code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
203
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCAmelCase ( unittest.TestCase ): __UpperCAmelCase : Union[str, Any] = JukeboxTokenizer __UpperCAmelCase : Union[str, Any] = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def lowerCamelCase ( self ) -> int: '''simple docstring''' import torch snake_case : Any = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) snake_case : Optional[Any] = tokenizer(**self.metas )["input_ids"] # fmt: off snake_case : Optional[int] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCamelCase ( self ) -> Any: '''simple docstring''' import torch snake_case : Tuple = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) snake_case : Optional[Any] = tokenizer(**self.metas )["input_ids"] # fmt: off snake_case : List[Any] = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
203
1
"""simple docstring""" from math import pi, sqrt def snake_case__ ( __lowerCamelCase : float ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) if num > 1_71.5: raise OverflowError('''math range error''' ) elif num - int(__lowerCamelCase ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(__lowerCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def snake_case__ ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(__lowerCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowercase : Union[str, Any] = 1.0 while num: _lowercase : Optional[int] = float(input("Gamma of: ")) print(f'gamma({num}) = {gamma(num)}') print("\nEnter 0 to exit...")
272
"""simple docstring""" def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =[0] * len(__lowerCamelCase ) lowerCamelCase__ : List[Any] =[] lowerCamelCase__ : List[Any] =[1] * len(__lowerCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__lowerCamelCase ) ): if indegree[i] == 0: queue.append(__lowerCamelCase ) while queue: lowerCamelCase__ : Tuple =queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowerCamelCase__ : Optional[Any] =long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__lowerCamelCase ) print(max(__lowerCamelCase ) ) # Adjacency list of Graph _lowercase : Optional[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
272
1
import argparse from collections import defaultdict import yaml __UpperCamelCase : Optional[Any] = 'docs/source/en/_toctree.yml' def A ( _lowercase ): SCREAMING_SNAKE_CASE : List[Any] = defaultdict(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : int = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(_lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = new_doc_list SCREAMING_SNAKE_CASE : Union[str, Any] = [key for key, value in counts.items() if value > 1] SCREAMING_SNAKE_CASE : Optional[Any] = [] for duplicate_key in duplicates: SCREAMING_SNAKE_CASE : Tuple = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(_lowercase ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) SCREAMING_SNAKE_CASE : str = sorted(_lowercase , key=lambda _lowercase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_lowercase ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(_lowercase ) # Sort return overview_doc def A ( _lowercase=False ): with open(_lowercase , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : List[Any] = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE : int = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE : Optional[Any] = content[api_idx]['''sections'''] # Then to the model doc SCREAMING_SNAKE_CASE : Dict = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 SCREAMING_SNAKE_CASE : int = api_doc[scheduler_idx]['''sections'''] SCREAMING_SNAKE_CASE : Tuple = clean_doc_toc(_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = False if new_scheduler_doc != scheduler_doc: SCREAMING_SNAKE_CASE : List[str] = True if overwrite: SCREAMING_SNAKE_CASE : Optional[Any] = new_scheduler_doc if diff: if overwrite: SCREAMING_SNAKE_CASE : List[Any] = api_doc with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(_lowercase , allow_unicode=_lowercase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def A ( _lowercase=False ): with open(_lowercase , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Tuple = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE : Optional[Any] = content[api_idx]['''sections'''] # Then to the model doc SCREAMING_SNAKE_CASE : List[Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : int = api_doc[pipeline_idx]['''sections'''] SCREAMING_SNAKE_CASE : Union[str, Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: SCREAMING_SNAKE_CASE : Dict = pipeline_doc['''section'''] SCREAMING_SNAKE_CASE : str = clean_doc_toc(_lowercase ) if overwrite: SCREAMING_SNAKE_CASE : Optional[Any] = new_sub_pipeline_doc new_pipeline_docs.append(_lowercase ) # sort overall pipeline doc SCREAMING_SNAKE_CASE : List[str] = clean_doc_toc(_lowercase ) if new_pipeline_docs != pipeline_docs: SCREAMING_SNAKE_CASE : Optional[int] = True if overwrite: SCREAMING_SNAKE_CASE : Optional[int] = new_pipeline_docs if diff: if overwrite: SCREAMING_SNAKE_CASE : Dict = api_doc with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(_lowercase , allow_unicode=_lowercase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __UpperCamelCase : str = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
182
import itertools import string from collections.abc import Generator, Iterable def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = iter(_lowercase ) while True: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(itertools.islice(_lowercase , _lowercase ) ) if not chunk: return yield chunk def A ( _lowercase ): SCREAMING_SNAKE_CASE : int = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) SCREAMING_SNAKE_CASE : List[str] = '''''' if len(_lowercase ) < 2: return dirty for i in range(len(_lowercase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_lowercase ) & 1: clean += "X" return clean def A ( _lowercase ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) SCREAMING_SNAKE_CASE : Optional[Any] = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler SCREAMING_SNAKE_CASE : List[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_lowercase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_lowercase ) return table def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = generate_table(_lowercase ) SCREAMING_SNAKE_CASE : Any = prepare_input(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowercase , 2 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = divmod(table.index(_lowercase ) , 5 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = divmod(table.index(_lowercase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = generate_table(_lowercase ) SCREAMING_SNAKE_CASE : List[Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowercase , 2 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = divmod(table.index(_lowercase ) , 5 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = divmod(table.index(_lowercase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
182
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 class __a ( snake_case__, snake_case__ ): """simple docstring""" @register_to_config def __init__( self : int , lowercase_ : int = 6_5536 , lowercase_ : Optional[int] = None , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 0 , lowercase_ : str = "fourier" , lowercase_ : bool = True , lowercase_ : bool = False , lowercase_ : float = 0.0 , lowercase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowercase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowercase_ : Tuple[str] = "UNetMidBlock1D" , lowercase_ : str = None , lowercase_ : Tuple[int] = (32, 32, 64) , lowercase_ : str = None , lowercase_ : int = 8 , lowercase_ : int = 1 , lowercase_ : bool = False , ): super().__init__() UpperCamelCase__ : int =sample_size # time if time_embedding_type == "fourier": UpperCamelCase__ : Dict =GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowercase_ , log=lowercase_ , flip_sin_to_cos=lowercase_ ) UpperCamelCase__ : List[Any] =2 * block_out_channels[0] elif time_embedding_type == "positional": UpperCamelCase__ : Dict =Timesteps( block_out_channels[0] , flip_sin_to_cos=lowercase_ , downscale_freq_shift=lowercase_ ) UpperCamelCase__ : List[str] =block_out_channels[0] if use_timestep_embedding: UpperCamelCase__ : Union[str, Any] =block_out_channels[0] * 4 UpperCamelCase__ : Optional[int] =TimestepEmbedding( in_channels=lowercase_ , time_embed_dim=lowercase_ , act_fn=lowercase_ , out_dim=block_out_channels[0] , ) UpperCamelCase__ : Optional[int] =nn.ModuleList([] ) UpperCamelCase__ : List[Any] =None UpperCamelCase__ : str =nn.ModuleList([] ) UpperCamelCase__ : Tuple =None # down UpperCamelCase__ : Dict =in_channels for i, down_block_type in enumerate(lowercase_ ): UpperCamelCase__ : Optional[Any] =output_channel UpperCamelCase__ : Dict =block_out_channels[i] if i == 0: input_channel += extra_in_channels UpperCamelCase__ : str =i == len(lowercase_ ) - 1 UpperCamelCase__ : Any =get_down_block( lowercase_ , num_layers=lowercase_ , in_channels=lowercase_ , out_channels=lowercase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowercase_ ) # mid UpperCamelCase__ : Tuple =get_mid_block( lowercase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowercase_ , add_downsample=lowercase_ , ) # up UpperCamelCase__ : Optional[Any] =list(reversed(lowercase_ ) ) UpperCamelCase__ : str =reversed_block_out_channels[0] if out_block_type is None: UpperCamelCase__ : Union[str, Any] =out_channels else: UpperCamelCase__ : List[Any] =block_out_channels[0] for i, up_block_type in enumerate(lowercase_ ): UpperCamelCase__ : Any =output_channel UpperCamelCase__ : Dict =( reversed_block_out_channels[i + 1] if i < len(lowercase_ ) - 1 else final_upsample_channels ) UpperCamelCase__ : Union[str, Any] =i == len(lowercase_ ) - 1 UpperCamelCase__ : Tuple =get_up_block( lowercase_ , num_layers=lowercase_ , in_channels=lowercase_ , out_channels=lowercase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowercase_ ) UpperCamelCase__ : int =output_channel # out UpperCamelCase__ : Optional[Any] =norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) UpperCamelCase__ : Optional[int] =get_out_block( out_block_type=lowercase_ , num_groups_out=lowercase_ , embed_dim=block_out_channels[0] , out_channels=lowercase_ , act_fn=lowercase_ , fc_dim=block_out_channels[-1] // 4 , ) def _lowerCAmelCase ( self : Optional[int] , lowercase_ : torch.FloatTensor , lowercase_ : Union[torch.Tensor, float, int] , lowercase_ : bool = True , ): UpperCamelCase__ : List[Any] =timestep if not torch.is_tensor(lowercase_ ): UpperCamelCase__ : Dict =torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowercase_ ) and len(timesteps.shape ) == 0: UpperCamelCase__ : Union[str, Any] =timesteps[None].to(sample.device ) UpperCamelCase__ : Optional[Any] =self.time_proj(lowercase_ ) if self.config.use_timestep_embedding: UpperCamelCase__ : List[Any] =self.time_mlp(lowercase_ ) else: UpperCamelCase__ : List[Any] =timestep_embed[..., None] UpperCamelCase__ : Any =timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) UpperCamelCase__ : List[str] =timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down UpperCamelCase__ : Tuple =() for downsample_block in self.down_blocks: UpperCamelCase__ , UpperCamelCase__ : List[str] =downsample_block(hidden_states=lowercase_ , temb=lowercase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: UpperCamelCase__ : Dict =self.mid_block(lowercase_ , lowercase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): UpperCamelCase__ : Dict =down_block_res_samples[-1:] UpperCamelCase__ : Tuple =down_block_res_samples[:-1] UpperCamelCase__ : str =upsample_block(lowercase_ , res_hidden_states_tuple=lowercase_ , temb=lowercase_ ) # 5. post-process if self.out_block: UpperCamelCase__ : List[Any] =self.out_block(lowercase_ , lowercase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowercase_ )
157
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _SCREAMING_SNAKE_CASE : Tuple = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _SCREAMING_SNAKE_CASE : List[Any] = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) _SCREAMING_SNAKE_CASE : Tuple = """|""".join(sys.argv[1:]) _SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(rF'''^({joined_dirs}).*?\.py$''') _SCREAMING_SNAKE_CASE : str = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
157
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """mobilenet_v1""" def __init__( self , lowercase=3 , lowercase=224 , lowercase=1.0 , lowercase=8 , lowercase="relu6" , lowercase=True , lowercase=0.9_99 , lowercase=0.02 , lowercase=0.0_01 , **lowercase , ): super().__init__(**lowercase ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCamelCase : Optional[int] = num_channels _lowerCamelCase : Any = image_size _lowerCamelCase : str = depth_multiplier _lowerCamelCase : Dict = min_depth _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Union[str, Any] = tf_padding _lowerCamelCase : str = classifier_dropout_prob _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : int = layer_norm_eps class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = version.parse("""1.11""" ) @property def A_ ( self ): return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def A_ ( self ): if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def A_ ( self ): return 1E-4
96
"""simple docstring""" from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(SCREAMING_SNAKE_CASE ): return ext raise Exception( F'Unable to determine file format from file extension {path}. ' F'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) lowerCAmelCase = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format lowerCAmelCase = PipelineDataFormat.from_str( format=SCREAMING_SNAKE_CASE , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase ) -> Union[str, Any]: lowerCAmelCase = nlp lowerCAmelCase = reader @staticmethod def _snake_case ( lowercase ) -> Optional[int]: lowerCAmelCase = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=lowercase , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=lowercase , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=lowercase , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=lowercase , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=lowercase , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=lowercase , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=lowercase , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=lowercase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=lowercase ) def _snake_case ( self ) -> int: lowerCAmelCase , lowerCAmelCase = self._nlp, [] for entry in self._reader: lowerCAmelCase = nlp(**lowercase ) if self._reader.is_multi_columns else nlp(lowercase ) if isinstance(lowercase , lowercase ): outputs.append(lowercase ) else: outputs += output # Saving data if self._nlp.binary_output: lowerCAmelCase = self._reader.save_binary(lowercase ) logger.warning(f'Current pipeline requires output to be in binary format, saving at {binary_path}' ) else: self._reader.save(lowercase )
46
0
