in range(self.N )] + arr __snake_case : Union[str, Any] = fnc self.build() def UpperCAmelCase ( self ) -> None: '''simple docstring''' for p in range(self.N - 1 , 0 , -1 ): __snake_case : Optional[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> None: '''simple docstring''' p += self.N __snake_case : Any = v while p > 1: __snake_case : Union[str, Any] = p // 2 __snake_case : int = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> T | None: # noqa: E741 '''simple docstring''' __snake_case , __snake_case : Tuple = l + self.N, r + self.N __snake_case : T | None = None while l <= r: if l % 2 == 1: __snake_case : List[str] = self.st[l] if res is None else self.fn(UpperCAmelCase , self.st[l] ) if r % 2 == 0: __snake_case : Dict = self.st[r] if res is None else self.fn(UpperCAmelCase , self.st[r] ) __snake_case , __snake_case : Optional[int] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce _UpperCamelCase = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] _UpperCamelCase = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } _UpperCamelCase = SegmentTree(test_array, min) _UpperCamelCase = SegmentTree(test_array, max) _UpperCamelCase = SegmentTree(test_array, lambda a, b: a + b) def lowerCAmelCase__( ) -> None: for i in range(len(lowercase ) ): for j in range(lowercase , len(lowercase ) ): __snake_case : List[str] = reduce(lowercase , test_array[i : j + 1] ) __snake_case : int = reduce(lowercase , test_array[i : j + 1] ) __snake_case : Union[str, Any] = reduce(lambda lowercase , lowercase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(lowercase , lowercase ) assert max_range == max_segment_tree.query(lowercase , lowercase ) assert sum_range == sum_segment_tree.query(lowercase , lowercase ) test_all_segments() for index, value in test_updates.items(): _UpperCamelCase = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
326
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
1
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCAmelCase_ ) , '''Tatoeba directory does not exist.''' ) class UpperCamelCase_ (unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = tempfile.mkdtemp() return TatoebaConverter(save_dir=__lowercase ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: self.resolver.convert_models(["heb-eng"] ) @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: UpperCAmelCase_ : Optional[int] = self.resolver.write_model_card("opus-mt-he-en" , dry_run=__lowercase ) assert mmeta["long_pair"] == "heb-eng"
367
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCamelCase_ = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } lowerCamelCase_ = {'''bert_for_seq_generation''': 512} class UpperCamelCase_ (__A ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = [] __magic_name__ = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : Optional[Any]="</s>" , lowerCAmelCase_ : int="<unk>" , lowerCAmelCase_ : Tuple="<pad>" , lowerCAmelCase_ : Tuple="<::::>" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Union[str, Any] , ) -> None: UpperCAmelCase_ : int = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) UpperCAmelCase_ : List[str] = vocab_file UpperCAmelCase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: UpperCAmelCase_ : List[str] = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = self.__dict__.copy() UpperCAmelCase_ : List[Any] = None return state def __setstate__( self : Dict , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ : Any = {} UpperCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Optional[int] ) -> Dict: return self.sp_model.piece_to_id(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : int ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.sp_model.IdToPiece(lowerCAmelCase_ ) return token def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : List[Any] ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Tuple = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase_ ) + token UpperCAmelCase_ : Tuple = [] else: current_sub_tokens.append(lowerCAmelCase_ ) out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : Tuple = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , "wb" ) as fi: UpperCAmelCase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
253
0
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: if not (isinstance(lowercase ,lowercase ) and isinstance(lowercase ,lowercase )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) snake_case : Dict = len(lowercase ) snake_case : List[Any] = len(lowercase ) snake_case : Optional[int] = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] snake_case : Dict = 0 snake_case : int = 0 for i in range(1 ,texta_length + 1 ): for j in range(1 ,texta_length + 1 ): if texta[i - 1] == texta[j - 1]: snake_case : List[Any] = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: snake_case : Any = i snake_case : Dict = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
124
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""image_processor""", """tokenizer"""] _snake_case = """FlavaImageProcessor""" _snake_case = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , A=None , A=None , **A ) -> Tuple: snake_case : str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A , ) snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) snake_case : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A , A ) snake_case : Dict = self.image_processor def __call__( self , A = None , A = None , A = True , A = False , A = False , A = None , A = 0 , A = None , A = None , A = None , A = None , A = None , A = False , A = False , A = False , A = False , A = True , A = None , **A , ) -> Tuple: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case : str = self.tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_token_type_ids=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_length=A , verbose=A , return_tensors=A , **A , ) if images is not None: snake_case : Tuple = self.image_processor( A , return_image_mask=A , return_codebook_pixels=A , return_tensors=A , **A , ) if text is not None and images is not None: encoding.update(A ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A ) , tensor_type=A ) def UpperCAmelCase ( self , *A , **A ) -> List[str]: return self.tokenizer.batch_decode(*A , **A ) def UpperCAmelCase ( self , *A , **A ) -> int: return self.tokenizer.decode(*A , **A ) @property def UpperCAmelCase ( self ) -> str: snake_case : Any = self.tokenizer.model_input_names snake_case : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> Dict: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A , ) return self.image_processor
124
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7_6_8 ): super().__init__(__lowercase ) UpperCamelCase_: str = proj_size UpperCamelCase_: str = CLIPVisionModel(__lowercase ) UpperCamelCase_: Optional[int] = PaintByExampleMapper(__lowercase ) UpperCamelCase_: List[str] = nn.LayerNorm(config.hidden_size ) UpperCamelCase_: Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling UpperCamelCase_: int = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _a ( self , _lowerCamelCase , _lowerCamelCase=False ): UpperCamelCase_: Optional[Any] = self.model(pixel_values=__lowercase ) UpperCamelCase_: Optional[int] = clip_output.pooler_output UpperCamelCase_: int = self.mapper(latent_states[:, None] ) UpperCamelCase_: Tuple = self.final_layer_norm(__lowercase ) UpperCamelCase_: Union[str, Any] = self.proj_out(__lowercase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCAmelCase( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ): super().__init__() UpperCamelCase_: Optional[int] = (config.num_hidden_layers + 1) // 5 UpperCamelCase_: str = config.hidden_size UpperCamelCase_: Dict = 1 UpperCamelCase_: List[Any] = nn.ModuleList( [ BasicTransformerBlock(__lowercase , __lowercase , __lowercase , activation_fn='gelu' , attention_bias=__lowercase ) for _ in range(__lowercase ) ] ) def _a ( self , _lowerCamelCase ): for block in self.blocks: UpperCamelCase_: Optional[Any] = block(__lowercase ) return hidden_states
367
def snake_case (UpperCAmelCase__ ) -> int: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: UpperCamelCase_: List[Any] = F'''The input value of [n={number}] has to be > 0''' raise ValueError(UpperCAmelCase__ ) else: UpperCamelCase_: str = sylvester(number - 1 ) UpperCamelCase_: str = num - 1 UpperCamelCase_: Any = num return lower * upper + 1 if __name__ == "__main__": print(F'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
292
0
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __lowercase : """simple docstring""" def __init__( self , A , A , A ) -> str: if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) snake_case : Optional[Any] = img snake_case : Union[str, Any] = img.shape[1] snake_case : Tuple = img.shape[0] snake_case : Optional[Any] = dst_width snake_case : Optional[int] = dst_height snake_case : Dict = self.src_w / self.dst_w snake_case : str = self.src_h / self.dst_h snake_case : Dict = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_5_5 ) def UpperCAmelCase ( self ) -> List[Any]: for i in range(self.dst_h ): for j in range(self.dst_w ): snake_case : List[str] = self.img[self.get_y(_A )][self.get_x(_A )] def UpperCAmelCase ( self , A ) -> str: return int(self.ratio_x * x ) def UpperCAmelCase ( self , A ) -> Dict: return int(self.ratio_y * y ) if __name__ == "__main__": lowerCamelCase : Dict = 8_0_0, 6_0_0 lowerCamelCase : Dict = imread('image_data/lena.jpg', 1) lowerCamelCase : Any = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
124
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = int(lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(lowerCAmelCase , 2 ) return binary_recursive(lowerCAmelCase ) + str(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) SCREAMING_SNAKE_CASE_ : List[str] = "-" if number.startswith("-" ) else "" SCREAMING_SNAKE_CASE_ : Optional[Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'{negative}0b{binary_recursive(int(lowerCAmelCase ) )}' if __name__ == "__main__": from doctest import testmod testmod()
18
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=1_8 , lowercase=3_0 , lowercase=4_0_0 , lowercase=True , lowercase=None , lowercase=True , ): """simple docstring""" A_ : List[str] = size if size is not None else {'height': 1_8, 'width': 1_8} A_ : List[str] = parent A_ : Optional[int] = batch_size A_ : Any = num_channels A_ : int = image_size A_ : Optional[int] = min_resolution A_ : Tuple = max_resolution A_ : Union[str, Any] = do_resize A_ : Optional[Any] = size A_ : Optional[Any] = apply_ocr def lowerCAmelCase_ ( self ): """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self ): """simple docstring""" A_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , 'do_resize' ) ) self.assertTrue(hasattr(lowercase , 'size' ) ) self.assertTrue(hasattr(lowercase , 'apply_ocr' ) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) A_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def lowerCAmelCase_ ( self ): """simple docstring""" pass def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input A_ : Any = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , lowercase ) self.assertIsInstance(encoding.boxes , lowercase ) # Test batched A_ : str = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A_ : Optional[int] = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A_ : str = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = LayoutLMvaImageProcessor() from datasets import load_dataset A_ : List[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) A_ : Tuple = Image.open(ds[0]['file'] ).convert('RGB' ) A_ : Union[str, Any] = image_processing(lowercase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 A_ : Any = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 A_ : Any = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowercase ) self.assertListEqual(encoding.boxes , lowercase ) # with apply_OCR = False A_ : Optional[Any] = LayoutLMvaImageProcessor(apply_ocr=lowercase ) A_ : Any = image_processing(lowercase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
192
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase=None , **lowercase ): """simple docstring""" logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) A_ : List[Any] = model A_ : Dict = kwargs.get('model_save_dir' , lowercase ) A_ : List[str] = kwargs.get('latest_model_name' , lowercase ) def __call__( self , **lowercase ): """simple docstring""" A_ : str = {k: np.array(lowercase ) for k, v in kwargs.items()} return self.model.run(lowercase , lowercase ) @staticmethod def lowerCAmelCase_ ( lowercase , lowercase=None , lowercase=None ): """simple docstring""" if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) A_ : List[Any] = 'CPUExecutionProvider' return ort.InferenceSession(lowercase , providers=[provider] , sess_options=lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase = None , **lowercase ): """simple docstring""" A_ : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME A_ : Optional[int] = self.model_save_dir.joinpath(self.latest_model_name ) A_ : int = Path(lowercase ).joinpath(lowercase ) try: shutil.copyfile(lowercase , lowercase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) A_ : Optional[Any] = self.model_save_dir.joinpath(lowercase ) if src_path.exists(): A_ : int = Path(lowercase ).joinpath(lowercase ) try: shutil.copyfile(lowercase , lowercase ) except shutil.SameFileError: pass def lowerCAmelCase_ ( self , lowercase , **lowercase , ): """simple docstring""" if os.path.isfile(lowercase ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(lowercase , exist_ok=lowercase ) # saving model weights/files self._save_pretrained(lowercase , **lowercase ) @classmethod def lowerCAmelCase_ ( cls , lowercase , lowercase = None , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = None , lowercase = None , **lowercase , ): """simple docstring""" A_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowercase ): A_ : Optional[int] = OnnxRuntimeModel.load_model( os.path.join(lowercase , lowercase ) , provider=lowercase , sess_options=lowercase ) A_ : Dict = Path(lowercase ) # load model from hub else: # download model A_ : List[str] = hf_hub_download( repo_id=lowercase , filename=lowercase , use_auth_token=lowercase , revision=lowercase , cache_dir=lowercase , force_download=lowercase , ) A_ : int = Path(lowercase ).parent A_ : Optional[Any] = Path(lowercase ).name A_ : Any = OnnxRuntimeModel.load_model(lowercase , provider=lowercase , sess_options=lowercase ) return cls(model=lowercase , **lowercase ) @classmethod def lowerCAmelCase_ ( cls , lowercase , lowercase = True , lowercase = None , lowercase = None , **lowercase , ): """simple docstring""" A_ : List[Any] = None if len(str(lowercase ).split('@' ) ) == 2: A_ , A_ : int = model_id.split('@' ) return cls._from_pretrained( model_id=lowercase , revision=lowercase , cache_dir=lowercase , force_download=lowercase , use_auth_token=lowercase , **lowercase , )
192
1
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase ( a__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = AlbertTokenizer SCREAMING_SNAKE_CASE_ = AlbertTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> str: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = AlbertTokenizer(__UpperCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def a_ ( self, lowerCAmelCase__) -> int: snake_case_ = 'this is a test' snake_case_ = 'this is a test' return input_text, output_text def a_ ( self) -> str: snake_case_ = '<pad>' snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase), __UpperCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase), __UpperCAmelCase) def a_ ( self) -> List[Any]: snake_case_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], '<pad>') self.assertEqual(vocab_keys[1], '<unk>') self.assertEqual(vocab_keys[-1], '▁eloquent') self.assertEqual(len(__UpperCAmelCase), 3_0000) def a_ ( self) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size, 3_0000) def a_ ( self) -> Optional[Any]: if not self.test_rust_tokenizer: return snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = tokenizer.tokenize(__UpperCAmelCase) snake_case_ = rust_tokenizer.tokenize(__UpperCAmelCase) self.assertListEqual(__UpperCAmelCase, __UpperCAmelCase) snake_case_ = tokenizer.encode(__UpperCAmelCase, add_special_tokens=__UpperCAmelCase) snake_case_ = rust_tokenizer.encode(__UpperCAmelCase, add_special_tokens=__UpperCAmelCase) self.assertListEqual(__UpperCAmelCase, __UpperCAmelCase) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(__UpperCAmelCase) snake_case_ = rust_tokenizer.encode(__UpperCAmelCase) self.assertListEqual(__UpperCAmelCase, __UpperCAmelCase) def a_ ( self) -> Dict: snake_case_ = AlbertTokenizer(__UpperCAmelCase, keep_accents=__UpperCAmelCase) snake_case_ = tokenizer.tokenize('This is a test') self.assertListEqual(__UpperCAmelCase, ['▁this', '▁is', '▁a', '▁test']) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase), [48, 25, 21, 1289]) snake_case_ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __UpperCAmelCase, ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.']) snake_case_ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase) self.assertListEqual(__UpperCAmelCase, [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]) snake_case_ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase) self.assertListEqual( __UpperCAmelCase, ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'], ) def a_ ( self) -> Optional[Any]: snake_case_ = AlbertTokenizer(__UpperCAmelCase) snake_case_ = tokenizer.encode('sequence builders') snake_case_ = tokenizer.encode('multi-sequence build') snake_case_ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase) snake_case_ = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase, __UpperCAmelCase) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def a_ ( self) -> List[Any]: # fmt: off snake_case_ = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase, model_name='albert-base-v2', revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e', )
69
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'gptj' A_ : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]: _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]: super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ): # TODO: how to do that better? _a = 0 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _UpperCAmelCase ( self ) -> int: return self._config.n_layer @property def _UpperCAmelCase ( self ) -> int: return self._config.n_head def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self ) -> int: return 13
320
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class lowercase ( lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'van' def __init__( self , _snake_case=224 , _snake_case=3 , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[64, 128, 320, 512] , _snake_case=[3, 3, 12, 3] , _snake_case=[8, 8, 4, 4] , _snake_case="gelu" , _snake_case=0.02 , _snake_case=1e-6 , _snake_case=1e-2 , _snake_case=0.0 , _snake_case=0.0 , **_snake_case , ) -> Optional[int]: """simple docstring""" super().__init__(**__lowerCAmelCase ) UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = patch_sizes UpperCAmelCase = strides UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = mlp_ratios UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = layer_scale_init_value UpperCAmelCase = drop_path_rate UpperCAmelCase = dropout_rate
358
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} __magic_name__ = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } __magic_name__ = { "abeja/gpt-neox-japanese-2.7b": 2048, } def _lowerCAmelCase ( A__: List[Any] , A__: int ): '''simple docstring''' with open(A__ , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase = json.loads(f.read() ) UpperCAmelCase = collections.OrderedDict() UpperCAmelCase = collections.OrderedDict() UpperCAmelCase = collections.OrderedDict() with open(A__ , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase = f.readlines() UpperCAmelCase = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(A__ ): UpperCAmelCase = b UpperCAmelCase = idx for wd in b: UpperCAmelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__( self , _snake_case , _snake_case , _snake_case="<|endoftext|>" , _snake_case="<|endoftext|>" , _snake_case="<|startoftext|>" , _snake_case="<|endoftext|>" , _snake_case=False , **_snake_case , ) -> Tuple: """simple docstring""" super().__init__( unk_token=_snake_case , pad_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , do_clean_text=_snake_case , **_snake_case , ) if not os.path.isfile(_snake_case ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(_snake_case ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) UpperCAmelCase = do_clean_text UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = load_vocab_and_emoji(_snake_case , _snake_case ) UpperCAmelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def snake_case_ ( self ) -> Any: """simple docstring""" # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def snake_case_ ( self , _snake_case ) -> List[Any]: """simple docstring""" return self.subword_tokenizer.tokenize(_snake_case , clean=self.do_clean_text ) def snake_case_ ( self , _snake_case ) -> Dict: """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def snake_case_ ( self , _snake_case ) -> Optional[int]: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(_snake_case ) def snake_case_ ( self , _snake_case ) -> List[str]: """simple docstring""" UpperCAmelCase = ''''''.join(_snake_case ).strip() return out_string def snake_case_ ( self , _snake_case ) -> List[int]: """simple docstring""" UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_snake_case , add_special_tokens=_snake_case ) + [self.eos_token_id] ) if len(_snake_case ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids def snake_case_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase = 0 if os.path.isdir(_snake_case ): UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: UpperCAmelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCAmelCase = token_index writer.write(''','''.join(_snake_case ) + '''\n''' ) index += 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , _snake_case ) return vocab_file, emoji_file class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = vocab # same as swe UpperCAmelCase = ids_to_tokens # same as bpe UpperCAmelCase = emoji UpperCAmelCase = np.max([len(_snake_case ) for w in self.vocab.keys()] ) UpperCAmelCase = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) UpperCAmelCase = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) UpperCAmelCase = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) UpperCAmelCase = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) UpperCAmelCase = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) UpperCAmelCase = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) UpperCAmelCase = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' UpperCAmelCase = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' UpperCAmelCase = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self ) -> Dict: """simple docstring""" return len(self.ids_to_tokens ) def snake_case_ ( self , _snake_case ) -> str: """simple docstring""" UpperCAmelCase = self.content_repattera.sub('''<URL>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<EMAIL>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<TEL>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<DATE>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<DATE>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<PRICE>''' , _snake_case ) UpperCAmelCase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def snake_case_ ( self , _snake_case , _snake_case=False ) -> str: """simple docstring""" UpperCAmelCase = text.replace(''' ''' , '''<SP>''' ) UpperCAmelCase = text.replace(''' ''' , '''<SP>''' ) UpperCAmelCase = text.replace('''\r\n''' , '''<BR>''' ) UpperCAmelCase = text.replace('''\n''' , '''<BR>''' ) UpperCAmelCase = text.replace('''\r''' , '''<BR>''' ) UpperCAmelCase = text.replace('''\t''' , '''<TAB>''' ) UpperCAmelCase = text.replace('''—''' , '''ー''' ) UpperCAmelCase = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase = text.replace(_snake_case , _snake_case ) if clean: UpperCAmelCase = self.clean_text(_snake_case ) def check_simbol(_snake_case ): UpperCAmelCase = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 2: UpperCAmelCase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(_snake_case ): UpperCAmelCase = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 3: UpperCAmelCase = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE28080 and c <= 0XE2B07F: return True return False UpperCAmelCase = 0 UpperCAmelCase = [] while pos < len(_snake_case ): UpperCAmelCase = min(len(_snake_case ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 UpperCAmelCase = [] # (token_id, token, pos) for e in range(_snake_case , _snake_case , -1 ): UpperCAmelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_snake_case ) > 2: UpperCAmelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_snake_case ) > 0: # the smallest token_id is adopted UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = sorted(_snake_case , key=lambda _snake_case : x[0] )[0] result.append(_snake_case ) UpperCAmelCase = e else: UpperCAmelCase = pos + 1 UpperCAmelCase = text[pos:end] if check_simbol(_snake_case ): result.append('''<KIGOU>''' ) elif checkuae(_snake_case ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) UpperCAmelCase = end return result def snake_case_ ( self , _snake_case , _snake_case="\n" ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode('''utf-8''' , errors='''replace''' ) ) UpperCAmelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(_snake_case ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(_snake_case ) if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode('''utf-8''' , errors='''replace''' ) ) UpperCAmelCase = ''''''.join(_snake_case ) return text
152
0
A : str = tuple[float, float, float] A : int = tuple[float, float, float] def __lowerCamelCase ( __a :Pointad , __a :Pointad ) -> Vectorad: """simple docstring""" A__ = end_pointa[0] - end_pointa[0] A__ = end_pointa[1] - end_pointa[1] A__ = end_pointa[2] - end_pointa[2] return (x, y, z) def __lowerCamelCase ( __a :Vectorad , __a :Vectorad ) -> Vectorad: """simple docstring""" A__ = ab[1] * ac[2] - ab[2] * ac[1] # *i A__ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j A__ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __lowerCamelCase ( __a :Vectorad , __a :int ) -> bool: """simple docstring""" return tuple(round(__a , __a ) for x in vector ) == (0, 0, 0) def __lowerCamelCase ( __a :Pointad , __a :Pointad , __a :Pointad , __a :int = 1_0 ) -> bool: """simple docstring""" A__ = create_vector(__a , __a ) A__ = create_vector(__a , __a ) return is_zero_vector(get_ad_vectors_cross(__a , __a ) , __a )
274
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time A : Dict = Lock() def __lowerCamelCase ( __a :Dict , __a :List[str] , __a :Optional[int] , __a :Optional[int] , __a :Optional[Any] , __a :Optional[int] , __a :int ) -> Dict: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__a ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A__ = min(__a , __a ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__a ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A__ = max(__a , __a ) # after all swaps are performed, send the values back to main result_pipe[1].send(__a ) def __lowerCamelCase ( __a :List[str] ) -> int: """simple docstring""" A__ = [] A__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A__ = Pipe() A__ = Pipe() process_array_.append( Process( target=__a , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A__ = temp_rs A__ = temp_rr for i in range(1 , len(__a ) - 1 ): A__ = Pipe() A__ = Pipe() process_array_.append( Process( target=__a , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A__ = temp_rs A__ = temp_rr process_array_.append( Process( target=__a , args=( len(__a ) - 1, arr[len(__a ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__a ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__a ) ): A__ = result_pipe[p][0].recv() process_array_[p].join() return arr def __lowerCamelCase ( ) -> str: """simple docstring""" A__ = list(range(1_0 , 0 , -1 ) ) print("""Initial List""" ) print(*__a ) A__ = odd_even_transposition(__a ) print("""Sorted List\n""" ) print(*__a ) if __name__ == "__main__": main()
274
1
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class SCREAMING_SNAKE_CASE__ ( yaml.SafeLoader ): def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = [self.constructed_objects[key_node] for key_node, _ in node.value] lowercase_ = [tuple(lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else key for key in keys] lowercase_ = Counter(lowerCAmelCase_) lowercase_ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''') def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict=False): """simple docstring""" lowercase_ = super().construct_mapping(lowerCAmelCase_ , deep=lowerCAmelCase_) self._check_no_duplicates_on_constructed_node(lowerCAmelCase_) return mapping def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Tuple[Optional[str], str]: lowercase_ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowercase_ = full_content[1:].index("""---""" ) + 1 lowercase_ = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): # class attributes lowercase__ = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def _UpperCAmelCase ( cls : str , lowerCAmelCase_ : Path): """simple docstring""" with open(lowerCAmelCase_ , encoding="""utf-8""") as readme_file: lowercase_ = _split_yaml_from_readme(readme_file.read()) if yaml_string is not None: return cls.from_yaml_string(lowerCAmelCase_) else: return cls() def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Path): """simple docstring""" if path.exists(): with open(lowerCAmelCase_ , encoding="""utf-8""") as readme_file: lowercase_ = readme_file.read() else: lowercase_ = None lowercase_ = self._to_readme(lowerCAmelCase_) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""") as readme_file: readme_file.write(lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" if readme_content is not None: lowercase_ = _split_yaml_from_readme(lowerCAmelCase_) lowercase_ = '---\n' + self.to_yaml_string() + '---\n' + content else: lowercase_ = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def _UpperCAmelCase ( cls : Union[str, Any] , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = yaml.load(lowerCAmelCase_ , Loader=_NoDuplicateSafeLoader) or {} # Convert the YAML keys to DatasetMetadata fields lowercase_ = { (key.replace("""-""" , """_""") if key.replace("""-""" , """_""") in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return yaml.safe_dump( { (key.replace("""_""" , """-""") if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowerCAmelCase_ , allow_unicode=lowerCAmelCase_ , encoding="""utf-8""" , ).decode("""utf-8""") UpperCAmelCase : Tuple = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser UpperCAmelCase : Tuple = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") UpperCAmelCase : str = ap.parse_args() UpperCAmelCase : Optional[int] = Path(args.readme_filepath) UpperCAmelCase : Union[str, Any] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
351
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = None lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = True lowercase__ = None lowercase__ = 1 lowercase__ = None lowercase__ = False lowercase__ = None lowercase__ = None def _UpperCAmelCase ( self : int): """simple docstring""" return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
313
0
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' _UpperCAmelCase = tmp_path / 'cache' _UpperCAmelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = SqlDatasetReader( 'dataset' , 'sqlite:///' + sqlite_path , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase ).read() _check_sql_dataset(_UpperCAmelCase , _UpperCAmelCase ) @require_sqlalchemy @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / 'cache' _UpperCAmelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_sql_dataset(_UpperCAmelCase , _UpperCAmelCase ) def A ( _UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' with contextlib.closing(sqlitea.connect(_UpperCAmelCase ) ) as con: _UpperCAmelCase = con.cursor() cur.execute('SELECT * FROM dataset' ) for row in cur: yield row @require_sqlalchemy def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = tmp_path / 'cache' _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'tmp.sql' ) _UpperCAmelCase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=_UpperCAmelCase ).read() SqlDatasetWriter(_UpperCAmelCase , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write() _UpperCAmelCase = iter_sql_file(_UpperCAmelCase ) _UpperCAmelCase = iter_sql_file(_UpperCAmelCase ) for rowa, rowa in zip(_UpperCAmelCase , _UpperCAmelCase ): assert rowa == rowa @require_sqlalchemy def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ) -> Any: '''simple docstring''' _UpperCAmelCase = tmp_path / 'cache' _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'tmp.sql' ) _UpperCAmelCase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=_UpperCAmelCase ).read() SqlDatasetWriter(_UpperCAmelCase , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write() _UpperCAmelCase = iter_sql_file(_UpperCAmelCase ) _UpperCAmelCase = iter_sql_file(_UpperCAmelCase ) for rowa, rowa in zip(_UpperCAmelCase , _UpperCAmelCase ): assert rowa == rowa @require_sqlalchemy def A ( _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = tmp_path / 'cache' _UpperCAmelCase = os.path.join(_UpperCAmelCase , 'tmp.sql' ) _UpperCAmelCase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=_UpperCAmelCase ).read() with pytest.raises(_UpperCAmelCase ): SqlDatasetWriter(_UpperCAmelCase , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
339
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCamelCase_ : Dict = logging.getLogger(__name__) lowerCamelCase_ : Tuple = """pytorch_model.bin""" @dataclasses.dataclass class __A : """simple docstring""" __lowerCAmelCase = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."}, ) @dataclasses.dataclass class __A : """simple docstring""" __lowerCAmelCase = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) __lowerCAmelCase = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "A csv or a json file containing the validation data."} ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "The name of the task to train on."}, ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class __A : """simple docstring""" __lowerCAmelCase = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) __lowerCAmelCase = dataclasses.field( default="accuracy", metadata={"help": "The evaluation metric used for the task."} ) __lowerCAmelCase = dataclasses.field( default="no", metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" }, ) __lowerCAmelCase = dataclasses.field( default=10, metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."}, ) __lowerCAmelCase = dataclasses.field( default=0.0, metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." }, ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."}, ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."}, ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Whether to fine-tune on labeled data after pseudo training."}, ) __lowerCAmelCase = dataclasses.field( default=0.0, metadata={"help": "Confidence threshold for pseudo-labeled data filtering."}, ) __lowerCAmelCase = dataclasses.field( default=100, metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."}, ) __lowerCAmelCase = dataclasses.field( default=_SCREAMING_SNAKE_CASE, metadata={"help": "Random seed for initialization."}, ) def _A ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: a =dataset.filter(lambda lowercase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 a =int(eval_result * len(lowercase ) ) print(lowercase ) a =dataset.sort('''probability''' , reverse=lowercase ) a =dataset.select(range(lowercase ) ) a =dataset.remove_columns(['''label''', '''probability'''] ) a =dataset.rename_column('''prediction''' , '''label''' ) a =dataset.map(lambda lowercase : {"label": idalabel[example["label"]]} ) a =dataset.shuffle(seed=args.seed ) a =os.path.join(lowercase , f'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(lowercase , index=lowercase ) else: dataset.to_json(lowercase ) def _A ( lowercase , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() a =STModelArguments(model_name_or_path=lowercase ) a =STDataArguments(train_file=lowercase , infer_file=lowercase ) a =STTrainingArguments(output_dir=lowercase ) a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowercase ).items(): setattr(lowercase , lowercase , lowercase ) for key, value in kwargs.items(): if hasattr(lowercase , lowercase ): setattr(lowercase , lowercase , lowercase ) # Sanity checks a ={} a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None a =args.train_file a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None a =args.eval_file for key in data_files: a =data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: a =extension else: assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) a =f'''{args.output_dir}/self-train_iter-{{}}'''.format a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) accelerator.wait_for_everyone() a =None a =None a =0 a =False # Show the progress bar a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): a =data_dir_format(lowercase ) assert os.path.exists(lowercase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 a =os.path.join(lowercase , '''stage-1''' ) a ={ '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowercase , lowercase ): arguments_dict.update({key: value} ) a =os.path.join(lowercase , '''best-checkpoint''' , lowercase ) if os.path.exists(lowercase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , lowercase , lowercase , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , lowercase ) finetune(**lowercase ) accelerator.wait_for_everyone() assert os.path.exists(lowercase ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , lowercase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data a =os.path.join(lowercase , '''best-checkpoint''' ) a =os.path.join(lowercase , '''stage-2''' ) # Update arguments_dict a =model_path a =data_files['''train'''] a =current_output_dir a =os.path.join(lowercase , '''best-checkpoint''' , lowercase ) if os.path.exists(lowercase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , lowercase , lowercase , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , lowercase ) finetune(**lowercase ) accelerator.wait_for_everyone() assert os.path.exists(lowercase ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , lowercase ) a =iteration a =data_dir_format(iteration + 1 ) a =AutoConfig.from_pretrained(os.path.join(lowercase , '''best-checkpoint''' ) ) a =config.idalabel a =os.path.join(lowercase , '''eval_results_best-checkpoint.json''' ) a =os.path.join(lowercase , '''test_results_best-checkpoint.json''' ) assert os.path.exists(lowercase ) with open(lowercase , '''r''' ) as f: a =float(json.load(lowercase )[args.eval_metric] ) a =os.path.join(lowercase , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(lowercase ) # Loading the dataset from local csv or json files. a =load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] a =load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(lowercase , exist_ok=lowercase ) shutil.copy(lowercase , os.path.join(lowercase , f'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(lowercase ): shutil.copy(lowercase , os.path.join(lowercase , f'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) accelerator.wait_for_everyone() a =os.path.join(lowercase , f'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: a =eval_result if best_iteration is None: a =new_iteration a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: a =new_iteration a =new_eval_result a =0 else: if new_eval_result == best_eval_result: a =new_iteration a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , lowercase ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase , f'''eval_results_iter-{iteration}.json''' ) , os.path.join(lowercase , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(lowercase , '''eval_results_best-iteration.json''' ) , )