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : int = LongformerTokenizer A__ : Tuple = True A__ : Tuple = LongformerTokenizerFast A__ : List[Any] = True def A__ ( self: Optional[Any] ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCAmelCase_ : List[Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : List[str] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCAmelCase_ : List[str] = {"""unk_token""": """<unk>"""} UpperCAmelCase_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase_ ) ) def A__ ( self: Tuple ,**lowerCamelCase_: Any ) -> Dict: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def A__ ( self: Tuple ,**lowerCamelCase_: List[str] ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[Any] ) -> int: UpperCAmelCase_ : str = """lower newer""" UpperCAmelCase_ : Optional[Any] = """lower newer""" return input_text, output_text def A__ ( self: int ) -> Optional[int]: UpperCAmelCase_ : int = self.tokenizer_class(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) UpperCAmelCase_ : int = """lower newer""" UpperCAmelCase_ : int = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] UpperCAmelCase_ : List[str] = tokenizer.tokenize(lowerCamelCase_ ) # , add_prefix_space=True) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokens + [tokenizer.unk_token] UpperCAmelCase_ : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" ,add_special_tokens=lowerCamelCase_ ) ,[0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" ,add_special_tokens=lowerCamelCase_ ) ,[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] ,) @slow def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) UpperCAmelCase_ : Dict = tokenizer.encode("""sequence builders""" ,add_special_tokens=lowerCamelCase_ ) UpperCAmelCase_ : str = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer.encode( """sequence builders""" ,add_special_tokens=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = tokenizer.encode( """sequence builders""" ,"""multi-sequence build""" ,add_special_tokens=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ) UpperCAmelCase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) UpperCAmelCase_ : str = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ,lowerCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def A__ ( self: Tuple ) -> Dict: UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : List[str] = """Encode this sequence.""" UpperCAmelCase_ : Optional[int] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments UpperCAmelCase_ : Dict = tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) UpperCAmelCase_ : str = tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCamelCase_ ,lowerCamelCase_ ) # Testing spaces after special tokens UpperCAmelCase_ : List[str] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ )} ) # mask token has a left space UpperCAmelCase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) UpperCAmelCase_ : int = """Encode <mask> sequence""" UpperCAmelCase_ : Optional[int] = """Encode <mask>sequence""" UpperCAmelCase_ : Dict = tokenizer.encode(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = encoded.index(lowerCamelCase_ ) UpperCAmelCase_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = encoded.index(lowerCamelCase_ ) UpperCAmelCase_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Any ) -> List[Any]: pass def A__ ( self: Dict ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : str = self.tokenizer_class.from_pretrained(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : List[str] = """A, <mask> AllenNLP sentence.""" UpperCAmelCase_ : List[str] = tokenizer_r.encode_plus(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = tokenizer_p.encode_plus(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) UpperCAmelCase_ : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) UpperCAmelCase_ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCamelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( lowerCamelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def A__ ( self: Dict ) -> int: for trim_offsets, add_prefix_space in itertools.product([True, False] ,repeat=2 ): UpperCAmelCase_ : int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname ,use_fast=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,trim_offsets=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase_ : Tuple = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] ,lowerCamelCase_ ) self.assertEqual(post_processor_state["""add_prefix_space"""] ,lowerCamelCase_ ) self.assertEqual(post_processor_state["""trim_offsets"""] ,lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Tuple: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase_ : int = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase_ : List[str] = F'''{text_of_1_token} {text_of_1_token}''' UpperCAmelCase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ ,use_fast=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,trim_offsets=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = tokenizer_r(lowerCamelCase_ ,return_offsets_mapping=lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) ,) UpperCAmelCase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ ,use_fast=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,trim_offsets=lowerCamelCase_ ) UpperCAmelCase_ : str = tokenizer_r(lowerCamelCase_ ,return_offsets_mapping=lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) ,) UpperCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ ,use_fast=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,trim_offsets=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = tokenizer_r(lowerCamelCase_ ,return_offsets_mapping=lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(lowerCamelCase_ ), len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) ,) UpperCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ ,use_fast=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,trim_offsets=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer_r(lowerCamelCase_ ,return_offsets_mapping=lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(lowerCamelCase_ ), len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) ,) UpperCAmelCase_ : List[Any] = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase_ : List[Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ ,use_fast=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,trim_offsets=lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer_r(lowerCamelCase_ ,return_offsets_mapping=lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(lowerCamelCase_ ) + 1, 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) ,) UpperCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ ,use_fast=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,trim_offsets=lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer_r(lowerCamelCase_ ,return_offsets_mapping=lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(lowerCamelCase_ ), 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) ,) UpperCAmelCase_ : int = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ ,use_fast=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,trim_offsets=lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer_r(lowerCamelCase_ ,return_offsets_mapping=lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(lowerCamelCase_ ), 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) ,)
59
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = ["pixel_values"] def __init__( self: Optional[Any] ,lowerCamelCase_: bool = True ,lowerCamelCase_: Optional[Dict[str, int]] = None ,lowerCamelCase_: PILImageResampling = PILImageResampling.BICUBIC ,lowerCamelCase_: bool = True ,lowerCamelCase_: bool = True ,lowerCamelCase_: Union[int, float] = 1 / 255 ,lowerCamelCase_: Dict[str, int] = None ,lowerCamelCase_: bool = True ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,**lowerCamelCase_: Union[str, Any] ,) -> None: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = size if size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase_ : Tuple = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ,param_name="""crop_size""" ) UpperCAmelCase_ : Union[str, Any] = do_resize UpperCAmelCase_ : Union[str, Any] = do_rescale UpperCAmelCase_ : str = do_normalize UpperCAmelCase_ : Optional[int] = do_center_crop UpperCAmelCase_ : str = crop_size UpperCAmelCase_ : List[str] = size UpperCAmelCase_ : Any = resample UpperCAmelCase_ : Tuple = rescale_factor UpperCAmelCase_ : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase_ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self: List[Any] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Dict[str, int] ,lowerCamelCase_: PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: Optional[int] ,) -> np.ndarray: UpperCAmelCase_ : Tuple = get_size_dict(lowerCamelCase_ ) if "shortest_edge" in size: UpperCAmelCase_ : Optional[Any] = get_resize_output_image_size(lowerCamelCase_ ,size=size["""shortest_edge"""] ,default_to_square=lowerCamelCase_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase_ : Tuple = (size["""height"""], size["""width"""]) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(lowerCamelCase_ ,size=lowerCamelCase_ ,resample=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: List[Any] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Dict[str, int] ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: str ,) -> np.ndarray: UpperCAmelCase_ : Dict = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCamelCase_ ,size=(size["""height"""], size["""width"""]) ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: Optional[int] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: float ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: List[str] ) -> np.ndarray: return rescale(lowerCamelCase_ ,scale=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: List[str] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Union[float, List[float]] ,lowerCamelCase_: Union[float, List[float]] ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: Union[str, Any] ,) -> np.ndarray: return normalize(lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: Any ,lowerCamelCase_: ImageInput ,lowerCamelCase_: Optional[bool] = None ,lowerCamelCase_: Dict[str, int] = None ,lowerCamelCase_: PILImageResampling = None ,lowerCamelCase_: bool = None ,lowerCamelCase_: int = None ,lowerCamelCase_: Optional[bool] = None ,lowerCamelCase_: Optional[float] = None ,lowerCamelCase_: Optional[bool] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[str, TensorType]] = None ,lowerCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST ,**lowerCamelCase_: List[str] ,) -> BatchFeature: UpperCAmelCase_ : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : str = get_size_dict(lowerCamelCase_ ,param_name="""crop_size""" ,default_to_square=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = resample if resample is not None else self.resample UpperCAmelCase_ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Optional[Any] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : int = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Dict = size if size is not None else self.size UpperCAmelCase_ : List[str] = get_size_dict(lowerCamelCase_ ) if not is_batched(lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = [images] if not valid_images(lowerCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase_ : Tuple = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: UpperCAmelCase_ : int = [self.resize(image=lowerCamelCase_ ,size=lowerCamelCase_ ,resample=lowerCamelCase_ ) for image in images] if do_center_crop: UpperCAmelCase_ : Optional[int] = [self.center_crop(image=lowerCamelCase_ ,size=lowerCamelCase_ ) for image in images] if do_rescale: UpperCAmelCase_ : str = [self.rescale(image=lowerCamelCase_ ,scale=lowerCamelCase_ ) for image in images] if do_normalize: UpperCAmelCase_ : Dict = [self.normalize(image=lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ) for image in images] UpperCAmelCase_ : Dict = [to_channel_dimension_format(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] UpperCAmelCase_ : Tuple = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ ,tensor_type=lowerCamelCase_ )
59
1
import argparse import collections import json import os import re import string import sys import numpy as np SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.compile(r"\b(a|an|the)\b", re.UNICODE) SCREAMING_SNAKE_CASE__ : int = None def __magic_name__ ( ) -> str: __lowerCamelCase = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=__lowerCAmelCase , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=__lowerCAmelCase , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: __lowerCamelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowerCamelCase = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def __magic_name__ ( __lowerCAmelCase : Dict ) -> Optional[Any]: def remove_articles(__lowerCAmelCase : Optional[int] ): return ARTICLES_REGEX.sub(''' ''' , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase : Union[str, Any] ): __lowerCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Optional[int]: if not s: return [] return normalize_answer(__lowerCAmelCase ).split() def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ) -> int: return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ) -> str: __lowerCamelCase = get_tokens(__lowerCAmelCase ) __lowerCamelCase = get_tokens(__lowerCAmelCase ) __lowerCamelCase = collections.Counter(__lowerCAmelCase ) & collections.Counter(__lowerCAmelCase ) __lowerCamelCase = sum(common.values() ) if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __lowerCamelCase = 1.0 * num_same / len(__lowerCAmelCase ) __lowerCamelCase = 1.0 * num_same / len(__lowerCAmelCase ) __lowerCamelCase = (2 * precision * recall) / (precision + recall) return fa def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ) -> Optional[Any]: __lowerCamelCase = {} __lowerCamelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowerCamelCase = qa['''id'''] __lowerCamelCase = [t for t in qa['''answers''']['''text'''] if normalize_answer(__lowerCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __lowerCamelCase = [''''''] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue __lowerCamelCase = preds[qid] # Take max over all gold answers __lowerCamelCase = max(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) __lowerCamelCase = max(compute_fa(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ) -> List[str]: __lowerCamelCase = {} for qid, s in scores.items(): __lowerCamelCase = na_probs[qid] > na_prob_thresh if pred_na: __lowerCamelCase = float(not qid_to_has_ans[qid] ) else: __lowerCamelCase = s return new_scores def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any]=None ) -> Union[str, Any]: if not qid_list: __lowerCamelCase = len(__lowerCAmelCase ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values() ) / total), ('''f1''', 100.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: __lowerCamelCase = len(__lowerCAmelCase ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> int: for k in new_eval: __lowerCamelCase = new_eval[k] def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: plt.step(__lowerCAmelCase , __lowerCAmelCase , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(__lowerCAmelCase , __lowerCAmelCase , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__lowerCAmelCase ) plt.savefig(__lowerCAmelCase ) plt.clf() def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Tuple=None ) -> int: __lowerCamelCase = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) __lowerCamelCase = 0.0 __lowerCamelCase = 1.0 __lowerCamelCase = 0.0 __lowerCamelCase = [1.0] __lowerCamelCase = [0.0] __lowerCamelCase = 0.0 for i, qid in enumerate(__lowerCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] __lowerCamelCase = true_pos / float(i + 1 ) __lowerCamelCase = true_pos / float(__lowerCAmelCase ) if i == len(__lowerCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__lowerCAmelCase ) recalls.append(__lowerCAmelCase ) if out_image: plot_pr_curve(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return {"ap": 100.0 * avg_prec} def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] ) -> List[Any]: if out_image_dir and not os.path.exists(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) __lowerCamelCase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __lowerCamelCase = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) __lowerCamelCase = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) __lowerCamelCase = {k: float(__lowerCAmelCase ) for k, v in qid_to_has_ans.items()} __lowerCamelCase = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_exact''' ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_f1''' ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_oracle''' ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ) -> Optional[Any]: if not qid_list: return __lowerCamelCase = [na_probs[k] for k in qid_list] __lowerCamelCase = np.ones_like(__lowerCAmelCase ) / float(len(__lowerCAmelCase ) ) plt.hist(__lowerCAmelCase , weights=__lowerCAmelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__lowerCAmelCase , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Optional[int]: __lowerCamelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __lowerCamelCase = num_no_ans __lowerCamelCase = cur_score __lowerCamelCase = 0.0 __lowerCamelCase = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) for i, qid in enumerate(__lowerCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: __lowerCamelCase = scores[qid] else: if preds[qid]: __lowerCamelCase = -1 else: __lowerCamelCase = 0 cur_score += diff if cur_score > best_score: __lowerCamelCase = cur_score __lowerCamelCase = na_probs[qid] return 100.0 * best_score / len(__lowerCAmelCase ), best_thresh def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ) -> int: __lowerCamelCase , __lowerCamelCase = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = best_exact __lowerCamelCase = exact_thresh __lowerCamelCase = best_fa __lowerCamelCase = fa_thresh def __magic_name__ ( ) -> Optional[int]: with open(OPTS.data_file ) as f: __lowerCamelCase = json.load(__lowerCAmelCase ) __lowerCamelCase = dataset_json['''data'''] with open(OPTS.pred_file ) as f: __lowerCamelCase = json.load(__lowerCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __lowerCamelCase = json.load(__lowerCAmelCase ) else: __lowerCamelCase = {k: 0.0 for k in preds} __lowerCamelCase = make_qid_to_has_ans(__lowerCAmelCase ) # maps qid to True/False __lowerCamelCase = [k for k, v in qid_to_has_ans.items() if v] __lowerCamelCase = [k for k, v in qid_to_has_ans.items() if not v] __lowerCamelCase , __lowerCamelCase = get_raw_scores(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) __lowerCamelCase = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) __lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase ) if has_ans_qids: __lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''HasAns''' ) if no_ans_qids: __lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) else: print(json.dumps(__lowerCAmelCase , indent=2 ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
270
import pprint import requests SCREAMING_SNAKE_CASE__ : str = "https://zenquotes.io/api" def __magic_name__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def __magic_name__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = random_quotes() pprint.pprint(response)
270
1
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa lowerCamelCase__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = "summarization" SCREAMING_SNAKE_CASE__ :str = ["loss"] SCREAMING_SNAKE_CASE__ :Any = ROUGE_KEYS SCREAMING_SNAKE_CASE__ :List[str] = "rouge2" def __init__( self : Any , __a : Optional[int] , **__a : int ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: _UpperCamelCase : Tuple = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training" ) if hparams.sortish_sampler: raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously" ) super().__init__(__a , num_labels=__a , mode=self.mode , **__a ) use_task_specific_params(self.model , "summarization" ) save_git_info(self.hparams.output_dir ) _UpperCamelCase : Optional[int] = Path(self.output_dir ) / "metrics.json" _UpperCamelCase : Tuple = Path(self.output_dir ) / "hparams.pkl" pickle_save(self.hparams , self.hparams_save_path ) _UpperCamelCase : Any = 0 _UpperCamelCase : Optional[int] = defaultdict(__a ) _UpperCamelCase : Optional[Any] = self.config.model_type _UpperCamelCase : int = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size _UpperCamelCase : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _UpperCamelCase : Any = { "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } _UpperCamelCase : List[str] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _UpperCamelCase : Dict = { "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _UpperCamelCase : Any = get_git_info()["repo_sha"] _UpperCamelCase : Dict = hparams.num_workers _UpperCamelCase : Optional[Any] = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __a ): _UpperCamelCase : Optional[Any] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _UpperCamelCase : Dict = self.decoder_start_token_id _UpperCamelCase : Optional[int] = ( SeqaSeqDataset if hasattr(self.tokenizer , "prepare_seq2seq_batch" ) else LegacySeqaSeqDataset ) _UpperCamelCase : Tuple = False _UpperCamelCase : Union[str, Any] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _UpperCamelCase : List[Any] = self.hparams.eval_max_gen_length else: _UpperCamelCase : List[str] = self.model.config.max_length _UpperCamelCase : List[str] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Dict[str, torch.Tensor] ) -> Dict[str, List[str]]: _UpperCamelCase : Tuple = { k: self.tokenizer.batch_decode(v.tolist() ) if "mask" not in k else v.shape for k, v in batch.items() } save_json(__a , Path(self.output_dir ) / "text_batch.json" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / "tok_batch.json" ) _UpperCamelCase : Optional[Any] = True return readable_batch def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Dict , **__a : List[Any] ) -> Any: return self.model(__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[int] ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = self.tokenizer.batch_decode( __a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) return lmap(str.strip , __a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : dict ) -> Tuple: _UpperCamelCase : Optional[int] = self.tokenizer.pad_token_id _UpperCamelCase, _UpperCamelCase : Dict = batch["input_ids"], batch["attention_mask"] _UpperCamelCase : Any = batch["labels"] if isinstance(self.model , __a ): _UpperCamelCase : Tuple = self.model._shift_right(__a ) else: _UpperCamelCase : Optional[int] = shift_tokens_right(__a , __a ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _UpperCamelCase : Dict = decoder_input_ids self.save_readable_batch(__a ) _UpperCamelCase : str = self(__a , attention_mask=__a , decoder_input_ids=__a , use_cache=__a ) _UpperCamelCase : List[Any] = outputs["logits"] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _UpperCamelCase : List[Any] = nn.CrossEntropyLoss(ignore_index=__a ) assert lm_logits.shape[-1] == self.vocab_size _UpperCamelCase : Union[str, Any] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _UpperCamelCase : Dict = nn.functional.log_softmax(__a , dim=-1 ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = label_smoothed_nll_loss( __a , __a , self.hparams.label_smoothing , ignore_index=__a ) return (loss,) @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return self.tokenizer.pad_token_id def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[int] , __a : Optional[int] ) -> Dict: _UpperCamelCase : str = self._step(__a ) _UpperCamelCase : Dict = dict(zip(self.loss_names , __a ) ) # tokens per batch _UpperCamelCase : Tuple = batch["input_ids"].ne(self.pad ).sum() + batch["labels"].ne(self.pad ).sum() _UpperCamelCase : List[str] = batch["input_ids"].shape[0] _UpperCamelCase : str = batch["input_ids"].eq(self.pad ).sum() _UpperCamelCase : int = batch["input_ids"].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Any , __a : Optional[int] ) -> Dict: return self._generative_step(__a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : Union[str, Any] , __a : int="val" ) -> Dict: self.step_count += 1 _UpperCamelCase : str = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _UpperCamelCase : str = losses["loss"] _UpperCamelCase : Dict = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["gen_time", "gen_len"] } _UpperCamelCase : Any = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _UpperCamelCase : torch.FloatTensor = torch.tensor(__a ).type_as(__a ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__a ) _UpperCamelCase : List[str] = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} _UpperCamelCase : List[str] = self.step_count self.metrics[prefix].append(__a ) # callback writes this to self.metrics_save_path _UpperCamelCase : Union[str, Any] = flatten_list([x["preds"] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def __SCREAMING_SNAKE_CASE ( self : Any , __a : Dict , __a : Optional[int] ) -> Dict: return calculate_rouge(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : dict ) -> dict: _UpperCamelCase : Any = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _UpperCamelCase : Union[str, Any] = self.model.generate( batch["input_ids"] , attention_mask=batch["attention_mask"] , use_cache=__a , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _UpperCamelCase : Optional[Any] = (time.time() - ta) / batch["input_ids"].shape[0] _UpperCamelCase : List[str] = self.ids_to_clean_text(__a ) _UpperCamelCase : List[str] = self.ids_to_clean_text(batch["labels"] ) _UpperCamelCase : Union[str, Any] = self._step(__a ) _UpperCamelCase : Tuple = dict(zip(self.loss_names , __a ) ) _UpperCamelCase : Dict = self.calc_generative_metrics(__a , __a ) _UpperCamelCase : Union[str, Any] = np.mean(lmap(__a , __a ) ) base_metrics.update(gen_time=__a , gen_len=__a , preds=__a , target=__a , **__a ) return base_metrics def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Union[str, Any] , __a : int ) -> Dict: return self._generative_step(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : int ) -> Tuple: return self.validation_epoch_end(__a , prefix="test" ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Union[str, Any] ) -> SeqaSeqDataset: _UpperCamelCase : Any = self.n_obs[type_path] _UpperCamelCase : int = self.target_lens[type_path] _UpperCamelCase : int = self.dataset_class( self.tokenizer , type_path=__a , n_obs=__a , max_target_length=__a , **self.dataset_kwargs , ) return dataset def __SCREAMING_SNAKE_CASE ( self : str , __a : str , __a : int , __a : bool = False ) -> DataLoader: _UpperCamelCase : Optional[int] = self.get_dataset(__a ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _UpperCamelCase : Optional[Any] = dataset.make_sortish_sampler(__a , distributed=self.hparams.gpus > 1 ) return DataLoader( __a , batch_size=__a , collate_fn=dataset.collate_fn , shuffle=__a , num_workers=self.num_workers , sampler=__a , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _UpperCamelCase : int = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __a , batch_sampler=__a , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __a , batch_size=__a , collate_fn=dataset.collate_fn , shuffle=__a , num_workers=self.num_workers , sampler=__a , ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> DataLoader: _UpperCamelCase : Tuple = self.get_dataloader("train" , batch_size=self.hparams.train_batch_size , shuffle=__a ) return dataloader def __SCREAMING_SNAKE_CASE ( self : Any ) -> DataLoader: return self.get_dataloader("val" , batch_size=self.hparams.eval_batch_size ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> DataLoader: return self.get_dataloader("test" , batch_size=self.hparams.eval_batch_size ) @staticmethod def __SCREAMING_SNAKE_CASE ( __a : Optional[int] , __a : List[str] ) -> List[str]: BaseTransformer.add_model_specific_args(__a , __a ) add_generic_args(__a , __a ) parser.add_argument( "--max_source_length" , default=1024 , type=__a , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--max_target_length" , default=56 , type=__a , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--val_max_target_length" , default=142 , type=__a , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--test_max_target_length" , default=142 , type=__a , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument("--freeze_encoder" , action="store_true" ) parser.add_argument("--freeze_embeds" , action="store_true" ) parser.add_argument("--sortish_sampler" , action="store_true" , default=__a ) parser.add_argument("--overwrite_output_dir" , action="store_true" , default=__a ) parser.add_argument("--max_tokens_per_batch" , type=__a , default=__a ) parser.add_argument("--logger_name" , type=__a , choices=["default", "wandb", "wandb_shared"] , default="default" ) parser.add_argument("--n_train" , type=__a , default=-1 , required=__a , help="# examples. -1 means use all." ) parser.add_argument("--n_val" , type=__a , default=500 , required=__a , help="# examples. -1 means use all." ) parser.add_argument("--n_test" , type=__a , default=-1 , required=__a , help="# examples. -1 means use all." ) parser.add_argument( "--task" , type=__a , default="summarization" , required=__a , help="# examples. -1 means use all." ) parser.add_argument("--label_smoothing" , type=__a , default=0.0 , required=__a ) parser.add_argument("--src_lang" , type=__a , default="" , required=__a ) parser.add_argument("--tgt_lang" , type=__a , default="" , required=__a ) parser.add_argument("--eval_beams" , type=__a , default=__a , required=__a ) parser.add_argument( "--val_metric" , type=__a , default=__a , required=__a , choices=["bleu", "rouge2", "loss", None] ) parser.add_argument("--eval_max_gen_length" , type=__a , default=__a , help="never generate more than n tokens" ) parser.add_argument("--save_top_k" , type=__a , default=1 , required=__a , help="How many checkpoints to save" ) parser.add_argument( "--early_stopping_patience" , type=__a , default=-1 , required=__a , help=( "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" " val_check_interval will effect it." ) , ) return parser class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "translation" SCREAMING_SNAKE_CASE__ :Optional[Any] = ["loss"] SCREAMING_SNAKE_CASE__ :List[str] = ["bleu"] SCREAMING_SNAKE_CASE__ :List[Any] = "bleu" def __init__( self : Union[str, Any] , __a : int , **__a : List[Any] ) -> Optional[Any]: super().__init__(__a , **__a ) _UpperCamelCase : Optional[Any] = hparams.src_lang _UpperCamelCase : Optional[int] = hparams.tgt_lang def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[int] , __a : Dict ) -> dict: return calculate_bleu(__a , __a ) def lowercase__ ( lowercase_ ,lowercase_=None ) -> SummarizationModule: """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=lowercase_ ) check_output_dir(lowercase_ ,expected_items=3 ) if model is None: if "summarization" in args.task: _UpperCamelCase : SummarizationModule = SummarizationModule(lowercase_ ) else: _UpperCamelCase : SummarizationModule = TranslationModule(lowercase_ ) _UpperCamelCase : int = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("/tmp" ) or str(args.output_dir ).startswith("/var" ) ): _UpperCamelCase : Optional[int] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _UpperCamelCase : str = os.environ.get("WANDB_PROJECT" ,lowercase_ ) _UpperCamelCase : List[Any] = WandbLogger(name=model.output_dir.name ,project=lowercase_ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _UpperCamelCase : Optional[Any] = WandbLogger(name=model.output_dir.name ,project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: _UpperCamelCase : Any = get_early_stopping_callback(model.val_metric ,args.early_stopping_patience ) else: _UpperCamelCase : int = False _UpperCamelCase : Dict = args.val_metric == "loss" _UpperCamelCase : pl.Trainer = generic_train( lowercase_ ,lowercase_ ,logging_callback=SeqaSeqLoggingCallback() ,checkpoint_callback=get_checkpoint_callback( args.output_dir ,model.val_metric ,args.save_top_k ,lowercase_ ) ,early_stopping_callback=lowercase_ ,logger=lowercase_ ,) pickle_save(model.hparams ,model.output_dir / "hparams.pkl" ) if not args.do_predict: return model _UpperCamelCase : Tuple = "" _UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir ,"*.ckpt" ) ,recursive=lowercase_ ) ) if checkpoints: _UpperCamelCase : Dict = checkpoints[-1] _UpperCamelCase : Optional[Any] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() lowerCamelCase__ = pl.Trainer.add_argparse_args(parser) lowerCamelCase__ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) lowerCamelCase__ = parser.parse_args() main(args)
310
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
310
1
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _lowercase : Any = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" _lowercase : List[Any] = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" _lowercase : Optional[Any] = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" return float((preds == labels).mean() ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str="binary" ): """simple docstring""" lowercase_ : Dict = simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = float(fa_score(y_true=__SCREAMING_SNAKE_CASE , y_pred=__SCREAMING_SNAKE_CASE , average=__SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" lowercase_ : str = {} for id_pred, label in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : str = F'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowercase_ : Any = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowercase_ : List[str] = [(pred, label)] lowercase_ , lowercase_ : Dict = [], [] for question, preds_labels in question_map.items(): lowercase_ , lowercase_ : List[Any] = zip(*__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = fa_score(y_true=__SCREAMING_SNAKE_CASE , y_pred=__SCREAMING_SNAKE_CASE , average='''macro''' ) fas.append(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = int(sum(pred == label for pred, label in preds_labels ) == len(__SCREAMING_SNAKE_CASE ) ) ems.append(__SCREAMING_SNAKE_CASE ) lowercase_ : str = float(sum(__SCREAMING_SNAKE_CASE ) / len(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Tuple = sum(__SCREAMING_SNAKE_CASE ) / len(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = float(fa_score(y_true=__SCREAMING_SNAKE_CASE , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def _snake_case ( self ): """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def _snake_case ( self ): """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , fa_avg='''macro''' ) elif self.config_name == "record": lowercase_ : List[str] = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] lowercase_ : str = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
93
from collections import defaultdict def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Tuple = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase ) if ret % 2 == 0: cuts.append(lowerCAmelCase ) return ret def _snake_case ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Union[str, Any] = 10, 9 __lowerCamelCase : Optional[int] = defaultdict(list) __lowerCamelCase : dict[int, bool] = {} __lowerCamelCase : list[int] = [] __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
0
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ = 0 ): __SCREAMING_SNAKE_CASE = length or len(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = list_data[i + 1], list_data[i] __SCREAMING_SNAKE_CASE = True return list_data if not swapped else bubble_sort(UpperCamelCase_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
255
0