81
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowercase ( unittest.TestCase ): '''simple docstring''' @property def A_ ( self : Dict ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def A_ ( self : Dict ): torch.manual_seed(0 ) UpperCamelCase__ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def A_ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(_a ) def A_ ( self : Optional[int] ): UpperCamelCase__ = self.dummy_uncond_unet UpperCamelCase__ = DDIMScheduler() UpperCamelCase__ = self.dummy_vq_model UpperCamelCase__ = LDMPipeline(unet=_a , vqvae=_a , scheduler=_a ) ldm.to(_a ) ldm.set_progress_bar_config(disable=_a ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = ldm(generator=_a , num_inference_steps=2 , output_type='''numpy''' ).images UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = ldm(generator=_a , num_inference_steps=2 , output_type='''numpy''' , return_dict=_a )[0] UpperCamelCase__ = image[0, -3:, -3:, -1] UpperCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase__ = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : Optional[int] ): UpperCamelCase__ = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(_a ) ldm.set_progress_bar_config(disable=_a ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = ldm(generator=_a , num_inference_steps=5 , output_type='''numpy''' ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase__ = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase__ = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
364
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class __lowercase ( A ): '''simple docstring''' _A : int = '''align_text_model''' def __init__( self : Tuple , _a : Tuple=30_522 , _a : str=768 , _a : Tuple=12 , _a : Dict=12 , _a : Any=3_072 , _a : str="gelu" , _a : int=0.1 , _a : Optional[Any]=0.1 , _a : int=512 , _a : List[str]=2 , _a : Any=0.02 , _a : Dict=1E-12 , _a : Tuple=0 , _a : Optional[Any]="absolute" , _a : str=True , **_a : Union[str, Any] , ): super().__init__(**_a ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = use_cache UpperCamelCase__ = pad_token_id @classmethod def A_ ( cls : List[str] , _a : Union[str, os.PathLike] , **_a : Any ): cls._set_token_in_kwargs(_a ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCamelCase__ = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class __lowercase ( A ): '''simple docstring''' _A : List[Any] = '''align_vision_model''' def __init__( self : List[str] , _a : int = 3 , _a : int = 600 , _a : float = 2.0 , _a : float = 3.1 , _a : int = 8 , _a : List[int] = [3, 3, 5, 3, 5, 5, 3] , _a : List[int] = [32, 16, 24, 40, 80, 112, 192] , _a : List[int] = [16, 24, 40, 80, 112, 192, 320] , _a : List[int] = [] , _a : List[int] = [1, 2, 2, 2, 1, 2, 1] , _a : List[int] = [1, 2, 2, 3, 3, 4, 1] , _a : List[int] = [1, 6, 6, 6, 6, 6, 6] , _a : float = 0.25 , _a : str = "swish" , _a : int = 2_560 , _a : str = "mean" , _a : float = 0.02 , _a : float = 0.001 , _a : float = 0.99 , _a : float = 0.2 , **_a : List[Any] , ): super().__init__(**_a ) UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = width_coefficient UpperCamelCase__ = depth_coefficient UpperCamelCase__ = depth_divisor UpperCamelCase__ = kernel_sizes UpperCamelCase__ = in_channels UpperCamelCase__ = out_channels UpperCamelCase__ = depthwise_padding UpperCamelCase__ = strides UpperCamelCase__ = num_block_repeats UpperCamelCase__ = expand_ratios UpperCamelCase__ = squeeze_expansion_ratio UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dim UpperCamelCase__ = pooling_type UpperCamelCase__ = initializer_range UpperCamelCase__ = batch_norm_eps UpperCamelCase__ = batch_norm_momentum UpperCamelCase__ = drop_connect_rate UpperCamelCase__ = sum(_a ) * 4 @classmethod def A_ ( cls : Tuple , _a : Union[str, os.PathLike] , **_a : Union[str, Any] ): cls._set_token_in_kwargs(_a ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCamelCase__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class __lowercase ( A ): '''simple docstring''' _A : List[Any] = '''align''' _A : Optional[int] = True def __init__( self : Optional[int] , _a : Tuple=None , _a : int=None , _a : Any=640 , _a : Optional[Any]=1.0 , _a : Tuple=0.02 , **_a : List[Any] , ): super().__init__(**_a ) if text_config is None: UpperCamelCase__ = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: UpperCamelCase__ = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) UpperCamelCase__ = AlignTextConfig(**_a ) UpperCamelCase__ = AlignVisionConfig(**_a ) UpperCamelCase__ = projection_dim UpperCamelCase__ = temperature_init_value UpperCamelCase__ = initializer_range @classmethod def A_ ( cls : Optional[int] , _a : AlignTextConfig , _a : AlignVisionConfig , **_a : Optional[Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def A_ ( self : Tuple ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.text_config.to_dict() UpperCamelCase__ = self.vision_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
35
0
from string import ascii_lowercase, ascii_uppercase def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: if not sentence: return "" lowercase : str = dict(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
20
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class _snake_case ( _a ): _A : Optional[int] = '''t5''' _A : Union[str, Any] = ['''past_key_values'''] _A : Dict = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any]=32_128 ,SCREAMING_SNAKE_CASE__ : List[str]=512 ,SCREAMING_SNAKE_CASE__ : Any=64 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_048 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=6 ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : Dict=8 ,SCREAMING_SNAKE_CASE__ : Optional[int]=32 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=128 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Tuple=1e-6 ,SCREAMING_SNAKE_CASE__ : str=1.0 ,SCREAMING_SNAKE_CASE__ : int="relu" ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : Dict=0 ,SCREAMING_SNAKE_CASE__ : Tuple=1 ,**SCREAMING_SNAKE_CASE__ : Tuple ,): SCREAMING_SNAKE_CASE:int = vocab_size SCREAMING_SNAKE_CASE:Any = d_model SCREAMING_SNAKE_CASE:Union[str, Any] = d_kv SCREAMING_SNAKE_CASE:Optional[int] = d_ff SCREAMING_SNAKE_CASE:Tuple = num_layers SCREAMING_SNAKE_CASE:str = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE:Union[str, Any] = num_heads SCREAMING_SNAKE_CASE:int = relative_attention_num_buckets SCREAMING_SNAKE_CASE:Tuple = relative_attention_max_distance SCREAMING_SNAKE_CASE:Dict = dropout_rate SCREAMING_SNAKE_CASE:List[Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE:List[str] = initializer_factor SCREAMING_SNAKE_CASE:Tuple = feed_forward_proj SCREAMING_SNAKE_CASE:str = use_cache SCREAMING_SNAKE_CASE:Optional[Any] = self.feed_forward_proj.split("-" ) SCREAMING_SNAKE_CASE:Any = act_info[-1] SCREAMING_SNAKE_CASE:Tuple = act_info[0] == "gated" if len(SCREAMING_SNAKE_CASE__ ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE__ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE:int = "gelu_new" super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) class _snake_case ( _a ): @property def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:int = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: SCREAMING_SNAKE_CASE:Optional[int] = "past_encoder_sequence + sequence" SCREAMING_SNAKE_CASE:str = {0: "batch"} SCREAMING_SNAKE_CASE:List[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE:Tuple = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE:List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ ,direction="inputs" ) return common_inputs @property def __UpperCamelCase ( self : Optional[int] ): return 13
139
0
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : list ): if len(UpperCamelCase__ ) <= 1: return [tuple(UpperCamelCase__ )] _UpperCAmelCase : Dict = [] def generate(UpperCamelCase__ : int , UpperCamelCase__ : list ): _UpperCAmelCase : int = [0] * n res.append(tuple(UpperCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = arr[i], arr[0] else: _UpperCAmelCase , _UpperCAmelCase : int = arr[i], arr[c[i]] res.append(tuple(UpperCamelCase__ ) ) c[i] += 1 _UpperCAmelCase : int = 0 else: _UpperCAmelCase : Dict = 0 i += 1 generate(len(UpperCamelCase__ ) , UpperCamelCase__ ) return res if __name__ == "__main__": _lowerCAmelCase :str = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase :List[str] = [int(item) for item in user_input.split(',')] print(heaps(arr))
68
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=a ): '''simple docstring''' a__ =['''transformers''', '''torch''', '''note_seq'''] def __init__( self , *A , **A ) -> int: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
68
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _snake_case : List[str] = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def a_ ( lowerCAmelCase_ : str = "dhaka", lowerCAmelCase_ : int = 5 ): __lowerCAmelCase = min(__UpperCAmelCase, 50 ) # Prevent abuse! __lowerCAmelCase = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } __lowerCAmelCase = requests.get('https://www.google.com/search', params=__UpperCAmelCase, headers=__UpperCAmelCase ) __lowerCAmelCase = BeautifulSoup(html.text, 'html.parser' ) __lowerCAmelCase = ''.join( re.findall(R'AF_initDataCallback\(([^<]+)\);', str(soup.select('script' ) ) ) ) __lowerCAmelCase = json.dumps(__UpperCAmelCase ) __lowerCAmelCase = json.loads(__UpperCAmelCase ) __lowerCAmelCase = re.findall( R'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",', __UpperCAmelCase, ) if not matched_google_image_data: return 0 __lowerCAmelCase = re.sub( R'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]', '', str(__UpperCAmelCase ), ) __lowerCAmelCase = re.findall( R'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]', __UpperCAmelCase, ) for index, fixed_full_res_image in enumerate(__UpperCAmelCase ): if index >= max_images: return index __lowerCAmelCase = bytes(__UpperCAmelCase, 'ascii' ).decode( 'unicode-escape' ) __lowerCAmelCase = bytes(__UpperCAmelCase, 'ascii' ).decode( 'unicode-escape' ) __lowerCAmelCase = urllib.request.build_opener() __lowerCAmelCase = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(__UpperCAmelCase ) __lowerCAmelCase = F"""query_{query.replace(" ", "_" )}""" if not os.path.exists(__UpperCAmelCase ): os.makedirs(__UpperCAmelCase ) urllib.request.urlretrieve( # noqa: S310 __UpperCAmelCase, F"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: _snake_case : int = download_images_from_google_query(sys.argv[1]) print(F"""{image_count} images were downloaded to disk.""") except IndexError: print('Please provide a search term.') raise
284
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Any="pt" ) -> List[str]: SCREAMING_SNAKE_CASE_ = {'add_prefix_space': True} if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not line.startswith(' ' ) else {} SCREAMING_SNAKE_CASE_ = padding_side return tokenizer( [line] , max_length=__UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=__UpperCAmelCase , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict=None , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = input_ids.ne(__UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any]="train" , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Optional[int]="" , ): super().__init__() SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ).joinpath(type_path + '.source' ) SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ).joinpath(type_path + '.target' ) SCREAMING_SNAKE_CASE_ = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE_ = max_source_length SCREAMING_SNAKE_CASE_ = max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" SCREAMING_SNAKE_CASE_ = tokenizer SCREAMING_SNAKE_CASE_ = prefix if n_obs is not None: SCREAMING_SNAKE_CASE_ = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE_ = src_lang SCREAMING_SNAKE_CASE_ = tgt_lang def __len__( self : Tuple ): return len(self.src_lens ) def __getitem__( self : List[str] , _lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE_ = self.prefix + linecache.getline(str(self.src_file ) , _lowerCAmelCase ).rstrip('\n' ) SCREAMING_SNAKE_CASE_ = linecache.getline(str(self.tgt_file ) , _lowerCAmelCase ).rstrip('\n' ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _lowerCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer ) SCREAMING_SNAKE_CASE_ = self.tokenizer.generator if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer SCREAMING_SNAKE_CASE_ = encode_line(_lowerCAmelCase , _lowerCAmelCase , self.max_source_length , 'right' ) SCREAMING_SNAKE_CASE_ = encode_line(_lowerCAmelCase , _lowerCAmelCase , self.max_target_length , 'right' ) SCREAMING_SNAKE_CASE_ = source_inputs['input_ids'].squeeze() SCREAMING_SNAKE_CASE_ = target_inputs['input_ids'].squeeze() SCREAMING_SNAKE_CASE_ = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : Optional[int] ): return [len(_lowerCAmelCase ) for x in Path(_lowerCAmelCase ).open().readlines()] def lowerCAmelCase_ ( self : int , _lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_ = torch.stack([x['input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE_ = torch.stack([x['attention_mask'] for x in batch] ) SCREAMING_SNAKE_CASE_ = torch.stack([x['decoder_input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ = trim_batch(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = trim_batch(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch lowerCamelCase__ : List[str] = getLogger(__name__) def UpperCAmelCase_ ( __UpperCAmelCase : List[List] ) -> Tuple: return list(itertools.chain.from_iterable(__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> None: SCREAMING_SNAKE_CASE_ = get_git_info() save_json(__UpperCAmelCase , os.path.join(__UpperCAmelCase , 'git_log.json' ) ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int]=4 , **__UpperCAmelCase : Tuple ) -> str: with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> int: with open(__UpperCAmelCase ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase_ ( ) -> Tuple: SCREAMING_SNAKE_CASE_ = git.Repo(search_parent_directories=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = { 'repo_id': str(__UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def UpperCAmelCase_ ( __UpperCAmelCase : Callable , __UpperCAmelCase : Iterable ) -> List: return list(map(__UpperCAmelCase , __UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Dict ) -> Dict: with open(__UpperCAmelCase , 'wb' ) as f: return pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> Any: def remove_articles(__UpperCAmelCase : Any ): return re.sub(r'\b(a|an|the)\b' , ' ' , __UpperCAmelCase ) def white_space_fix(__UpperCAmelCase : List[str] ): return " ".join(text.split() ) def remove_punc(__UpperCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCAmelCase : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCAmelCase ) ) ) ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = normalize_answer(__UpperCAmelCase ).split() SCREAMING_SNAKE_CASE_ = normalize_answer(__UpperCAmelCase ).split() SCREAMING_SNAKE_CASE_ = Counter(__UpperCAmelCase ) & Counter(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE_ = 1.0 * num_same / len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = 1.0 * num_same / len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ) -> Any: return normalize_answer(__UpperCAmelCase ) == normalize_answer(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] ) -> Dict: assert len(__UpperCAmelCase ) == len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = 0 for hypo, pred in zip(__UpperCAmelCase , __UpperCAmelCase ): em += exact_match_score(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: em /= len(__UpperCAmelCase ) return {"em": em} def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Dict: return model_prefix.startswith('rag' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE_ = 'dropout_rate' for p in extra_params: if getattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if not hasattr(__UpperCAmelCase , __UpperCAmelCase ) and not hasattr(__UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(__UpperCAmelCase ) ) delattr(__UpperCAmelCase , __UpperCAmelCase ) continue SCREAMING_SNAKE_CASE_ = p if hasattr(__UpperCAmelCase , __UpperCAmelCase ) else equivalent_param[p] setattr(__UpperCAmelCase , __UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) delattr(__UpperCAmelCase , __UpperCAmelCase ) return hparams, config
225
0
'''simple docstring''' import os def UpperCAmelCase_ () -> Optional[int]: """simple docstring""" _a : Any = os.path.dirname(os.path.realpath(__a ) ) _a : Optional[int] = os.path.join(__a , 'triangle.txt' ) with open(__a ) as f: _a : int = f.readlines() _a : str = [] for line in triangle: _a : str = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(__a ) ) a.append(__a ) for i in range(1 , len(__a ) ): for j in range(len(a[i] ) ): _a : List[Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 _a : int = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__a , __a ) return max(a[-1] ) if __name__ == "__main__": print(solution())
367
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() def __lowercase ( self : str ): '''simple docstring''' _a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _a : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _a : List[str] = 'xvjiarui/stable-diffusion-2-inpainting' _a, _a : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(_a ,safety_checker=_a ) _a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' _a : int = jax.random.PRNGKey(0 ) _a : Tuple = 50 _a : Any = jax.device_count() _a : Dict = num_samples * [prompt] _a : Optional[Any] = num_samples * [init_image] _a : str = num_samples * [mask_image] _a, _a, _a : Optional[Any] = pipeline.prepare_inputs(_a ,_a ,_a ) # shard inputs and rng _a : Optional[Any] = replicate(_a ) _a : str = jax.random.split(_a ,jax.device_count() ) _a : Dict = shard(_a ) _a : int = shard(_a ) _a : int = shard(_a ) _a : Union[str, Any] = pipeline( _a ,_a ,_a ,_a ,_a ,_a ,jit=_a ) _a : Union[str, Any] = output.images.reshape(_a ,512 ,512 ,3 ) _a : Union[str, Any] = images[0, 253:256, 253:256, -1] _a : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _a : Union[str, Any] = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
5
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=18, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, ) -> Union[str, Any]: UpperCamelCase : str = size if size is not None else {'height': 18, 'width': 18} UpperCamelCase : int = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : int = num_channels UpperCamelCase : Any = image_size UpperCamelCase : Optional[int] = min_resolution UpperCamelCase : Optional[Any] = max_resolution UpperCamelCase : Union[str, Any] = do_resize UpperCamelCase : List[Any] = size UpperCamelCase : int = do_normalize def snake_case_ ( self ) -> Tuple: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Any = ImageGPTImageProcessor if is_vision_available() else None def snake_case_ ( self ) -> int: UpperCamelCase : str = ImageGPTImageProcessingTester(self ) @property def snake_case_ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> str: UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'clusters' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_normalize' ) ) def snake_case_ ( self ) -> str: UpperCamelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'height': 18, 'width': 18} ) UpperCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {'height': 42, 'width': 42} ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase : int = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_, obj[key] ) ) else: self.assertEqual(obj[key], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE_, 'image_processor.json' ) image_processor_first.to_json_file(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE_ ).to_dict() UpperCamelCase : List[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_, image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE_ ).to_dict() UpperCamelCase : Union[str, Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_, image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key], SCREAMING_SNAKE_CASE_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def snake_case_ ( self ) -> str: pass def UpperCamelCase ( ) -> int: UpperCamelCase : Optional[int] = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) UpperCamelCase : int = Image.open(dataset[4]['file'] ) UpperCamelCase : Optional[Any] = Image.open(dataset[5]['file'] ) UpperCamelCase : str = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> str: UpperCamelCase : List[str] = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) UpperCamelCase : List[str] = prepare_images() # test non-batched UpperCamelCase : int = image_processing(images[0], return_tensors='pt' ) self.assertIsInstance(encoding.input_ids, torch.LongTensor ) self.assertEqual(encoding.input_ids.shape, (1, 1024) ) UpperCamelCase : Union[str, Any] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist(), SCREAMING_SNAKE_CASE_ ) # test batched UpperCamelCase : Tuple = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='pt' ) self.assertIsInstance(encoding.input_ids, torch.LongTensor ) self.assertEqual(encoding.input_ids.shape, (2, 1024) ) UpperCamelCase : Optional[Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist(), SCREAMING_SNAKE_CASE_ )
119
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : List[str] = "codegen" UpperCAmelCase__ : str = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, SCREAMING_SNAKE_CASE_=5_0400, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=4096, SCREAMING_SNAKE_CASE_=28, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="gelu_new", SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=5_0256, SCREAMING_SNAKE_CASE_=5_0256, SCREAMING_SNAKE_CASE_=False, **SCREAMING_SNAKE_CASE_, ) -> Tuple: UpperCamelCase : Tuple = vocab_size UpperCamelCase : Optional[int] = n_ctx UpperCamelCase : Optional[int] = n_positions UpperCamelCase : List[str] = n_embd UpperCamelCase : Dict = n_layer UpperCamelCase : int = n_head UpperCamelCase : Union[str, Any] = n_inner UpperCamelCase : int = rotary_dim UpperCamelCase : Optional[Any] = activation_function UpperCamelCase : Optional[int] = resid_pdrop UpperCamelCase : Union[str, Any] = embd_pdrop UpperCamelCase : Optional[Any] = attn_pdrop UpperCamelCase : List[str] = layer_norm_epsilon UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : str = use_cache UpperCamelCase : Dict = bos_token_id UpperCamelCase : Union[str, Any] = eos_token_id super().__init__( bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, tie_word_embeddings=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = "default", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE_, task=SCREAMING_SNAKE_CASE_, patching_specs=SCREAMING_SNAKE_CASE_, use_past=SCREAMING_SNAKE_CASE_ ) if not getattr(self._config, 'pad_token_id', SCREAMING_SNAKE_CASE_ ): # TODO: how to do that better? UpperCamelCase : str = 0 @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase : Tuple = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_, direction='inputs' ) UpperCamelCase : List[Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: UpperCamelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return common_inputs @property def snake_case_ ( self ) -> int: return self._config.n_layer @property def snake_case_ ( self ) -> int: return self._config.n_head def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, ) -> Mapping[str, Any]: UpperCamelCase : Tuple = super(SCREAMING_SNAKE_CASE_, self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE_, batch_size=SCREAMING_SNAKE_CASE_, seq_length=SCREAMING_SNAKE_CASE_, is_pair=SCREAMING_SNAKE_CASE_, framework=SCREAMING_SNAKE_CASE_ ) # We need to order the input in the way they appears in the forward() UpperCamelCase : Optional[int] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase : List[str] = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase : List[Any] = seqlen + 2 UpperCamelCase : List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCamelCase : str = [ (torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers ) ] UpperCamelCase : List[Any] = common_inputs['attention_mask'] if self.use_past: UpperCamelCase : Optional[Any] = ordered_inputs['attention_mask'].dtype UpperCamelCase : List[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )], dim=1 ) return ordered_inputs @property def snake_case_ ( self ) -> int: return 13
119
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowerCAmelCase : Tuple = f"{sampling_rate}" lowerCAmelCase : Union[str, Any] = '1' lowerCAmelCase : Tuple = 'f32le' lowerCAmelCase : Optional[Any] = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(_UpperCAmelCase, stdin=subprocess.PIPE, stdout=subprocess.PIPE ) as ffmpeg_process: lowerCAmelCase : Optional[int] = ffmpeg_process.communicate(_UpperCAmelCase ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowerCAmelCase : str = output_stream[0] lowerCAmelCase : List[str] = np.frombuffer(_UpperCAmelCase, np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = "f32le", ): '''simple docstring''' lowerCAmelCase : List[str] = f"{sampling_rate}" lowerCAmelCase : Union[str, Any] = '1' if format_for_conversion == "s16le": lowerCAmelCase : Optional[int] = 2 elif format_for_conversion == "f32le": lowerCAmelCase : Tuple = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) lowerCAmelCase : Optional[int] = platform.system() if system == "Linux": lowerCAmelCase : Union[str, Any] = 'alsa' lowerCAmelCase : Optional[Any] = 'default' elif system == "Darwin": lowerCAmelCase : Optional[int] = 'avfoundation' lowerCAmelCase : str = ':0' elif system == "Windows": lowerCAmelCase : Optional[Any] = 'dshow' lowerCAmelCase : List[Any] = 'default' lowerCAmelCase : Optional[Any] = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowerCAmelCase : int = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCAmelCase : Any = _ffmpeg_stream(_UpperCAmelCase, _UpperCAmelCase ) for item in iterator: yield item def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = "f32le", ): '''simple docstring''' if stream_chunk_s is not None: lowerCAmelCase : Union[str, Any] = stream_chunk_s else: lowerCAmelCase : Tuple = chunk_length_s lowerCAmelCase : Union[str, Any] = ffmpeg_microphone(_UpperCAmelCase, _UpperCAmelCase, format_for_conversion=_UpperCAmelCase ) if format_for_conversion == "s16le": lowerCAmelCase : Any = np.intaa lowerCAmelCase : str = 2 elif format_for_conversion == "f32le": lowerCAmelCase : Tuple = np.floataa lowerCAmelCase : int = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) if stride_length_s is None: lowerCAmelCase : int = chunk_length_s / 6 lowerCAmelCase : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_UpperCAmelCase, (int, float) ): lowerCAmelCase : List[str] = [stride_length_s, stride_length_s] lowerCAmelCase : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCAmelCase : Tuple = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCAmelCase : List[Any] = datetime.datetime.now() lowerCAmelCase : Optional[Any] = datetime.timedelta(seconds=_UpperCAmelCase ) for item in chunk_bytes_iter(_UpperCAmelCase, _UpperCAmelCase, stride=(stride_left, stride_right), stream=_UpperCAmelCase ): # Put everything back in numpy scale lowerCAmelCase : Optional[int] = np.frombuffer(item['raw'], dtype=_UpperCAmelCase ) lowerCAmelCase : List[Any] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowerCAmelCase : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = False ): '''simple docstring''' lowerCAmelCase : Any = b'' lowerCAmelCase : Any = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) lowerCAmelCase : Optional[Any] = 0 for raw in iterator: acc += raw if stream and len(_UpperCAmelCase ) < chunk_len: lowerCAmelCase : Any = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_UpperCAmelCase ) >= chunk_len: # We are flushing the accumulator lowerCAmelCase : Optional[int] = (_stride_left, stride_right) lowerCAmelCase : int = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowerCAmelCase : Any = False yield item lowerCAmelCase : Optional[int] = stride_left lowerCAmelCase : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_UpperCAmelCase ) > stride_left: lowerCAmelCase : Any = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowerCAmelCase : Dict = False yield item def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowerCAmelCase : Tuple = 2**24 # 16Mo try: with subprocess.Popen(_UpperCAmelCase, stdout=subprocess.PIPE, bufsize=_UpperCAmelCase ) as ffmpeg_process: while True: lowerCAmelCase : int = ffmpeg_process.stdout.read(_UpperCAmelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
362
from manim import * class __A ( lowerCAmelCase ): def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : str = Text('CPU' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : int = [mem.copy() for i in range(4 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = Text('GPU' , font_size=24 ) lowerCAmelCase : Tuple = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : List[str] = Text('Model' , font_size=24 ) lowerCAmelCase : Union[str, Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.8 ) target.move_to(UpperCAmelCase_ ) model_arr.append(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Tuple = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) lowerCAmelCase : Union[str, Any] = Text('Disk' , font_size=24 ) lowerCAmelCase : Optional[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[int] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Dict = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) lowerCAmelCase : str = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ ) ) lowerCAmelCase : Optional[Any] = Square(0.3 ) input.set_fill(UpperCAmelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase_ , buff=0.5 ) self.play(Write(UpperCAmelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase_ , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase_ ) ) self.play(FadeOut(UpperCAmelCase_ ) ) lowerCAmelCase : List[Any] = Arrow(start=UpperCAmelCase_ , end=UpperCAmelCase_ , color=UpperCAmelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase : int = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) lowerCAmelCase : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase_ ) , Circumscribe(model_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase : Any = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase : int = AnimationGroup( FadeOut(UpperCAmelCase_ , run_time=0.5 ) , MoveToTarget(UpperCAmelCase_ , run_time=0.5 ) , FadeIn(UpperCAmelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase_ , **UpperCAmelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase : int = a_c lowerCAmelCase : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase_ ) , FadeOut(UpperCAmelCase_ , run_time=0.5 ) , ) lowerCAmelCase : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , MoveToTarget(UpperCAmelCase_ ) ) self.wait()
323
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase ( _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ShapEPipeline _SCREAMING_SNAKE_CASE = ['prompt'] _SCREAMING_SNAKE_CASE = ['prompt'] _SCREAMING_SNAKE_CASE = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] _SCREAMING_SNAKE_CASE = False @property def _snake_case ( self ) -> Tuple: return 32 @property def _snake_case ( self ) -> Optional[Any]: return 32 @property def _snake_case ( self ) -> Tuple: return self.time_input_dim * 4 @property def _snake_case ( self ) -> str: return 8 @property def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def _snake_case ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(lowercase ) @property def _snake_case ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowerCAmelCase = PriorTransformer(**lowercase ) return model @property def _snake_case ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowerCAmelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowerCAmelCase = ShapERenderer(**lowercase ) return model def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.dummy_prior lowerCAmelCase = self.dummy_text_encoder lowerCAmelCase = self.dummy_tokenizer lowerCAmelCase = self.dummy_renderer lowerCAmelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1_024 , prediction_type="""sample""" , use_karras_sigmas=lowercase , clip_sample=lowercase , clip_sample_range=1.0 , ) lowerCAmelCase = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def _snake_case ( self , lowercase , lowercase=0 ) -> Optional[Any]: if str(lowercase ).startswith("""mps""" ): lowerCAmelCase = torch.manual_seed(lowercase ) else: lowerCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) lowerCAmelCase = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = """cpu""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**lowercase ) lowerCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) lowerCAmelCase = pipe(**self.get_dummy_inputs(lowercase ) ) lowerCAmelCase = output.images[0] lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCAmelCase = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ) -> List[Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = torch_device == """cpu""" lowerCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowercase , relax_max_difference=lowercase , ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**lowercase ) lowerCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) lowerCAmelCase = 1 lowerCAmelCase = 2 lowerCAmelCase = self.get_dummy_inputs(lowercase ) for key in inputs.keys(): if key in self.batch_params: lowerCAmelCase = batch_size * [inputs[key]] lowerCAmelCase = pipe(**lowercase , num_images_per_prompt=lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Any: lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) lowerCAmelCase = ShapEPipeline.from_pretrained("""openai/shap-e""" ) lowerCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) lowerCAmelCase = torch.Generator(device=lowercase ).manual_seed(0 ) lowerCAmelCase = pipe( """a shark""" , generator=lowercase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase , lowercase )
46
"""simple docstring""" import os def _snake_case ( ) -> Dict: with open(os.path.dirname(lowerCamelCase__ ) + "/p022_names.txt" ) as file: lowerCamelCase_ : str =str(file.readlines()[0] ) lowerCamelCase_ : Union[str, Any] =names.replace("\"" , "" ).split("," ) names.sort() lowerCamelCase_ : str =0 lowerCamelCase_ : Optional[int] =0 for i, name in enumerate(lowerCamelCase__ ): for letter in name: name_score += ord(lowerCamelCase__ ) - 64 total_score += (i + 1) * name_score lowerCamelCase_ : List[Any] =0 return total_score if __name__ == "__main__": print(solution())
144
0
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 A_ : Optional[int] = data_utils.TransfoXLTokenizer A_ : Any = data_utils.TransfoXLCorpus A_ : List[str] = data_utils A_ : List[Any] = data_utils def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_UpperCamelCase , 'rb' ) as fp: UpperCamelCase_: Dict = pickle.load(_UpperCamelCase , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase_: str = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) UpperCamelCase_: List[str] = corpus.vocab.__dict__ torch.save(_UpperCamelCase , _UpperCamelCase ) UpperCamelCase_: Optional[int] = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , _UpperCamelCase ) UpperCamelCase_: Tuple = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(_UpperCamelCase , _UpperCamelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase_: List[str] = os.path.abspath(_UpperCamelCase ) UpperCamelCase_: Any = os.path.abspath(_UpperCamelCase ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase_: Any = TransfoXLConfig() else: UpperCamelCase_: Union[str, Any] = TransfoXLConfig.from_json_file(_UpperCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Optional[int] = TransfoXLLMHeadModel(_UpperCamelCase ) UpperCamelCase_: Optional[int] = load_tf_weights_in_transfo_xl(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model UpperCamelCase_: List[str] = os.path.join(_UpperCamelCase , _UpperCamelCase ) UpperCamelCase_: Optional[int] = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(F'''Save PyTorch model to {os.path.abspath(_UpperCamelCase )}''' ) torch.save(model.state_dict() , _UpperCamelCase ) print(F'''Save configuration file to {os.path.abspath(_UpperCamelCase )}''' ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) A_ : Dict = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
368