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) lowercase__ : List[str] = logging.getLogger(__name__) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = git.Repo(search_parent_directories=UpperCamelCase_ ) snake_case_ = { "repo_id": str(UpperCamelCase_ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(UpperCamelCase_ , "git_log.json" ) , "w" ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ , indent=4 ) def lowerCamelCase__ ( _A ): '''simple docstring''' if params.n_gpu <= 0: snake_case_ = 0 snake_case_ = -1 snake_case_ = True snake_case_ = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 snake_case_ = int(os.environ["WORLD_SIZE"] ) snake_case_ = int(os.environ["N_GPU_NODE"] ) snake_case_ = int(os.environ["RANK"] ) # number of nodes / node ID snake_case_ = params.world_size // params.n_gpu_per_node snake_case_ = params.global_rank // params.n_gpu_per_node snake_case_ = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 snake_case_ = 1 snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 snake_case_ = 1 snake_case_ = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode snake_case_ = params.node_id == 0 and params.local_rank == 0 snake_case_ = params.n_nodes > 1 # summary snake_case_ = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCamelCase__ ( _A ): '''simple docstring''' np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
187
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class lowercase__ ( _UpperCAmelCase ): A__ : int ="""xmod""" def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[int]=30522 , UpperCAmelCase_ : Union[str, Any]=768 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : List[str]=3072 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Optional[Any]=1e-1_2 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : Tuple="absolute" , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Union[str, Any]=("en_XX",) , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : str , ): super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = classifier_dropout SCREAMING_SNAKE_CASE__ = pre_norm SCREAMING_SNAKE_CASE__ = adapter_reduction_factor SCREAMING_SNAKE_CASE__ = adapter_layer_norm SCREAMING_SNAKE_CASE__ = adapter_reuse_layer_norm SCREAMING_SNAKE_CASE__ = ln_before_adapter SCREAMING_SNAKE_CASE__ = list(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = default_language class lowercase__ ( _UpperCAmelCase ): @property def A_ ( self : List[Any] ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
176
0
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets UpperCAmelCase_ : Optional[Any] = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ UpperCAmelCase_ : Tuple = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ UpperCAmelCase_ : Optional[Any] = r""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = 0.0 for i, j in zip(__lowercase , __lowercase ): n_correct += 1.0 if math_equivalence.is_equiv(__lowercase , __lowercase ) else 0.0 A__ = n_correct / len(__lowercase ) return { "accuracy": accuracy, }
359
from __future__ import annotations class UpperCamelCase : def __init__( self , UpperCAmelCase__=None ): A__ = data A__ = None def __repr__( self ): A__ = [] A__ = self while temp: string_rep.append(F"""{temp.data}""" ) A__ = temp.next return "->".join(UpperCAmelCase__ ) def UpperCamelCase ( _A : list )-> Dict: """simple docstring""" if not elements_list: raise Exception("The Elements List is empty" ) A__ = A__ = Node(elements_list[0] ) for i in range(1 , len(_A ) ): A__ = Node(elements_list[i] ) A__ = current.next return head def UpperCamelCase ( _A : Node )-> None: """simple docstring""" if head_node is not None and isinstance(_A , _A ): print_reverse(head_node.next ) print(head_node.data ) def UpperCamelCase ( )-> Tuple: """simple docstring""" from doctest import testmod testmod() A__ = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(_A ) print("Elements in Reverse:" ) print_reverse(_A ) if __name__ == "__main__": main()
198
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class lowerCAmelCase_ ( snake_case_ ): UpperCAmelCase__ : str = '''pix2struct_text_model''' UpperCAmelCase__ : Optional[int] = ['''past_key_values'''] UpperCAmelCase__ : Union[str, Any] = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self, SCREAMING_SNAKE_CASE_=5_0244, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=128, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=1e-6, SCREAMING_SNAKE_CASE_=1.0, SCREAMING_SNAKE_CASE_="gelu_new", SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> List[Any]: UpperCamelCase : str = vocab_size UpperCamelCase : Dict = hidden_size UpperCamelCase : int = d_kv UpperCamelCase : Optional[Any] = d_ff UpperCamelCase : Any = num_layers UpperCamelCase : Optional[Any] = num_heads UpperCamelCase : Tuple = relative_attention_num_buckets UpperCamelCase : Dict = relative_attention_max_distance UpperCamelCase : Union[str, Any] = dropout_rate UpperCamelCase : Any = layer_norm_epsilon UpperCamelCase : Dict = initializer_factor UpperCamelCase : Optional[Any] = use_cache UpperCamelCase : str = eos_token_id UpperCamelCase : List[Any] = decoder_start_token_id # for backwards compatibility UpperCamelCase : Optional[int] = dense_act_fn super().__init__( pad_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, decoder_start_token_id=UpperCamelCase__, tie_word_embeddings=UpperCamelCase__, is_decoder=UpperCamelCase__, **UpperCamelCase__, ) @classmethod def snake_case_ ( cls, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase__ ) UpperCamelCase : Any = cls.get_config_dict(UpperCamelCase__, **UpperCamelCase__ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCamelCase : List[str] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase__, **UpperCamelCase__ ) class lowerCAmelCase_ ( snake_case_ ): UpperCAmelCase__ : str = '''pix2struct_vision_model''' def __init__( self, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_="gelu_new", SCREAMING_SNAKE_CASE_=1e-6, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1e-10, SCREAMING_SNAKE_CASE_=1.0, SCREAMING_SNAKE_CASE_=4096, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=128, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__(**UpperCamelCase__ ) UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : List[str] = patch_embed_hidden_size UpperCamelCase : Optional[Any] = d_ff UpperCamelCase : Union[str, Any] = dropout_rate UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : Any = num_attention_heads UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : Union[str, Any] = initializer_factor UpperCamelCase : List[str] = attention_dropout UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : List[str] = dense_act_fn UpperCamelCase : List[str] = seq_len UpperCamelCase : Optional[Any] = relative_attention_num_buckets UpperCamelCase : Optional[Any] = relative_attention_max_distance UpperCamelCase : Optional[Any] = d_kv @classmethod def snake_case_ ( cls, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase__ ) UpperCamelCase : Optional[int] = cls.get_config_dict(UpperCamelCase__, **UpperCamelCase__ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": UpperCamelCase : str = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase__, **UpperCamelCase__ ) class lowerCAmelCase_ ( snake_case_ ): UpperCAmelCase__ : Optional[int] = '''pix2struct''' UpperCAmelCase__ : str = True def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=1.0, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Union[str, Any]: super().__init__(tie_word_embeddings=UpperCamelCase__, is_encoder_decoder=UpperCamelCase__, **UpperCamelCase__ ) if text_config is None: UpperCamelCase : Dict = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: UpperCamelCase : str = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) UpperCamelCase : Optional[int] = PixaStructTextConfig(**UpperCamelCase__ ) UpperCamelCase : Any = PixaStructVisionConfig(**UpperCamelCase__ ) UpperCamelCase : Any = self.text_config.decoder_start_token_id UpperCamelCase : Dict = self.text_config.pad_token_id UpperCamelCase : List[str] = self.text_config.eos_token_id UpperCamelCase : Optional[Any] = initializer_factor UpperCamelCase : List[Any] = initializer_range UpperCamelCase : List[Any] = self.initializer_range UpperCamelCase : Union[str, Any] = self.initializer_range UpperCamelCase : List[Any] = is_vqa @classmethod def snake_case_ ( cls, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Tuple: return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = copy.deepcopy(self.__dict__ ) UpperCamelCase : List[Any] = self.text_config.to_dict() UpperCamelCase : Dict = self.vision_config.to_dict() UpperCamelCase : Optional[Any] = self.__class__.model_type return output
119
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __snake_case = """hf-internal-testing/tiny-random-bert""" __snake_case = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") __snake_case = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : int = cached_file(UpperCamelCase__ , UpperCamelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCamelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) ) with open(os.path.join(UpperCamelCase__ , "refs" , "main" ) ) as f: snake_case : Dict = f.read() self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , "snapshots" , UpperCamelCase__ , UpperCamelCase__ ) ) self.assertTrue(os.path.isfile(UpperCamelCase__ ) ) # File is cached at the same place the second time. snake_case : List[str] = cached_file(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # Using a specific revision to test the full commit hash. snake_case : Any = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="9b8c223" ) self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , "snapshots" , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid model identifier" ): snake_case : Optional[Any] = cached_file("tiny-random-bert" , UpperCamelCase__ ) with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid git identifier" ): snake_case : Optional[Any] = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="aaaa" ) with self.assertRaisesRegex(UpperCamelCase__ , "does not appear to have a file named" ): snake_case : List[Any] = cached_file(UpperCamelCase__ , "conf" ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex(UpperCamelCase__ , "does not appear to have a file named" ): snake_case : Tuple = cached_file(UpperCamelCase__ , "conf" ) with open(os.path.join(UpperCamelCase__ , "refs" , "main" ) ) as f: snake_case : Any = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , ".no_exist" , UpperCamelCase__ , "conf" ) ) ) snake_case : Optional[Any] = cached_file(UpperCamelCase__ , "conf" , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) snake_case : Any = cached_file(UpperCamelCase__ , "conf" , local_files_only=UpperCamelCase__ , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) snake_case : Any = mock.Mock() snake_case : List[Any] = 500 snake_case : int = {} snake_case : Optional[int] = HTTPError snake_case : Tuple = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCamelCase__ ) as mock_head: snake_case : Tuple = cached_file(UpperCamelCase__ , "conf" , _raise_exceptions_for_connection_errors=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self ) -> Any: '''simple docstring''' self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCamelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCamelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCamelCase__ ) ) def lowerCamelCase ( self ) -> str: '''simple docstring''' self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , UpperCamelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCamelCase__ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , UpperCamelCase__ , revision="ahaha" ) snake_case : int = get_file_from_repo("bert-base-cased" , UpperCamelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case : str = json.loads(open(UpperCamelCase__ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case : int = Path(UpperCamelCase__ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(UpperCamelCase__ , "a.txt" ) , str(UpperCamelCase__ ) ) self.assertIsNone(get_file_from_repo(UpperCamelCase__ , "b.txt" ) )
203
0
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def __UpperCAmelCase ( snake_case_ : Any , snake_case_ : Optional[Any] ) -> List[str]: """simple docstring""" _lowerCAmelCase = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _lowerCAmelCase = DatasetInfosDict.from_directory(snake_case_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ), ] , ) def __UpperCAmelCase ( snake_case_ : Optional[int] , snake_case_ : DatasetInfo ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = str(snake_case_ ) dataset_info.write_to_directory(snake_case_ ) _lowerCAmelCase = DatasetInfo.from_directory(snake_case_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(snake_case_ , """dataset_info.json""" ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) _lowerCAmelCase = dataset_info._to_yaml_dict() assert sorted(snake_case_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _lowerCAmelCase = yaml.safe_dump(snake_case_ ) _lowerCAmelCase = yaml.safe_load(snake_case_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ) -> Dict: """simple docstring""" _lowerCAmelCase = DatasetInfo() _lowerCAmelCase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=42 ), """v2""": DatasetInfo(dataset_size=1337 ), } ), ] , ) def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : DatasetInfosDict ) -> List[Any]: """simple docstring""" _lowerCAmelCase = str(snake_case_ ) dataset_infos_dict.write_to_directory(snake_case_ ) _lowerCAmelCase = DatasetInfosDict.from_directory(snake_case_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _lowerCAmelCase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _lowerCAmelCase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(snake_case_ , """README.md""" ) )
317
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
1
from collections.abc import Generator from math import sin def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> bytes: """simple docstring""" if len(__magic_name__ ) != 32: raise ValueError("""Input must be of length 32""" ) UpperCamelCase :int = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) UpperCamelCase :Any = format(__magic_name__ , """08x""" )[-8:] UpperCamelCase :Union[str, Any] = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> bytes: """simple docstring""" UpperCamelCase :str = B"""""" for char in message: bit_string += format(__magic_name__ , """08b""" ).encode("""utf-8""" ) UpperCamelCase :Any = format(len(__magic_name__ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__magic_name__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(__magic_name__ ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(__magic_name__ ) , 512 ): UpperCamelCase :Tuple = bit_string[pos : pos + 512] UpperCamelCase :Optional[int] = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) UpperCamelCase :List[str] = format(__magic_name__ , """032b""" ) UpperCamelCase :Any = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(__magic_name__ , 2 ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return (a + b) % 2**32 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> bytes: """simple docstring""" UpperCamelCase :Tuple = preprocess(__magic_name__ ) UpperCamelCase :List[str] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states UpperCamelCase :Union[str, Any] = 0X67_45_23_01 UpperCamelCase :Union[str, Any] = 0XEF_CD_AB_89 UpperCamelCase :List[str] = 0X98_BA_DC_FE UpperCamelCase :int = 0X10_32_54_76 UpperCamelCase :int = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__magic_name__ ): UpperCamelCase :Optional[Any] = aa UpperCamelCase :Any = ba UpperCamelCase :Tuple = ca UpperCamelCase :List[str] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f UpperCamelCase :int = d ^ (b & (c ^ d)) UpperCamelCase :Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f UpperCamelCase :str = c ^ (d & (b ^ c)) UpperCamelCase :Union[str, Any] = (5 * i + 1) % 16 elif i <= 47: UpperCamelCase :str = b ^ c ^ d UpperCamelCase :Optional[int] = (3 * i + 5) % 16 else: UpperCamelCase :List[str] = c ^ (b | not_aa(__magic_name__ )) UpperCamelCase :int = (7 * i) % 16 UpperCamelCase :Dict = (f + a + added_consts[i] + block_words[g]) % 2**32 UpperCamelCase :Tuple = d UpperCamelCase :str = c UpperCamelCase :Tuple = b UpperCamelCase :Optional[Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) ) # Add hashed chunk to running total UpperCamelCase :List[str] = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :str = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :int = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :Optional[Any] = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :Optional[Any] = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
38
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } UpperCAmelCase_ : int = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int] ) -> Dict: """simple docstring""" for attribute in key.split(""".""" ): UpperCamelCase :Dict = getattr(__magic_name__ , __magic_name__ ) if weight_type is not None: UpperCamelCase :Optional[int] = getattr(__magic_name__ , __magic_name__ ).shape else: UpperCamelCase :Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase :str = value elif weight_type == "weight_g": UpperCamelCase :int = value elif weight_type == "weight_v": UpperCamelCase :int = value elif weight_type == "bias": UpperCamelCase :List[Any] = value else: UpperCamelCase :Any = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" UpperCamelCase :Union[str, Any] = [] UpperCamelCase :Dict = fairseq_model.state_dict() UpperCamelCase :int = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase :str = False if "conv_layers" in name: load_conv_layer( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , hf_model.config.feat_extract_norm == """group""" , ) UpperCamelCase :Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCamelCase :Optional[int] = True if "*" in mapped_key: UpperCamelCase :List[Any] = name.split(__magic_name__ )[0].split(""".""" )[-2] UpperCamelCase :int = mapped_key.replace("""*""" , __magic_name__ ) if "weight_g" in name: UpperCamelCase :List[Any] = """weight_g""" elif "weight_v" in name: UpperCamelCase :List[Any] = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: UpperCamelCase :Any = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase :List[str] = """weight""" else: UpperCamelCase :Optional[int] = None set_recursively(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) continue if not is_used: unused_weights.append(__magic_name__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" UpperCamelCase :Dict = full_name.split("""conv_layers.""" )[-1] UpperCamelCase :int = name.split(""".""" ) UpperCamelCase :str = int(items[0] ) UpperCamelCase :str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCamelCase :Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCamelCase :Dict = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCamelCase :Tuple = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCamelCase :Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__magic_name__ ) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : str=None ) -> int: """simple docstring""" UpperCamelCase :List[Any] = torch.load(__magic_name__ ) UpperCamelCase :List[Any] = WavLMConfigOrig(checkpoint["""cfg"""] ) UpperCamelCase :int = WavLMOrig(__magic_name__ ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: UpperCamelCase :List[Any] = WavLMConfig.from_pretrained(__magic_name__ ) else: UpperCamelCase :Any = WavLMConfig() UpperCamelCase :Dict = WavLMModel(__magic_name__ ) recursively_load_weights(__magic_name__ , __magic_name__ ) hf_wavlm.save_pretrained(__magic_name__ ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
38
1
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): snake_case__ : Optional[datasets.Features] = None def SCREAMING_SNAKE_CASE_ ( __A : "pyspark.sql.DataFrame" , __A : List[int] , ) -> Optional[Any]: """simple docstring""" import pyspark def generate_fn(): a_ : str = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: a_ : List[Any] = df_with_partition_id.select('*' ).where(F"""part_id = {partition_id}""" ).drop('part_id' ) a_ : List[Any] = partition_df.collect() a_ : Union[str, Any] = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class SCREAMING_SNAKE_CASE__ ( _BaseExamplesIterable ): def __init__( self : Any , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : int=None , ) -> Optional[Any]: a_ : int = df a_ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) a_ : Tuple = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : str ) -> Optional[int]: yield from self.generate_examples_fn() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : np.random.Generator ) -> "SparkExamplesIterable": a_ : List[str] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> "SparkExamplesIterable": a_ : Any = self.split_shard_indices_by_worker(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) @property def SCREAMING_SNAKE_CASE ( self : str ) -> int: return len(self.partition_order ) class SCREAMING_SNAKE_CASE__ ( datasets.DatasetBuilder ): snake_case__ : int = SparkConfig def __init__( self : str , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Tuple: import pyspark a_ : Tuple = pyspark.sql.SparkSession.builder.getOrCreate() a_ : Tuple = df a_ : str = working_dir super().__init__( cache_dir=SCREAMING_SNAKE_CASE__ , config_name=str(self.df.semanticHash() ) , **SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: # Returns the path of the created file. def create_cache_and_write_probe(SCREAMING_SNAKE_CASE__ : Tuple ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(SCREAMING_SNAKE_CASE__ , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: a_ : Optional[int] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(SCREAMING_SNAKE_CASE__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : datasets.download.download_manager.DownloadManager ) -> int: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> List[str]: import pyspark def get_arrow_batch_size(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) a_ : Tuple = self.df.count() a_ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. a_ : Tuple = ( self.df.limit(SCREAMING_SNAKE_CASE__ ) .repartition(1 ) .mapInArrow(SCREAMING_SNAKE_CASE__ , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) a_ : Optional[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. a_ : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , int(approx_total_size / max_shard_size ) ) a_ : Union[str, Any] = self.df.repartition(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark a_ : str = ParquetWriter if file_format == 'parquet' else ArrowWriter a_ : Any = os.path.join(self._working_dir , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) if self._working_dir else fpath a_ : Optional[Any] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. a_ : List[Any] = self.config.features a_ : Any = self._writer_batch_size a_ : Union[str, Any] = self._fs.storage_options def write_arrow(SCREAMING_SNAKE_CASE__ : int ): # Within the same SparkContext, no two task attempts will share the same attempt ID. a_ : int = pyspark.TaskContext().taskAttemptId() a_ : Union[str, Any] = next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) a_ : Union[str, Any] = 0 a_ : Optional[int] = writer_class( features=SCREAMING_SNAKE_CASE__ , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) a_ : List[Any] = pa.Table.from_batches([first_batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: a_ , a_ : Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 a_ : List[str] = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) a_ : List[str] = pa.Table.from_batches([batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) if writer._num_bytes > 0: a_ , a_ : int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ): a_ : Union[str, Any] = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) shutil.move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : int = ( self.df.mapInArrow(SCREAMING_SNAKE_CASE__ , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , SCREAMING_SNAKE_CASE__ : str = "arrow" , SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : str , ) -> List[str]: self._validate_cache_dir() a_ : int = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = not is_remote_filesystem(self._fs ) a_ : List[Any] = os.path.join if is_local else posixpath.join a_ : Dict = '-TTTTT-SSSSS-of-NNNNN' a_ : List[Any] = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" a_ : Optional[int] = path_join(self._output_dir , SCREAMING_SNAKE_CASE__ ) a_ : Dict = 0 a_ : Optional[int] = 0 a_ : str = 0 a_ : Optional[int] = [] a_ : Optional[Any] = [] for task_id, content in self._prepare_split_single(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : List[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = total_num_examples a_ : Tuple = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: a_ : Optional[int] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. a_ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ): rename( SCREAMING_SNAKE_CASE__ , fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace('TTTTT-SSSSS' , F"""{global_shard_id:05d}""" ).replace('NNNNN' , F"""{total_shards:05d}""" ) , ) a_ : Optional[int] = [] a_ : Union[str, Any] = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): a_ , a_ : Tuple = task_id_and_num_shards[i] for shard_id in range(SCREAMING_SNAKE_CASE__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ).map(lambda SCREAMING_SNAKE_CASE__ : _rename_shard(*SCREAMING_SNAKE_CASE__ ) ).collect() else: # don't use any pattern a_ : List[Any] = 0 a_ : List[str] = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace(SCREAMING_SNAKE_CASE__ , '' ) , ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
120
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: a_ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) a_ : Union[str, Any] = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(SCREAMING_SNAKE_CASE__ ) , torch_builtin(SCREAMING_SNAKE_CASE__ ) ) ) self.assertFalse(torch.allclose(gelu_python(SCREAMING_SNAKE_CASE__ ) , gelu_new(SCREAMING_SNAKE_CASE__ ) ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) a_ : Union[str, Any] = get_activation('gelu' ) a_ : str = get_activation('gelu_10' ) a_ : Tuple = torch_builtin(SCREAMING_SNAKE_CASE__ ) a_ : str = geluaa(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(SCREAMING_SNAKE_CASE__ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): get_activation('bogus' ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): get_activation(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: a_ : Any = get_activation('gelu' ) a_ : Any = 1 a_ : int = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): a_ : Tuple = acta.a
120
1
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __SCREAMING_SNAKE_CASE : Any = """bert-base-cased""" __SCREAMING_SNAKE_CASE : Any = """fp16""" __SCREAMING_SNAKE_CASE : Optional[Any] = """bf16""" __SCREAMING_SNAKE_CASE : Dict = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def _A ( self : Union[str, Any] ): super().setUp() _UpperCAmelCase : Optional[int] = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def _A ( self : Optional[Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(A ): _UpperCAmelCase : Union[str, Any] = self.dist_env.copy() _UpperCAmelCase : Any = F"""{i + 1}""" _UpperCAmelCase : str = strategy with mockenv_context(**A ): _UpperCAmelCase : Any = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _A ( self : Any ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(A ): _UpperCAmelCase : Union[str, Any] = self.dist_env.copy() _UpperCAmelCase : Optional[Any] = prefetch_policy with mockenv_context(**A ): _UpperCAmelCase : Union[str, Any] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _A ( self : int ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(A ): _UpperCAmelCase : Optional[int] = self.dist_env.copy() _UpperCAmelCase : Tuple = state_dict_type with mockenv_context(**A ): _UpperCAmelCase : List[str] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _A ( self : List[str] ): _UpperCAmelCase : List[str] = AutoModel.from_pretrained(A ) for policy in FSDP_AUTO_WRAP_POLICY: _UpperCAmelCase : Any = self.dist_env.copy() _UpperCAmelCase : Optional[int] = policy if policy == "TRANSFORMER_BASED_WRAP": _UpperCAmelCase : Optional[Any] = "BertLayer" elif policy == "SIZE_BASED_WRAP": _UpperCAmelCase : Any = "2000" with mockenv_context(**A ): _UpperCAmelCase : List[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _UpperCAmelCase : Any = self.dist_env.copy() _UpperCAmelCase : Tuple = "TRANSFORMER_BASED_WRAP" _UpperCAmelCase : Tuple = "T5Layer" with mockenv_context(**A ): _UpperCAmelCase : Dict = FullyShardedDataParallelPlugin() with self.assertRaises(A ) as cm: fsdp_plugin.set_auto_wrap_policy(A ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) _UpperCAmelCase : str = self.dist_env.copy() _UpperCAmelCase : Optional[int] = "SIZE_BASED_WRAP" _UpperCAmelCase : List[str] = "0" with mockenv_context(**A ): _UpperCAmelCase : List[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _A ( self : List[str] ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _UpperCAmelCase : str = self.dist_env.copy() _UpperCAmelCase : str = mp_dtype with mockenv_context(**A ): _UpperCAmelCase : int = Accelerator() if mp_dtype == "fp16": _UpperCAmelCase : Union[str, Any] = torch.floataa elif mp_dtype == "bf16": _UpperCAmelCase : Union[str, Any] = torch.bfloataa _UpperCAmelCase : Optional[int] = MixedPrecision(param_dtype=A , reduce_dtype=A , buffer_dtype=A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(A ) def _A ( self : Optional[Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _UpperCAmelCase : str = self.dist_env.copy() _UpperCAmelCase : Dict = str(A ).lower() with mockenv_context(**A ): _UpperCAmelCase : Tuple = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=A ) ) @require_fsdp @require_multi_gpu @slow class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def _A ( self : List[Any] ): super().setUp() _UpperCAmelCase : Optional[int] = 0.82 _UpperCAmelCase : int = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] _UpperCAmelCase : Tuple = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _UpperCAmelCase : Tuple = 160 _UpperCAmelCase : Any = 160 _UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def _A ( self : Optional[Any] ): _UpperCAmelCase : Union[str, Any] = os.path.join(self.test_scripts_folder , "test_performance.py" ) _UpperCAmelCase : Optional[int] = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: _UpperCAmelCase : Tuple = cmd.copy() for i, strategy in enumerate(A ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) def _A ( self : List[Any] ): _UpperCAmelCase : Dict = os.path.join(self.test_scripts_folder , "test_checkpointing.py" ) _UpperCAmelCase : Union[str, Any] = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(A ): _UpperCAmelCase : Optional[Any] = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue _UpperCAmelCase : Optional[Any] = len(A ) for state_dict_type in FSDP_STATE_DICT_TYPE: _UpperCAmelCase : Optional[Any] = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) _UpperCAmelCase : Optional[int] = cmd_config[:-1] _UpperCAmelCase : List[str] = os.path.join(self.tmpdir , "epoch_0" ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) def _A ( self : List[Any] ): _UpperCAmelCase : str = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" ) _UpperCAmelCase : Tuple = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _UpperCAmelCase : str = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(A ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() )
31
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): _UpperCAmelCase : Any = n - k # Calculate C(n,k) for i in range(_UpperCAmelCase ): result *= n - i result //= i + 1 return result def UpperCamelCase_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , _UpperCAmelCase ) // (node_count + 1) def UpperCamelCase_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" if n < 0: raise ValueError("factorial() not defined for negative values" ) _UpperCAmelCase : List[str] = 1 for i in range(1 , n + 1 ): result *= i return result def UpperCamelCase_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" return catalan_number(_UpperCAmelCase ) * factorial(_UpperCAmelCase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Dict = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( F'Given {node_count} nodes, there are {binary_tree_count(node_count)} ' F'binary trees and {catalan_number(node_count)} binary search trees.' )
31
1
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if not isinstance(lowercase , lowercase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(lowercase , lowercase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) SCREAMING_SNAKE_CASE : List[Any] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowercase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
319
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''ClapFeatureExtractor''' UpperCamelCase_ : Any = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("sampling_rate" , UpperCAmelCase_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if audios is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor( UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and audios is not None: SCREAMING_SNAKE_CASE : Optional[Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _A ( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
319
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = """markuplm""" def __init__( self , lowerCAmelCase__=30_522 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3_072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1e-12 , lowerCAmelCase__=0 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=256 , lowerCAmelCase__=1_024 , lowerCAmelCase__=216 , lowerCAmelCase__=1_001 , lowerCAmelCase__=32 , lowerCAmelCase__=50 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> List[Any]: super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = classifier_dropout # additional properties SCREAMING_SNAKE_CASE = max_depth SCREAMING_SNAKE_CASE = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE = tag_pad_id SCREAMING_SNAKE_CASE = subs_pad_id SCREAMING_SNAKE_CASE = xpath_unit_hidden_size