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def snake_case (UpperCAmelCase__ ) -> Optional[int]: # picklable for multiprocessing return x.sum() def snake_case (UpperCAmelCase__ ) -> Any: # picklable for multiprocessing return i + 1 @dataclass class _lowerCAmelCase: """simple docstring""" a : int a : str class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def _a ( self ): UpperCamelCase_: Optional[Any] = {} UpperCamelCase_: List[str] = [] UpperCamelCase_: Any = 1 UpperCamelCase_: Optional[int] = [1, 2] UpperCamelCase_: List[str] = {'a': 1, 'b': 2} UpperCamelCase_: Tuple = {'a': [1, 2], 'b': [3, 4]} UpperCamelCase_: Optional[int] = {'a': {'1': 1}, 'b': 2} UpperCamelCase_: Optional[Any] = {'a': 1, 'b': 2, 'c': 3, 'd': 4} UpperCamelCase_: Tuple = {} UpperCamelCase_: str = [] UpperCamelCase_: List[Any] = 2 UpperCamelCase_: List[Any] = [2, 3] UpperCamelCase_: Optional[Any] = {'a': 2, 'b': 3} UpperCamelCase_: List[str] = {'a': [2, 3], 'b': [4, 5]} UpperCamelCase_: Any = {'a': {'1': 2}, 'b': 3} UpperCamelCase_: List[str] = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) UpperCamelCase_: Optional[int] = 2 self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) UpperCamelCase_: Tuple = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )} UpperCamelCase_: Tuple = {'a': 2, 'b': 0, 'c': 2} UpperCamelCase_: str = { 'a': np.eye(2 ).astype(_lowerCamelCase ), 'b': np.zeros(3 ).astype(_lowerCamelCase ), 'c': np.ones(2 ).astype(_lowerCamelCase ), } self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase , num_proc=_lowerCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowerCamelCase ): # can't pickle a local lambda map_nested(lambda _lowerCamelCase : x + 1 , _lowerCamelCase , num_proc=_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[Any] = {'a': 1, 'b': 2} UpperCamelCase_: Dict = {'a': 3, 'b': 4} UpperCamelCase_: Optional[int] = {'a': 5, 'b': 6} UpperCamelCase_: int = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) , _lowerCamelCase ) def _a ( self ): class _lowerCAmelCase: """simple docstring""" a : str ='''bar''' UpperCamelCase_: int = Foo() self.assertEqual(foo.my_attr , 'bar' ) with temporary_assignment(_lowerCamelCase , 'my_attr' , 'BAR' ): self.assertEqual(foo.my_attr , 'BAR' ) self.assertEqual(foo.my_attr , 'bar' ) @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (1_6, 1_6, 1_6), (1_6, 1_7, 1_6), (1_7, 1_6, 1_6), ] , ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool: UpperCamelCase_: Any = {F'''{i}''': i for i in range(UpperCAmelCase__ )} UpperCamelCase_: int = map_nested(lambda UpperCAmelCase__ : x + 1_0 , UpperCAmelCase__ , num_proc=UpperCAmelCase__ , parallel_min_length=1_6 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @require_tf def _a ( self ): import tensorflow as tf from tensorflow.keras import layers UpperCamelCase_: Dict = layers.Dense(2 ) def gen_random_output(): UpperCamelCase_: Optional[Any] = tf.random.uniform((1, 3) ) return model(_lowerCamelCase ).numpy() with temp_seed(4_2 , set_tensorflow=_lowerCamelCase ): UpperCamelCase_: int = gen_random_output() with temp_seed(4_2 , set_tensorflow=_lowerCamelCase ): UpperCamelCase_: List[str] = gen_random_output() UpperCamelCase_: str = gen_random_output() np.testing.assert_equal(_lowerCamelCase , _lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def _a ( self ): import torch def gen_random_output(): UpperCamelCase_: Any = torch.nn.Linear(3 , 2 ) UpperCamelCase_: Optional[Any] = torch.rand(1 , 3 ) return model(_lowerCamelCase ).detach().numpy() with temp_seed(4_2 , set_pytorch=_lowerCamelCase ): UpperCamelCase_: Dict = gen_random_output() with temp_seed(4_2 , set_pytorch=_lowerCamelCase ): UpperCamelCase_: str = gen_random_output() UpperCamelCase_: str = gen_random_output() np.testing.assert_equal(_lowerCamelCase , _lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def _a ( self ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): UpperCamelCase_: Optional[Any] = gen_random_output() with temp_seed(4_2 ): UpperCamelCase_: Tuple = gen_random_output() UpperCamelCase_: Optional[int] = gen_random_output() np.testing.assert_equal(_lowerCamelCase , _lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('input_data' , [{}] ) def snake_case (UpperCAmelCase__ ) -> Dict: UpperCamelCase_: str = NestedDataStructure(UpperCAmelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' , [ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] , ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: UpperCamelCase_: Optional[Any] = NestedDataStructure(UpperCAmelCase__ ).flatten() assert output == expected_output def snake_case () -> Optional[int]: UpperCamelCase_: List[Any] = A(x=1 , y='foobar' ) UpperCamelCase_: Optional[int] = {'x': 1, 'y': 'foobar'} assert asdict(UpperCAmelCase__ ) == expected_output UpperCamelCase_: List[str] = {'a': {'b': A(x=1_0 , y='foo' )}, 'c': [A(x=2_0 , y='bar' )]} UpperCamelCase_: Tuple = {'a': {'b': {'x': 1_0, 'y': 'foo'}}, 'c': [{'x': 2_0, 'y': 'bar'}]} assert asdict(UpperCAmelCase__ ) == expected_output with pytest.raises(UpperCAmelCase__ ): asdict([1, A(x=1_0 , y='foo' )] ) def snake_case (UpperCAmelCase__ ) -> Optional[Any]: return text.split() def snake_case (UpperCAmelCase__ ) -> str: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def snake_case () -> Union[str, Any]: with Pool(2 ) as pool: UpperCamelCase_: Optional[Any] = list(iflatmap_unordered(UpperCAmelCase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 1_0 ) ) assert out.count('hello' ) == 1_0 assert out.count('there' ) == 1_0 assert len(UpperCAmelCase__ ) == 2_0 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCamelCase_: Optional[int] = list(iflatmap_unordered(UpperCAmelCase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 1_0 ) ) assert out.count('hello' ) == 1_0 assert out.count('there' ) == 1_0 assert len(UpperCAmelCase__ ) == 2_0 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCamelCase_: Any = [] for yield_time, content in iflatmap_unordered( UpperCAmelCase__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(UpperCAmelCase__ ) assert out.count('a' ) == 2 assert out.count('b' ) == 2 assert len(UpperCAmelCase__ ) == 4
292
0
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = len(_UpperCAmelCase ) __a = [[0] * n for i in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): __a = y_points[i] for i in range(2 , _UpperCAmelCase ): for j in range(_UpperCAmelCase , _UpperCAmelCase ): __a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
49
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case :List[str] = '''\ Text data. Second line of data.''' __snake_case :Optional[Any] = '''file''' @pytest.fixture(scope='''session''' ) def __snake_case ( _UpperCAmelCase ): __a = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') __a = bytes(_UpperCAmelCase , '''utf-8''' ) with zstd.open(_UpperCAmelCase , '''wb''' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture def __snake_case ( _UpperCAmelCase ): with open(os.path.join(tmpfs.local_root_dir , _UpperCAmelCase ) , '''w''' ) as f: f.write(_UpperCAmelCase ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} __a = input_paths[compression_format] __a = tmp_path / '''cache''' __a = DownloadConfig(cache_dir=_UpperCAmelCase , extract_compressed_file=_UpperCAmelCase ) __a = cached_path(_UpperCAmelCase , download_config=_UpperCAmelCase ) with open(_UpperCAmelCase ) as f: __a = f.read() with open(_UpperCAmelCase ) as f: __a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = '''custom_cache''' __a = '''custom_extracted_dir''' __a = tmp_path / '''custom_extracted_path''' if default_extracted: __a = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , _UpperCAmelCase ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_UpperCAmelCase ) ) __a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __a = xz_file __a = ( DownloadConfig(extract_compressed_file=_UpperCAmelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_UpperCAmelCase ) ) __a = cached_path(_UpperCAmelCase , download_config=_UpperCAmelCase ) assert Path(_UpperCAmelCase ).parent.parts[-2:] == expected def __snake_case ( _UpperCAmelCase ): # absolute path __a = str(Path(_UpperCAmelCase ).resolve() ) assert cached_path(_UpperCAmelCase ) == text_file # relative path __a = str(Path(_UpperCAmelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_UpperCAmelCase ) == text_file def __snake_case ( _UpperCAmelCase ): # absolute path __a = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(_UpperCAmelCase ): cached_path(_UpperCAmelCase ) # relative path __a = '''./__missing_file__.txt''' with pytest.raises(_UpperCAmelCase ): cached_path(_UpperCAmelCase ) def __snake_case ( _UpperCAmelCase ): __a = get_from_cache(f'tmp://{tmpfs_file}' ) with open(_UpperCAmelCase ) as f: __a = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _UpperCAmelCase ) def __snake_case ( ): with pytest.raises(_UpperCAmelCase ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _UpperCAmelCase ) def __snake_case ( _UpperCAmelCase ): __a = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_UpperCAmelCase ): http_get('''https://huggingface.co''' , temp_file=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _UpperCAmelCase ) def __snake_case ( _UpperCAmelCase ): __a = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_UpperCAmelCase ): ftp_get('''ftp://huggingface.co''' , temp_file=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _UpperCAmelCase ) def __snake_case ( _UpperCAmelCase ): __a = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_UpperCAmelCase ): fsspec_get('''s3://huggingface.co''' , temp_file=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): fsspec_head('''s3://huggingface.co''' )
49
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = CanineTokenizer __lowercase = False def lowerCamelCase ( self ): """simple docstring""" super().setUp() _snake_case = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase ( self ): """simple docstring""" return CanineTokenizer.from_pretrained('google/canine-s' ) def lowerCamelCase ( self , **lowerCAmelCase_ ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) _snake_case = 10_24 return tokenizer @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.canine_tokenizer _snake_case = ['Life is like a box of chocolates.', 'You never know what you\'re gonna get.'] # fmt: off _snake_case = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.canine_tokenizer _snake_case = ['Once there was a man.', 'He wrote a test in HuggingFace Tranformers.'] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertIn('token_type_ids' , lowerCAmelCase_ ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.canine_tokenizer _snake_case = [ 'What\'s the weater?', 'It\'s about 25 degrees.', ] _snake_case = tokenizer( text_target=lowerCAmelCase_ , max_length=32 , padding='max_length' , truncation=lowerCAmelCase_ , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) _snake_case = tokenizer.__class__.from_pretrained(lowerCAmelCase_ ) _snake_case = after_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) shutil.rmtree(lowerCAmelCase_ ) _snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _snake_case = tempfile.mkdtemp() _snake_case = ' He is very happy, UNwant\u00E9d,running' _snake_case = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _snake_case = chr(0XE_0_0_7 ) additional_special_tokens.append(lowerCAmelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) _snake_case = tokenizer.__class__.from_pretrained(lowerCAmelCase_ ) _snake_case = after_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertIn(lowerCAmelCase_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _snake_case = tokenizer.__class__.from_pretrained(lowerCAmelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _snake_case , _snake_case = self.get_clean_sequence(lowerCAmelCase_ ) # a special token for Canine can be defined as follows: _snake_case = 0XE_0_0_5 _snake_case = chr(lowerCAmelCase_ ) tokenizer.add_special_tokens({'cls_token': special_token} ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , 1 ) _snake_case = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , input_encoded + special_token_id ) _snake_case = tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) self.assertTrue(special_token not in decoded ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _snake_case = chr(0XE_0_0_5 ) _snake_case = chr(0XE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowerCAmelCase_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'additional_special_tokens': [SPECIAL_TOKEN_2]} ) _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , 1 ) self.assertEqual(len(lowerCAmelCase_ ) , 1 ) self.assertEqual(token_a[0] , lowerCAmelCase_ ) self.assertEqual(token_a[0] , lowerCAmelCase_ ) @require_tokenizers def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: _snake_case = 0XE_0_0_6 _snake_case = chr(lowerCAmelCase_ ) _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCAmelCase_ ) tokenizer.from_pretrained(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _snake_case = json.load(lowerCAmelCase_ ) # a special token for Canine can be defined as follows: _snake_case = 0XE_0_0_6 _snake_case = chr(lowerCAmelCase_ ) _snake_case = [new_token_a] _snake_case = [new_token_a] with open(os.path.join(lowerCAmelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _snake_case = tokenizer_class.from_pretrained(lowerCAmelCase_ , extra_ids=0 ) self.assertIn(lowerCAmelCase_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _snake_case = 0XE_0_0_7 _snake_case = chr(lowerCAmelCase_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _snake_case = [AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ )] _snake_case = tokenizer_class.from_pretrained( lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , extra_ids=0 ) self.assertIn(lowerCAmelCase_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _snake_case = 'hello world' if self.space_between_special_tokens: _snake_case = '[CLS] hello world [SEP]' else: _snake_case = input _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.decode(lowerCAmelCase_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowerCAmelCase_ , [output, output.lower()] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _snake_case = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _snake_case = 'a' _snake_case = ord(lowerCAmelCase_ ) for attr in attributes_list: setattr(lowerCAmelCase_ , attr + '_id' , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , attr + '_id' ) , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , attr + '_id' , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , attr + '_id' ) , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens_ids' ) , [] ) _snake_case = 0XE_0_0_6 _snake_case = chr(lowerCAmelCase_ ) setattr(lowerCAmelCase_ , 'additional_special_tokens_ids' , [additional_special_token_id] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens' ) , [additional_special_token] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens_ids' ) , [additional_special_token_id] ) def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass
160
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE__ ( __A ) -> Dict: _snake_case = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = StableDiffusionLatentUpscalePipeline __lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } __lowercase = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} __lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase = frozenset([] ) __lowercase = True @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = 1 _snake_case = 4 _snake_case = (16, 16) _snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase_ ) return image def lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=lowerCAmelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=lowerCAmelCase_ , only_cross_attention=lowerCAmelCase_ , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) _snake_case = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) _snake_case = EulerDiscreteScheduler(prediction_type='sample' ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='quick_gelu' , projection_dim=5_12 , ) _snake_case = CLIPTextModel(lowerCAmelCase_ ) _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ): """simple docstring""" if str(lowerCAmelCase_ ).startswith('mps' ): _snake_case = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) _snake_case = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) _snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowerCAmelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 2 _snake_case = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _snake_case = getattr(lowerCAmelCase_ , scheduler_enum.name ) _snake_case = scheduler_cls.from_config(pipe.scheduler.config ) _snake_case = pipe(**lowerCAmelCase_ )[0] outputs.append(lowerCAmelCase_ ) assert check_same_shape(lowerCAmelCase_ ) @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): """simple docstring""" _snake_case = torch.manual_seed(33 ) _snake_case = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) _snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _snake_case = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' _snake_case = pipe(lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type='latent' ).images _snake_case = upscaler( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowerCAmelCase_ , output_type='np' , ).images[0] _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def lowerCamelCase ( self ): """simple docstring""" _snake_case = torch.manual_seed(33 ) _snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _snake_case = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) _snake_case = upscaler( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowerCAmelCase_ , output_type='np' , ).images[0] _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
160
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _UpperCAmelCase = """\ @inproceedings{lin-2004-rouge, title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\", author = \"Lin, Chin-Yew\", booktitle = \"Text Summarization Branches Out\", month = jul, year = \"2004\", address = \"Barcelona, Spain\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W04-1013\", pages = \"74--81\", } """ _UpperCAmelCase = """\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge """ _UpperCAmelCase = """ Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring, `\"rougeL\"`: Longest common subsequence based scoring. `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results[\"rouge1\"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results[\"rouge1\"].mid.fmeasure) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase=None , lowercase=True , lowercase=False ): """simple docstring""" if rouge_types is None: A_ : Optional[int] = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] A_ : List[str] = rouge_scorer.RougeScorer(rouge_types=__a , use_stemmer=__a ) if use_aggregator: A_ : List[str] = scoring.BootstrapAggregator() else: A_ : List[str] = [] for ref, pred in zip(__a , __a ): A_ : Union[str, Any] = scorer.score(__a , __a ) if use_aggregator: aggregator.add_scores(__a ) else: scores.append(__a ) if use_aggregator: A_ : Optional[int] = aggregator.aggregate() else: A_ : Dict = {} for key in scores[0]: A_ : Dict = [score[key] for score in scores] return result
140
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE = 1_000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
153
0
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :str = CustomTokenizer pass
254
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) ->str: """simple docstring""" if attention_mask is None: lowerCAmelCase__ :List[str] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase__ :Tuple = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase__ :Union[str, Any] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) if decoder_head_mask is None: lowerCAmelCase__ :List[str] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) if cross_attn_head_mask is None: lowerCAmelCase__ :List[str] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=9_9 , __UpperCAmelCase=1_6 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=2_0 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , ): '''simple docstring''' lowerCAmelCase__ :List[Any] = parent lowerCAmelCase__ :Any = batch_size lowerCAmelCase__ :Optional[Any] = seq_length lowerCAmelCase__ :int = is_training lowerCAmelCase__ :Tuple = use_labels lowerCAmelCase__ :Union[str, Any] = vocab_size lowerCAmelCase__ :Tuple = hidden_size lowerCAmelCase__ :Tuple = num_hidden_layers lowerCAmelCase__ :Tuple = num_attention_heads lowerCAmelCase__ :Dict = intermediate_size lowerCAmelCase__ :Optional[int] = hidden_act lowerCAmelCase__ :Any = hidden_dropout_prob lowerCAmelCase__ :Dict = attention_probs_dropout_prob lowerCAmelCase__ :Tuple = encoder_layerdrop lowerCAmelCase__ :Tuple = decoder_layerdrop lowerCAmelCase__ :Tuple = max_position_embeddings lowerCAmelCase__ :Any = eos_token_id lowerCAmelCase__ :str = pad_token_id lowerCAmelCase__ :Tuple = bos_token_id def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :Tuple = self.eos_token_id # Eos Token lowerCAmelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase__ :List[Any] = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ :Dict = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ :Optional[Any] = self.get_config() lowerCAmelCase__ :Any = prepare_mam_aaa_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def snake_case ( self ): '''simple docstring''' return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = MaMaaaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() lowerCAmelCase__ :Optional[int] = inputs_dict['input_ids'] lowerCAmelCase__ :Any = inputs_dict['attention_mask'] lowerCAmelCase__ :Tuple = inputs_dict['head_mask'] # first forward pass lowerCAmelCase__ :int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ :Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ :int = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCAmelCase__ :Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ :Union[str, Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCAmelCase__ :Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )['last_hidden_state'] lowerCAmelCase__ :Optional[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[ 'last_hidden_state' ] # select random slice lowerCAmelCase__ :Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ :List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ :Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = MaMaaaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() lowerCAmelCase__ :List[Any] = model(**__UpperCAmelCase ) lowerCAmelCase__ :int = outputs.encoder_last_hidden_state lowerCAmelCase__ :Any = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :Union[str, Any] = model.get_encoder() encoder.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Any = MaMaaaEncoder.from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ :Any = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :Optional[int] = model.get_decoder() decoder.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Dict = MaMaaaDecoder.from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ :int = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _lowerCAmelCase ( a , a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Optional[int] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __magic_name__ :str = (MaMaaaForConditionalGeneration,) if is_torch_available() else () __magic_name__ :str = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __magic_name__ :Any = True __magic_name__ :Union[str, Any] = True __magic_name__ :Tuple = False __magic_name__ :List[str] = False def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = MaMaaaModelTester(self ) lowerCAmelCase__ :Tuple = ConfigTester(self , config_class=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = model_class.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertEqual(info['missing_keys'] , [] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): lowerCAmelCase__ :Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[Any] = copy.deepcopy(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if not self.is_encoder_decoder: lowerCAmelCase__ :List[str] = inputs['input_ids'] del inputs["input_ids"] else: lowerCAmelCase__ :int = inputs['input_ids'] lowerCAmelCase__ :str = inputs.get('decoder_input_ids' , __UpperCAmelCase ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.get_input_embeddings() if not self.is_encoder_decoder: lowerCAmelCase__ :Tuple = wte(__UpperCAmelCase ) else: lowerCAmelCase__ :List[Any] = wte(__UpperCAmelCase ) lowerCAmelCase__ :Dict = wte(__UpperCAmelCase ) with torch.no_grad(): model(**__UpperCAmelCase )[0] def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ :Any = input_dict['input_ids'] lowerCAmelCase__ :Optional[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = MaMaaaForConditionalGeneration(__UpperCAmelCase ).eval().to(__UpperCAmelCase ) if torch_device == "cuda": model.half() model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) model.generate(num_beams=4 , do_sample=__UpperCAmelCase , early_stopping=__UpperCAmelCase , num_return_sequences=3 ) def __A (_SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) __A = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(__UpperCAmelCase ) lowerCAmelCase__ :str = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) lowerCAmelCase__ :Optional[int] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) lowerCAmelCase__ :Union[str, Any] = prepare_mam_aaa_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :Any = model(**__UpperCAmelCase )[0] lowerCAmelCase__ :List[str] = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __UpperCAmelCase ) # change to expected output here lowerCAmelCase__ :int = torch.tensor( [[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] , device=__UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__UpperCAmelCase ) # change to intended input lowerCAmelCase__ :str = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) lowerCAmelCase__ :Any = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) lowerCAmelCase__ :List[Any] = prepare_mam_aaa_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :List[Any] = model(**__UpperCAmelCase )[0] lowerCAmelCase__ :Any = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) # change to expected output here lowerCAmelCase__ :List[Any] = torch.tensor( [[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] , device=__UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) lowerCAmelCase__ :Tuple = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams lowerCAmelCase__ :Union[str, Any] = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='pt' ) lowerCAmelCase__ :List[Any] = model.generate( input_ids=dct['input_ids'].to(__UpperCAmelCase ) , attention_mask=dct['attention_mask'].to(__UpperCAmelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) lowerCAmelCase__ :Optional[Any] = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] lowerCAmelCase__ :Any = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) assert generated == expected_en
254
1
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __A (*_SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" with open(_a , 'r' ) as fh: fcntl.flock(_a , fcntl.LOCK_EX ) try: print(*_a ) finally: fcntl.flock(_a , fcntl.LOCK_UN ) __A = int(os.environ["""LOCAL_RANK"""]) torch.cuda.set_device(local_rank) __A = torch.device("""cuda""", local_rank) __A = socket.gethostname() __A = F'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group("""nccl""") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __A = dist.get_rank() __A = dist.get_world_size() printflock(F'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(F'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(F'''{gpu} is broken''') raise
293
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
131
0
"""simple docstring""" class __snake_case : # Public class to implement a graph def __init__( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : list[list[bool]] ) -> None: '''simple docstring''' _lowerCAmelCase : List[Any] = row _lowerCAmelCase : Tuple = col _lowerCAmelCase : Dict = graph def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : list[list[bool]] ) -> bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : list[list[bool]] ) -> None: '''simple docstring''' _lowerCAmelCase : Optional[int] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _lowerCAmelCase : Optional[Any] = [-1, 0, 1, -1, 1, -1, 0, 1] _lowerCAmelCase : Tuple = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _UpperCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: # And finally, count all islands. '''simple docstring''' _lowerCAmelCase : Any = [[False for j in range(self.COL )] for i in range(self.ROW )] _lowerCAmelCase : Dict = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) count += 1 return count
364
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _lowerCamelCase : List[str] = logging.get_logger(__name__) class __snake_case (_a ): def __init__( self : Optional[Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : Any ) -> None: '''simple docstring''' warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
159
0
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def UpperCamelCase_ ( _UpperCAmelCase : List[str] ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = [] for line in lines: _UpperCAmelCase : Optional[Any] = re.sub(R"#.*" , "" , _UpperCAmelCase ) # remove comments if line: filtered_lines.append(_UpperCAmelCase ) _UpperCAmelCase : Optional[int] = "\n".join(_UpperCAmelCase ) # Make a hash from all this code _UpperCAmelCase : Optional[int] = full_str.encode("utf-8" ) return shaaaa(_UpperCAmelCase ).hexdigest() # get importable module names and hash for caching __SCREAMING_SNAKE_CASE : Optional[Any] = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __SCREAMING_SNAKE_CASE : Tuple = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __SCREAMING_SNAKE_CASE : str = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name __SCREAMING_SNAKE_CASE : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
31
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller UpperCAmelCase__ : Any = 3 def lowerCamelCase__ ( a ) -> int: print('''Generating primitive root of p''' ) while True: _A: Union[str, Any] = random.randrange(3 , a ) if pow(a , 2 , a ) == 1: continue if pow(a , a , a ) == 1: continue return g def lowerCamelCase__ ( a ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('''Generating prime p...''' ) _A: Dict = rabin_miller.generate_large_prime(a ) # select large prime number. _A: Any = primitive_root(a ) # one primitive root on modulo p. _A: Optional[Any] = random.randrange(3 , a ) # private_key -> have to be greater than 2 for safety. _A: Dict = cryptomath.find_mod_inverse(pow(a , a , a ) , a ) _A: Union[str, Any] = (key_size, e_a, e_a, p) _A: Union[str, Any] = (key_size, d) return public_key, private_key def lowerCamelCase__ ( a , a ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('''\nWARNING:''' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() _A , _A: Any = generate_key(a ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , '''w''' ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , '''w''' ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def lowerCamelCase__ ( ) -> None: print('''Making key files...''' ) make_key_files('''elgamal''' , 20_48 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
121
0
'''simple docstring''' from ... import PretrainedConfig lowerCAmelCase : List[str] = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowerCAmelCase_ = """nezha""" def __init__( self , A_=21128 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=64 , A_=2 , A_=0.02 , A_=1e-12 , A_=0.1 , A_=0 , A_=2 , A_=3 , A_=True , **A_ , )-> List[str]: '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = max_relative_position UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = classifier_dropout UpperCamelCase = use_cache
251
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = WavaVecaPhonemeCTCTokenizer lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' super().setUp() UpperCamelCase = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) def UpperCAmelCase_ ( self , A_ , A_=False , A_=20 , A_=5 )-> Tuple[str, list]: '''simple docstring''' UpperCamelCase = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=A_ )) for i in range(len(A_ ) )] UpperCamelCase = list(filter(lambda A_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=A_ ) , A_ ) ) if max_length is not None and len(A_ ) > max_length: UpperCamelCase = toks[:max_length] if min_length is not None and len(A_ ) < min_length and len(A_ ) > 0: while len(A_ ) < min_length: UpperCamelCase = toks + toks # toks_str = [t[1] for t in toks] UpperCamelCase = [t[0] for t in toks] # Ensure consistency UpperCamelCase = tokenizer.decode(A_ , clean_up_tokenization_spaces=A_ ) if " " not in output_txt and len(A_ ) > 1: UpperCamelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=A_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=A_ ) ) if with_prefix_space: UpperCamelCase = ' ' + output_txt UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) return output_txt, output_ids def UpperCAmelCase_ ( self , **A_ )-> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) UpperCamelCase = tokenizer('m xxx ɪ' , do_phonemize=A_ ).input_ids self.assertEqual(A_ , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) UpperCamelCase = tokenizer('m aaa ɪ ccc' , do_phonemize=A_ ).input_ids self.assertEqual(A_ , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa UpperCamelCase = tokenizer('maɪ c' , do_phonemize=A_ ).input_ids self.assertEqual(A_ , [3, 200] ) # mai should be <unk> (=3) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCamelCase = 'Hello how are you' UpperCamelCase = tokenizer.phonemize(A_ , phonemizer_lang='en-us' ) self.assertEqual(A_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCamelCase = 'Hello how are you' UpperCamelCase = tokenizer.phonemize(A_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(A_ ).input_ids , tokenizer(A_ , do_phonemize=A_ ).input_ids ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCamelCase = 'Hello how are you' UpperCamelCase = tokenizer.phonemize(A_ , phonemizer_lang='en-us' ) UpperCamelCase = tokenizer.decode(tokenizer(A_ ).input_ids ) self.assertEqual(A_ , A_ ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCamelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] UpperCamelCase = tokenizer.decode(sample_ids[0] ) UpperCamelCase = tokenizer.batch_decode(A_ ) self.assertEqual(A_ , batch_tokens[0] ) self.assertEqual(A_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCamelCase = 'Hello how are you' UpperCamelCase = tokenizer.phonemize(A_ , phonemizer_lang='en-us' ) self.assertEqual(A_ , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCamelCase = 'Hello how are you' UpperCamelCase = tokenizer.phonemize(A_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(A_ ).input_ids , tokenizer(A_ , do_phonemize=A_ ).input_ids ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off UpperCamelCase = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter UpperCamelCase = tokenizer.decode(sample_ids[0] ) UpperCamelCase = tokenizer.batch_decode(A_ ) self.assertEqual(A_ , batch_tokens[0] ) self.assertEqual(A_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter UpperCamelCase = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=A_ ) UpperCamelCase = tokenizer.batch_decode(A_ , filter_word_delimiter_token=A_ ) self.assertEqual(A_ , batch_tokens[0] ) self.assertEqual(A_ , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCamelCase = 'Hello how are you' UpperCamelCase = tokenizer.phonemize(A_ , phonemizer_lang='en-us' ) UpperCamelCase = tokenizer.decode(tokenizer(A_ ).input_ids , filter_word_delimiter_token=A_ ) self.assertEqual(A_ , A_ ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCamelCase = 'Hello how are you' UpperCamelCase = tokenizer.phonemize(A_ , phonemizer_lang='en-us' ) UpperCamelCase = tokenizer.decode(tokenizer(A_ ).input_ids , filter_word_delimiter_token=A_ ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , A_ ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=A_ ) UpperCamelCase = 'Hello how are you' UpperCamelCase = tokenizer(A_ , phonemizer_lang='en-us' ).input_ids UpperCamelCase = tokenizer(A_ , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(A_ , A_ ) UpperCamelCase = tokenizer.decode(A_ ) UpperCamelCase = tokenizer.decode(A_ ) self.assertEqual(A_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(A_ , 'ɛ l o h aʊ a ʁ j u' ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCamelCase = 'Hello how Are you' UpperCamelCase = 'hello how are you' UpperCamelCase = tokenizer(A_ ).input_ids UpperCamelCase = tokenizer(A_ ).input_ids self.assertEqual(A_ , A_ ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off UpperCamelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on UpperCamelCase = tokenizer.batch_decode(A_ ) self.assertEqual(A_ , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def UpperCAmelCase_ ( A_ , A_ )-> Dict: '''simple docstring''' UpperCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" UpperCamelCase = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on UpperCamelCase = tokenizer.decode(A_ , output_char_offsets=A_ , filter_word_delimiter_token=A_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(A_ , A_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(A_ , A_ ): self.assertTrue(isinstance(A_ , A_ ) ) self.assertTrue(isinstance(outputs_list[0] , A_ ) ) # transform list to ModelOutput UpperCamelCase = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(A_ , A_ ): if isinstance(A_ , A_ ): [recursive_check(A_ , A_ ) for la, la in zip(A_ , A_ )] self.assertEqual(A_ , A_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off UpperCamelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char UpperCamelCase = tokenizer.batch_decode(A_ , output_char_offsets=A_ ) UpperCamelCase = [tokenizer.decode(A_ , output_char_offsets=A_ ) for ids in sample_ids] check_list_tuples_equal(A_ , A_ ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): UpperCamelCase = tokenizer.vocab_size UpperCamelCase = len(A_ ) self.assertNotEqual(A_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCamelCase = ['aaaaa bbbbbb', 'cccccccccdddddddd'] UpperCamelCase = tokenizer.add_tokens(A_ ) UpperCamelCase = tokenizer.vocab_size UpperCamelCase = len(A_ ) self.assertNotEqual(A_ , 0 ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , len(A_ ) ) self.assertEqual(A_ , all_size + len(A_ ) ) UpperCamelCase = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=A_ ) self.assertGreaterEqual(len(A_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) UpperCamelCase = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} UpperCamelCase = tokenizer.add_special_tokens(A_ ) UpperCamelCase = tokenizer.vocab_size UpperCamelCase = len(A_ ) self.assertNotEqual(A_ , 0 ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , len(A_ ) ) self.assertEqual(A_ , all_size_a + len(A_ ) ) UpperCamelCase = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=A_ ) self.assertGreaterEqual(len(A_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.get_tokenizers(fast=A_ , do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): UpperCamelCase = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] UpperCamelCase = tokenizer.convert_tokens_to_string(A_ ) self.assertIsInstance(output['text'] , A_ )
251
1
'''simple docstring''' import torch from transformers import AutoModel class snake_case ( torch.nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __A : Optional[Any]="sayef/fsner-bert-base-uncased" ): super(__SCREAMING_SNAKE_CASE , self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) __UpperCamelCase = torch.nn.CosineSimilarity(3 , 1e-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def _lowerCamelCase ( self : List[str] , **__A : Optional[Any] ): return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _lowerCamelCase ( self : List[Any] , __A : List[Any] ): return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self : Tuple , __A : List[str] , __A : int , __A : Optional[Any]=1 ): return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowerCamelCase ( self : int , __A : List[Any] , __A : Tuple ): __UpperCamelCase = W_supports['''sizes'''].tolist() __UpperCamelCase = W_supports['''start_token_id'''].item() __UpperCamelCase = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**__SCREAMING_SNAKE_CASE ) __UpperCamelCase = self.BERT(**__SCREAMING_SNAKE_CASE ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['''input_ids'''] == start_token_id __UpperCamelCase = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
53