113
"""simple docstring""" import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __UpperCamelCase = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 48000, '''sample_size''': 65536, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 48000, '''sample_size''': 65536, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 48000, '''sample_size''': 131072, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 16000, '''sample_size''': 65536, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 16000, '''sample_size''': 65536, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 16000, '''sample_size''': 65536, }, } def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: return torch.atana(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) / math.pi * 2 def lowercase (SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: SCREAMING_SNAKE_CASE = torch.sin(t * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' pass class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> int: super().__init__() SCREAMING_SNAKE_CASE = DiffusionAttnUnetaD(lowerCAmelCase__ , n_attn_layers=4 ) SCREAMING_SNAKE_CASE = deepcopy(self.diffusion ) SCREAMING_SNAKE_CASE = torch.quasirandom.SobolEngine(1 , scramble=lowerCAmelCase__ ) def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]['url'] os.system(F'wget {url} ./' ) return F'./{model_name}.ckpt' __UpperCamelCase = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } __UpperCamelCase = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } __UpperCamelCase = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } __UpperCamelCase = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } __UpperCamelCase = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } __UpperCamelCase = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def lowercase (SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[Any]: if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(F'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def lowercase (SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE_ ) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif name.startswith(SCREAMING_SNAKE_CASE_ ): return [name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for v in value] raise ValueError(F'Attn error with {name}' ) def lowercase (SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=13 ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) SCREAMING_SNAKE_CASE = 0 if string.startswith('net.3.' ): depth += 1 SCREAMING_SNAKE_CASE = string[6:] elif string.startswith('net.' ): SCREAMING_SNAKE_CASE = string[4:] while string.startswith('main.7.' ): depth += 1 SCREAMING_SNAKE_CASE = string[7:] if string.startswith('main.' ): SCREAMING_SNAKE_CASE = string[5:] # mid block if string[:2].isdigit(): SCREAMING_SNAKE_CASE = string[:2] SCREAMING_SNAKE_CASE = string[2:] else: SCREAMING_SNAKE_CASE = string[0] SCREAMING_SNAKE_CASE = string[1:] if depth == max_depth: SCREAMING_SNAKE_CASE = MID_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = 'mid_block' elif depth > 0 and int(SCREAMING_SNAKE_CASE_ ) < 7: SCREAMING_SNAKE_CASE = DOWN_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = F'down_blocks.{depth}' elif depth > 0 and int(SCREAMING_SNAKE_CASE_ ) > 7: SCREAMING_SNAKE_CASE = UP_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = F'up_blocks.{max_depth - depth - 1}' elif depth == 0: SCREAMING_SNAKE_CASE = DEPTH_0_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = F'up_blocks.{max_depth - 1}' if int(SCREAMING_SNAKE_CASE_ ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(F'Naming error with {input_string} and string_left: {string_left}.' ) SCREAMING_SNAKE_CASE = string_left[1:] if "resnets" in new_layer: SCREAMING_SNAKE_CASE = convert_resconv_naming(SCREAMING_SNAKE_CASE_ ) elif "attentions" in new_layer: SCREAMING_SNAKE_CASE = convert_attn_naming(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = new_string_left if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = prefix + '.' + new_layer + '.' + string_left else: SCREAMING_SNAKE_CASE = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def lowercase (SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue SCREAMING_SNAKE_CASE = rename(SCREAMING_SNAKE_CASE_ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = transform_conv_attns(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE = v return new_state_dict def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: if len(SCREAMING_SNAKE_CASE_ ) == 1: if len(v.shape ) == 3: # weight SCREAMING_SNAKE_CASE = v[:, :, 0] else: # bias SCREAMING_SNAKE_CASE = v else: # qkv matrices SCREAMING_SNAKE_CASE = v.shape[0] SCREAMING_SNAKE_CASE = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape, :, 0] else: SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) SCREAMING_SNAKE_CASE = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'Make sure to provide one of the official model names {MODELS_MAP.keys()}' SCREAMING_SNAKE_CASE = download(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]['sample_rate'] SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]['sample_size'] SCREAMING_SNAKE_CASE = Object() SCREAMING_SNAKE_CASE = sample_size SCREAMING_SNAKE_CASE = sample_rate SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE_ , sample_rate=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = diffusers_model.state_dict() SCREAMING_SNAKE_CASE = DiffusionUncond(SCREAMING_SNAKE_CASE_ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE_ )['state_dict'] ) SCREAMING_SNAKE_CASE = orig_model.diffusion_ema.eval() SCREAMING_SNAKE_CASE = orig_model.state_dict() SCREAMING_SNAKE_CASE = rename_orig_weights(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) SCREAMING_SNAKE_CASE = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE_ ) == 0, F'Problem with {renamed_minus_diffusers}' assert all(k.endswith('kernel' ) for k in list(SCREAMING_SNAKE_CASE_ ) ), F'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": SCREAMING_SNAKE_CASE = value.squeeze() SCREAMING_SNAKE_CASE = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 1_00 SCREAMING_SNAKE_CASE = 33 SCREAMING_SNAKE_CASE = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE_ )[:-1] SCREAMING_SNAKE_CASE = get_crash_schedule(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).audios SCREAMING_SNAKE_CASE = sampling.iplms_sample(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {} ) SCREAMING_SNAKE_CASE = generated.clamp(-1 , 1 ) SCREAMING_SNAKE_CASE = (generated - audio).abs().sum() SCREAMING_SNAKE_CASE = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , SCREAMING_SNAKE_CASE_ ) print('Diff max' , SCREAMING_SNAKE_CASE_ ) assert diff_max < 1E-3, F'Diff max: {diff_max} is too much :-/' print(F'Conversion for {model_name} successful!' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() main(args)
113
1
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class __magic_name__ ( _a ): def __init__( self , __snake_case="" , __snake_case="train" ) -> Optional[int]: '''simple docstring''' assert os.path.isdir(snake_case_ ) __a =[] __a =os.listdir(snake_case_ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue __a =os.path.join(snake_case_ , snake_case_ ) if not os.path.isfile(snake_case_ ): continue self.documents.append(snake_case_ ) def __len__( self ) -> Union[str, Any]: '''simple docstring''' return len(self.documents ) def __getitem__( self , __snake_case ) -> Union[str, Any]: '''simple docstring''' __a =self.documents[idx] __a =document_path.split('/' )[-1] with open(snake_case_ , encoding='utf-8' ) as source: __a =source.read() __a =process_story(snake_case_ ) return document_name, story_lines, summary_lines def UpperCamelCase_( _snake_case : Any ): """simple docstring""" __a =list(filter(lambda _snake_case : len(_lowerCAmelCase ) != 0 , [line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it __a =[_add_missing_period(_lowerCAmelCase ) for line in nonempty_lines] # gather article lines __a =[] __a =deque(_lowerCAmelCase ) while True: try: __a =lines.popleft() if element.startswith('@highlight' ): break story_lines.append(_lowerCAmelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines __a =list(filter(lambda _snake_case : not t.startswith('@highlight' ) , _lowerCAmelCase ) ) return story_lines, summary_lines def UpperCamelCase_( _snake_case : Any ): """simple docstring""" __a =[""".""", """!""", """?""", """...""", """'""", """`""", """\"""", """\u2019""", """\u2019""", """)"""] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def UpperCamelCase_( _snake_case : str , _snake_case : int , _snake_case : str ): """simple docstring""" if len(_lowerCAmelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(_lowerCAmelCase )) ) return sequence def UpperCamelCase_( _snake_case : int , _snake_case : Union[str, Any] ): """simple docstring""" __a =torch.ones_like(_lowerCAmelCase ) __a =sequence == pad_token_id __a =0 return mask def UpperCamelCase_( _snake_case : Dict , _snake_case : Tuple , _snake_case : Tuple ): """simple docstring""" __a =[tokenizer.encode(_lowerCAmelCase ) for line in story_lines] __a =[token for sentence in story_lines_token_ids for token in sentence] __a =[tokenizer.encode(_lowerCAmelCase ) for line in summary_lines] __a =[token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def UpperCamelCase_( _snake_case : List[str] , _snake_case : List[str] ): """simple docstring""" __a =[] for sequence in batch: __a =-1 __a =[] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(_lowerCAmelCase ) return torch.tensor(_lowerCAmelCase )
371
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCamelCase : List[str] = logging.get_logger(__name__) enable_full_determinism() class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase): A: Union[str, Any] = UNetaDModel A: Any = """sample""" @property def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Any = 4 UpperCamelCase__ : int = 3 UpperCamelCase__ : Optional[Any] = (32, 32) UpperCamelCase__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : Tuple = torch.tensor([10] ).to(SCREAMING_SNAKE_CASE__ ) return {"sample": noise, "timestep": time_step} @property def UpperCAmelCase__ ( self : int ) -> List[Any]: '''simple docstring''' return (3, 32, 32) @property def UpperCAmelCase__ ( self : Any ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' UpperCamelCase__ : Optional[Any] = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } UpperCamelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase): A: Dict = UNetaDModel A: Optional[int] = """sample""" @property def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : int = 4 UpperCamelCase__ : Optional[Any] = 4 UpperCamelCase__ : Any = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : Optional[Any] = torch.tensor([10] ).to(SCREAMING_SNAKE_CASE__ ) return {"sample": noise, "timestep": time_step} @property def UpperCAmelCase__ ( self : int ) -> Dict: '''simple docstring''' return (4, 32, 32) @property def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' return (4, 32, 32) def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Optional[int] = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } UpperCamelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : Dict ) -> Any: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : int = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Tuple = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : str = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def UpperCAmelCase__ ( self : Optional[int] ) -> str: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=SCREAMING_SNAKE_CASE__ ) model_accelerate.to(SCREAMING_SNAKE_CASE__ ) model_accelerate.eval() UpperCamelCase__ : Dict = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCamelCase__ : Optional[int] = noise.to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : Tuple = torch.tensor([10] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : Dict = model_accelerate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=SCREAMING_SNAKE_CASE__ , low_cpu_mem_usage=SCREAMING_SNAKE_CASE__ ) model_normal_load.to(SCREAMING_SNAKE_CASE__ ) model_normal_load.eval() UpperCamelCase__ : Optional[int] = model_normal_load(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )['''sample'''] assert torch_all_close(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1E-3 ) def UpperCAmelCase__ ( self : Any ) -> str: '''simple docstring''' UpperCamelCase__ : str = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : Optional[Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCamelCase__ : str = noise.to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : str = torch.tensor([10] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): UpperCamelCase__ : Tuple = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample UpperCamelCase__ : Any = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCamelCase__ : Union[str, Any] = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1E-3 ) ) class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase): A: Any = UNetaDModel A: Optional[int] = """sample""" @property def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=(32, 32) ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = 4 UpperCamelCase__ : int = 3 UpperCamelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : Tuple = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ ) return {"sample": noise, "timestep": time_step} @property def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) @property def UpperCAmelCase__ ( self : Any ) -> Any: '''simple docstring''' return (3, 32, 32) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : int = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } UpperCamelCase__ : Dict = self.dummy_input return init_dict, inputs_dict @slow def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : Optional[Any] = self.dummy_input UpperCamelCase__ : Optional[Any] = floats_tensor((4, 3) + (256, 256) ).to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : Optional[int] = noise UpperCamelCase__ : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) assert image is not None, "Make sure output is not None" @slow def UpperCAmelCase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCamelCase__ : Tuple = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : Optional[Any] = 4 UpperCamelCase__ : Optional[int] = 3 UpperCamelCase__ : int = (256, 256) UpperCamelCase__ : Union[str, Any] = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : int = torch.tensor(batch_size * [1E-4] ).to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): UpperCamelCase__ : int = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample UpperCamelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase__ : Dict = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1E-2 ) ) def UpperCAmelCase__ ( self : Tuple ) -> Any: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : List[Any] = 4 UpperCamelCase__ : Tuple = 3 UpperCamelCase__ : int = (32, 32) UpperCamelCase__ : Any = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) UpperCamelCase__ : List[str] = torch.tensor(batch_size * [1E-4] ).to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample UpperCamelCase__ : Union[str, Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase__ : List[str] = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1E-2 ) ) def UpperCAmelCase__ ( self : str ) -> int: '''simple docstring''' pass
146
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class _lowercase ( datasets.BuilderConfig ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None class _lowercase ( datasets.ArrowBasedBuilder ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = PandasConfig def a ( self : Union[str, Any] ) -> int: return datasets.DatasetInfo(features=self.config.features ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE__ , (str, list, tuple) ): __lowerCAmelCase = data_files if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowerCAmelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowerCAmelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE__ , gen_kwargs={"""files""": files} ) ) return splits def a ( self : Any , SCREAMING_SNAKE_CASE__ : pa.Table ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __lowerCAmelCase = table_cast(SCREAMING_SNAKE_CASE__ , self.config.features.arrow_schema ) return pa_table def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: for i, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE__ ) ): with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as f: __lowerCAmelCase = pa.Table.from_pandas(pd.read_pickle(SCREAMING_SNAKE_CASE__ ) ) yield i, self._cast_table(SCREAMING_SNAKE_CASE__ )
229
0