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : lowerCAmelCase_ = 42 # setable values lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = None @classmethod def _snake_case ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" return cls(common=__SCREAMING_SNAKE_CASE , init_noise_sigma=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE ) @dataclass class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = 42 class lowerCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase_ = [e.name for e in FlaxKarrasDiffusionSchedulers] lowerCAmelCase_ = 42 @property def _snake_case ( self ): """simple docstring""" return True @register_to_config def __init__( self , __SCREAMING_SNAKE_CASE = 10_00 , __SCREAMING_SNAKE_CASE = 0.0_001 , __SCREAMING_SNAKE_CASE = 0.02 , __SCREAMING_SNAKE_CASE = "linear" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "fixed_small" , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = "epsilon" , __SCREAMING_SNAKE_CASE = jnp.floataa , ): """simple docstring""" lowercase_ : Dict = dtype def _snake_case ( self , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if common is None: lowercase_ : Tuple = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowercase_ : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype ) lowercase_ : List[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__SCREAMING_SNAKE_CASE , init_noise_sigma=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE , ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" return sample def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = () ): """simple docstring""" lowercase_ : Optional[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowercase_ : int = (jnp.arange(0 , __SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE , ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" lowercase_ : List[Any] = state.common.alphas_cumprod[t] lowercase_ : str = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase_ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowercase_ : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowercase_ : int = jnp.clip(__SCREAMING_SNAKE_CASE , a_min=1E-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowercase_ : List[str] = jnp.log(jnp.clip(__SCREAMING_SNAKE_CASE , a_min=1E-2_0 ) ) elif variance_type == "fixed_large": lowercase_ : List[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowercase_ : List[Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowercase_ : Optional[Any] = variance lowercase_ : Union[str, Any] = state.common.betas[t] lowercase_ : Union[str, Any] = (predicted_variance + 1) / 2 lowercase_ : Any = frac * max_log + (1 - frac) * min_log return variance def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , ): """simple docstring""" lowercase_ : Optional[int] = timestep if key is None: lowercase_ : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowercase_ , lowercase_ : Optional[Any] = jnp.split(__SCREAMING_SNAKE_CASE , sample.shape[1] , axis=1 ) else: lowercase_ : int = None # 1. compute alphas, betas lowercase_ : Any = state.common.alphas_cumprod[t] lowercase_ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowercase_ : int = 1 - alpha_prod_t lowercase_ : str = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase_ : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase_ : Any = model_output elif self.config.prediction_type == "v_prediction": lowercase_ : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase_ : Optional[Any] = jnp.clip(__SCREAMING_SNAKE_CASE , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase_ : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowercase_ : Optional[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase_ : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowercase_ : str = jax.random.split(__SCREAMING_SNAKE_CASE , num=1 ) lowercase_ : List[Any] = jax.random.normal(__SCREAMING_SNAKE_CASE , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , predicted_variance=__SCREAMING_SNAKE_CASE ) ** 0.5) * noise lowercase_ : Optional[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowercase_ : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__SCREAMING_SNAKE_CASE , state=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" return add_noise_common(state.common , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" return get_velocity_common(state.common , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
93
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Any = logging.get_logger(__name__) __snake_case : Tuple = {} class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'llama' __snake_case = ['past_key_values'] def __init__( self : Union[str, Any] , lowerCAmelCase_ : Any=3_20_00 , lowerCAmelCase_ : Optional[Any]=40_96 , lowerCAmelCase_ : Any=1_10_08 , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[int]="silu" , lowerCAmelCase_ : Optional[int]=20_48 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : str=1e-6 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Dict=0 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Tuple , ) -> Dict: '''simple docstring''' A__ : Dict =vocab_size A__ : List[str] =max_position_embeddings A__ : Any =hidden_size A__ : List[str] =intermediate_size A__ : List[Any] =num_hidden_layers A__ : Optional[int] =num_attention_heads # for backward compatibility if num_key_value_heads is None: A__ : Optional[Any] =num_attention_heads A__ : Dict =num_key_value_heads A__ : Tuple =hidden_act A__ : Optional[int] =initializer_range A__ : Optional[int] =rms_norm_eps A__ : Optional[Any] =pretraining_tp A__ : int =use_cache A__ : Any =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , tie_word_embeddings=lowerCAmelCase_ , **lowerCAmelCase_ , ) def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCAmelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"got {self.rope_scaling}" ) A__ : Optional[Any] =self.rope_scaling.get("""type""" , lowerCAmelCase_ ) A__ : Dict =self.rope_scaling.get("""factor""" , lowerCAmelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
136
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'FlavaImageProcessor' __snake_case = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : Any =None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase_ , ) A__ : Optional[Any] =kwargs.pop("""feature_extractor""" ) A__ : List[Any] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : int =self.image_processor def __call__( self : Union[str, Any] , lowerCAmelCase_ : Optional[ImageInput] = None , lowerCAmelCase_ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Optional[int] , ) -> str: '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: A__ : int =self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if images is not None: A__ : List[str] =self.image_processor( lowerCAmelCase_ , return_image_mask=lowerCAmelCase_ , return_codebook_pixels=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if text is not None and images is not None: encoding.update(lowerCAmelCase_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def lowercase__ ( self : Any , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[int] ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : List[Any] , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Any ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : Any =self.tokenizer.model_input_names A__ : Optional[Any] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase_ , ) return self.image_processor_class @property def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCAmelCase_ , ) return self.image_processor
136
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=2 , UpperCamelCase__=24 , UpperCamelCase__=16 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.02 , UpperCamelCase__=None , UpperCamelCase__=2 , UpperCamelCase__=2 , ) -> List[Any]: lowerCamelCase : Union[str, Any] = parent lowerCamelCase : Any = batch_size lowerCamelCase : List[Any] = patch_size lowerCamelCase : List[str] = max_length lowerCamelCase : Optional[Any] = num_mel_bins lowerCamelCase : Optional[int] = is_training lowerCamelCase : Optional[int] = use_labels lowerCamelCase : Dict = hidden_size lowerCamelCase : Union[str, Any] = num_hidden_layers lowerCamelCase : str = num_attention_heads lowerCamelCase : List[str] = intermediate_size lowerCamelCase : Union[str, Any] = hidden_act lowerCamelCase : List[str] = hidden_dropout_prob lowerCamelCase : Optional[int] = attention_probs_dropout_prob lowerCamelCase : int = type_sequence_label_size lowerCamelCase : int = initializer_range lowerCamelCase : Union[str, Any] = scope lowerCamelCase : str = frequency_stride lowerCamelCase : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCamelCase : Optional[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowerCamelCase : Union[str, Any] = (self.max_length - self.patch_size) // self.time_stride + 1 lowerCamelCase : str = frequency_out_dimension * time_out_dimension lowerCamelCase : str = num_patches + 2 def _lowercase ( self ) -> List[str]: lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) lowerCamelCase : List[Any] = None if self.use_labels: lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : int = self.get_config() return config, input_values, labels def _lowercase ( self ) -> Optional[Any]: return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: lowerCamelCase : Union[str, Any] = ASTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : int = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : int = config_and_inputs lowerCamelCase : int = {"input_values": input_values} return config, inputs_dict @require_torch class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Tuple = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCamelCase_ : Optional[int] = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : List[Any] = False lowerCamelCase_ : Any = False lowerCamelCase_ : List[Any] = False def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _lowercase ( self ) -> int: lowerCamelCase : List[Any] = ASTModelTester(self ) lowerCamelCase : Any = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def _lowercase ( self ) -> List[Any]: pass def _lowercase ( self ) -> str: lowerCamelCase , lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : List[str] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def _lowercase ( self ) -> Dict: lowerCamelCase , lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Dict = model_class(UpperCamelCase__ ) lowerCamelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : int = [*signature.parameters.keys()] lowerCamelCase : Union[str, Any] = ["input_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) @slow def _lowercase ( self ) -> str: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : str = ASTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def A ( ) -> Optional[Any]: lowerCamelCase : Union[str, Any] = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" ,filename="sample_audio.flac" ,repo_type="dataset" ) lowerCamelCase , lowerCamelCase : List[str] = torchaudio.load(_SCREAMING_SNAKE_CASE ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ) -> List[Any]: return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def _lowercase ( self ) -> Optional[int]: lowerCamelCase : List[Any] = self.default_feature_extractor lowerCamelCase : Dict = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(UpperCamelCase__ ) lowerCamelCase : Dict = self.default_feature_extractor lowerCamelCase , lowerCamelCase : int = prepare_audio() lowerCamelCase : Union[str, Any] = audio.squeeze().numpy() lowerCamelCase : str = feature_extractor(UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase : Any = model(**UpperCamelCase__ ) # verify the logits lowerCamelCase : List[str] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase : List[Any] = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
48
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } SCREAMING_SNAKE_CASE__ : Any = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def A ( _SCREAMING_SNAKE_CASE ) -> str: lowerCamelCase : int = EfficientNetConfig() lowerCamelCase : List[str] = CONFIG_MAP[model_name]["hidden_dim"] lowerCamelCase : List[str] = CONFIG_MAP[model_name]["width_coef"] lowerCamelCase : Any = CONFIG_MAP[model_name]["depth_coef"] lowerCamelCase : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] lowerCamelCase : Optional[int] = CONFIG_MAP[model_name]["dropout_rate"] lowerCamelCase : str = CONFIG_MAP[model_name]["dw_padding"] lowerCamelCase : Tuple = "huggingface/label-files" lowerCamelCase : List[str] = "imagenet-1k-id2label.json" lowerCamelCase : Any = 1000 lowerCamelCase : Any = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,repo_type="dataset" ) ,"r" ) ) lowerCamelCase : List[str] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCamelCase : Tuple = idalabel lowerCamelCase : Any = {v: k for k, v in idalabel.items()} return config def A ( ) -> int: lowerCamelCase : str = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase : Tuple = Image.open(requests.get(_SCREAMING_SNAKE_CASE ,stream=_SCREAMING_SNAKE_CASE ).raw ) return im def A ( _SCREAMING_SNAKE_CASE ) -> str: lowerCamelCase : List[Any] = CONFIG_MAP[model_name]["image_size"] lowerCamelCase : str = EfficientNetImageProcessor( size={"height": size, "width": size} ,image_mean=[0.485, 0.456, 0.406] ,image_std=[0.47853944, 0.4732864, 0.47434163] ,do_center_crop=_SCREAMING_SNAKE_CASE ,) return preprocessor def A ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowerCamelCase : Any = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] lowerCamelCase : Any = sorted(set(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase : Dict = len(_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[Any] = {b: str(_SCREAMING_SNAKE_CASE ) for b, i in zip(_SCREAMING_SNAKE_CASE ,range(_SCREAMING_SNAKE_CASE ) )} lowerCamelCase : List[Any] = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: lowerCamelCase : Dict = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) lowerCamelCase : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: lowerCamelCase : List[str] = "efficientnet." + item[1] lowerCamelCase : int = "classifier.weight" lowerCamelCase : Union[str, Any] = "classifier.bias" return key_mapping def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: for key, value in tf_params.items(): if "normalization" in key: continue lowerCamelCase : Tuple = key_mapping[key] if "_conv" in key and "kernel" in key: lowerCamelCase : List[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(3 ,2 ,0 ,1 ) elif "depthwise_kernel" in key: lowerCamelCase : int = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(2 ,3 ,0 ,1 ) elif "kernel" in key: lowerCamelCase : List[str] = torch.from_numpy(np.transpose(_SCREAMING_SNAKE_CASE ) ) else: lowerCamelCase : Optional[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: lowerCamelCase : Optional[int] = model_classes[model_name]( include_top=_SCREAMING_SNAKE_CASE ,weights="imagenet" ,input_tensor=_SCREAMING_SNAKE_CASE ,input_shape=_SCREAMING_SNAKE_CASE ,pooling=_SCREAMING_SNAKE_CASE ,classes=1000 ,classifier_activation="softmax" ,) lowerCamelCase : List[Any] = original_model.trainable_variables lowerCamelCase : Tuple = original_model.non_trainable_variables lowerCamelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowerCamelCase : List[str] = param.numpy() lowerCamelCase : int = list(tf_params.keys() ) # Load HuggingFace model lowerCamelCase : Union[str, Any] = get_efficientnet_config(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[int] = EfficientNetForImageClassification(_SCREAMING_SNAKE_CASE ).eval() lowerCamelCase : Tuple = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) lowerCamelCase : Union[str, Any] = rename_keys(_SCREAMING_SNAKE_CASE ) replace_params(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowerCamelCase : int = convert_image_processor(_SCREAMING_SNAKE_CASE ) lowerCamelCase : int = preprocessor(images=prepare_img() ,return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): lowerCamelCase : Optional[Any] = hf_model(**_SCREAMING_SNAKE_CASE ) lowerCamelCase : str = outputs.logits.detach().numpy() # Original model inference lowerCamelCase : Optional[Any] = False lowerCamelCase : Any = CONFIG_MAP[model_name]["image_size"] lowerCamelCase : Optional[int] = prepare_img().resize((image_size, image_size) ,resample=PIL.Image.NEAREST ) lowerCamelCase : Union[str, Any] = image.img_to_array(_SCREAMING_SNAKE_CASE ) lowerCamelCase : str = np.expand_dims(_SCREAMING_SNAKE_CASE ,axis=0 ) lowerCamelCase : Dict = original_model.predict(_SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.mkdir(_SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) lowerCamelCase : int = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
48
1
"""simple docstring""" __lowercase = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __lowercase = [{'type': 'code', 'content': INSTALL_CONTENT}] __lowercase = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
357
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowercase = logging.get_logger(__name__) __lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } __lowercase = { '''gpt-neox-20b''': 2_048, } class _lowercase ( __a ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Optional[int]="<|endoftext|>" , UpperCamelCase__ : Optional[int]="<|endoftext|>" , UpperCamelCase__ : Optional[int]="<|endoftext|>" , UpperCamelCase__ : Optional[int]=False , **UpperCamelCase__ : str , ) -> Union[str, Any]: '''simple docstring''' super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) __UpperCamelCase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: __UpperCamelCase =getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) __UpperCamelCase =add_prefix_space __UpperCamelCase =pre_tok_class(**UpperCamelCase__ ) __UpperCamelCase =add_prefix_space def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' __UpperCamelCase =self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def UpperCAmelCase_ ( self : int , UpperCamelCase__ : "Conversation" ) -> List[int]: '''simple docstring''' __UpperCamelCase =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: __UpperCamelCase =input_ids[-self.model_max_length :] return input_ids
85
0
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available UpperCamelCase__ = logging.getLogger(__name__) @dataclass class a__ : _a : str _a : List[str] _a : Optional[List[str]] @dataclass class a__ : _a : List[int] _a : List[int] _a : Optional[List[int]] = None _a : Optional[List[int]] = None class a__ ( snake_case__ ): _a : Optional[int] = """train""" _a : int = """dev""" _a : Tuple = """test""" class a__ : @staticmethod def __SCREAMING_SNAKE_CASE( _A , _A ): """simple docstring""" raise NotImplementedError @staticmethod def __SCREAMING_SNAKE_CASE( _A ): """simple docstring""" raise NotImplementedError @staticmethod def __SCREAMING_SNAKE_CASE( _A , _A , _A , _A , _A=False , _A="[CLS]" , _A=1 , _A="[SEP]" , _A=False , _A=False , _A=0 , _A=0 , _A=-1_0_0 , _A=0 , _A=True , ): """simple docstring""" __lowerCAmelCase = {label: i for i, label in enumerate(_A )} __lowerCAmelCase = [] for ex_index, example in enumerate(_A ): if ex_index % 1_0_0_0_0 == 0: logger.info("Writing example %d of %d" , _A , len(_A ) ) __lowerCAmelCase = [] __lowerCAmelCase = [] for word, label in zip(example.words , example.labels ): __lowerCAmelCase = tokenizer.tokenize(_A ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_A ) > 0: tokens.extend(_A ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_A ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. __lowerCAmelCase = tokenizer.num_special_tokens_to_add() if len(_A ) > max_seq_length - special_tokens_count: __lowerCAmelCase = tokens[: (max_seq_length - special_tokens_count)] __lowerCAmelCase = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] __lowerCAmelCase = [sequence_a_segment_id] * len(_A ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: __lowerCAmelCase = [cls_token] + tokens __lowerCAmelCase = [pad_token_label_id] + label_ids __lowerCAmelCase = [cls_token_segment_id] + segment_ids __lowerCAmelCase = tokenizer.convert_tokens_to_ids(_A ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. __lowerCAmelCase = [1 if mask_padding_with_zero else 0] * len(_A ) # Zero-pad up to the sequence length. __lowerCAmelCase = max_seq_length - len(_A ) if pad_on_left: __lowerCAmelCase = ([pad_token] * padding_length) + input_ids __lowerCAmelCase = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask __lowerCAmelCase = ([pad_token_segment_id] * padding_length) + segment_ids __lowerCAmelCase = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_A ) == max_seq_length assert len(_A ) == max_seq_length assert len(_A ) == max_seq_length assert len(_A ) == max_seq_length if ex_index < 5: logger.info("*** Example ***" ) logger.info("guid: %s" , example.guid ) logger.info("tokens: %s" , " ".join([str(_A ) for x in tokens] ) ) logger.info("input_ids: %s" , " ".join([str(_A ) for x in input_ids] ) ) logger.info("input_mask: %s" , " ".join([str(_A ) for x in input_mask] ) ) logger.info("segment_ids: %s" , " ".join([str(_A ) for x in segment_ids] ) ) logger.info("label_ids: %s" , " ".join([str(_A ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: __lowerCAmelCase = None features.append( InputFeatures( input_ids=_A , attention_mask=_A , token_type_ids=_A , label_ids=_A ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class a__ ( snake_case__ ): _a : List[InputFeatures] _a : int = nn.CrossEntropyLoss().ignore_index def __init__( self , _A , _A , _A , _A , _A , _A = None , _A=False , _A = Split.train , ): """simple docstring""" __lowerCAmelCase = os.path.join( _A , "cached_{}_{}_{}".format(mode.value , tokenizer.__class__.__name__ , str(_A ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + ".lock" with FileLock(_A ): if os.path.exists(_A ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __lowerCAmelCase = torch.load(_A ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __lowerCAmelCase = token_classification_task.read_examples_from_file(_A , _A ) # TODO clean up all this to leverage built-in features of tokenizers __lowerCAmelCase = token_classification_task.convert_examples_to_features( _A , _A , _A , _A , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_A , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _A ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _A ): """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class a__ : _a : List[InputFeatures] _a : int = -1_0_0 def __init__( self , _A , _A , _A , _A , _A , _A = None , _A=False , _A = Split.train , ): """simple docstring""" __lowerCAmelCase = token_classification_task.read_examples_from_file(_A , _A ) # TODO clean up all this to leverage built-in features of tokenizers __lowerCAmelCase = token_classification_task.convert_examples_to_features( _A , _A , _A , _A , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_A , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: __lowerCAmelCase = tf.data.Dataset.from_generator( _A , ({"input_ids": tf.intaa, "attention_mask": tf.intaa}, tf.intaa) , ( {"input_ids": tf.TensorShape([None] ), "attention_mask": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: __lowerCAmelCase = tf.data.Dataset.from_generator( _A , ({"input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa}, tf.intaa) , ( { "input_ids": tf.TensorShape([None] ), "attention_mask": tf.TensorShape([None] ), "token_type_ids": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _A ): """simple docstring""" return self.features[i]
92
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = 'hf-internal-testing/tiny-random-t5' lowerCAmelCase__ :List[Any] = AutoTokenizer.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :str = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Any = tokenizer('This is me' , return_tensors='pt' ) lowerCAmelCase__ :Dict = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowerCAmelCase__ :Optional[Any] = model.generate(**__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Any = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowerCAmelCase__ :Union[str, Any] = model_reloaded.generate(**__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = 'hf-internal-testing/tiny-random-t5' lowerCAmelCase__ :Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :str = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__UpperCAmelCase ): model.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = model.reverse_bettertransformer() model.save_pretrained(__UpperCAmelCase )
293
0
def a__ ( A__, A__, A__, A__, A__ ): if index == number_of_items: return 0 SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : List[Any] = knapsack(A__, A__, A__, A__, index + 1 ) if weights[index] <= max_weight: SCREAMING_SNAKE_CASE_ : Tuple = values[index] + knapsack( A__, A__, A__, max_weight - weights[index], index + 1 ) return max(A__, A__ ) if __name__ == "__main__": import doctest doctest.testmod()
162
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowerCAmelCase__ : Optional[Any] ='src/transformers' lowerCAmelCase__ : int ='docs/source/en/tasks' def a__ ( A__, A__, A__ ): with open(A__, 'r', encoding='utf-8', newline='\n' ) as f: SCREAMING_SNAKE_CASE_ : Tuple = f.readlines() # Find the start prompt. SCREAMING_SNAKE_CASE_ : Any = 0 while not lines[start_index].startswith(A__ ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ : int = start_index while not lines[end_index].startswith(A__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ : Any =direct_transformers_import(TRANSFORMERS_PATH) lowerCAmelCase__ : Dict ={ 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowerCAmelCase__ : Union[str, Any] ={ 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = TASK_GUIDE_TO_MODELS[task_guide] SCREAMING_SNAKE_CASE_ : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(A__, set() ) SCREAMING_SNAKE_CASE_ : Tuple = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def a__ ( A__, A__=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = _find_text_in_file( filename=os.path.join(A__, A__ ), start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->', end_prompt='<!--End of the generated tip-->', ) SCREAMING_SNAKE_CASE_ : str = get_model_list_for_task(A__ ) if current_list != new_list: if overwrite: with open(os.path.join(A__, A__ ), 'w', encoding='utf-8', newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ' to fix this.' ) if __name__ == "__main__": lowerCAmelCase__ : int =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase__ : Union[str, Any] =parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
162
1
from ....configuration_utils import PretrainedConfig from ....utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[Any] ="trajectory_transformer" UpperCAmelCase_ : str =["past_key_values"] UpperCAmelCase_ : Optional[Any] ={ "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , UpperCAmelCase=100 , UpperCAmelCase=5 , UpperCAmelCase=1 , UpperCAmelCase=1 , UpperCAmelCase=249 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=25 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase=128 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0_006 , UpperCAmelCase=512 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-12 , UpperCAmelCase=1 , UpperCAmelCase=True , UpperCAmelCase=1 , UpperCAmelCase=50256 , UpperCAmelCase=50256 , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' __snake_case : Tuple = vocab_size __snake_case : Optional[int] = action_weight __snake_case : int = reward_weight __snake_case : List[Any] = value_weight __snake_case : Optional[int] = max_position_embeddings __snake_case : List[Any] = block_size __snake_case : str = action_dim __snake_case : Union[str, Any] = observation_dim __snake_case : Tuple = transition_dim __snake_case : Any = learning_rate __snake_case : Dict = n_layer __snake_case : int = n_head __snake_case : Tuple = n_embd __snake_case : str = embd_pdrop __snake_case : Any = attn_pdrop __snake_case : Tuple = resid_pdrop __snake_case : Any = initializer_range __snake_case : Any = layer_norm_eps __snake_case : List[str] = kaiming_initializer_range __snake_case : Tuple = use_cache super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
326
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
1
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict ) -> Tuple: '''simple docstring''' stooge(SCREAMING_SNAKE_CASE__ , 0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) return arr def __snake_case ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _UpperCAmelCase , _UpperCAmelCase : int = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _UpperCAmelCase : int = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE__ , i + t , (SCREAMING_SNAKE_CASE__) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , (h - t) ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() _lowerCAmelCase : Any = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
202
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : Union[str, Any] = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
202
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=64 , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :Optional[int] = np.random.default_rng(UpperCamelCase_ ) UpperCamelCase__ :Tuple = length UpperCamelCase__ :Optional[int] = rng.normal(size=(length,) ).astype(np.floataa ) UpperCamelCase__ :str = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ): '''simple docstring''' return self.length def __getitem__( self , UpperCamelCase_ ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase_=0 , UpperCamelCase_=0 , UpperCamelCase_=False ): '''simple docstring''' super().__init__() UpperCamelCase__ :Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCamelCase__ :List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCamelCase__ :Tuple = True def lowerCAmelCase__ ( self , UpperCamelCase_=None ): '''simple docstring''' if self.first_batch: print(F'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) UpperCamelCase__ :Tuple = False return x * self.a[0] + self.b[0] class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase_=0 , UpperCamelCase_=0 , UpperCamelCase_=False ): '''simple docstring''' super().__init__() UpperCamelCase__ :List[str] = torch.nn.Parameter(torch.tensor(UpperCamelCase_ ).float() ) UpperCamelCase__ :List[Any] = torch.nn.Parameter(torch.tensor(UpperCamelCase_ ).float() ) UpperCamelCase__ :str = True def lowerCAmelCase__ ( self , UpperCamelCase_=None ): '''simple docstring''' if self.first_batch: print(F'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) UpperCamelCase__ :Optional[int] = False return x * self.a + self.b def a ( __a , __a = 16 ) -> Union[str, Any]: '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer UpperCamelCase__ :Any = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCamelCase__ :Tuple = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} UpperCamelCase__ :Dict = load_dataset('''csv''' , data_files=__a ) UpperCamelCase__ :int = datasets['''train'''].unique('''label''' ) UpperCamelCase__ :List[str] = {v: i for i, v in enumerate(__a )} def tokenize_function(__a ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :Any = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a , padding='''max_length''' ) if "label" in examples: UpperCamelCase__ :str = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase__ :str = datasets.map( __a , batched=__a , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__a ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__a , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__a , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCamelCase__ :int = DataLoader(tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=2 ) UpperCamelCase__ :Dict = DataLoader(tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=1 ) return train_dataloader, eval_dataloader
97
'''simple docstring''' from collections import defaultdict class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCamelCase__ :Union[str, Any] = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(UpperCamelCase_ ) ) ] UpperCamelCase__ :str = defaultdict(UpperCamelCase_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCamelCase__ :Optional[int] = (1 << len(UpperCamelCase_ )) - 1 def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCamelCase__ :str = self.count_ways_until(UpperCamelCase_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. UpperCamelCase__ :Optional[int] = total_ways_util return self.dp[mask][task_no] def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' for i in range(len(UpperCamelCase_ ) ): for j in task_performed[i]: self.task[j].append(UpperCamelCase_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __snake_case = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __snake_case = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
97
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=0 ) -> str: # Format the message. if name is None: snake_case : List[str] = None else: snake_case : Tuple = """.""" * max(0 ,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" snake_case : Tuple = fmt.format(lowercase ) # Print and recurse (if needed). if isinstance(lowercase ,lowercase ): if msg is not None: print(lowercase ) for k in val.keys(): recursive_print(lowercase ,val[k] ,spaces + 2 ) elif isinstance(lowercase ,torch.Tensor ): print(lowercase ,""":""" ,val.size() ) else: print(lowercase ,""":""" ,lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> Dict: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. snake_case : Optional[int] = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case : List[str] = param.view(*lowercase ) snake_case : int = param.transpose(0 ,2 ) snake_case : List[Any] = param.transpose(1 ,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case : List[str] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case : Tuple = param.view(*lowercase ) snake_case : Union[str, Any] = param.transpose(0 ,1 ).contiguous() snake_case : int = param.view(*lowercase ) return param def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # The converted output model. snake_case : List[Any] = {} # old versions did not store training args snake_case : Optional[int] = input_state_dict.get("""args""" ,lowercase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case : List[Any] = ds_args.padded_vocab_size snake_case : List[Any] = ds_args.max_position_embeddings snake_case : Any = ds_args.hidden_size snake_case : Tuple = ds_args.num_layers snake_case : Any = ds_args.num_attention_heads snake_case : Union[str, Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case : Union[str, Any] = config.n_head # The hidden_size per head. snake_case : Dict = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case : List[str] = 0.0 # The model. snake_case : Any = input_state_dict["""model"""] # The language model. snake_case : List[Any] = model["""language_model"""] # The embeddings. snake_case : Dict = lm["""embedding"""] # The word embeddings. snake_case : int = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case : Optional[Any] = word_embeddings[: config.vocab_size, :] snake_case : Optional[Any] = word_embeddings # The position embeddings. snake_case : Optional[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case : int = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" ) # Store the position embeddings. snake_case : Optional[Any] = pos_embeddings # The transformer. snake_case : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case : str = re.compile(R"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case : Dict = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case : int = layer_re.match(lowercase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case : List[str] = int(m.group(1 ) ) # The name of the operation. snake_case : List[str] = m.group(2 ) # Is it a weight or a bias? snake_case : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case : Optional[Any] = f"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case : str = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case : Dict = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) ,dtype=torch.floataa ) ).view( 1 ,1 ,lowercase ,lowercase ) snake_case : Dict = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case : Tuple = torch.tensor(-1E4 ,dtype=torch.floataa ) snake_case : Dict = masked_bias snake_case : Optional[Any] = fix_query_key_value_ordering(lowercase ,lowercase ,3 ,lowercase ,lowercase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case : str = out_val.transpose(0 ,1 ).contiguous() # Store. snake_case : Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case : str = fix_query_key_value_ordering(lowercase ,lowercase ,3 ,lowercase ,lowercase ) # Store. No change of shape. snake_case : Dict = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case : List[str] = megatron_to_transformers[op_name] snake_case : Tuple = val.transpose(0 ,1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case : List[Any] = megatron_to_transformers[op_name] snake_case : Optional[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case : List[Any] = transformer["""final_layernorm.weight"""] snake_case : Union[str, Any] = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case : Dict = word_embeddings # It should be done! return output_state_dict def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: # Create the argument parser. snake_case : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" ,action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" ,type=lowercase ,help="""Path to the checkpoint file (.zip archive or direct .pt file)""" ,) parser.add_argument( """--config_file""" ,default="""""" ,type=lowercase ,help="""An optional config json file describing the pre-trained model.""" ,) snake_case : str = parser.parse_args() # Extract the basename. snake_case : Tuple = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint ,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case : Any = torch.load(lowercase ,map_location="""cpu""" ) else: snake_case : int = torch.load(args.path_to_checkpoint ,map_location="""cpu""" ) snake_case : Optional[Any] = input_state_dict.get("""args""" ,lowercase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case : str = """gelu_new""" else: snake_case : List[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case : str = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case : Optional[int] = GPTaConfig( vocab_size=50257 ,n_positions=1024 ,n_embd=1024 ,n_layer=24 ,n_head=16 ,n_inner=4096 ,activation_function=lowercase ,resid_pdrop=0.1 ,embd_pdrop=0.1 ,attn_pdrop=0.1 ,layer_norm_epsilon=1E-5 ,initializer_range=0.02 ,summary_type="""cls_index""" ,summary_use_proj=lowercase ,summary_activation=lowercase ,summary_proj_to_labels=lowercase ,summary_first_dropout=0.1 ,scale_attn_weights=lowercase ,use_cache=lowercase ,bos_token_id=50256 ,eos_token_id=50256 ,) else: snake_case : str = GPTaConfig.from_json_file(args.config_file ) snake_case : Tuple = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case : Tuple = convert_megatron_checkpoint(lowercase ,lowercase ,lowercase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowercase ,lowercase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case : Union[str, Any] = ds_args.tokenizer_name_or_path else: raise ValueError(f"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: snake_case : List[Any] = """gpt2""" snake_case : str = AutoTokenizer.from_pretrained(lowercase ) snake_case : int = type(lowercase ).__name__ snake_case : Dict = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(lowercase ) # Save tokenizer based on args print(f"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(lowercase ) # Store the state_dict to file. snake_case : Union[str, Any] = os.path.join(lowercase ,"""pytorch_model.bin""" ) print(f"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(lowercase ,lowercase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
362
import warnings from functools import wraps from typing import Callable def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Callable: @wraps(lowercase ) def _inner_fn(*lowercase ,**lowercase ): warnings.warn( (f"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") ,lowercase ,) return fn(*lowercase ,**lowercase ) return _inner_fn
176
0
"""simple docstring""" import sys def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase = [[0 for x in range(SCREAMING_SNAKE_CASE )] for x in range(SCREAMING_SNAKE_CASE )] lowerCAmelCase = [[0 for x in range(SCREAMING_SNAKE_CASE )] for x in range(SCREAMING_SNAKE_CASE )] for chain_length in range(2 , SCREAMING_SNAKE_CASE ): for a in range(1 , n - chain_length + 1 ): lowerCAmelCase = a + chain_length - 1 lowerCAmelCase = sys.maxsize for c in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowerCAmelCase = cost lowerCAmelCase = c return matrix, sol def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if i == j: print("""A""" + str(SCREAMING_SNAKE_CASE ) , end=""" """ ) else: print("""(""" , end=""" """ ) print_optiomal_solution(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , optimal_solution[i][j] ) print_optiomal_solution(SCREAMING_SNAKE_CASE , optimal_solution[i][j] + 1 , SCREAMING_SNAKE_CASE ) print(""")""" , end=""" """ ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = [30, 35, 15, 5, 10, 20, 25] lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowerCAmelCase , lowerCAmelCase = matrix_chain_order(SCREAMING_SNAKE_CASE ) print("""No. of Operation required: """ + str(matrix[1][n - 1] ) ) print_optiomal_solution(SCREAMING_SNAKE_CASE , 1 , n - 1 ) if __name__ == "__main__": main()
46
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) _SCREAMING_SNAKE_CASE = Features({'text': Value('string' )} ) _SCREAMING_SNAKE_CASE = Features({} ) _SCREAMING_SNAKE_CASE = "text" @property def _snake_case ( self ) -> Dict[str, str]: return {self.text_column: "text"}
46
1
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a_ = typing.Union[np.floataa, int, float] # noqa: UP007 def __lowercase ( lowerCamelCase : Vector , lowerCamelCase : Vector ): return np.sqrt(np.sum((np.asarray(lowerCamelCase ) - np.asarray(lowerCamelCase )) ** 2 ) ) def __lowercase ( lowerCamelCase : Vector , lowerCamelCase : Vector ): return sum((va - va) ** 2 for va, va in zip(lowerCamelCase , lowerCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def __lowercase ( ): from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
355
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __lowercase ( lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : str=None , lowerCamelCase : Dict=None , lowerCamelCase : Optional[int]=None , lowerCamelCase : Dict=None , lowerCamelCase : Optional[int]=None , ): if attention_mask is None: UpperCamelCase_ : int = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase_ : Dict = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase_ : Optional[Any] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=lowerCamelCase ) if decoder_head_mask is None: UpperCamelCase_ : int = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCamelCase ) if cross_attn_head_mask is None: UpperCamelCase_ : Tuple = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class _lowercase : def __init__( self : Union[str, Any] , snake_case : str , snake_case : str=1_3 , snake_case : Optional[int]=7 , snake_case : int=True , snake_case : str=False , snake_case : str=9_9 , snake_case : int=1_6 , snake_case : str=2 , snake_case : Dict=4 , snake_case : Tuple=4 , snake_case : List[Any]="relu" , snake_case : str=0.1 , snake_case : Any=0.1 , snake_case : List[str]=0.0 , snake_case : int=0.0 , snake_case : Any=2_0 , snake_case : Union[str, Any]=2 , snake_case : Tuple=1 , snake_case : Optional[int]=0 , ) -> int: """simple docstring""" UpperCamelCase_ : Tuple = parent UpperCamelCase_ : Optional[Any] = batch_size UpperCamelCase_ : Tuple = seq_length UpperCamelCase_ : Dict = is_training UpperCamelCase_ : Tuple = use_labels UpperCamelCase_ : Tuple = vocab_size UpperCamelCase_ : List[str] = hidden_size UpperCamelCase_ : List[str] = num_hidden_layers UpperCamelCase_ : Tuple = num_attention_heads UpperCamelCase_ : Dict = intermediate_size UpperCamelCase_ : Dict = hidden_act UpperCamelCase_ : int = hidden_dropout_prob UpperCamelCase_ : str = attention_probs_dropout_prob UpperCamelCase_ : List[Any] = encoder_layerdrop UpperCamelCase_ : Any = decoder_layerdrop UpperCamelCase_ : Tuple = max_position_embeddings UpperCamelCase_ : Dict = eos_token_id UpperCamelCase_ : int = pad_token_id UpperCamelCase_ : str = bos_token_id def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ : Any = self.eos_token_id # Eos Token UpperCamelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase_ : str = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ : List[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ : str = self.get_config() UpperCamelCase_ : Any = prepare_mam_aaa_inputs_dict(snake_case , snake_case , snake_case ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[str]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : List[Any] , snake_case : Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase_ : str = MaMaaaModel(config=snake_case ).get_decoder().to(snake_case ).eval() UpperCamelCase_ : str = inputs_dict['input_ids'] UpperCamelCase_ : Any = inputs_dict['attention_mask'] UpperCamelCase_ : Optional[int] = inputs_dict['head_mask'] # first forward pass UpperCamelCase_ : int = model(snake_case , attention_mask=snake_case , head_mask=snake_case , use_cache=snake_case ) UpperCamelCase_, UpperCamelCase_ : int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ : Optional[int] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ : Optional[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase_ : Union[str, Any] = model(snake_case , attention_mask=snake_case )['last_hidden_state'] UpperCamelCase_ : int = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[ 'last_hidden_state' ] # select random slice UpperCamelCase_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-2 ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : int , snake_case : str ) -> Dict: """simple docstring""" UpperCamelCase_ : Tuple = MaMaaaModel(config=snake_case ).to(snake_case ).eval() UpperCamelCase_ : List[str] = model(**snake_case ) UpperCamelCase_ : List[Any] = outputs.encoder_last_hidden_state UpperCamelCase_ : Optional[int] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ : Optional[int] = model.get_encoder() encoder.save_pretrained(snake_case ) UpperCamelCase_ : Tuple = MaMaaaEncoder.from_pretrained(snake_case ).to(snake_case ) UpperCamelCase_ : Optional[Any] = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ : int = model.get_decoder() decoder.save_pretrained(snake_case ) UpperCamelCase_ : int = MaMaaaDecoder.from_pretrained(snake_case ).to(snake_case ) UpperCamelCase_ : int = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=snake_case , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _lowercase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowercase = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) lowercase = (MaMaaaForConditionalGeneration,) if is_torch_available() else () lowercase = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) lowercase = True lowercase = True lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : str , snake_case : str , snake_case : Dict ) -> List[Any]: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Tuple = MaMaaaModelTester(self ) UpperCamelCase_ : Optional[Any] = ConfigTester(self , config_class=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCamelCase_ : int = model_class(snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case ) UpperCamelCase_, UpperCamelCase_ : str = model_class.from_pretrained(snake_case , output_loading_info=snake_case ) self.assertEqual(info['missing_keys'] , [] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Tuple: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCamelCase_ : Optional[Any] = model_class(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : List[Any] = copy.deepcopy(self._prepare_for_class(snake_case , snake_case ) ) if not self.is_encoder_decoder: UpperCamelCase_ : List[Any] = inputs['input_ids'] del inputs["input_ids"] else: UpperCamelCase_ : str = inputs['input_ids'] UpperCamelCase_ : List[str] = inputs.get('decoder_input_ids' , snake_case ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , snake_case ) UpperCamelCase_ : List[str] = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCamelCase_ : Tuple = wte(snake_case ) else: UpperCamelCase_ : Optional[int] = wte(snake_case ) UpperCamelCase_ : Optional[int] = wte(snake_case ) with torch.no_grad(): model(**snake_case )[0] def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ : str = input_dict['input_ids'] UpperCamelCase_ : int = input_ids.ne(1 ).to(snake_case ) UpperCamelCase_ : Dict = MaMaaaForConditionalGeneration(snake_case ).eval().to(snake_case ) if torch_device == "cuda": model.half() model.generate(snake_case , attention_mask=snake_case ) model.generate(num_beams=4 , do_sample=snake_case , early_stopping=snake_case , num_return_sequences=3 ) def __lowercase ( lowerCamelCase : List[Any] ): return torch.tensor(lowerCamelCase , dtype=torch.long , device=lowerCamelCase ) a_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class _lowercase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: """simple docstring""" return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(snake_case ) UpperCamelCase_ : str = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) UpperCamelCase_ : Dict = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) UpperCamelCase_ : Optional[int] = prepare_mam_aaa_inputs_dict(model.config , snake_case , snake_case ) with torch.no_grad(): UpperCamelCase_ : Any = model(**snake_case )[0] UpperCamelCase_ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , snake_case ) # change to expected output here UpperCamelCase_ : Dict = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=snake_case ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: """simple docstring""" UpperCamelCase_ : List[str] = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(snake_case ) # change to intended input UpperCamelCase_ : Tuple = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) UpperCamelCase_ : Union[str, Any] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) UpperCamelCase_ : Dict = prepare_mam_aaa_inputs_dict(model.config , snake_case , snake_case ) with torch.no_grad(): UpperCamelCase_ : Dict = model(**snake_case )[0] UpperCamelCase_ : Union[str, Any] = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , snake_case ) # change to expected output here UpperCamelCase_ : Any = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=snake_case ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: """simple docstring""" UpperCamelCase_ : str = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(snake_case ) UpperCamelCase_ : Optional[int] = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) UpperCamelCase_ : Union[str, Any] = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCamelCase_ : Optional[Any] = tokenizer(snake_case , padding=snake_case , return_tensors='pt' ) UpperCamelCase_ : Dict = model.generate( input_ids=dct['input_ids'].to(snake_case ) , attention_mask=dct['attention_mask'].to(snake_case ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) UpperCamelCase_ : Optional[int] = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] UpperCamelCase_ : List[str] = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=snake_case , skip_special_tokens=snake_case ) assert generated == expected_en
50
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A : Tuple = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
184
from __future__ import annotations A : Union[str, Any] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class _lowercase : """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : dict[str, list[str]] , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = graph # mapping node to its parent in resulting breadth first tree lowerCamelCase__ : dict[str, str | None] = {} lowerCamelCase__ : Dict = source_vertex def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : int = {self.source_vertex} lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Dict = [self.source_vertex] # first in first out queue while queue: lowerCamelCase__ : Optional[int] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowerCamelCase ) lowerCamelCase__ : List[str] = vertex queue.append(__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase__ : Tuple = self.parent.get(__lowerCamelCase ) if target_vertex_parent is None: lowerCamelCase__ : Tuple = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__lowerCamelCase ) return self.shortest_path(__lowerCamelCase ) + f"->{target_vertex}" if __name__ == "__main__": A : List[str] = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
184
1
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = ['''image_processor'''] UpperCamelCase_ : int = '''SamImageProcessor''' def __init__( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Optional[int]: """simple docstring""" super().__init__(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.image_processor _UpperCAmelCase : Any = -1_0 _UpperCAmelCase : Dict = self.image_processor.size["longest_edge"] def __call__( self : Any , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : List[str] , ) -> BatchEncoding: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processor( lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # pop arguments that are not used in the foward but used nevertheless _UpperCAmelCase : Optional[int] = encoding_image_processor["original_sizes"] if hasattr(lowerCAmelCase__ , "numpy" ): # Checks if Torch or TF tensor _UpperCAmelCase : List[Any] = original_sizes.numpy() _UpperCAmelCase : Union[str, Any] = self._check_and_preprocess_points( input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , ) _UpperCAmelCase : Union[str, Any] = self._normalize_and_convert( lowerCAmelCase__ , lowerCAmelCase__ , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , ) return encoding_image_processor def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Union[str, Any]="pt" , ) -> Union[str, Any]: """simple docstring""" if input_points is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): _UpperCAmelCase : str = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] ) for point in input_points ] else: _UpperCAmelCase : Tuple = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ ) for point, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _UpperCAmelCase : Optional[Any] = self._pad_points_and_labels(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = np.array(lowerCAmelCase__ ) if input_labels is not None: _UpperCAmelCase : Union[str, Any] = np.array(lowerCAmelCase__ ) if input_boxes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): _UpperCAmelCase : Dict = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] , is_bounding_box=lowerCAmelCase__ ) for box in input_boxes ] else: _UpperCAmelCase : Dict = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ , is_bounding_box=lowerCAmelCase__ ) for box, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] _UpperCAmelCase : Tuple = np.array(lowerCAmelCase__ ) if input_boxes is not None: if return_tensors == "pt": _UpperCAmelCase : Optional[int] = torch.from_numpy(lowerCAmelCase__ ) # boxes batch size of 1 by default _UpperCAmelCase : int = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _UpperCAmelCase : Optional[int] = tf.convert_to_tensor(lowerCAmelCase__ ) # boxes batch size of 1 by default _UpperCAmelCase : Union[str, Any] = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": _UpperCAmelCase : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ) # point batch size of 1 by default _UpperCAmelCase : str = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _UpperCAmelCase : Optional[int] = tf.convert_to_tensor(lowerCAmelCase__ ) # point batch size of 1 by default _UpperCAmelCase : int = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": _UpperCAmelCase : Dict = torch.from_numpy(lowerCAmelCase__ ) # point batch size of 1 by default _UpperCAmelCase : List[str] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _UpperCAmelCase : Any = tf.convert_to_tensor(lowerCAmelCase__ ) # point batch size of 1 by default _UpperCAmelCase : Optional[Any] = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = max([point.shape[0] for point in input_points] ) _UpperCAmelCase : List[str] = [] for i, point in enumerate(lowerCAmelCase__ ): if point.shape[0] != expected_nb_points: _UpperCAmelCase : Any = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) _UpperCAmelCase : Dict = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = processed_input_points return input_points, input_labels def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=False ) -> np.ndarray: """simple docstring""" _UpperCAmelCase : List[Any] = original_size _UpperCAmelCase : int = self.image_processor._get_preprocess_shape(lowerCAmelCase__ , longest_edge=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = deepcopy(lowerCAmelCase__ ).astype(lowerCAmelCase__ ) if is_bounding_box: _UpperCAmelCase : List[Any] = coords.reshape(-1 , 2 , 2 ) _UpperCAmelCase : Optional[Any] = coords[..., 0] * (new_w / old_w) _UpperCAmelCase : List[str] = coords[..., 1] * (new_h / old_h) if is_bounding_box: _UpperCAmelCase : Any = coords.reshape(-1 , 4 ) return coords def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : List[str]=None , ) -> List[str]: """simple docstring""" if input_points is not None: if hasattr(lowerCAmelCase__ , "numpy" ): # Checks for TF or Torch tensor _UpperCAmelCase : Tuple = input_points.numpy().tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_points[0] , lowerCAmelCase__ ): raise ValueError("Input points must be a list of list of floating points." ) _UpperCAmelCase : List[Any] = [np.array(lowerCAmelCase__ ) for input_point in input_points] else: _UpperCAmelCase : Union[str, Any] = None if input_labels is not None: if hasattr(lowerCAmelCase__ , "numpy" ): _UpperCAmelCase : Dict = input_labels.numpy().tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_labels[0] , lowerCAmelCase__ ): raise ValueError("Input labels must be a list of list integers." ) _UpperCAmelCase : str = [np.array(lowerCAmelCase__ ) for label in input_labels] else: _UpperCAmelCase : str = None if input_boxes is not None: if hasattr(lowerCAmelCase__ , "numpy" ): _UpperCAmelCase : Union[str, Any] = input_boxes.numpy().tolist() if ( not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_boxes[0] , lowerCAmelCase__ ) or not isinstance(input_boxes[0][0] , lowerCAmelCase__ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) _UpperCAmelCase : List[str] = [np.array(lowerCAmelCase__ ).astype(np.floataa ) for box in input_boxes] else: _UpperCAmelCase : str = None return input_points, input_labels, input_boxes @property def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : str , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Any ) -> List[str]: """simple docstring""" return self.image_processor.post_process_masks(*lowerCAmelCase__ , **lowerCAmelCase__ )
350
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = '▁' UpperCAmelCase_ = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } UpperCAmelCase_ = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } UpperCAmelCase_ = { 'facebook/s2t-small-librispeech-asr': 1024, } UpperCAmelCase_ = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] UpperCAmelCase_ = {'mustc': MUSTC_LANGS} class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : str = VOCAB_FILES_NAMES a : List[Any] = PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] = MAX_MODEL_INPUT_SIZES a : Union[str, Any] = ["input_ids", "attention_mask"] a : List[int] = [] def __init__( self, __magic_name__, __magic_name__, __magic_name__="<s>", __magic_name__="</s>", __magic_name__="<pad>", __magic_name__="<unk>", __magic_name__=False, __magic_name__=False, __magic_name__=None, __magic_name__=None, __magic_name__ = None, **__magic_name__, ) -> None: """simple docstring""" UpperCamelCase__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__magic_name__, eos_token=__magic_name__, unk_token=__magic_name__, pad_token=__magic_name__, do_upper_case=__magic_name__, do_lower_case=__magic_name__, tgt_lang=__magic_name__, lang_codes=__magic_name__, sp_model_kwargs=self.sp_model_kwargs, **__magic_name__, ) UpperCamelCase__ : List[Any] = do_upper_case UpperCamelCase__ : str = do_lower_case UpperCamelCase__ : Union[str, Any] = load_json(__magic_name__ ) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : str = spm_file UpperCamelCase__ : Any = load_spm(__magic_name__, self.sp_model_kwargs ) if lang_codes is not None: UpperCamelCase__ : str = lang_codes UpperCamelCase__ : Optional[int] = LANGUAGES[lang_codes] UpperCamelCase__ : int = [f"<lang:{lang}>" for lang in self.langs] UpperCamelCase__ : Tuple = {lang: self.sp_model.PieceToId(f"<lang:{lang}>" ) for lang in self.langs} UpperCamelCase__ : Optional[int] = self.lang_tokens UpperCamelCase__ : int = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: UpperCamelCase__ : int = {} @property def UpperCamelCase__ ( self ) -> int: """simple docstring""" return len(self.encoder ) @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" return self._tgt_lang @tgt_lang.setter def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : Optional[int] = new_tgt_lang self.set_tgt_lang_special_tokens(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : Tuple = self.lang_code_to_id[tgt_lang] UpperCamelCase__ : Tuple = [lang_code_id] def UpperCamelCase__ ( self, __magic_name__ ) -> List[str]: """simple docstring""" return self.sp_model.encode(__magic_name__, out_type=__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> int: """simple docstring""" return self.encoder.get(__magic_name__, self.encoder[self.unk_token] ) def UpperCamelCase__ ( self, __magic_name__ ) -> str: """simple docstring""" return self.decoder.get(__magic_name__, self.unk_token ) def UpperCamelCase__ ( self, __magic_name__ ) -> str: """simple docstring""" UpperCamelCase__ : List[str] = [] UpperCamelCase__ : Tuple = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: UpperCamelCase__ : Optional[int] = self.sp_model.decode(__magic_name__ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " UpperCamelCase__ : str = [] else: current_sub_tokens.append(__magic_name__ ) UpperCamelCase__ : List[Any] = self.sp_model.decode(__magic_name__ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def UpperCamelCase__ ( self, __magic_name__, __magic_name__=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None, __magic_name__ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__, token_ids_a=__magic_name__, already_has_special_tokens=__magic_name__ ) UpperCamelCase__ : int = [1] * len(self.prefix_tokens ) UpperCamelCase__ : Union[str, Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Any = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.__dict__.copy() UpperCamelCase__ : Union[str, Any] = None return state def __setstate__( self, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : Union[str, Any] = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): UpperCamelCase__ : Tuple = {} UpperCamelCase__ : List[str] = load_spm(self.spm_file, self.sp_model_kwargs ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase__ : Optional[int] = Path(__magic_name__ ) assert save_dir.is_dir(), f"{save_directory} should be a directory" UpperCamelCase__ : List[Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCamelCase__ : Tuple = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder, __magic_name__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file, __magic_name__ ) elif not os.path.isfile(self.spm_file ): with open(__magic_name__, '''wb''' ) as fi: UpperCamelCase__ : int = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (str(__magic_name__ ), str(__magic_name__ )) def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: UpperCamelCase__ : List[Any] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> Union[Dict, List]: with open(__UpperCAmelCase , '''r''' ) as f: return json.load(__UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: str ) -> None: with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
201
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } UpperCAmelCase_ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: int , __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: Optional[int] , __UpperCAmelCase: str , __UpperCAmelCase: Any ) -> List[str]: for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : Tuple = '''lm_head''' UpperCamelCase__ : Optional[int] = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: UpperCamelCase__ : List[str] = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: UpperCamelCase__ : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCamelCase__ : List[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : List[str] = value elif weight_type == "weight_v": UpperCamelCase__ : str = value elif weight_type == "bias": UpperCamelCase__ : Tuple = value else: UpperCamelCase__ : int = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: Dict , __UpperCAmelCase: str ) -> List[Any]: UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ : str = fairseq_model.state_dict() UpperCamelCase__ : Optional[int] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Dict = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCamelCase__ : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : int = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCamelCase__ : Tuple = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] UpperCamelCase__ : Optional[Any] = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: UpperCamelCase__ : List[str] = '''weight_g''' elif "weight_v" in name: UpperCamelCase__ : Dict = '''weight_v''' elif "bias" in name: UpperCamelCase__ : List[Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Optional[Any] = '''weight''' else: UpperCamelCase__ : List[Any] = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: Any , __UpperCAmelCase: Optional[int] , __UpperCAmelCase: List[Any] , __UpperCAmelCase: Tuple ) -> Optional[int]: UpperCamelCase__ : List[str] = full_name.split('''conv_layers.''' )[-1] UpperCamelCase__ : List[str] = name.split('''.''' ) UpperCamelCase__ : str = int(items[0] ) UpperCamelCase__ : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCamelCase__ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCamelCase__ : Tuple = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCamelCase__ : int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCamelCase__ : List[str] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: Dict=None , __UpperCAmelCase: Optional[Any]=None , __UpperCAmelCase: Optional[int]=True ) -> Union[str, Any]: if config_path is not None: UpperCamelCase__ : str = UniSpeechConfig.from_pretrained(__UpperCAmelCase ) else: UpperCamelCase__ : List[Any] = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : str = Dictionary.load_from_json(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : Any = target_dict.pad_index UpperCamelCase__ : str = target_dict.bos_index UpperCamelCase__ : Any = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols ) UpperCamelCase__ : List[str] = os.path.join(__UpperCAmelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) UpperCamelCase__ : Dict = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Optional[Any] = 42 UpperCamelCase__ : List[str] = 43 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : Dict = WavaVecaPhonemeCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCAmelCase , ) UpperCamelCase__ : List[Any] = True if config.feat_extract_norm == '''layer''' else False UpperCamelCase__ : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) UpperCamelCase__ : str = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = UniSpeechForCTC(__UpperCAmelCase ) else: UpperCamelCase__ : Any = UniSpeechForPreTraining(__UpperCAmelCase ) if is_finetuned: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCamelCase__ : Tuple = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_unispeech.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCAmelCase_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
201
1
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict=13 , lowerCAmelCase_ : Union[str, Any]=10 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Tuple=32 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : int=37 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Any=10 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : List[Any]="divided_space_time" , lowerCAmelCase_ : Optional[int]=None , ) -> List[str]: UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : Any = patch_size UpperCAmelCase_ : Any = num_frames UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Dict = attention_probs_dropout_prob UpperCAmelCase_ : str = attention_type UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : Optional[int] = scope UpperCAmelCase_ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token UpperCAmelCase_ : int = (image_size // patch_size) ** 2 UpperCAmelCase_ : int = (num_frames) * self.num_patches_per_frame + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: UpperCAmelCase_ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Any = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : str = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: UpperCAmelCase_ : int = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) UpperCAmelCase_ : Dict = self.num_labels return config def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ) -> int: UpperCAmelCase_ : int = TimesformerModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : Dict = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: UpperCAmelCase_ : int = TimesformerForVideoClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCAmelCase_ ) # verify the logits shape UpperCAmelCase_ : Dict = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: UpperCAmelCase_ : Dict = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ (__lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __magic_name__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __magic_name__ = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: UpperCAmelCase_ : str = TimesformerModelTester(self ) UpperCAmelCase_ : List[str] = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any=False ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = copy.deepcopy(lowerCAmelCase_ ) if return_labels: if model_class in get_values(lowerCAmelCase_ ): UpperCAmelCase_ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: pass def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : str = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[str] = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : List[Any] = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = TimesformerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: if not self.has_attentions: pass else: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[Any] = True for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = self.model_tester.seq_length UpperCAmelCase_ : Any = self.model_tester.num_frames UpperCAmelCase_ : Any = True UpperCAmelCase_ : int = False UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Dict = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Tuple = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) UpperCAmelCase_ : List[Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : List[Any] = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) UpperCAmelCase_ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) UpperCAmelCase_ : str = len(lowerCAmelCase_ ) # Check attention is always last and order is fine UpperCAmelCase_ : int = True UpperCAmelCase_ : Any = True UpperCAmelCase_ : Any = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase_ ) ) UpperCAmelCase_ : List[Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): UpperCAmelCase_ : Dict = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Tuple = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) UpperCAmelCase_ : Any = outputs.hidden_states UpperCAmelCase_ : List[str] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) UpperCAmelCase_ : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[str] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : str = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case ( ): UpperCAmelCase_ : Dict = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" ,filename="eating_spaghetti.npy" ,repo_type="dataset" ) UpperCAmelCase_ : int = np.load(snake_case__ ) return list(snake_case__ ) @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: UpperCAmelCase_ : int = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( lowerCAmelCase_ ) UpperCAmelCase_ : str = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_video() UpperCAmelCase_ : Tuple = image_processor(video[:8] , return_tensors="pt" ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**lowerCAmelCase_ ) # verify the logits UpperCAmelCase_ : Optional[Any] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
365
"""simple docstring""" from math import factorial def snake_case ( A__ = 1_00 ): return sum(int(A__ ) for x in str(factorial(A__ ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
253
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : Optional[Any] =logging.get_logger(__name__) a__ : Union[str, Any] ={ '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class snake_case ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] ="table-transformer" SCREAMING_SNAKE_CASE_ : Any =["past_key_values"] SCREAMING_SNAKE_CASE_ : List[str] ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Union[str, Any] , __A : List[Any]=True , __A : Dict=None , __A : Union[str, Any]=3 , __A : Optional[int]=1_0_0 , __A : List[Any]=6 , __A : Dict=2_0_4_8 , __A : int=8 , __A : Tuple=6 , __A : Union[str, Any]=2_0_4_8 , __A : Union[str, Any]=8 , __A : int=0.0 , __A : Dict=0.0 , __A : Tuple=True , __A : int="relu" , __A : Any=2_5_6 , __A : Tuple=0.1 , __A : int=0.0 , __A : List[str]=0.0 , __A : str=0.02 , __A : List[str]=1.0 , __A : Any=False , __A : Tuple="sine" , __A : int="resnet50" , __A : Optional[int]=True , __A : Optional[Any]=False , __A : str=1 , __A : List[Any]=5 , __A : Optional[Any]=2 , __A : int=1 , __A : List[str]=1 , __A : Union[str, Any]=5 , __A : str=2 , __A : int=0.1 , **__A : Dict , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __UpperCamelCase = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(__A , __A ): __UpperCamelCase = backbone_config.get('model_type' ) __UpperCamelCase = CONFIG_MAPPING[backbone_model_type] __UpperCamelCase = config_class.from_dict(__A ) # set timm attributes to None __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None, None, None __UpperCamelCase = use_timm_backbone __UpperCamelCase = backbone_config __UpperCamelCase = num_channels __UpperCamelCase = num_queries __UpperCamelCase = d_model __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = init_xavier_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = encoder_layers __UpperCamelCase = auxiliary_loss __UpperCamelCase = position_embedding_type __UpperCamelCase = backbone __UpperCamelCase = use_pretrained_backbone __UpperCamelCase = dilation # Hungarian matcher __UpperCamelCase = class_cost __UpperCamelCase = bbox_cost __UpperCamelCase = giou_cost # Loss coefficients __UpperCamelCase = mask_loss_coefficient __UpperCamelCase = dice_loss_coefficient __UpperCamelCase = bbox_loss_coefficient __UpperCamelCase = giou_loss_coefficient __UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__A , **__A ) @property def _lowerCamelCase ( self : int ): return self.encoder_attention_heads @property def _lowerCamelCase ( self : Any ): return self.d_model class snake_case ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] =version.parse("1.11" ) @property def _lowerCamelCase ( self : Dict ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def _lowerCamelCase ( self : Union[str, Any] ): return 1e-5 @property def _lowerCamelCase ( self : Union[str, Any] ): return 1_2
53
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
334
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[Any] = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit + 1 _lowerCAmelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
317
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['OwlViTFeatureExtractor'] lowercase = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
178
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = parent def __magic_name__( self :List[Any] ) -> Tuple: return {} def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __SCREAMING_SNAKE_CASE : str = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = MarkupLMFeatureExtractionTester(self ) @property def __magic_name__( self :Any ) -> Optional[Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def __magic_name__( self :Optional[int] ) -> Any: # Initialize feature_extractor __SCREAMING_SNAKE_CASE : int = self.feature_extraction_class() # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = get_html_strings()[0] __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : str = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __SCREAMING_SNAKE_CASE : List[str] = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ ) # Test batched __SCREAMING_SNAKE_CASE : Tuple = get_html_strings() __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : int = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __SCREAMING_SNAKE_CASE : str = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ )
9
0
import torch from transformers import AutoModel class snake_case_ (torch.nn.Module ): def __init__( self :List[Any] ,__snake_case :List[str]="sayef/fsner-bert-base-uncased" ) -> str: super(__snake_case ,self ).__init__() a__ = AutoModel.from_pretrained(__snake_case ,return_dict=__snake_case ) a__ = torch.nn.CosineSimilarity(3 ,1E-08 ) a__ = torch.nn.Softmax(dim=1 ) def lowerCamelCase__( self :Dict ,**__snake_case :Any ) -> List[Any]: return self.bert(**__snake_case ).last_hidden_state def lowerCamelCase__( self :Any ,__snake_case :List[str] ) -> Any: return token_embeddings.sum(2 ,keepdim=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :List[Any] ,__snake_case :str=1 ) -> Optional[Any]: return self.softmax(T * self.cos(__snake_case ,__snake_case ) ) def lowerCamelCase__( self :Any ,__snake_case :Union[str, Any] ,__snake_case :Union[str, Any] ) -> Any: a__ = W_supports['sizes'].tolist() a__ = W_supports['start_token_id'].item() a__ = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] a__ = self.BERT(**__snake_case ) a__ = self.BERT(**__snake_case ) a__ = None a__ = None a__ = W_supports['input_ids'] == start_token_id a__ = W_supports['input_ids'] == end_token_id for i, size in enumerate(__snake_case ): if i == 0: a__ = 0 else: a__ = support_sizes[i - 1] a__ = S[s : s + size][start_token_masks[s : s + size]] a__ = S[s : s + size][end_token_masks[s : s + size]] a__ = torch.matmul(q[i] ,s_start.T ).sum(1 ).softmax(0 ) a__ = torch.matmul(q[i] ,s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: a__ = torch.vstack((p_starts, p_start) ) a__ = torch.vstack((p_ends, p_end) ) else: a__ = p_start a__ = p_end return p_starts, p_ends