import os _UpperCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCamelCase_( snake_case__: str ) -> int: UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 while index < len(snake_case__ ) - 1: UpperCAmelCase__ = SYMBOLS[numerals[index]] UpperCAmelCase__ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCamelCase_( snake_case__: int ) -> str: UpperCAmelCase__ = '' UpperCAmelCase__ = num // 10_00 numerals += m_count * "M" num %= 10_00 UpperCAmelCase__ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 UpperCAmelCase__ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCamelCase_( snake_case__: str = "/p089_roman.txt" ) -> int: UpperCAmelCase__ = 0 with open(os.path.dirname(snake_case__ ) + roman_numerals_filename ) as filea: UpperCAmelCase__ = filea.readlines() for line in lines: UpperCAmelCase__ = line.strip() UpperCAmelCase__ = parse_roman_numerals(snake_case__ ) UpperCAmelCase__ = generate_roman_numerals(snake_case__ ) savings += len(snake_case__ ) - len(snake_case__ ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
335
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 a_ = sys.version_info >= (3, 10) def __lowercase ( lowerCamelCase : Union[str, Any]=None , lowerCamelCase : Optional[int]=None ): return field(default_factory=lambda: default , metadata=snake_case_ ) @dataclass class _lowercase : lowercase = 4_2 lowercase = 4_2 lowercase = 4_2 lowercase = 4_2 @dataclass class _lowercase : lowercase = 4_2 lowercase = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class _lowercase : lowercase = False lowercase = True lowercase = None class _lowercase ( A__ ): lowercase = 'titi' lowercase = 'toto' class _lowercase ( A__ ): lowercase = 'titi' lowercase = 'toto' lowercase = 4_2 @dataclass class _lowercase : lowercase = 'toto' def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Any: """simple docstring""" UpperCamelCase_ : int = BasicEnum(self.foo ) @dataclass class _lowercase : lowercase = 'toto' def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : Dict = MixedTypeEnum(self.foo ) @dataclass class _lowercase : lowercase = None lowercase = field(default=A__ , metadata={'help': 'help message'} ) lowercase = None lowercase = list_field(default=[] ) lowercase = list_field(default=[] ) @dataclass class _lowercase : lowercase = list_field(default=[] ) lowercase = list_field(default=[1, 2, 3] ) lowercase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) lowercase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _lowercase : lowercase = field() lowercase = field() lowercase = field() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ : Dict = BasicEnum(self.required_enum ) @dataclass class _lowercase : lowercase = 4_2 lowercase = field() lowercase = None lowercase = field(default='toto' , metadata={'help': 'help message'} ) lowercase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class _lowercase : lowercase = False lowercase = True lowercase = None @dataclass class _lowercase : lowercase = None lowercase = field(default=A__ , metadata={'help': 'help message'} ) lowercase = None lowercase = list_field(default=[] ) lowercase = list_field(default=[] ) class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : argparse.ArgumentParser , snake_case : argparse.ArgumentParser ) -> Dict: """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCamelCase_ : Dict = {k: v for k, v in vars(lowerCamelCase_ ).items() if k != 'container'} UpperCamelCase_ : int = {k: v for k, v in vars(lowerCamelCase_ ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowerCamelCase_ ) and yy.get('choices' , lowerCamelCase_ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowerCamelCase_ ) , yy['type'](lowerCamelCase_ ) ) del xx["type"], yy["type"] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: """simple docstring""" UpperCamelCase_ : List[str] = HfArgumentParser(lowerCamelCase_ ) UpperCamelCase_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowerCamelCase_ , required=lowerCamelCase_ ) expected.add_argument('--bar' , type=lowerCamelCase_ , required=lowerCamelCase_ ) expected.add_argument('--baz' , type=lowerCamelCase_ , required=lowerCamelCase_ ) expected.add_argument('--flag' , type=lowerCamelCase_ , default=lowerCamelCase_ , const=lowerCamelCase_ , nargs='?' ) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase_ : int = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] (UpperCamelCase_ ) : List[str] = parser.parse_args_into_dataclasses(lowerCamelCase_ , look_for_args_file=lowerCamelCase_ ) self.assertFalse(example.flag ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : Optional[Any] = HfArgumentParser(lowerCamelCase_ ) UpperCamelCase_ : List[Any] = argparse.ArgumentParser() expected.add_argument('--foo' , default=4_2 , type=lowerCamelCase_ ) expected.add_argument('--baz' , default='toto' , type=lowerCamelCase_ , help='help message' ) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict: """simple docstring""" UpperCamelCase_ : Dict = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowerCamelCase_ , default=lowerCamelCase_ , const=lowerCamelCase_ , nargs='?' ) expected.add_argument('--baz' , type=lowerCamelCase_ , default=lowerCamelCase_ , const=lowerCamelCase_ , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowerCamelCase_ , dest='baz' ) expected.add_argument('--opt' , type=lowerCamelCase_ , default=lowerCamelCase_ ) UpperCamelCase_ : str = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCamelCase_ ) for dataclass_type in dataclass_types: UpperCamelCase_ : List[Any] = HfArgumentParser(lowerCamelCase_ ) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase_ : Optional[Any] = parser.parse_args([] ) self.assertEqual(lowerCamelCase_ , Namespace(foo=lowerCamelCase_ , baz=lowerCamelCase_ , opt=lowerCamelCase_ ) ) UpperCamelCase_ : int = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(lowerCamelCase_ , Namespace(foo=lowerCamelCase_ , baz=lowerCamelCase_ , opt=lowerCamelCase_ ) ) UpperCamelCase_ : Tuple = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(lowerCamelCase_ , Namespace(foo=lowerCamelCase_ , baz=lowerCamelCase_ , opt=lowerCamelCase_ ) ) UpperCamelCase_ : int = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(lowerCamelCase_ , Namespace(foo=lowerCamelCase_ , baz=lowerCamelCase_ , opt=lowerCamelCase_ ) ) UpperCamelCase_ : List[str] = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(lowerCamelCase_ , Namespace(foo=lowerCamelCase_ , baz=lowerCamelCase_ , opt=lowerCamelCase_ ) ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = HfArgumentParser(lowerCamelCase_ ) UpperCamelCase_ : Any = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 4_2] , type=make_choice_type_function(['titi', 'toto', 4_2] ) , ) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase_ : int = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) UpperCamelCase_ : List[str] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCamelCase_ : int = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) UpperCamelCase_ : Tuple = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCamelCase_ : Union[str, Any] = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 4_2 ) UpperCamelCase_ : int = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]: """simple docstring""" @dataclass class _lowercase : lowercase = 'toto' UpperCamelCase_ : Optional[int] = HfArgumentParser(lowerCamelCase_ ) UpperCamelCase_ : str = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 4_2) , type=make_choice_type_function(['titi', 'toto', 4_2] ) , ) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase_ : Optional[Any] = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) UpperCamelCase_ : List[str] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) UpperCamelCase_ : int = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 4_2 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ : List[Any] = HfArgumentParser(lowerCamelCase_ ) UpperCamelCase_ : Tuple = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowerCamelCase_ ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowerCamelCase_ ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowerCamelCase_ ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowerCamelCase_ ) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase_ : Optional[Any] = parser.parse_args([] ) self.assertEqual( lowerCamelCase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCamelCase_ : int = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(lowerCamelCase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : str = argparse.ArgumentParser() expected.add_argument('--foo' , default=lowerCamelCase_ , type=lowerCamelCase_ ) expected.add_argument('--bar' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='help message' ) expected.add_argument('--baz' , default=lowerCamelCase_ , type=lowerCamelCase_ ) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowerCamelCase_ ) expected.add_argument('--des' , nargs='+' , default=[] , type=lowerCamelCase_ ) UpperCamelCase_ : Union[str, Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCamelCase_ ) for dataclass_type in dataclass_types: UpperCamelCase_ : List[Any] = HfArgumentParser(lowerCamelCase_ ) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase_ : Optional[int] = parser.parse_args([] ) self.assertEqual(lowerCamelCase_ , Namespace(foo=lowerCamelCase_ , bar=lowerCamelCase_ , baz=lowerCamelCase_ , ces=[] , des=[] ) ) UpperCamelCase_ : str = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(lowerCamelCase_ , Namespace(foo=1_2 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> str: """simple docstring""" UpperCamelCase_ : Union[str, Any] = HfArgumentParser(lowerCamelCase_ ) UpperCamelCase_ : Optional[int] = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowerCamelCase_ , required=lowerCamelCase_ ) expected.add_argument('--required_str' , type=lowerCamelCase_ , required=lowerCamelCase_ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=lowerCamelCase_ , ) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Optional[int] = HfArgumentParser(lowerCamelCase_ ) UpperCamelCase_ : Dict = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowerCamelCase_ , required=lowerCamelCase_ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=lowerCamelCase_ , ) expected.add_argument('--opt' , type=lowerCamelCase_ , default=lowerCamelCase_ ) expected.add_argument('--baz' , default='toto' , type=lowerCamelCase_ , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowerCamelCase_ ) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : Optional[int] = HfArgumentParser(lowerCamelCase_ ) UpperCamelCase_ : List[Any] = { 'foo': 1_2, 'bar': 3.14, 'baz': '42', 'flag': True, } UpperCamelCase_ : Tuple = parser.parse_dict(lowerCamelCase_ )[0] UpperCamelCase_ : int = BasicExample(**lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict: """simple docstring""" UpperCamelCase_ : List[Any] = HfArgumentParser(lowerCamelCase_ ) UpperCamelCase_ : Tuple = { 'foo': 1_2, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 4_2, } self.assertRaises(lowerCamelCase_ , parser.parse_dict , lowerCamelCase_ , allow_extra_keys=lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Dict = HfArgumentParser(lowerCamelCase_ ) UpperCamelCase_ : Union[str, Any] = { 'foo': 1_2, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ : Tuple = os.path.join(lowerCamelCase_ , 'temp_json' ) os.mkdir(lowerCamelCase_ ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase_ : Union[str, Any] = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] UpperCamelCase_ : int = BasicExample(**lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = HfArgumentParser(lowerCamelCase_ ) UpperCamelCase_ : Dict = { 'foo': 1_2, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ : List[Any] = os.path.join(lowerCamelCase_ , 'temp_yaml' ) os.mkdir(lowerCamelCase_ ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase_ : int = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] UpperCamelCase_ : str = BasicExample(**lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ : List[Any] = HfArgumentParser(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ )
175
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCAmelCase_ ( ) ->Tuple: lowerCamelCase__ : Dict =_ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCamelCase__ : int =get_sagemaker_input() else: lowerCamelCase__ : List[str] =get_cluster_input() return config def lowerCAmelCase_ ( snake_case_ : List[Any]=None ) ->List[str]: if subparsers is not None: lowerCamelCase__ : Union[str, Any] =subparsers.add_parser('config' , description=snake_case_ ) else: lowerCamelCase__ : Tuple =argparse.ArgumentParser('Accelerate config command' , description=snake_case_ ) parser.add_argument( '--config_file' , default=snake_case_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowerCAmelCase_ ( snake_case_ : str ) ->List[Any]: lowerCamelCase__ : Optional[int] =get_user_input() if args.config_file is not None: lowerCamelCase__ : Dict =args.config_file else: if not os.path.isdir(snake_case_ ): os.makedirs(snake_case_ ) lowerCamelCase__ : Optional[Any] =default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(snake_case_ ) else: config.to_yaml_file(snake_case_ ) print(f"""accelerate configuration saved at {config_file}""" ) def lowerCAmelCase_ ( ) ->Optional[Any]: lowerCamelCase__ : Tuple =config_command_parser() lowerCamelCase__ : Tuple =parser.parse_args() config_command(snake_case_ ) if __name__ == "__main__": main()
126
0
from __future__ import annotations from fractions import Fraction def A_ ( _UpperCAmelCase , _UpperCAmelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = [] SCREAMING_SNAKE_CASE_: Optional[int] = 11 SCREAMING_SNAKE_CASE_: Dict = int("1" + "0" * digit_len ) for num in range(_UpperCAmelCase , _UpperCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_UpperCAmelCase , _UpperCAmelCase ): solutions.append(f"{num}/{den}" ) den += 1 num += 1 SCREAMING_SNAKE_CASE_: int = 10 return solutions def A_ ( _UpperCAmelCase = 2 ): SCREAMING_SNAKE_CASE_: Dict = 1.0 for fraction in fraction_list(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = Fraction(_UpperCAmelCase ) result *= frac.denominator / frac.numerator return int(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
360
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Dict = StableDiffusionInpaintPipeline _UpperCAmelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS _UpperCAmelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _UpperCAmelCase : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _UpperCAmelCase : Optional[int] = frozenset([] ) def _SCREAMING_SNAKE_CASE ( self : int): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") SCREAMING_SNAKE_CASE_: List[str] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=0): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched SCREAMING_SNAKE_CASE_: Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = image.cpu().permute(0 , 2 , 3 , 1)[0] SCREAMING_SNAKE_CASE_: Tuple = Image.fromarray(np.uinta(lowerCAmelCase__)).convert("RGB").resize((64, 64)) SCREAMING_SNAKE_CASE_: List[str] = Image.fromarray(np.uinta(image + 4)).convert("RGB").resize((64, 64)) if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Tuple = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_: int = self.get_dummy_components() SCREAMING_SNAKE_CASE_: int = StableDiffusionInpaintPipeline(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = self.get_dummy_inputs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = sd_pipe(**lowerCAmelCase__).images SCREAMING_SNAKE_CASE_: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: Tuple = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : List[str]): super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : str): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png") SCREAMING_SNAKE_CASE_: int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png") SCREAMING_SNAKE_CASE_: Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy") SCREAMING_SNAKE_CASE_: List[str] = "stabilityai/stable-diffusion-2-inpainting" SCREAMING_SNAKE_CASE_: Any = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase__ , safety_checker=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_: str = "Face of a yellow cat, high resolution, sitting on a park bench" SCREAMING_SNAKE_CASE_: Optional[int] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type="np" , ) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9E-3 def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png") SCREAMING_SNAKE_CASE_: List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png") SCREAMING_SNAKE_CASE_: Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy") SCREAMING_SNAKE_CASE_: str = "stabilityai/stable-diffusion-2-inpainting" SCREAMING_SNAKE_CASE_: Dict = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__ , torch_dtype=torch.floataa , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_: List[str] = "Face of a yellow cat, high resolution, sitting on a park bench" SCREAMING_SNAKE_CASE_: Tuple = torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Dict = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type="np" , ) SCREAMING_SNAKE_CASE_: Any = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5E-1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE_: Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png") SCREAMING_SNAKE_CASE_: Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png") SCREAMING_SNAKE_CASE_: List[str] = "stabilityai/stable-diffusion-2-inpainting" SCREAMING_SNAKE_CASE_: Tuple = PNDMScheduler.from_pretrained(lowerCAmelCase__ , subfolder="scheduler") SCREAMING_SNAKE_CASE_: Any = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_: Any = "Face of a yellow cat, high resolution, sitting on a park bench" SCREAMING_SNAKE_CASE_: Any = torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