357
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :List[Any] ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase__( self :int ) -> Optional[Any]: a__ , a__ = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' ,from_pt=__snake_case ,dtype=jnp.bfloataa ) a__ , a__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,controlnet=__snake_case ,from_pt=__snake_case ,dtype=jnp.bfloataa ) a__ = controlnet_params a__ = 'bird' a__ = jax.device_count() a__ = pipe.prepare_text_inputs([prompts] * num_samples ) a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) a__ = pipe.prepare_image_inputs([canny_image] * num_samples ) a__ = jax.random.PRNGKey(0 ) a__ = jax.random.split(__snake_case ,jax.device_count() ) a__ = replicate(__snake_case ) a__ = shard(__snake_case ) a__ = shard(__snake_case ) a__ = pipe( prompt_ids=__snake_case ,image=__snake_case ,params=__snake_case ,prng_seed=__snake_case ,num_inference_steps=50 ,jit=__snake_case ,).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a__ = images[0, 2_53:2_56, 2_53:2_56, -1] a__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a__ = jnp.array( [0.16_79_69, 0.11_66_99, 0.08_15_43, 0.15_42_97, 0.13_28_12, 0.10_88_87, 0.16_99_22, 0.16_99_22, 0.20_50_78] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ , a__ = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' ,from_pt=__snake_case ,dtype=jnp.bfloataa ) a__ , a__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,controlnet=__snake_case ,from_pt=__snake_case ,dtype=jnp.bfloataa ) a__ = controlnet_params a__ = 'Chef in the kitchen' a__ = jax.device_count() a__ = pipe.prepare_text_inputs([prompts] * num_samples ) a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) a__ = pipe.prepare_image_inputs([pose_image] * num_samples ) a__ = jax.random.PRNGKey(0 ) a__ = jax.random.split(__snake_case ,jax.device_count() ) a__ = replicate(__snake_case ) a__ = shard(__snake_case ) a__ = shard(__snake_case ) a__ = pipe( prompt_ids=__snake_case ,image=__snake_case ,params=__snake_case ,prng_seed=__snake_case ,num_inference_steps=50 ,jit=__snake_case ,).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a__ = images[0, 2_53:2_56, 2_53:2_56, -1] a__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a__ = jnp.array( [[0.27_14_84, 0.26_17_19, 0.27_53_91, 0.27_73_44, 0.27_92_97, 0.29_10_16, 0.29_49_22, 0.30_27_34, 0.30_27_34]] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
109
0
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _snake_case : List[str] = logging.get_logger(__name__) class a (lowerCAmelCase__ ): """simple docstring""" def __init__( self : str , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Optional[int] ) -> None: warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
123
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCAmelCase ( ) -> int: snake_case_ = HfArgumentParser(UpperCAmelCase ) snake_case_ = parser.parse_args_into_dataclasses()[0] snake_case_ = TensorFlowBenchmark(args=UpperCAmelCase ) try: snake_case_ = parser.parse_args_into_dataclasses()[0] except ValueError as e: snake_case_ = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' snake_case_ = ' '.join(str(UpperCAmelCase ).split(' ' )[:-1] ) snake_case_ = '' snake_case_ = eval(str(UpperCAmelCase ).split(' ' )[-1] ) snake_case_ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: snake_case_ = full_error_msg + begin_error_msg + str(UpperCAmelCase ) raise ValueError(UpperCAmelCase ) benchmark.run() if __name__ == "__main__": main()
69
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase :List[Any] = logging.get_logger(__name__) lowerCamelCase :Any = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE : str = '''layoutlmv3''' def __init__(self , lowercase=50265 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-5 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase=1024 , lowercase=128 , lowercase=128 , lowercase=True , lowercase=32 , lowercase=128 , lowercase=64 , lowercase=256 , lowercase=True , lowercase=True , lowercase=True , lowercase=224 , lowercase=3 , lowercase=16 , lowercase=None , **lowercase , ): super().__init__( vocab_size=A__ , hidden_size=A__ , num_hidden_layers=A__ , num_attention_heads=A__ , intermediate_size=A__ , hidden_act=A__ , hidden_dropout_prob=A__ , attention_probs_dropout_prob=A__ , max_position_embeddings=A__ , type_vocab_size=A__ , initializer_range=A__ , layer_norm_eps=A__ , pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ , ) A_ : Optional[Any] = max_ad_position_embeddings A_ : Optional[int] = coordinate_size A_ : List[str] = shape_size A_ : Any = has_relative_attention_bias A_ : List[Any] = rel_pos_bins A_ : Optional[int] = max_rel_pos A_ : List[Any] = has_spatial_attention_bias A_ : int = rel_ad_pos_bins A_ : List[str] = max_rel_ad_pos A_ : Any = text_embed A_ : Optional[Any] = visual_embed A_ : int = input_size A_ : List[str] = num_channels A_ : str = patch_size A_ : int = classifier_dropout class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE : List[Any] = version.parse('1.12' ) @property def _a (self ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def _a (self ): return 1E-5 @property def _a (self ): return 12 def _a (self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , lowercase = 3 , lowercase = 40 , lowercase = 40 , ): setattr(processor.image_processor , """apply_ocr""" , A__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A_ : Tuple = compute_effective_axis_dimension( A__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A_ : Union[str, Any] = processor.tokenizer.num_special_tokens_to_add(A__ ) A_ : Optional[int] = compute_effective_axis_dimension( A__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A__ ) # Generate dummy inputs according to compute batch and sequence A_ : List[Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes A_ : List[str] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) A_ : Any = self._generate_dummy_images(A__ , A__ , A__ , A__ ) A_ : List[Any] = dict( processor( A__ , text=A__ , boxes=A__ , return_tensors=A__ , ) ) return inputs
359
'''simple docstring''' def a ( ): '''simple docstring''' A_ : Optional[int] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] A_ : Dict = 6 A_ : List[Any] = 1 A_ : Optional[Any] = 19_01 A_ : Tuple = 0 while year < 20_01: day += 7 if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 A_ : Optional[Any] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 A_ : str = day - 29 else: if day > days_per_month[month - 1]: month += 1 A_ : List[str] = day - days_per_month[month - 2] if month > 12: year += 1 A_ : Tuple = 1 if year < 20_01 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
135
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=None , ) -> str: lowercase__ : Any = size if size is not None else {'shortest_edge': 2_0} lowercase__ : Tuple = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowercase__ : int = parent lowercase__ : Dict = batch_size lowercase__ : Tuple = num_channels lowercase__ : str = image_size lowercase__ : Tuple = min_resolution lowercase__ : List[str] = max_resolution lowercase__ : Dict = do_resize lowercase__ : Optional[int] = size lowercase__ : Optional[int] = do_center_crop lowercase__ : int = crop_size def _UpperCAmelCase ( self ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : List[Any] = MobileNetVaImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[Any] = MobileNetVaImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Dict: lowercase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'crop_size' ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) lowercase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _UpperCAmelCase ( self ) -> List[Any]: pass def _UpperCAmelCase ( self ) -> List[str]: # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : str = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Optional[int]: # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing lowercase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
77
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[Any] =10 SCREAMING_SNAKE_CASE_: Dict =datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) SCREAMING_SNAKE_CASE_: Tuple =datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(lowercase ) ), } , features=lowercase , ) return dataset @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=lowercase ) return filename # FILE_CONTENT + files _UpperCAmelCase = """\ Text data. Second line of data.""" @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =tmp_path_factory.mktemp("""data""" ) / """file.txt""" SCREAMING_SNAKE_CASE_: str =FILE_CONTENT with open(lowercase , """w""" ) as f: f.write(lowercase ) return filename @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): import bza SCREAMING_SNAKE_CASE_: List[str] =tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" SCREAMING_SNAKE_CASE_: Union[str, Any] =bytes(lowercase , """utf-8""" ) with bza.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): import gzip SCREAMING_SNAKE_CASE_: List[str] =str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) SCREAMING_SNAKE_CASE_: Dict =bytes(lowercase , """utf-8""" ) with gzip.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): if datasets.config.LZ4_AVAILABLE: import lza.frame SCREAMING_SNAKE_CASE_: Tuple =tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" SCREAMING_SNAKE_CASE_: List[Any] =bytes(lowercase , """utf-8""" ) with lza.frame.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): if datasets.config.PY7ZR_AVAILABLE: import pyazr SCREAMING_SNAKE_CASE_: Tuple =tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(lowercase , """w""" ) as archive: archive.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): import tarfile SCREAMING_SNAKE_CASE_: List[Any] =tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(lowercase , """w""" ) as f: f.add(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): import lzma SCREAMING_SNAKE_CASE_: List[str] =tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" SCREAMING_SNAKE_CASE_: List[Any] =bytes(lowercase , """utf-8""" ) with lzma.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): import zipfile SCREAMING_SNAKE_CASE_: str =tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd SCREAMING_SNAKE_CASE_: Tuple =tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" SCREAMING_SNAKE_CASE_: Dict =bytes(lowercase , """utf-8""" ) with zstd.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =tmp_path_factory.mktemp("""data""" ) / """file.xml""" SCREAMING_SNAKE_CASE_: Union[str, Any] =textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(lowercase , """w""" ) as f: f.write(lowercase ) return filename _UpperCAmelCase = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] _UpperCAmelCase = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] _UpperCAmelCase = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } _UpperCAmelCase = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] _UpperCAmelCase = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope="""session""" ) def __magic_name__ ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Tuple =datasets.Dataset.from_dict(lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(lowercase ) ) as con: SCREAMING_SNAKE_CASE_: int =con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(lowercase , """w""" , newline="""""" ) as f: SCREAMING_SNAKE_CASE_: int =csv.DictWriter(lowercase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[str] =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(lowercase , """w""" , newline="""""" ) as f: SCREAMING_SNAKE_CASE_: Tuple =csv.DictWriter(lowercase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): import bza SCREAMING_SNAKE_CASE_: Optional[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(lowercase , """rb""" ) as f: SCREAMING_SNAKE_CASE_: Optional[int] =f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Any =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(lowercase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: str =str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) SCREAMING_SNAKE_CASE_: List[Any] =pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(lowercase , """wb""" ) as f: SCREAMING_SNAKE_CASE_: int =pq.ParquetWriter(lowercase , schema=lowercase ) SCREAMING_SNAKE_CASE_: str =pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase ) )] for k in DATA[0]} , schema=lowercase ) writer.write_table(lowercase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) SCREAMING_SNAKE_CASE_: Optional[Any] ={"""data""": DATA} with open(lowercase , """w""" ) as f: json.dump(lowercase , lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) SCREAMING_SNAKE_CASE_: Tuple ={"""data""": DATA_DICT_OF_LISTS} with open(lowercase , """w""" ) as f: json.dump(lowercase , lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(lowercase , """w""" ) as f: for item in DATA: f.write(json.dumps(lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(lowercase , """w""" ) as f: for item in DATA: f.write(json.dumps(lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(lowercase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(lowercase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): import gzip SCREAMING_SNAKE_CASE_: Any =str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(lowercase , """rb""" ) as orig_file: with gzip.open(lowercase , """wb""" ) as zipped_file: zipped_file.writelines(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): import gzip SCREAMING_SNAKE_CASE_: int =str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(lowercase , """rb""" ) as orig_file: with gzip.open(lowercase , """wb""" ) as zipped_file: zipped_file.writelines(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.join("""nested""" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(lowercase , """w""" ) as f: f.add(lowercase , arcname=os.path.basename(lowercase ) ) f.add(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int =tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(lowercase , """w""" ) as f: f.add(lowercase , arcname=os.path.join("""nested""" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =["""0""", """1""", """2""", """3"""] SCREAMING_SNAKE_CASE_: Optional[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =["""0""", """1""", """2""", """3"""] SCREAMING_SNAKE_CASE_: Dict =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =["""0""", """1""", """2""", """3"""] SCREAMING_SNAKE_CASE_: List[str] =tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(lowercase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[str] ="""\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) SCREAMING_SNAKE_CASE_: List[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( ): return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __magic_name__ ( ): return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Any =tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[str] =tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
173
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} __UpperCAmelCase = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } __UpperCAmelCase = { "allenai/longformer-base-4096": 4_096, "allenai/longformer-large-4096": 4_096, "allenai/longformer-large-4096-finetuned-triviaqa": 4_096, "allenai/longformer-base-4096-extra.pos.embd.only": 4_096, "allenai/longformer-large-4096-extra.pos.embd.only": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _snake_case ( ) -> List[str]: lowerCAmelCase__ = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowerCAmelCase__ = bs[:] lowerCAmelCase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(A ) cs.append(2**8 + n ) n += 1 lowerCAmelCase__ = [chr(A ) for n in cs] return dict(zip(A , A ) ) def _snake_case ( A ) -> Optional[Any]: lowerCAmelCase__ = set() lowerCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ = char return pairs class a__ ( lowercase_ ): '''simple docstring''' lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : str = PRETRAINED_VOCAB_FILES_MAP lowercase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="replace" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<mask>" , lowerCamelCase_=False , **lowerCamelCase_ , ) -> Tuple: lowerCAmelCase__ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else bos_token lowerCAmelCase__ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else eos_token lowerCAmelCase__ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else sep_token lowerCAmelCase__ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else cls_token lowerCAmelCase__ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else unk_token lowerCAmelCase__ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( errors=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , add_prefix_space=a__ , **a__ , ) with open(a__ , encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase__ = json.load(a__ ) lowerCAmelCase__ = {v: k for k, v in self.encoder.items()} lowerCAmelCase__ = errors # how to handle errors in decoding lowerCAmelCase__ = bytes_to_unicode() lowerCAmelCase__ = {v: k for k, v in self.byte_encoder.items()} with open(a__ , encoding='''utf-8''' ) as merges_handle: lowerCAmelCase__ = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase__ = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase__ = dict(zip(a__ , range(len(a__ ) ) ) ) lowerCAmelCase__ = {} lowerCAmelCase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase__ = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return len(self.encoder ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[Any]: if token in self.cache: return self.cache[token] lowerCAmelCase__ = tuple(a__ ) lowerCAmelCase__ = get_pairs(a__ ) if not pairs: return token while True: lowerCAmelCase__ = min(a__ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(a__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ = bigram lowerCAmelCase__ = [] lowerCAmelCase__ = 0 while i < len(a__ ): try: lowerCAmelCase__ = word.index(a__ , a__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ = j if word[i] == first and i < len(a__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ = tuple(a__ ) lowerCAmelCase__ = new_word if len(a__ ) == 1: break else: lowerCAmelCase__ = get_pairs(a__ ) lowerCAmelCase__ = ''' '''.join(a__ ) lowerCAmelCase__ = word return word def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: lowerCAmelCase__ = [] for token in re.findall(self.pat , a__ ): lowerCAmelCase__ = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a__ ).split(''' ''' ) ) return bpe_tokens def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Union[str, Any]: return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Union[str, Any]: return self.decoder.get(a__ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: lowerCAmelCase__ = ''''''.join(a__ ) lowerCAmelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: if not os.path.isdir(a__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(a__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a__ , ensure_ascii=a__ ) + '''\n''' ) lowerCAmelCase__ = 0 with open(a__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase__ = token_index writer.write(''' '''.join(a__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] lowerCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=False , **lowerCamelCase_ ) -> int: lowerCAmelCase__ = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a__ ) > 0 and not text[0].isspace()): lowerCAmelCase__ = ''' ''' + text return (text, kwargs)
354
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''https://openaipublic.azureedge.net/jukebox/models/''' __UpperCAmelCase = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def _snake_case ( A ) -> Union[str, Any]: if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCAmelCase__ = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCAmelCase__ = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCAmelCase__ = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCAmelCase__ = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _snake_case ( A , A , A , A ) -> Optional[int]: lowerCAmelCase__ = {} import re lowerCAmelCase__ = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase__ = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase__ = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase__ = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(A ): lowerCAmelCase__ = re_encoder_block_conv_in.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase__ = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" lowerCAmelCase__ = re_encoder_block_conv_in.sub(A , A ) elif re_encoder_block_resnet.fullmatch(A ): lowerCAmelCase__ = re_encoder_block_resnet.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase__ = {'''1''': 1, '''3''': 2}[groups[-2]] lowerCAmelCase__ = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" lowerCAmelCase__ = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowerCAmelCase__ = prefix + resnet_block lowerCAmelCase__ = re_encoder_block_resnet.sub(A , A ) elif re_encoder_block_proj_out.fullmatch(A ): lowerCAmelCase__ = re_encoder_block_proj_out.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" lowerCAmelCase__ = re_encoder_block_proj_out.sub(A , A ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(A ): lowerCAmelCase__ = re_decoder_block_conv_out.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase__ = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" lowerCAmelCase__ = re_decoder_block_conv_out.sub(A , A ) elif re_decoder_block_resnet.fullmatch(A ): lowerCAmelCase__ = re_decoder_block_resnet.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase__ = {'''1''': 1, '''3''': 2}[groups[-2]] lowerCAmelCase__ = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" lowerCAmelCase__ = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowerCAmelCase__ = prefix + resnet_block lowerCAmelCase__ = re_decoder_block_resnet.sub(A , A ) elif re_decoder_block_proj_in.fullmatch(A ): lowerCAmelCase__ = re_decoder_block_proj_in.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" lowerCAmelCase__ = re_decoder_block_proj_in.sub(A , A ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(A ): lowerCAmelCase__ = re_prior_cond_conv_out.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase__ = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" lowerCAmelCase__ = re_prior_cond_conv_out.sub(A , A ) elif re_prior_cond_resnet.fullmatch(A ): lowerCAmelCase__ = re_prior_cond_resnet.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase__ = {'''1''': 1, '''3''': 2}[groups[-2]] lowerCAmelCase__ = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" lowerCAmelCase__ = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowerCAmelCase__ = prefix + resnet_block lowerCAmelCase__ = re_prior_cond_resnet.sub(A , A ) elif re_prior_cond_proj_in.fullmatch(A ): lowerCAmelCase__ = re_prior_cond_proj_in.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = F"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" lowerCAmelCase__ = re_prior_cond_proj_in.sub(A , A ) # keep original key else: lowerCAmelCase__ = original_key lowerCAmelCase__ = replace_key(A ) if F"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(F"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[F"""{key_prefix}.{key}"""].shape: lowerCAmelCase__ = model_state_dict[F"""{key_prefix}.{key}"""] print(F"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) lowerCAmelCase__ = original_key lowerCAmelCase__ = original_key lowerCAmelCase__ = value return new_dict @torch.no_grad() def _snake_case ( A=None , A=None ) -> str: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): lowerCAmelCase__ = requests.get(F"""{PREFIX}{file}""" , allow_redirects=A ) os.makedirs(F"""{pytorch_dump_folder_path}/""" , exist_ok=A ) open(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , '''wb''' ).write(r.content ) lowerCAmelCase__ = MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCAmelCase__ = JukeboxConfig.from_pretrained(A ) lowerCAmelCase__ = JukeboxModel(A ) lowerCAmelCase__ = [] lowerCAmelCase__ = {} for i, dict_name in enumerate(A ): lowerCAmelCase__ = torch.load(F"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )['''model'''] lowerCAmelCase__ = {} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCAmelCase__ = old_dic[k] elif k.endswith('''.w''' ): lowerCAmelCase__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCAmelCase__ = old_dic[k] else: lowerCAmelCase__ = old_dic[k] lowerCAmelCase__ = '''vqvae''' if i == 0 else F"""priors.{3 - i}""" lowerCAmelCase__ = fix_jukebox_keys(A , model.state_dict() , A , A ) weight_dict.append(A ) lowerCAmelCase__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(A ) for i in range(len(A ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(A ).mkdir(exist_ok=A ) with open(F"""{pytorch_dump_folder_path}/mapping.json""" , '''w''' ) as txtfile: json.dump(A , A ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) return weight_dict if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) __UpperCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
228
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy a__ : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float , **UpperCAmelCase__ : List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = feature_size __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = kwargs.pop("padding_side" , "right" ) __SCREAMING_SNAKE_CASE = kwargs.pop("return_attention_mask" , UpperCAmelCase__ ) super().__init__(**UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = True , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(UpperCAmelCase__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __SCREAMING_SNAKE_CASE = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) __SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] __SCREAMING_SNAKE_CASE = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(UpperCAmelCase__ ) == 0: if return_attention_mask: __SCREAMING_SNAKE_CASE = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __SCREAMING_SNAKE_CASE = required_input[0] if isinstance(UpperCAmelCase__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __SCREAMING_SNAKE_CASE = 0 while len(required_input[index] ) == 0: index += 1 if index < len(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = required_input[index][0] if return_tensors is None: if is_tf_tensor(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = "tf" elif is_torch_tensor(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = "pt" elif isinstance(UpperCAmelCase__ , (int, float, list, tuple, np.ndarray) ): __SCREAMING_SNAKE_CASE = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(UpperCAmelCase__ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __SCREAMING_SNAKE_CASE = to_numpy(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = [to_numpy(UpperCAmelCase__ ) for v in value] # Convert padding_strategy in PaddingStrategy __SCREAMING_SNAKE_CASE = self._get_padding_strategies(padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) if not all(len(UpperCAmelCase__ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) __SCREAMING_SNAKE_CASE = [] for i in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = {k: v[i] for k, v in processed_features.items()} # truncation __SCREAMING_SNAKE_CASE = self._truncate( UpperCAmelCase__ , max_length=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , truncation=UpperCAmelCase__ , ) truncated_inputs.append(UpperCAmelCase__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __SCREAMING_SNAKE_CASE = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __SCREAMING_SNAKE_CASE = PaddingStrategy.MAX_LENGTH __SCREAMING_SNAKE_CASE = {} for i in range(UpperCAmelCase__ ): # padding __SCREAMING_SNAKE_CASE = self._pad( truncated_inputs[i] , max_length=UpperCAmelCase__ , padding_strategy=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) for key, value in outputs.items(): if key not in batch_outputs: __SCREAMING_SNAKE_CASE = [] if value.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE = value.astype(np.floataa ) batch_outputs[key].append(UpperCAmelCase__ ) return BatchFeature(UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , ) -> dict: __SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __SCREAMING_SNAKE_CASE = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __SCREAMING_SNAKE_CASE = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(UpperCAmelCase__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __SCREAMING_SNAKE_CASE = np.ones(len(UpperCAmelCase__ ) , dtype=np.intaa ) if needs_to_be_padded: __SCREAMING_SNAKE_CASE = max_length - len(UpperCAmelCase__ ) if self.padding_side == "right": if return_attention_mask: __SCREAMING_SNAKE_CASE = np.pad( processed_features["attention_mask"] , (0, difference) ) __SCREAMING_SNAKE_CASE = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __SCREAMING_SNAKE_CASE = np.pad( UpperCAmelCase__ , UpperCAmelCase__ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __SCREAMING_SNAKE_CASE = np.pad( processed_features["attention_mask"] , (difference, 0) ) __SCREAMING_SNAKE_CASE = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __SCREAMING_SNAKE_CASE = np.pad( UpperCAmelCase__ , UpperCAmelCase__ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , ) -> str: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) __SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __SCREAMING_SNAKE_CASE = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) > max_length if needs_to_be_truncated: __SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __SCREAMING_SNAKE_CASE = processed_features["attention_mask"][:max_length] return processed_features def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Optional[int]=None ) -> str: # Get padding strategy if padding is not False: if padding is True: __SCREAMING_SNAKE_CASE = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = PaddingStrategy(UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = padding else: __SCREAMING_SNAKE_CASE = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
54
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def UpperCamelCase__ ( self, __magic_name__ ) -> Union[str, Any]: """simple docstring""" with open(__magic_name__, encoding='''utf-8''' ) as input_file: UpperCamelCase__ : Tuple = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase__ : str = input_file.read() UpperCamelCase__ : List[Any] = regexp.search(__magic_name__ ) return match def UpperCamelCase__ ( self, __magic_name__ ) -> Any: """simple docstring""" with open(__magic_name__, encoding='''utf-8''' ) as input_file: UpperCamelCase__ : Dict = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''', re.DOTALL ) UpperCamelCase__ : Any = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase__ : Tuple = regexp.finditer(__magic_name__ ) UpperCamelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : int = Path('''./datasets''' ) UpperCamelCase__ : Any = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__magic_name__ ) ): raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}" ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Optional[int] = Path('''./datasets''' ) UpperCamelCase__ : Optional[Any] = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__magic_name__ ) ): raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead." )
201
0
"""simple docstring""" from __future__ import annotations import typing from collections import Counter def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> typing.Counter[int]: _lowerCamelCase = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(snake_case , max_perimeter + 1 ): _lowerCamelCase = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(snake_case ): _lowerCamelCase = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def SCREAMING_SNAKE_CASE_ ( snake_case : int = 1_000 )-> int: _lowerCamelCase = pythagorean_triple(snake_case ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'Perimeter {solution()} has maximum solutions')
80
"""simple docstring""" from math import factorial, pi def SCREAMING_SNAKE_CASE_ ( snake_case : float , snake_case : int = 30 )-> float: if not isinstance(snake_case , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(snake_case , snake_case ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) _lowerCamelCase = float(snake_case ) _lowerCamelCase = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(snake_case ) ) def SCREAMING_SNAKE_CASE_ ( snake_case : float , snake_case : int = 30 )-> float: if not isinstance(snake_case , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(snake_case , snake_case ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) _lowerCamelCase = float(snake_case ) _lowerCamelCase = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
80
1
"""simple docstring""" import requests def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> None: '''simple docstring''' __snake_case : int = {'Content-Type': 'application/json'} __snake_case : Tuple = requests.post(UpperCAmelCase_ , json={'text': message_body} , headers=UpperCAmelCase_ ) if response.status_code != 2_00: __snake_case : List[Any] = ( 'Request to slack returned an error ' F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(UpperCAmelCase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
172
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a : Tuple= logging.get_logger(__name__) _a : str= { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _a : Optional[int]= { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } _a : Tuple= {"facebook/blenderbot-3B": 128} class UpperCamelCase ( lowercase ): UpperCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : List[Any] = ["""input_ids""", """attention_mask"""] UpperCAmelCase : Optional[int] = BlenderbotTokenizer def __init__(self : int , _A : Tuple=None , _A : str=None , _A : Union[str, Any]=None , _A : str="replace" , _A : List[Any]="<s>" , _A : List[Any]="</s>" , _A : Optional[int]="</s>" , _A : List[str]="<s>" , _A : Union[str, Any]="<unk>" , _A : Any="<pad>" , _A : str="<mask>" , _A : Union[str, Any]=False , _A : Optional[Any]=True , **_A : Optional[int] , ) -> int: super().__init__( _A , _A , tokenizer_file=_A , errors=_A , bos_token=_A , eos_token=_A , sep_token=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , trim_offsets=_A , **_A , ) __snake_case : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , _A) != add_prefix_space: __snake_case : Dict = getattr(_A , pre_tok_state.pop('type')) __snake_case : int = add_prefix_space __snake_case : Optional[int] = pre_tok_class(**_A) __snake_case : str = add_prefix_space __snake_case : Dict = 'post_processor' __snake_case : Optional[int] = getattr(self.backend_tokenizer , _A , _A) if tokenizer_component_instance: __snake_case : Any = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : int = tuple(state['sep']) if "cls" in state: __snake_case : int = tuple(state['cls']) __snake_case : Any = False if state.get('add_prefix_space' , _A) != add_prefix_space: __snake_case : int = add_prefix_space __snake_case : Dict = True if state.get('trim_offsets' , _A) != trim_offsets: __snake_case : int = trim_offsets __snake_case : Dict = True if changes_to_apply: __snake_case : List[str] = getattr(_A , state.pop('type')) __snake_case : Optional[int] = component_class(**_A) setattr(self.backend_tokenizer , _A , _A) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowercase (self : Optional[int]) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def _lowercase (self : Union[str, Any] , _A : List[Any]) -> List[Any]: __snake_case : List[str] = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else value __snake_case : Optional[int] = value def _lowercase (self : Tuple , *_A : int , **_A : Union[str, Any]) -> BatchEncoding: __snake_case : List[str] = kwargs.get('is_split_into_words' , _A) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_A , **_A) def _lowercase (self : Any , *_A : Union[str, Any] , **_A : Union[str, Any]) -> BatchEncoding: __snake_case : Tuple = kwargs.get('is_split_into_words' , _A) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_A , **_A) def _lowercase (self : Optional[Any] , _A : str , _A : Optional[str] = None) -> Tuple[str]: __snake_case : List[str] = self._tokenizer.model.save(_A , name=_A) return tuple(_A) def _lowercase (self : Any , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : List[str] = [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowercase (self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None) -> Tuple: return token_ids_a + [self.eos_token_id] def _lowercase (self : Optional[int] , _A : "Conversation") -> List[int]: __snake_case : str = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(_A) __snake_case : Union[str, Any] = ' '.join(_A) __snake_case : List[str] = self.encode(_A) if len(_A) > self.model_max_length: __snake_case : str = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens.") return input_ids
172
1
lowerCAmelCase = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} lowerCAmelCase = ['a', 'b', 'c', 'd', 'e'] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = start # add current to visited visited.append(SCREAMING_SNAKE_CASE ) lowercase__ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowercase__ = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: lowercase__ = topological_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": lowerCAmelCase = topological_sort('a', [], []) print(sort)
93
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = ShapEImgaImgPipeline _lowercase : Optional[Any] = ['''image'''] _lowercase : Optional[int] = ['''image'''] _lowercase : Optional[int] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _lowercase : Tuple = False @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" return 8 @property def lowerCamelCase_ ( self: int ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase_ ) return model def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[int]=0 ) -> Tuple: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase_ ) else: lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase_ ( self: List[str] ) -> List[Any]: """simple docstring""" lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
93
1
"""simple docstring""" from __future__ import annotations def __lowercase ( _a , _a = None , _a = None , _a = False , ): snake_case_ : List[Any] = cipher_alphabet or [chr(_SCREAMING_SNAKE_CASE ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) snake_case_ : List[Any] = { 'a': 0.0_8497, 'b': 0.0_1492, 'c': 0.0_2202, 'd': 0.0_4253, 'e': 0.1_1162, 'f': 0.0_2228, 'g': 0.0_2015, 'h': 0.0_6094, 'i': 0.0_7546, 'j': 0.0_0153, 'k': 0.0_1292, 'l': 0.0_4025, 'm': 0.0_2406, 'n': 0.0_6749, 'o': 0.0_7507, 'p': 0.0_1929, 'q': 0.0_0095, 'r': 0.0_7587, 's': 0.0_6327, 't': 0.0_9356, 'u': 0.0_2758, 'v': 0.0_0978, 'w': 0.0_2560, 'x': 0.0_0150, 'y': 0.0_1994, 'z': 0.0_0077, } else: # Custom frequencies dictionary snake_case_ : Dict = frequencies_dict if not case_sensitive: snake_case_ : Any = ciphertext.lower() # Chi squared statistic values snake_case_ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(_SCREAMING_SNAKE_CASE ) ): snake_case_ : Optional[Any] = '' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet snake_case_ : Optional[Any] = (alphabet_letters.index(letter.lower() ) - shift) % len( _SCREAMING_SNAKE_CASE ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter snake_case_ : Union[str, Any] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: snake_case_ : int = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message snake_case_ : Optional[Any] = decrypted_with_shift.lower().count(_SCREAMING_SNAKE_CASE ) # Get the excepcted amount of times the letter should appear based # on letter frequencies snake_case_ : Any = frequencies[letter] * occurrences # Complete the chi squared statistic formula snake_case_ : Optional[Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message snake_case_ : Union[str, Any] = decrypted_with_shift.count(_SCREAMING_SNAKE_CASE ) # Get the excepcted amount of times the letter should appear based # on letter frequencies snake_case_ : Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula snake_case_ : Optional[int] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary snake_case_ : int = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_a ) -> tuple[float, str]: return chi_squared_statistic_values[key] snake_case_ : int = min( _SCREAMING_SNAKE_CASE , key=_SCREAMING_SNAKE_CASE , ) # Get all the data from the most likely cipher (key, decoded message) ( snake_case_ ) : str = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
264
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE = 1000000 ) ->int: a__: int = limit + 1 a__: Optional[int] = [0] * limit for first_term in range(1 , _SCREAMING_SNAKE_CASE ): for n in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a a__: Any = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
290
0
def lowerCamelCase__ ( A__ : int = 1000 ): '''simple docstring''' __lowerCamelCase = 2**power __lowerCamelCase = str(UpperCamelCase__ ) __lowerCamelCase = list(UpperCamelCase__ ) __lowerCamelCase = 0 for i in list_num: sum_of_num += int(UpperCamelCase__ ) return sum_of_num if __name__ == "__main__": UpperCAmelCase_ = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) UpperCAmelCase_ = solution(power) print('Sum of the digits is: ', result)
366
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' for i in range(len(A__ ) - 1 , 0 , -1 ): __lowerCamelCase = False for j in range(A__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j - 1], unsorted[j] __lowerCamelCase = True for j in range(A__ ): if unsorted[j] > unsorted[j + 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j + 1], unsorted[j] __lowerCamelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
29
0
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _A ( UpperCamelCase_ : int, UpperCamelCase_ : List[Any], UpperCamelCase_ : Any, UpperCamelCase_ : List[str]) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase_, UpperCamelCase_): __lowercase = np.full((len(UpperCamelCase_), sequence_length, 2), UpperCamelCase_) else: __lowercase = np.full((len(UpperCamelCase_), sequence_length), UpperCamelCase_) for i, tensor in enumerate(UpperCamelCase_): if padding_side == "right": if isinstance(UpperCamelCase_, UpperCamelCase_): __lowercase = tensor[:sequence_length] else: __lowercase = tensor[:sequence_length] else: if isinstance(UpperCamelCase_, UpperCamelCase_): __lowercase = tensor[:sequence_length] else: __lowercase = tensor[:sequence_length] return out_tensor.tolist() def _A ( UpperCamelCase_ : Dict) -> str: '''simple docstring''' __lowercase = ord(UpperCamelCase_) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __lowercase = unicodedata.category(UpperCamelCase_) if cat.startswith("P"): return True return False @dataclass class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : PreTrainedTokenizerBase __UpperCAmelCase : Union[bool, str, PaddingStrategy] = True __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : int = -1_0_0 __UpperCAmelCase : str = "pt" def _lowercase ( self : str, UpperCAmelCase__ : List[str] ): import torch __lowercase = "label" if "label" in features[0].keys() else "labels" __lowercase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __lowercase = self.tokenizer.pad( UpperCAmelCase__, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt" if labels is None else None, ) if labels is None: return batch __lowercase = torch.tensor(batch["entity_ids"] ).shape[1] __lowercase = self.tokenizer.padding_side if padding_side == "right": __lowercase = [ list(UpperCAmelCase__ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase__ )) for label in labels ] else: __lowercase = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase__ )) + list(UpperCAmelCase__ ) for label in labels ] __lowercase = [feature["ner_tags"] for feature in features] __lowercase = padding_tensor(UpperCAmelCase__, -1, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = [feature["original_entity_spans"] for feature in features] __lowercase = padding_tensor(UpperCAmelCase__, (-1, -1), UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = {k: torch.tensor(UpperCAmelCase__, dtype=torch.intaa ) for k, v in batch.items()} return batch
17
SCREAMING_SNAKE_CASE :Any = 256 # Modulus to hash a string SCREAMING_SNAKE_CASE :Union[str, Any] = 100_0003 def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" __A = len(a_ ) __A = len(a_ ) if p_len > t_len: return False __A = 0 __A = 0 __A = 1 # Calculating the hash of pattern and substring of text for i in range(a_ ): __A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: """simple docstring""" __A = "abc1abc12" __A = "alskfjaldsabc1abc1abc12k23adsfabcabc" __A = "alskfjaldsk23adsfabcabc" assert rabin_karp(a_ , a_ ) and not rabin_karp(a_ , a_ ) # Test 2) __A = "ABABX" __A = "ABABZABABYABABX" assert rabin_karp(a_ , a_ ) # Test 3) __A = "AAAB" __A = "ABAAAAAB" assert rabin_karp(a_ , a_ ) # Test 4) __A = "abcdabcy" __A = "abcxabcdabxabcdabcdabcy" assert rabin_karp(a_ , a_ ) # Test 5) __A = "Lü" __A = "Lüsai" assert rabin_karp(a_ , a_ ) __A = "Lue" assert not rabin_karp(a_ , a_ ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
15
0
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 _snake_case = get_tests_dir('fixtures/dummy-config.json') class a__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = 0 def _lowerCamelCase ( self ): """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = AutoConfig.for_model("roberta" ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _lowercase : List[Any] = os.path.join(_UpperCamelCase , "fake-roberta" ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with open(os.path.join(_UpperCamelCase , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) _lowercase : Union[str, Any] = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertEqual(type(_UpperCamelCase ) , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" try: AutoConfig.register("custom" , _UpperCamelCase ) # Wrong model type will raise an error with self.assertRaises(_UpperCamelCase ): AutoConfig.register("model" , _UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCamelCase ): AutoConfig.register("bert" , _UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowercase : List[str] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCamelCase ) _lowercase : Union[str, Any] = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowerCamelCase ( self ): """simple docstring""" with self.assertRaisesRegex( _UpperCamelCase , "bert-base is not a local folder and is not a valid model identifier" ): _lowercase : Dict = AutoConfig.from_pretrained("bert-base" ) def _lowerCamelCase ( self ): """simple docstring""" with self.assertRaisesRegex( _UpperCamelCase , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowercase : List[Any] = AutoConfig.from_pretrained(_UpperCamelCase , revision="aaaaaa" ) def _lowerCamelCase ( self ): """simple docstring""" with self.assertRaisesRegex( _UpperCamelCase , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): _lowercase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowerCamelCase ( self ): """simple docstring""" with self.assertRaises(_UpperCamelCase ): _lowercase : Tuple = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCamelCase ): _lowercase : Optional[int] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=_UpperCamelCase ) _lowercase : Union[str, Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=_UpperCamelCase ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCamelCase ) _lowercase : Any = AutoConfig.from_pretrained(_UpperCamelCase , trust_remote_code=_UpperCamelCase ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def _lowerCamelCase ( self ): """simple docstring""" class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Dict = 'new-model' try: AutoConfig.register("new-model" , _UpperCamelCase ) # If remote code is not set, the default is to use local _lowercase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _lowercase : str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=_UpperCamelCase ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _lowercase : Union[str, Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=_UpperCamelCase ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
199
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : List[Any] = ['image_processor', 'tokenizer'] _SCREAMING_SNAKE_CASE : str = 'OwlViTImageProcessor' _SCREAMING_SNAKE_CASE : List[str] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ): """simple docstring""" _lowercase : Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _UpperCamelCase , ) _lowercase : Optional[int] = kwargs.pop("feature_extractor" ) _lowercase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="max_length" , _UpperCamelCase="np" , **_UpperCamelCase ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(_UpperCamelCase , _UpperCamelCase ) or (isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(text[0] , _UpperCamelCase )): _lowercase : int = [self.tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase )] elif isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(text[0] , _UpperCamelCase ): _lowercase : str = [] # Maximum number of queries across batch _lowercase : str = max([len(_UpperCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_UpperCamelCase ) != max_num_queries: _lowercase : List[Any] = t + [" "] * (max_num_queries - len(_UpperCamelCase )) _lowercase : Tuple = self.tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) encodings.append(_UpperCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _lowercase : List[Any] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _lowercase : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _lowercase : Union[str, Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _lowercase : int = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _lowercase : int = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _lowercase : Dict = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _lowercase : Optional[int] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _lowercase : List[str] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _lowercase : Optional[int] = BatchEncoding() _lowercase : List[Any] = input_ids _lowercase : Dict = attention_mask if query_images is not None: _lowercase : int = BatchEncoding() _lowercase : Any = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ).pixel_values _lowercase : Any = query_pixel_values if images is not None: _lowercase : str = self.image_processor(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) if text is not None and images is not None: _lowercase : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: _lowercase : Optional[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCamelCase ) , tensor_type=_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.image_processor.post_process(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.image_processor.post_process_object_detection(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _UpperCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _UpperCamelCase , ) return self.image_processor
199
1
"""simple docstring""" def _snake_case ( snake_case__ : int = 10 , snake_case__ : int = 22 ): A = range(1 , snake_case__ ) A = range(1 , snake_case__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
74
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __a : Optional[Any] = logging.get_logger(__name__) __a : List[str] = TypeVar("""DatasetType""", Dataset, IterableDataset) def UpperCAmelCase ( lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = "first_exhausted" , ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(lowercase ): if not isinstance(lowercase , (Dataset, IterableDataset) ): if isinstance(lowercase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowercase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase ).__name__}." ) if i == 0: __lowercase , __lowercase = ( (Dataset, IterableDataset) if isinstance(lowercase , lowercase ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase , lowercase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowercase , lowercase , lowercase , info=lowercase , split=lowercase , stopping_strategy=lowercase ) else: return _interleave_iterable_datasets( lowercase , lowercase , lowercase , info=lowercase , split=lowercase , stopping_strategy=lowercase ) def UpperCAmelCase ( lowercase , lowercase = None , lowercase = None , lowercase = 0 , ): """simple docstring""" if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(lowercase ): if not isinstance(lowercase , (Dataset, IterableDataset) ): if isinstance(lowercase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowercase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase ).__name__}." ) if i == 0: __lowercase , __lowercase = ( (Dataset, IterableDataset) if isinstance(lowercase , lowercase ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase , lowercase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowercase , info=lowercase , split=lowercase , axis=lowercase ) else: return _concatenate_iterable_datasets(lowercase , info=lowercase , split=lowercase , axis=lowercase )
210
0
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowercase__ = logging.getLogger() lowercase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A_ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self : Tuple , lowercase_ : Optional[int] ) -> str: os.makedirs(lowercase_ , exist_ok=lowercase_ ) UpperCAmelCase : List[str] = {'source': 'What is love ?', 'target': 'life'} UpperCAmelCase : Optional[Any] = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCAmelCase : Dict = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowercase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowercase_ ) def UpperCAmelCase_ ( self : Dict , lowercase_ : int , lowercase_ : str = "pytorch" ) -> int: UpperCAmelCase : Dict = self.get_auto_remove_tmp_dir() UpperCAmelCase : Optional[Any] = os.path.join(lowercase_ , 'output' ) UpperCAmelCase : Union[str, Any] = os.path.join(lowercase_ , 'data' ) self._create_dummy_data(data_dir=lowercase_ ) UpperCAmelCase : str = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) UpperCAmelCase : Union[str, Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowercase_ , env=self.get_env() ) UpperCAmelCase : Optional[int] = os.path.join(lowercase_ , 'metrics.json' ) with open(lowercase_ ) as f: UpperCAmelCase : Union[str, Any] = json.load(lowercase_ ) return result @require_torch_gpu def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : List[str] = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Optional[int] = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def UpperCAmelCase_ ( self : Tuple ) -> Any: UpperCAmelCase : Any = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
280
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCAmelCase_ , int(b / 2 ) ) * actual_power(UpperCAmelCase_ , int(b / 2 ) ) else: return a * actual_power(UpperCAmelCase_ , int(b / 2 ) ) * actual_power(UpperCAmelCase_ , int(b / 2 ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if b < 0: return 1 / actual_power(UpperCAmelCase_ , UpperCAmelCase_ ) return actual_power(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": print(power(-2, -3))
280
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCamelCase = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''YolosFeatureExtractor'''] _UpperCamelCase = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
326
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def lowerCAmelCase__( lowercase : str ) -> Optional[Any]: __snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" ) return sd def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict: __snake_case : Tuple = OrderedDict() __snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __snake_case : Optional[Any] = key for name_pair in rename_keys_prefix: __snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __snake_case : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __snake_case : List[Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]: assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __snake_case : Any = "pretraining" if "vcr" in checkpoint_path: __snake_case : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __snake_case : Tuple = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __snake_case : Any = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 512} __snake_case : Any = "multichoice" elif "vqa_advanced" in checkpoint_path: __snake_case : List[Any] = {"visual_embedding_dim": 2048} __snake_case : Optional[Any] = "vqa_advanced" elif "vqa" in checkpoint_path: __snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} __snake_case : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: __snake_case : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } __snake_case : List[Any] = "nlvr" __snake_case : Union[str, Any] = VisualBertConfig(**lowercase ) # Load State Dict __snake_case : Any = load_state_dict(lowercase ) __snake_case : Dict = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": __snake_case : Optional[Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": __snake_case : Tuple = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": __snake_case : Tuple = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": __snake_case : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
326
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[Any] ={ """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] =["""MaskFormerFeatureExtractor"""] A_ : int =["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] =[ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] A_ : Union[str, Any] =[ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys A_ : int =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
365
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ : int =logging.get_logger(__name__) A_ : Tuple ={ """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : int = "deta" SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , a__=None , a__=9_00 , a__=20_48 , a__=6 , a__=20_48 , a__=8 , a__=6 , a__=10_24 , a__=8 , a__=0.0 , a__=True , a__="relu" , a__=2_56 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.02 , a__=1.0 , a__=True , a__=False , a__="sine" , a__=5 , a__=4 , a__=4 , a__=True , a__=3_00 , a__=True , a__=True , a__=1 , a__=5 , a__=2 , a__=1 , a__=1 , a__=5 , a__=2 , a__=0.1 , a__=0.25 , **a__ , ): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _lowerCamelCase = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(a__ , a__ ): _lowerCamelCase = backbone_config.pop('model_type' ) _lowerCamelCase = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase = config_class.from_dict(a__ ) _lowerCamelCase = backbone_config _lowerCamelCase = num_queries _lowerCamelCase = max_position_embeddings _lowerCamelCase = d_model _lowerCamelCase = encoder_ffn_dim _lowerCamelCase = encoder_layers _lowerCamelCase = encoder_attention_heads _lowerCamelCase = decoder_ffn_dim _lowerCamelCase = decoder_layers _lowerCamelCase = decoder_attention_heads _lowerCamelCase = dropout _lowerCamelCase = attention_dropout _lowerCamelCase = activation_dropout _lowerCamelCase = activation_function _lowerCamelCase = init_std _lowerCamelCase = init_xavier_std _lowerCamelCase = encoder_layerdrop _lowerCamelCase = auxiliary_loss _lowerCamelCase = position_embedding_type # deformable attributes _lowerCamelCase = num_feature_levels _lowerCamelCase = encoder_n_points _lowerCamelCase = decoder_n_points _lowerCamelCase = two_stage _lowerCamelCase = two_stage_num_proposals _lowerCamelCase = with_box_refine _lowerCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher _lowerCamelCase = class_cost _lowerCamelCase = bbox_cost _lowerCamelCase = giou_cost # Loss coefficients _lowerCamelCase = mask_loss_coefficient _lowerCamelCase = dice_loss_coefficient _lowerCamelCase = bbox_loss_coefficient _lowerCamelCase = giou_loss_coefficient _lowerCamelCase = eos_coefficient _lowerCamelCase = focal_alpha super().__init__(is_encoder_decoder=a__ , **a__ ) @property def snake_case_ ( self ): return self.encoder_attention_heads @property def snake_case_ ( self ): return self.d_model def snake_case_ ( self ): _lowerCamelCase = copy.deepcopy(self.__dict__ ) _lowerCamelCase = self.backbone_config.to_dict() _lowerCamelCase = self.__class__.model_type return output
80
0
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] ,A : List[str] ,A : str=13 ,A : str=7 ,A : List[str]=True ,A : Optional[int]=True ,A : str=True ,A : Dict=True ,A : Optional[int]=99 ,A : Optional[Any]=32 ,A : int=5 ,A : Dict=4 ,A : Optional[int]=37 ,A : Tuple="gelu" ,A : List[str]=0.1 ,A : List[str]=0.1 ,A : Any=1_28 ,A : str=32 ,A : Any=16 ,A : List[Any]=2 ,A : List[str]=0.02 ,A : Tuple=3 ,A : Optional[int]=4 ,A : Any=None ,): __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = num_choices __A = scope def UpperCamelCase_ ( self : Tuple ): __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __A = ids_tensor([self.batch_size] ,self.num_choices ) __A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : int ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=A ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Tuple ): ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = self.prepare_config_and_inputs() __A = True __A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase_ ( self : str ,A : Tuple ,A : List[str] ,A : List[Any] ,A : Optional[Any] ,A : Optional[Any] ,A : int ,A : Optional[int] ): __A = NezhaModel(config=A ) model.to(A ) model.eval() __A = model(A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,token_type_ids=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[int] ,A : Union[str, Any] ,A : Any ,A : Any ,A : Dict ,A : Union[str, Any] ,A : List[str] ,A : List[Any] ,A : Union[str, Any] ,): __A = True __A = NezhaModel(A ) model.to(A ) model.eval() __A = model( A ,attention_mask=A ,token_type_ids=A ,encoder_hidden_states=A ,encoder_attention_mask=A ,) __A = model( A ,attention_mask=A ,token_type_ids=A ,encoder_hidden_states=A ,) __A = model(A ,attention_mask=A ,token_type_ids=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : int ,A : int ,A : Any ,A : List[str] ,A : Tuple ,A : Optional[int] ,A : Any ,A : Union[str, Any] ): __A = NezhaForMaskedLM(config=A ) model.to(A ) model.eval() __A = model(A ,attention_mask=A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Union[str, Any] ,A : List[str] ,A : List[Any] ,A : Tuple ,A : Union[str, Any] ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ): __A = NezhaForNextSentencePrediction(config=A ) model.to(A ) model.eval() __A = model( A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def UpperCamelCase_ ( self : Dict ,A : int ,A : List[Any] ,A : Optional[Any] ,A : Union[str, Any] ,A : Any ,A : Tuple ,A : Any ): __A = NezhaForPreTraining(config=A ) model.to(A ) model.eval() __A = model( A ,attention_mask=A ,token_type_ids=A ,labels=A ,next_sentence_label=A ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def UpperCamelCase_ ( self : Optional[int] ,A : int ,A : Any ,A : Optional[Any] ,A : Tuple ,A : Optional[Any] ,A : List[Any] ,A : List[Any] ): __A = NezhaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : List[Any] ,A : Union[str, Any] ,A : Tuple ,A : Tuple ,A : List[str] ): __A = self.num_labels __A = NezhaForSequenceClassification(A ) model.to(A ) model.eval() __A = model(A ,attention_mask=A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : List[Any] ,A : Optional[Any] ,A : Union[str, Any] ,A : Tuple ,A : List[str] ,A : Union[str, Any] ,A : Optional[Any] ): __A = self.num_labels __A = NezhaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model(A ,attention_mask=A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Union[str, Any] ,A : List[str] ,A : Any ,A : str ,A : Optional[int] ,A : Tuple ,A : Union[str, Any] ,A : Any ): __A = self.num_choices __A = NezhaForMultipleChoice(config=A ) model.to(A ) model.eval() __A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __A = model( A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Dict ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) snake_case_ = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True def UpperCamelCase_ ( self : Tuple ,A : Any ,A : Union[str, Any] ,A : int=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if model_class in get_values(A ): __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) return inputs_dict def UpperCamelCase_ ( self : int ): __A = NezhaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Dict ): __A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A ) def UpperCamelCase_ ( self : Dict ): # This regression test was failing with PyTorch < 1.3 ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __A = None self.model_tester.create_and_check_model_as_decoder( A ,A ,A ,A ,A ,A ,A ,A ,A ,) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def UpperCamelCase_ ( self : int ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*A ) def UpperCamelCase_ ( self : Any ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Dict ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @slow def UpperCamelCase_ ( self : int ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = NezhaModel.from_pretrained(A ) self.assertIsNotNone(A ) @slow @require_torch_gpu def UpperCamelCase_ ( self : Tuple ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __A = True __A = model_class(config=A ) __A = self._prepare_for_class(A ,A ) __A = torch.jit.trace( A ,(inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(A ,os.path.join(A ,"bert.pt" ) ) __A = torch.jit.load(os.path.join(A ,"bert.pt" ) ,map_location=A ) loaded(inputs_dict["input_ids"].to(A ) ,inputs_dict["attention_mask"].to(A ) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : List[Any] ): __A = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) __A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __A = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __A = model(A ,attention_mask=A )[0] __A = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape ,A ) __A = torch.tensor([[[0.06_85, 0.24_41, 0.11_02], [0.06_00, 0.19_06, 0.13_49], [0.02_21, 0.08_19, 0.05_86]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,A ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : str ): __A = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) __A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __A = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __A = model(A ,attention_mask=A )[0] __A = torch.Size((1, 6, 2_11_28) ) self.assertEqual(output.shape ,A ) __A = torch.tensor( [[-2.79_39, -1.79_02, -2.21_89], [-2.85_85, -1.89_08, -2.37_23], [-2.64_99, -1.77_50, -2.25_58]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,A ,atol=1E-4 ) )
15
import math def UpperCAmelCase ( a_ , a_ = 0 , a_ = 0 ) -> list: """simple docstring""" __A = end or len(a_ ) for i in range(a_ , a_ ): __A = i __A = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __A = array[temp_index - 1] temp_index -= 1 __A = temp_index_value return array def UpperCAmelCase ( a_ , a_ , a_ ) -> None: # Max Heap """simple docstring""" __A = index __A = 2 * index + 1 # Left Node __A = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __A = left_index if right_index < heap_size and array[largest] < array[right_index]: __A = right_index if largest != index: __A , __A = array[largest], array[index] heapify(a_ , a_ , a_ ) def UpperCAmelCase ( a_ ) -> list: """simple docstring""" __A = len(a_ ) for i in range(n // 2 , -1 , -1 ): heapify(a_ , a_ , a_ ) for i in range(n - 1 , 0 , -1 ): __A , __A = array[0], array[i] heapify(a_ , 0 , a_ ) return array def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" __A = low __A = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __A , __A = array[j], array[i] i += 1 def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(a_ ) == 0: return array __A = 2 * math.ceil(math.loga(len(a_ ) ) ) __A = 1_6 return intro_sort(a_ , 0 , len(a_ ) , a_ , a_ ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(a_ ) max_depth -= 1 __A = median_of_a(a_ , a_ , start + ((end - start) // 2) + 1 , end - 1 ) __A = partition(a_ , a_ , a_ , a_ ) intro_sort(a_ , a_ , a_ , a_ , a_ ) __A = p return insertion_sort(a_ , a_ , a_ ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma : ').strip() SCREAMING_SNAKE_CASE :str = [float(item) for item in user_input.split(',')] print(sort(unsorted))
15
1
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
367
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : List[Any] ): warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
104
'''simple docstring''' import torch from torch import nn class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Optional[int]=1 ,lowercase__ : Optional[Any]=False ): super().__init__() __lowercase = n_token __lowercase = d_embed __lowercase = d_proj __lowercase = cutoffs + [n_token] __lowercase = [0] + self.cutoffs __lowercase = div_val __lowercase = self.cutoffs[0] __lowercase = len(self.cutoffs ) - 1 __lowercase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __lowercase = nn.Parameter(torch.zeros(self.n_clusters ,self.d_embed ) ) __lowercase = nn.Parameter(torch.zeros(self.n_clusters ) ) __lowercase = nn.ModuleList() __lowercase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase__ ,lowercase__ ) ) ) else: self.out_projs.append(lowercase__ ) self.out_layers.append(nn.Linear(lowercase__ ,lowercase__ ) ) else: for i in range(len(self.cutoffs ) ): __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase__ ,lowercase__ ) ) ) self.out_layers.append(nn.Linear(lowercase__ ,r_idx - l_idx ) ) __lowercase = keep_order def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : Any ): if proj is None: __lowercase = nn.functional.linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __lowercase = nn.functional.linear(lowercase__ ,proj.t().contiguous() ) __lowercase = nn.functional.linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Any=None ,lowercase__ : List[str]=False ): if labels is not None: # Shift so that tokens < n predict n __lowercase = hidden[..., :-1, :].contiguous() __lowercase = labels[..., 1:].contiguous() __lowercase = hidden.view(-1 ,hidden.size(-1 ) ) __lowercase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: __lowercase = hidden.view(-1 ,hidden.size(-1 ) ) if self.n_clusters == 0: __lowercase = self._compute_logit(lowercase__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) if labels is not None: __lowercase = labels != -1_0_0 __lowercase = torch.zeros_like(lowercase__ ,dtype=hidden.dtype ,device=hidden.device ) __lowercase = ( -nn.functional.log_softmax(lowercase__ ,dim=-1 )[mask].gather(1 ,labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: __lowercase = nn.functional.log_softmax(lowercase__ ,dim=-1 ) else: # construct weights and biases __lowercase , __lowercase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = self.out_layers[0].weight[l_idx:r_idx] __lowercase = self.out_layers[0].bias[l_idx:r_idx] else: __lowercase = self.out_layers[i].weight __lowercase = self.out_layers[i].bias if i == 0: __lowercase = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) __lowercase = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(lowercase__ ) biases.append(lowercase__ ) __lowercase , __lowercase , __lowercase = weights[0], biases[0], self.out_projs[0] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) if labels is None: __lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: __lowercase = torch.zeros_like(lowercase__ ,dtype=hidden.dtype ,device=hidden.device ) __lowercase = 0 __lowercase = [0] + self.cutoffs for i in range(len(lowercase__ ) - 1 ): __lowercase , __lowercase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __lowercase = (labels >= l_idx) & (labels < r_idx) __lowercase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __lowercase = labels.index_select(0 ,lowercase__ ) - l_idx __lowercase = head_logprob.index_select(0 ,lowercase__ ) __lowercase = hidden.index_select(0 ,lowercase__ ) else: __lowercase = hidden if i == 0: if labels is not None: __lowercase = head_logprob_i.gather(1 ,target_i[:, None] ).squeeze(1 ) else: __lowercase = head_logprob[:, : self.cutoffs[0]] else: __lowercase , __lowercase , __lowercase = weights[i], biases[i], self.out_projs[i] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) __lowercase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __lowercase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 ,target_i[:, None] ).squeeze(1 ) else: __lowercase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __lowercase = logprob_i if labels is not None: if (hasattr(self ,'''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 ,lowercase__ ,-logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Union[str, Any] ): if self.n_clusters == 0: __lowercase = self._compute_logit(lowercase__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) return nn.functional.log_softmax(lowercase__ ,dim=-1 ) else: # construct weights and biases __lowercase , __lowercase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = self.out_layers[0].weight[l_idx:r_idx] __lowercase = self.out_layers[0].bias[l_idx:r_idx] else: __lowercase = self.out_layers[i].weight __lowercase = self.out_layers[i].bias if i == 0: __lowercase = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) __lowercase = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(lowercase__ ) biases.append(lowercase__ ) __lowercase , __lowercase , __lowercase = weights[0], biases[0], self.out_projs[0] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) __lowercase = [0] + self.cutoffs for i in range(len(lowercase__ ) - 1 ): __lowercase , __lowercase = cutoff_values[i], cutoff_values[i + 1] if i == 0: __lowercase = head_logprob[:, : self.cutoffs[0]] else: __lowercase , __lowercase , __lowercase = weights[i], biases[i], self.out_projs[i] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) __lowercase = head_logprob[:, -i] + tail_logprob_i __lowercase = logprob_i return out
104
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCamelCase : '''simple docstring''' _snake_case : int = None def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_ : List[Any] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Tuple = os.path.join(_UpperCamelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(_UpperCamelCase ) UpperCAmelCase_ : int = self.feature_extraction_class.from_json_file(_UpperCamelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : Dict = feat_extract_first.save_pretrained(_UpperCamelCase )[0] check_json_file_has_correct_format(_UpperCamelCase ) UpperCAmelCase_ : Dict = self.feature_extraction_class.from_pretrained(_UpperCamelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Any = self.feature_extraction_class() self.assertIsNotNone(_UpperCamelCase )
145
def lowercase__ ( __snake_case : str , __snake_case : int , __snake_case : List[str] ): '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__snake_case , n - 1 , __snake_case ) * a) % mod else: UpperCAmelCase_ : Optional[int] = binary_exponentiation(__snake_case , n / 2 , __snake_case ) return (b * b) % mod # a prime number __UpperCAmelCase = 701 __UpperCAmelCase = 1000000000 __UpperCAmelCase = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
145
1
from ....utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Any , _A : List[str] , _A : List[Any]=None , _A : List[str]=2048 ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = config.__dict__ snake_case_ : Any = modal_hidden_size if num_labels: snake_case_ : List[str] = num_labels
327
'''simple docstring''' import math class __A : '''simple docstring''' def __init__(self , A=0 ) -> Dict: # a graph with Node 0,1,...,N-1 """simple docstring""" _a = n _a = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # adjacency matrix for weight _a = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # dp[i][j] stores minimum distance from i to j def a__ (self , A , A , A ) -> Tuple: """simple docstring""" _a = w def a__ (self ) -> List[Any]: """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _a = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def a__ (self , A , A ) -> str: """simple docstring""" return self.dp[u][v] if __name__ == "__main__": lowercase_ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
211
0
def UpperCamelCase ( _a , _a ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.25) = }") print(f"{price_plus_tax(1_25.50, 0.05) = }")
252
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Optional[int] ="""decision_transformer""" lowercase : Dict =["""past_key_values"""] lowercase : Any ={ """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase_=17 , UpperCamelCase_=4 , UpperCamelCase_=128 , UpperCamelCase_=4096 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=1024 , UpperCamelCase_=3 , UpperCamelCase_=1 , UpperCamelCase_=None , UpperCamelCase_="relu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.02 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=5_0256 , UpperCamelCase_=5_0256 , UpperCamelCase_=False , UpperCamelCase_=False , **UpperCamelCase_ , ): lowercase_ :Any = state_dim lowercase_ :List[str] = act_dim lowercase_ :List[str] = hidden_size lowercase_ :int = max_ep_len lowercase_ :List[str] = action_tanh lowercase_ :Any = vocab_size lowercase_ :List[Any] = n_positions lowercase_ :List[str] = n_layer lowercase_ :Optional[Any] = n_head lowercase_ :int = n_inner lowercase_ :List[str] = activation_function lowercase_ :List[str] = resid_pdrop lowercase_ :Dict = embd_pdrop lowercase_ :List[Any] = attn_pdrop lowercase_ :Union[str, Any] = layer_norm_epsilon lowercase_ :List[str] = initializer_range lowercase_ :Any = scale_attn_weights lowercase_ :Union[str, Any] = use_cache lowercase_ :Any = scale_attn_by_inverse_layer_idx lowercase_ :Tuple = reorder_and_upcast_attn lowercase_ :int = bos_token_id lowercase_ :List[str] = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
252
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCAmelCase_ : int = logging.get_logger(__name__) # General docstring UpperCAmelCase_ : Tuple = 'ResNetConfig' # Base docstring UpperCAmelCase_ : List[str] = 'microsoft/resnet-50' UpperCAmelCase_ : Optional[int] = [1, 2048, 7, 7] # Image classification docstring UpperCAmelCase_ : str = 'microsoft/resnet-50' UpperCAmelCase_ : Tuple = 'tiger cat' UpperCAmelCase_ : str = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "relu" ) -> int: super().__init__() a_ : Optional[Any] = nn.Convad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=kernel_size // 2 , bias=SCREAMING_SNAKE_CASE__ ) a_ : int = nn.BatchNormad(SCREAMING_SNAKE_CASE__ ) a_ : Any = ACTaFN[activation] if activation is not None else nn.Identity() def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: a_ : Tuple = self.convolution(SCREAMING_SNAKE_CASE__ ) a_ : Dict = self.normalization(SCREAMING_SNAKE_CASE__ ) a_ : Dict = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : ResNetConfig ) -> int: super().__init__() a_ : str = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) a_ : Dict = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) a_ : Optional[Any] = config.num_channels def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: a_ : List[str] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) a_ : Optional[Any] = self.embedder(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = self.pooler(SCREAMING_SNAKE_CASE__ ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 2 ) -> Dict: super().__init__() a_ : Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 , stride=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = nn.BatchNormad(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: a_ : Any = self.convolution(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = self.normalization(SCREAMING_SNAKE_CASE__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "relu" ) -> Optional[Any]: super().__init__() a_ : Union[str, Any] = in_channels != out_channels or stride != 1 a_ : Union[str, Any] = ( ResNetShortCut(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) if should_apply_shortcut else nn.Identity() ) a_ : int = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) , ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , activation=SCREAMING_SNAKE_CASE__ ) , ) a_ : Any = ACTaFN[activation] def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: a_ : List[str] = hidden_state a_ : Optional[Any] = self.layer(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = self.shortcut(SCREAMING_SNAKE_CASE__ ) hidden_state += residual a_ : int = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "relu" , SCREAMING_SNAKE_CASE__ : int = 4 ) -> Optional[Any]: super().__init__() a_ : Tuple = in_channels != out_channels or stride != 1 a_ : Any = out_channels // reduction a_ : Optional[Any] = ( ResNetShortCut(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) if should_apply_shortcut else nn.Identity() ) a_ : int = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 ) , ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) , ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE__ ) , ) a_ : Optional[int] = ACTaFN[activation] def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: a_ : Any = hidden_state a_ : Dict = self.layer(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = self.shortcut(SCREAMING_SNAKE_CASE__ ) hidden_state += residual a_ : Union[str, Any] = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : ResNetConfig , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , ) -> Optional[int]: super().__init__() a_ : List[Any] = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer a_ : Union[str, Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , activation=config.hidden_act ) , *[layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: a_ : Any = input for layer in self.layers: a_ : Optional[Any] = layer(SCREAMING_SNAKE_CASE__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : ResNetConfig ) -> str: super().__init__() a_ : Tuple = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( SCREAMING_SNAKE_CASE__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) a_ : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(SCREAMING_SNAKE_CASE__ , config.depths[1:] ): self.stages.append(ResNetStage(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , depth=SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True ) -> BaseModelOutputWithNoAttention: a_ : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a_ : str = hidden_states + (hidden_state,) a_ : List[Any] = stage_module(SCREAMING_SNAKE_CASE__ ) if output_hidden_states: a_ : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ , ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[Any] = ResNetConfig snake_case__ : Optional[int] = '''resnet''' snake_case__ : int = '''pixel_values''' snake_case__ : str = True def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(SCREAMING_SNAKE_CASE__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str=False ) -> Any: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : List[Any] = value UpperCAmelCase_ : List[str] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCAmelCase_ : Union[str, Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , lowercase__ , ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: super().__init__(SCREAMING_SNAKE_CASE__ ) a_ : int = config a_ : Optional[int] = ResNetEmbeddings(SCREAMING_SNAKE_CASE__ ) a_ : Any = ResNetEncoder(SCREAMING_SNAKE_CASE__ ) a_ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: a_ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict a_ : List[str] = self.embedder(SCREAMING_SNAKE_CASE__ ) a_ : str = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) a_ : str = encoder_outputs[0] a_ : List[str] = self.pooler(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , pooler_output=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , lowercase__ , ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = config.num_labels a_ : List[str] = ResNetModel(SCREAMING_SNAKE_CASE__ ) # classification head a_ : Dict = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.LongTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: a_ : str = return_dict if return_dict is not None else self.config.use_return_dict a_ : Dict = self.resnet(SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) a_ : str = outputs.pooler_output if return_dict else outputs[1] a_ : Any = self.classifier(SCREAMING_SNAKE_CASE__ ) a_ : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a_ : Optional[Any] = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a_ : Optional[Any] = 'single_label_classification' else: a_ : Optional[int] = 'multi_label_classification' if self.config.problem_type == "regression": a_ : str = MSELoss() if self.num_labels == 1: a_ : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: a_ : List[Any] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": a_ : Optional[int] = CrossEntropyLoss() a_ : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": a_ : List[Any] = BCEWithLogitsLoss() a_ : Optional[Any] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: a_ : Union[str, Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , lowercase__ , ) class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ ): def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: super().__init__(SCREAMING_SNAKE_CASE__ ) super()._init_backbone(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = [config.embedding_size] + config.hidden_sizes a_ : Dict = ResNetEmbeddings(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = ResNetEncoder(SCREAMING_SNAKE_CASE__ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @replace_return_docstrings(output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None ) -> BackboneOutput: a_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict a_ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ : Dict = self.embedder(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = self.encoder(SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = outputs.hidden_states a_ : Dict = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: a_ : Optional[int] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=SCREAMING_SNAKE_CASE__ , )
32
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Tuple = ['''image_processor''', '''tokenizer'''] snake_case__ : Union[str, Any] = '''CLIPImageProcessor''' snake_case__ : Dict = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : int ) -> Any: a_ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , SCREAMING_SNAKE_CASE__ , ) a_ : Tuple = kwargs.pop('feature_extractor' ) a_ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: a_ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if images is not None: a_ : Dict = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text is not None and images is not None: a_ : Dict = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: a_ : str = self.tokenizer.model_input_names a_ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE ( self : str ) -> str: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , SCREAMING_SNAKE_CASE__ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , SCREAMING_SNAKE_CASE__ , ) return self.image_processor
32
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _UpperCAmelCase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class lowerCAmelCase : UpperCAmelCase__ = field( default="""cifar10""", metadata={"""help""": """Name of a dataset from the datasets package"""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """The column name of the images in the files."""} ) UpperCAmelCase__ = field(default=__UpperCamelCase, metadata={"""help""": """A folder containing the training data."""} ) UpperCAmelCase__ = field(default=__UpperCamelCase, metadata={"""help""": """A folder containing the validation data."""} ) UpperCAmelCase__ = field( default=0.15, metadata={"""help""": """Percent to split off of train for validation."""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) }, ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) }, ) def A_ ( self : Dict ) -> List[Any]: lowerCamelCase__ : Dict = {} if self.train_dir is not None: lowerCamelCase__ : str = self.train_dir if self.validation_dir is not None: lowerCamelCase__ : Optional[Any] = self.validation_dir lowerCamelCase__ : Union[str, Any] = data_files if data_files else None @dataclass class lowerCAmelCase : UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) }, ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) }, ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) UpperCAmelCase__ = field( default="""main""", metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""}, ) UpperCAmelCase__ = field(default=__UpperCamelCase, metadata={"""help""": """Name or path of preprocessor config."""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) }, ) UpperCAmelCase__ = field( default=0.75, metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = field( default=1E-3, metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : Any = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def SCREAMING_SNAKE_CASE ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase__ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _UpperCAmelCase , _UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ : Any = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase ) transformers.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase__ : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. lowerCamelCase__ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCamelCase__ : Optional[Any] = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _UpperCAmelCase ) and data_args.train_val_split > 0.0: lowerCamelCase__ : Dict = ds['train'].train_test_split(data_args.train_val_split ) lowerCamelCase__ : Dict = split['train'] lowerCamelCase__ : Any = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ : Optional[Any] = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase__ : int = ViTMAEConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: lowerCamelCase__ : Optional[int] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: lowerCamelCase__ : List[Any] = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowerCamelCase__ : Dict = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: lowerCamelCase__ : str = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: lowerCamelCase__ : Dict = ViTImageProcessor() # create model if model_args.model_name_or_path: lowerCamelCase__ : int = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) lowerCamelCase__ : Any = ViTMAEForPreTraining(_UpperCAmelCase ) if training_args.do_train: lowerCamelCase__ : Tuple = ds['train'].column_names else: lowerCamelCase__ : Tuple = ds['validation'].column_names if data_args.image_column_name is not None: lowerCamelCase__ : Dict = data_args.image_column_name elif "image" in column_names: lowerCamelCase__ : Optional[int] = 'image' elif "img" in column_names: lowerCamelCase__ : List[str] = 'img' else: lowerCamelCase__ : Any = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowerCamelCase__ : int = image_processor.size['shortest_edge'] else: lowerCamelCase__ : Optional[int] = (image_processor.size['height'], image_processor.size['width']) lowerCamelCase__ : str = Compose( [ Lambda(lambda _UpperCAmelCase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_UpperCAmelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_UpperCAmelCase ): lowerCamelCase__ : str = [transforms(_UpperCAmelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: lowerCamelCase__ : List[Any] = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_UpperCAmelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: lowerCamelCase__ : List[Any] = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_UpperCAmelCase ) # Compute absolute learning rate lowerCamelCase__ : List[str] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowerCamelCase__ : Dict = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowerCamelCase__ : Dict = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: lowerCamelCase__ : str = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ : Optional[Any] = last_checkpoint lowerCamelCase__ : Union[str, Any] = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase__ : List[Any] = trainer.evaluate() trainer.log_metrics('eval' , _UpperCAmelCase ) trainer.save_metrics('eval' , _UpperCAmelCase ) # Write model card and (optionally) push to hub lowerCamelCase__ : Any = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCAmelCase ) else: trainer.create_model_card(**_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
364
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[Any] = get_failure_array(_UpperCAmelCase ) # 2) Step through text searching for pattern lowerCamelCase__ , lowerCamelCase__ : List[str] = 0, 0 # index into text, pattern while i < len(_UpperCAmelCase ): if pattern[j] == text[i]: if j == (len(_UpperCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: lowerCamelCase__ : str = failure[j - 1] continue i += 1 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: lowerCamelCase__ : int = [0] lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Any = 1 while j < len(_UpperCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: lowerCamelCase__ : int = failure[i - 1] continue j += 1 failure.append(_UpperCAmelCase ) return failure if __name__ == "__main__": # Test 1) _UpperCAmelCase : Union[str, Any] = """abc1abc12""" _UpperCAmelCase : List[Any] = """alskfjaldsabc1abc1abc12k23adsfabcabc""" _UpperCAmelCase : Dict = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) _UpperCAmelCase : Any = """ABABX""" _UpperCAmelCase : Union[str, Any] = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) _UpperCAmelCase : int = """AAAB""" _UpperCAmelCase : str = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) _UpperCAmelCase : Optional[Any] = """abcdabcy""" _UpperCAmelCase : List[Any] = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) _UpperCAmelCase : str = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
45
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : Optional[int] = logging.get_logger(__name__) _UpperCamelCase : Optional[Any] = torch.device('cpu') def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(_a , stream=_a ).raw ) return im def _SCREAMING_SNAKE_CASE ( __snake_case : Tuple ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : Tuple , __snake_case : Any ): '''simple docstring''' lowercase = dct.pop(_a ) lowercase = val def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] ): '''simple docstring''' lowercase = [] for k in state_dict.keys(): lowercase = k if ".pwconv" in k: lowercase = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: lowercase = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: lowercase = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: lowercase = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: lowercase = k_new.split('.' ) if ls[2].isdigit(): lowercase = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: lowercase = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ): '''simple docstring''' lowercase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowercase = 10_00 lowercase = """huggingface/label-files""" lowercase = """imagenet-1k-id2label.json""" lowercase = json.load(open(hf_hub_download(_a , _a , repo_type='dataset' ) , 'r' ) ) lowercase = {int(_a ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowercase = [3, 3, 6, 4] lowercase = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": lowercase = [3, 3, 9, 6] lowercase = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": lowercase = [4, 3, 10, 5] lowercase = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": lowercase = [4, 4, 12, 6] lowercase = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): lowercase = torch.hub.load_state_dict_from_url(_a , map_location='cpu' , check_hash=_a ) else: lowercase = torch.load(_a , map_location='cpu' ) lowercase = checkpoint lowercase = create_rename_keys(_a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_a , _a , _a ) # load HuggingFace model lowercase = SwiftFormerForImageClassification(_a ).eval() hf_model.load_state_dict(_a ) # prepare test inputs lowercase = prepare_img() lowercase = ViTImageProcessor.from_pretrained('preprocessor_config' ) lowercase = processor(images=_a , return_tensors='pt' ) # compare outputs from both models lowercase = get_expected_output(_a ) lowercase = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , _a , atol=1e-3 ) Path(_a ).mkdir(exist_ok=_a ) print(f'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(_a ) if __name__ == "__main__": _UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _UpperCamelCase : str = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
220
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any]=13 ,lowerCamelCase_: Optional[int]=32 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: int=16 ,lowerCamelCase_: Optional[Any]=[32, 64, 128] ,lowerCamelCase_: Optional[int]=[1, 2, 1] ,lowerCamelCase_: Union[str, Any]=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[str]=2.0 ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.1 ,lowerCamelCase_: Optional[int]="gelu" ,lowerCamelCase_: Any=False ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: int=True ,lowerCamelCase_: Tuple=None ,lowerCamelCase_: str=True ,lowerCamelCase_: Dict=10 ,lowerCamelCase_: str=8 ,lowerCamelCase_: Union[str, Any]=["stage1", "stage2"] ,lowerCamelCase_: Optional[Any]=[1, 2] ,) -> str: UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : Dict = embed_dim UpperCAmelCase_ : Dict = hidden_sizes UpperCAmelCase_ : str = depths UpperCAmelCase_ : int = num_heads UpperCAmelCase_ : List[Any] = window_size UpperCAmelCase_ : Union[str, Any] = mlp_ratio UpperCAmelCase_ : int = qkv_bias UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = drop_path_rate UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : List[Any] = use_absolute_embeddings UpperCAmelCase_ : List[Any] = patch_norm UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Optional[int] = encoder_stride UpperCAmelCase_ : Optional[int] = out_features UpperCAmelCase_ : Optional[int] = out_indices def A__ ( self: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Any = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Tuple: return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ) -> List[str]: UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def A__ ( self: Optional[int] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Any = FocalNetForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : int = 1 UpperCAmelCase_ : List[str] = FocalNetForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ) -> int: UpperCAmelCase_ : List[Any] = self.type_sequence_label_size UpperCAmelCase_ : int = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = config_and_inputs UpperCAmelCase_ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) A__ : Optional[Any] = False A__ : Any = False A__ : List[str] = False A__ : Any = False A__ : Any = False def A__ ( self: List[str] ) -> Tuple: UpperCAmelCase_ : Dict = FocalNetModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ,has_text_modality=lowerCamelCase_ ) def A__ ( self: List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: List[str] ) -> Union[str, Any]: return def A__ ( self: str ) -> List[str]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def A__ ( self: Tuple ) -> int: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: int ) -> int: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def A__ ( self: Optional[Any] ) -> Optional[Any]: pass def A__ ( self: Optional[Any] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Any = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> List[str]: UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.hidden_states UpperCAmelCase_ : List[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # FocalNet has a different seq_length UpperCAmelCase_ : int = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = reshaped_hidden_states[0].shape UpperCAmelCase_ : List[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Union[str, Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) @slow def A__ ( self: Optional[int] ) -> Optional[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = FocalNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Optional[int] ) -> str: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Dict = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = (FocalNetBackbone,) if is_torch_available() else () A__ : int = FocalNetConfig A__ : List[str] = False def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : str = FocalNetModelTester(self )
345
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class A_ : '''simple docstring''' def __init__( self: str , a: Tuple , a: List[Any]=13 , a: List[Any]=7 , a: int=6 , a: Union[str, Any]=17 , a: Dict=23 , a: Optional[Any]=11 , a: Any=True , ): __lowerCamelCase : Dict = parent __lowerCamelCase : Any = batch_size __lowerCamelCase : str = seq_length __lowerCamelCase : Optional[int] = act_dim __lowerCamelCase : Union[str, Any] = state_dim __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : List[str] = max_length __lowerCamelCase : Union[str, Any] = is_training def _snake_case ( self: Optional[int] ): __lowerCamelCase : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __lowerCamelCase : Optional[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __lowerCamelCase : Tuple = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowerCamelCase : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowerCamelCase : Any = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) __lowerCamelCase : Any = random_attention_mask((self.batch_size, self.seq_length) ) __lowerCamelCase : Union[str, Any] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _snake_case ( self: Union[str, Any] ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def _snake_case ( self: str , a: Tuple , a: Optional[int] , a: Optional[Any] , a: List[str] , a: List[Any] , a: Tuple , a: str , ): __lowerCamelCase : Optional[int] = DecisionTransformerModel(config=a ) model.to(a ) model.eval() __lowerCamelCase : List[Any] = model(a , a , a , a , a , a ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _snake_case ( self: Optional[Any] ): __lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : Dict = config_and_inputs __lowerCamelCase : Dict = { 'states': states, 'actions': actions, 'rewards': rewards, 'returns_to_go': returns_to_go, 'timesteps': timesteps, 'attention_mask': attention_mask, } return config, inputs_dict @require_torch class A_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = (DecisionTransformerModel,) if is_torch_available() else () __snake_case = () __snake_case = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __snake_case = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False def _snake_case ( self: Dict ): __lowerCamelCase : List[str] = DecisionTransformerModelTester(self ) __lowerCamelCase : List[Any] = ConfigTester(self , config_class=a , hidden_size=37 ) def _snake_case ( self: str ): self.config_tester.run_common_tests() def _snake_case ( self: str ): __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) @slow def _snake_case ( self: List[str] ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Dict = DecisionTransformerModel.from_pretrained(a ) self.assertIsNotNone(a ) def _snake_case ( self: Union[str, Any] ): __lowerCamelCase , __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Dict = model_class(a ) __lowerCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Tuple = [*signature.parameters.keys()] __lowerCamelCase : Union[str, Any] = [ 'states', 'actions', 'rewards', 'returns_to_go', 'timesteps', 'attention_mask', ] self.assertListEqual(arg_names[: len(a )] , a ) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self: Tuple ): __lowerCamelCase : str = 2 # number of steps of autoregressive prediction we will perform __lowerCamelCase : List[Any] = 10 # defined by the RL environment, may be normalized __lowerCamelCase : List[Any] = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) __lowerCamelCase : Union[str, Any] = model.to(a ) __lowerCamelCase : List[str] = model.config torch.manual_seed(0 ) __lowerCamelCase : int = torch.randn(1 , 1 , config.state_dim ).to(device=a , dtype=torch.floataa ) # env.reset() __lowerCamelCase : int = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=a ) __lowerCamelCase : Optional[int] = torch.tensor(a , device=a , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __lowerCamelCase : List[str] = state __lowerCamelCase : Optional[int] = torch.zeros(1 , 0 , config.act_dim , device=a , dtype=torch.floataa ) __lowerCamelCase : str = torch.zeros(1 , 0 , device=a , dtype=torch.floataa ) __lowerCamelCase : List[Any] = torch.tensor(0 , device=a , dtype=torch.long ).reshape(1 , 1 ) for step in range(a ): __lowerCamelCase : str = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=a )] , dim=1 ) __lowerCamelCase : Dict = torch.cat([rewards, torch.zeros(1 , 1 , device=a )] , dim=1 ) __lowerCamelCase : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = model( states=a , actions=a , rewards=a , returns_to_go=a , timesteps=a , attention_mask=a , return_dict=a , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=a , dtype=torch.floataa ), 1.0, False, {}, ) __lowerCamelCase : Optional[int] = action_pred[0, -1] __lowerCamelCase : Union[str, Any] = torch.cat([states, state] , dim=1 ) __lowerCamelCase : Optional[Any] = returns_to_go[0, -1] - reward __lowerCamelCase : List[str] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __lowerCamelCase : str = torch.cat( [timesteps, torch.ones((1, 1) , device=a , dtype=torch.long ) * (step + 1)] , dim=1 )
194
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowercase_ = { 'n_samples': 6_4, 'horizon': 3_2, 'num_inference_steps': 2_0, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": lowercase_ = 'hopper-medium-v2' lowercase_ = gym.make(env_name) lowercase_ = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) lowercase_ = env.reset() lowercase_ = 0 lowercase_ = 0 lowercase_ = 1_0_0_0 lowercase_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowercase_ = pipeline(obs, planning_horizon=3_2) # execute action in environment lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = env.step(denorm_actions) lowercase_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" F""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) lowercase_ = next_observation except KeyboardInterrupt: pass print(F"""Total reward: {total_reward}""")
194
1
"""simple docstring""" import datasets from .evaluate import evaluate SCREAMING_SNAKE_CASE : Optional[int] = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ SCREAMING_SNAKE_CASE : Union[str, Any] = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ SCREAMING_SNAKE_CASE : Union[str, Any] = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} __snake_case : List[str] = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] __snake_case : List[str] = evaluate(dataset=a_ , predictions=a_ ) return score
102
"""simple docstring""" from math import factorial, radians def lowercase ( _snake_case : float , _snake_case : int = 18 , _snake_case : int = 10 ) ->float: """simple docstring""" __snake_case : Any = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __snake_case : int = radians(_snake_case ) __snake_case : str = angle_in_radians __snake_case : Optional[int] = 3 __snake_case : List[Any] = -1 for _ in range(_snake_case ): result += (b * (angle_in_radians**a)) / factorial(_snake_case ) __snake_case : int = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_snake_case , _snake_case ) if __name__ == "__main__": __import__("""doctest""").testmod()
102
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean lowerCamelCase : List[str] = 0 lowerCamelCase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right lowerCamelCase : Dict = tuple[int, int] class __lowercase : """simple docstring""" def __init__( self , A , A , A , A , A , A , ) -> None: snake_case : Any = pos_x snake_case : Tuple = pos_y snake_case : int = (pos_y, pos_x) snake_case : Dict = goal_x snake_case : int = goal_y snake_case : Any = g_cost snake_case : Any = parent snake_case : Tuple = self.calculate_heuristic() snake_case : List[str] = self.g_cost + self.h_cost def UpperCAmelCase ( self ) -> float: snake_case : Optional[int] = self.pos_x - self.goal_x snake_case : Optional[Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A ) + abs(A ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , A ) -> bool: return self.f_cost < other.f_cost class __lowercase : """simple docstring""" def __init__( self , A , A ) -> Optional[int]: snake_case : List[str] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A ) snake_case : Optional[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , A ) snake_case : Optional[int] = [self.start] snake_case : list[Node] = [] snake_case : Tuple = False def UpperCAmelCase ( self ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() snake_case : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A ) self.closed_nodes.append(A ) snake_case : Dict = self.get_successors(A ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A ) else: # retrieve the best current path snake_case : Tuple = self.open_nodes.pop(self.open_nodes.index(A ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A ) else: self.open_nodes.append(A ) return [self.start.pos] def UpperCAmelCase ( self , A ) -> list[Node]: snake_case : Optional[Any] = [] for action in delta: snake_case : Union[str, Any] = parent.pos_x + action[1] snake_case : Any = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A , A , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A , ) ) return successors def UpperCAmelCase ( self , A ) -> list[TPosition]: snake_case : Optional[Any] = node snake_case : Dict = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case : Dict = current_node.parent path.reverse() return path class __lowercase : """simple docstring""" def __init__( self , A , A ) -> None: snake_case : Dict = AStar(A , A ) snake_case : Optional[int] = AStar(A , A ) snake_case : int = False def UpperCAmelCase ( self ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() snake_case : Dict = self.fwd_astar.open_nodes.pop(0 ) snake_case : Tuple = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A , A ) self.fwd_astar.closed_nodes.append(A ) self.bwd_astar.closed_nodes.append(A ) snake_case : str = current_bwd_node snake_case : Optional[Any] = current_fwd_node snake_case : str = { self.fwd_astar: self.fwd_astar.get_successors(A ), self.bwd_astar: self.bwd_astar.get_successors(A ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A ) else: # retrieve the best current path snake_case : Dict = astar.open_nodes.pop( astar.open_nodes.index(A ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A ) else: astar.open_nodes.append(A ) return [self.fwd_astar.start.pos] def UpperCAmelCase ( self , A , A ) -> list[TPosition]: snake_case : List[str] = self.fwd_astar.retrace_path(A ) snake_case : Optional[int] = self.bwd_astar.retrace_path(A ) bwd_path.pop() bwd_path.reverse() snake_case : str = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] lowerCamelCase : str = (0, 0) lowerCamelCase : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCamelCase : int = time.time() lowerCamelCase : Optional[int] = AStar(init, goal) lowerCamelCase : str = a_star.search() lowerCamelCase : List[str] = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") lowerCamelCase : Any = time.time() lowerCamelCase : int = BidirectionalAStar(init, goal) lowerCamelCase : Any = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
176
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """bart""" _snake_case = ["""past_key_values"""] _snake_case = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , A=5_0_2_6_5 , A=1_0_2_4 , A=1_2 , A=4_0_9_6 , A=1_6 , A=1_2 , A=4_0_9_6 , A=1_6 , A=0.0 , A=0.0 , A="gelu" , A=1_0_2_4 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=0.0 , A=False , A=True , A=3 , A=1 , A=0 , A=2 , A=True , A=2 , A=2 , **A , ) -> Any: snake_case : Optional[int] = vocab_size snake_case : Union[str, Any] = max_position_embeddings snake_case : List[str] = d_model snake_case : List[Any] = encoder_ffn_dim snake_case : Optional[Any] = encoder_layers snake_case : Union[str, Any] = encoder_attention_heads snake_case : str = decoder_ffn_dim snake_case : Union[str, Any] = decoder_layers snake_case : Any = decoder_attention_heads snake_case : Union[str, Any] = dropout snake_case : List[str] = attention_dropout snake_case : List[Any] = activation_dropout snake_case : Optional[int] = activation_function snake_case : Union[str, Any] = init_std snake_case : List[str] = encoder_layerdrop snake_case : int = decoder_layerdrop snake_case : str = classifier_dropout snake_case : List[str] = use_cache snake_case : Tuple = encoder_layers snake_case : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=A , pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , forced_eos_token_id=A , **A , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , A ): snake_case : Any = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ """The config can simply be saved and uploaded again to be fixed.""" ) class __lowercase (UpperCamelCase__ ): """simple docstring""" @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: snake_case : Optional[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: snake_case : Tuple = {0: """batch"""} snake_case : List[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: snake_case : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} snake_case : Any = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: snake_case , snake_case : List[Any] = self.num_layers for i in range(A ): snake_case : List[Any] = {0: """batch""", 2: """past_sequence + sequence"""} snake_case : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} else: snake_case : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: snake_case : Any = super().outputs else: snake_case : Any = super(A , self ).outputs if self.use_past: snake_case , snake_case : Any = self.num_layers for i in range(A ): snake_case : Any = {0: """batch""", 2: """past_sequence + sequence"""} snake_case : Union[str, Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: snake_case : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , A , A , A , A ) # Generate decoder inputs snake_case : Any = seq_length if not self.use_past else 1 snake_case : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , A , A , A , A ) snake_case : Optional[int] = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} snake_case : List[str] = dict(**A , **A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case , snake_case : Optional[int] = common_inputs["""input_ids"""].shape snake_case : Any = common_inputs["""decoder_input_ids"""].shape[1] snake_case , snake_case : Optional[Any] = self.num_attention_heads snake_case : Optional[int] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case : Any = decoder_seq_length + 3 snake_case : List[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case : str = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(A , A )] , dim=1 ) snake_case : str = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case , snake_case : Any = self.num_layers snake_case : List[str] = min(A , A ) snake_case : Dict = max(A , A ) - min_num_layers snake_case : List[str] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(A ): common_inputs["past_key_values"].append( ( torch.zeros(A ), torch.zeros(A ), torch.zeros(A ), torch.zeros(A ), ) ) # TODO: test this. snake_case : Tuple = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(A , A ): common_inputs["past_key_values"].append((torch.zeros(A ), torch.zeros(A )) ) return common_inputs def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: snake_case : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , A , A , A , A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case , snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values snake_case : Optional[int] = seqlen + 2 snake_case , snake_case : Tuple = self.num_layers snake_case , snake_case : Optional[Any] = self.num_attention_heads snake_case : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case : Optional[Any] = common_inputs["""attention_mask"""].dtype snake_case : int = torch.cat( [common_inputs["""attention_mask"""], torch.ones(A , A , dtype=A )] , dim=1 ) snake_case : Union[str, Any] = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(A ) ] return common_inputs def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case : int = compute_effective_axis_dimension( A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case : int = tokenizer.num_special_tokens_to_add(A ) snake_case : Tuple = compute_effective_axis_dimension( A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A ) # Generate dummy inputs according to compute batch and sequence snake_case : int = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case : str = dict(tokenizer(A , return_tensors=A ) ) return common_inputs def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: snake_case : Optional[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) elif self.task == "causal-lm": snake_case : Optional[int] = self._generate_dummy_inputs_for_causal_lm( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) else: snake_case : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) return common_inputs def UpperCAmelCase ( self , A , A , A , A ) -> Union[str, Any]: if self.task in ["default", "seq2seq-lm"]: snake_case : Optional[Any] = super()._flatten_past_key_values_(A , A , A , A ) else: snake_case : Union[str, Any] = super(A , self )._flatten_past_key_values_( A , A , A , A )
176
1