127
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = SpeechTaTokenizer lowercase__ = False lowercase__ = True def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = SpeechTaTokenizer(__a) _UpperCamelCase = AddedToken('''<mask>''' , lstrip=__a , rstrip=__a) _UpperCamelCase = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token}) tokenizer.add_tokens(['''<ctc_blank>''']) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCAmelCase ( self , __a , __a=False , __a=20 , __a=5) -> List[str]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_input_output_texts(__a) _UpperCamelCase = tokenizer.encode(__a , add_special_tokens=__a) _UpperCamelCase = tokenizer.decode(__a , clean_up_tokenization_spaces=__a) return text, ids def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = '''<pad>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a) , __a) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a) , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<s>''') self.assertEqual(vocab_keys[1] , '''<pad>''') self.assertEqual(vocab_keys[-4] , '''œ''') self.assertEqual(vocab_keys[-2] , '''<mask>''') self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''') self.assertEqual(len(__a) , 81) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.get_tokenizers(do_lower_case=__a) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}'''): _UpperCamelCase = tokenizer.vocab_size _UpperCamelCase = len(__a) self.assertNotEqual(__a , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _UpperCamelCase = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] _UpperCamelCase = tokenizer.add_tokens(__a) _UpperCamelCase = tokenizer.vocab_size _UpperCamelCase = len(__a) self.assertNotEqual(__a , 0) self.assertEqual(__a , __a) self.assertEqual(__a , len(__a)) self.assertEqual(__a , all_size + len(__a)) _UpperCamelCase = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__a) self.assertGreaterEqual(len(__a) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) _UpperCamelCase = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} _UpperCamelCase = tokenizer.add_special_tokens(__a) _UpperCamelCase = tokenizer.vocab_size _UpperCamelCase = len(__a) self.assertNotEqual(__a , 0) self.assertEqual(__a , __a) self.assertEqual(__a , len(__a)) self.assertEqual(__a , all_size_a + len(__a)) _UpperCamelCase = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__a) self.assertGreaterEqual(len(__a) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> int: '''simple docstring''' pass def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = tokenizer.tokenize('''This is a test''') # fmt: off self.assertListEqual(__a , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t''']) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__a) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( __a , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.''']) _UpperCamelCase = tokenizer.convert_tokens_to_ids(__a) # fmt: off self.assertListEqual(__a , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26]) # fmt: on _UpperCamelCase = tokenizer.convert_ids_to_tokens(__a) self.assertListEqual( __a , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.''']) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' # Use custom sequence because this tokenizer does not handle numbers. _UpperCamelCase = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off _UpperCamelCase = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=__a , )
194
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=5 ) -> Union[str, Any]: """simple docstring""" assert masked_input.count('''<mask>''' ) == 1 _UpperCamelCase = torch.tensor(tokenizer.encode(__snake_case, add_special_tokens=__snake_case ) ).unsqueeze(0 ) # Batch size 1 _UpperCamelCase = model(__snake_case )[0] # The last hidden-state is the first element of the output tuple _UpperCamelCase = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _UpperCamelCase = logits[0, masked_index, :] _UpperCamelCase = logits.softmax(dim=0 ) _UpperCamelCase , _UpperCamelCase = prob.topk(k=__snake_case, dim=0 ) _UpperCamelCase = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__snake_case ) )] ) _UpperCamelCase = tokenizer.mask_token _UpperCamelCase = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): _UpperCamelCase = predicted_token_bpe.replace('''\u2581''', ''' ''' ) if " {0}".format(__snake_case ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(__snake_case ), __snake_case ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__snake_case, __snake_case ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _a = CamembertTokenizer.from_pretrained("""camembert-base""") _a = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() _a = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
194
1
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 ): _UpperCAmelCase , _UpperCAmelCase : int = [], [] _UpperCAmelCase : Union[str, Any] = list(zip(__lowerCAmelCase , __lowerCAmelCase ) ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = sorted_examples[0] def is_too_big(__lowerCAmelCase ): return tok(__lowerCAmelCase , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): _UpperCAmelCase : Optional[Any] = new_src + " " + src _UpperCAmelCase : Optional[int] = new_tgt + " " + tgt if is_too_big(__lowerCAmelCase ) or is_too_big(__lowerCAmelCase ): # cant fit, finalize example finished_src.append(__lowerCAmelCase ) finished_tgt.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : str = src, tgt else: # can fit, keep adding _UpperCAmelCase , _UpperCAmelCase : Any = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__lowerCAmelCase ) finished_tgt.append(__lowerCAmelCase ) return finished_src, finished_tgt def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[int] = Path(__lowerCAmelCase ) save_path.mkdir(exist_ok=__lowerCAmelCase ) for split in ["train"]: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" _UpperCAmelCase : List[Any] = [x.rstrip() for x in Path(__lowerCAmelCase ).open().readlines()] _UpperCAmelCase : Optional[int] = [x.rstrip() for x in Path(__lowerCAmelCase ).open().readlines()] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = pack_examples(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) print(F"""packed {split} split from {len(__lowerCAmelCase )} examples -> {len(__lowerCAmelCase )}.""" ) Path(save_path / F"""{split}.source""" ).open("w" ).write("\n".join(__lowerCAmelCase ) ) Path(save_path / F"""{split}.target""" ).open("w" ).write("\n".join(__lowerCAmelCase ) ) for split in ["val", "test"]: _UpperCAmelCase , _UpperCAmelCase : Dict = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(__lowerCAmelCase , save_path / F"""{split}.source""" ) shutil.copyfile(__lowerCAmelCase , save_path / F"""{split}.target""" ) def __lowerCAmelCase (): _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=__lowerCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=__lowerCAmelCase , default=128 ) parser.add_argument("--data_dir" , type=__lowerCAmelCase ) parser.add_argument("--save_path" , type=__lowerCAmelCase ) _UpperCAmelCase : List[Any] = parser.parse_args() _UpperCAmelCase : int = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__lowerCAmelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
322
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = 'RegNetConfig' # Base docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ = 'facebook/regnet-y-040' lowerCamelCase__ = 'tabby, tabby cat' lowerCamelCase__ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : Optional[str] = "relu" , **lowerCamelCase__ : Tuple , ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCAmelCase : Dict = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=lowerCamelCase__ , strides=lowerCamelCase__ , padding="VALID" , groups=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" , ) _UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) _UpperCAmelCase : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase : List[str] = self.convolution(self.padding(lowerCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.normalization(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = config.num_channels _UpperCAmelCase : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = shape_list(lowerCamelCase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCAmelCase : Optional[Any] = tf.transpose(lowerCamelCase__ , perm=(0, 2, 3, 1) ) _UpperCAmelCase : List[Any] = self.embedder(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : int ) ->Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : int = tf.keras.layers.ConvaD( filters=lowerCamelCase__ , kernel_size=1 , strides=lowerCamelCase__ , use_bias=lowerCamelCase__ , name="convolution" ) _UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False ) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowerCamelCase__ ) , training=lowerCamelCase__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) _UpperCAmelCase : int = [ tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=lowerCamelCase__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.pooler(lowerCamelCase__ ) for layer_module in self.attention: _UpperCAmelCase : str = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 _UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : List[str] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCAmelCase : Optional[int] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.2" ), ] _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = hidden_state for layer_module in self.layers: _UpperCAmelCase : List[Any] = layer_module(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : List[Any] = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) _UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(lowerCamelCase__ , stride=lowerCamelCase__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) _UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( lowerCamelCase__ , stride=lowerCamelCase__ , groups=lowerCamelCase__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(lowerCamelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ , name="layer.3" ), ] _UpperCAmelCase : int = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : str ) ->Any: '''simple docstring''' _UpperCAmelCase : int = hidden_state for layer_module in self.layers: _UpperCAmelCase : Tuple = layer_module(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self.shortcut(lowerCamelCase__ ) hidden_state += residual _UpperCAmelCase : Tuple = self.activation(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int = 2 , lowerCamelCase__ : int = 2 , **lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _UpperCAmelCase : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , name="layers.0" ), *[layer(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] ) ->List[str]: '''simple docstring''' for layer_module in self.layers: _UpperCAmelCase : Optional[int] = layer_module(lowerCamelCase__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Dict , lowerCamelCase__ : RegNetConfig , **lowerCamelCase__ : int ) ->Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) _UpperCAmelCase : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCamelCase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ , name=F"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True ) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' _UpperCAmelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _UpperCAmelCase : Dict = stage_module(lowerCamelCase__ ) if output_hidden_states: _UpperCAmelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase : Optional[Any] = RegNetConfig def __init__( self : Union[str, Any] , lowerCamelCase__ : Any , **lowerCamelCase__ : str ) ->int: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = config _UpperCAmelCase : Union[str, Any] = TFRegNetEmbeddings(lowerCamelCase__ , name="embedder" ) _UpperCAmelCase : Union[str, Any] = TFRegNetEncoder(lowerCamelCase__ , name="encoder" ) _UpperCAmelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCamelCase__ , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.embedder(lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : str = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = encoder_outputs[0] _UpperCAmelCase : Dict = self.pooler(lowerCamelCase__ ) # Change to NCHW output format have uniformity in the modules _UpperCAmelCase : Union[str, Any] = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) _UpperCAmelCase : Tuple = tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCAmelCase : List[str] = tuple([tf.transpose(lowerCamelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = RegNetConfig lowerCAmelCase : Tuple = "regnet" lowerCAmelCase : Union[str, Any] = "pixel_values" @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} lowerCamelCase__ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Any , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Any=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( pixel_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): def __init__( self : str , lowerCamelCase__ : RegNetConfig , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Union[str, Any] ) ->Any: '''simple docstring''' super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : Dict = TFRegNetMainLayer(lowerCamelCase__ , name="regnet" ) # classification head _UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : tf.Tensor = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' _UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.regnet( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : Dict = self.classifier[0](lowerCamelCase__ ) _UpperCAmelCase : str = self.classifier[1](lowerCamelCase__ ) _UpperCAmelCase : Tuple = None if labels is None else self.hf_compute_loss(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) if not return_dict: _UpperCAmelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states )
322
1
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Dict = "AutoImageProcessor" SCREAMING_SNAKE_CASE_ : Optional[int] = "AutoTokenizer" def __init__( self : Optional[Any] , A : Any=None , A : List[Any]=None , **A : List[str] ) -> Optional[int]: lowercase_ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , A , ) lowercase_ : Optional[Any] = kwargs.pop('''feature_extractor''' ) lowercase_ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(A , A ) lowercase_ : List[Any] = self.image_processor lowercase_ : int = False def __call__( self : Tuple , *A : Optional[Any] , **A : List[str] ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A , **A ) lowercase_ : int = kwargs.pop('''images''' , A ) lowercase_ : List[str] = kwargs.pop('''text''' , A ) if len(A ) > 0: lowercase_ : List[Any] = args[0] lowercase_ : Optional[int] = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowercase_ : str = self.image_processor(A , *A , **A ) if text is not None: lowercase_ : Dict = self.tokenizer(A , **A ) if text is None: return inputs elif images is None: return encodings else: lowercase_ : int = encodings['''input_ids'''] return inputs def A ( self : int , *A : Tuple , **A : Optional[Any] ) -> List[str]: return self.tokenizer.batch_decode(*A , **A ) def A ( self : Any , *A : List[str] , **A : Optional[Any] ) -> Optional[Any]: return self.tokenizer.decode(*A , **A ) @contextmanager def A ( self : Dict ) -> Union[str, Any]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowercase_ : Union[str, Any] = True lowercase_ : Optional[int] = self.tokenizer yield lowercase_ : Dict = self.image_processor lowercase_ : List[Any] = False def A ( self : Any , A : Optional[Any] , A : Optional[int]=False , A : Any=None ) -> Dict: if added_vocab is None: lowercase_ : Tuple = self.tokenizer.get_added_vocab() lowercase_ : Optional[int] = {} while tokens: lowercase_ : int = re.search(R'''<s_(.*?)>''' , A , re.IGNORECASE ) if start_token is None: break lowercase_ : Tuple = start_token.group(1 ) lowercase_ : Optional[Any] = re.search(RF'''</s_{key}>''' , A , re.IGNORECASE ) lowercase_ : int = start_token.group() if end_token is None: lowercase_ : int = tokens.replace(A , '''''' ) else: lowercase_ : Any = end_token.group() lowercase_ : int = re.escape(A ) lowercase_ : Tuple = re.escape(A ) lowercase_ : Optional[int] = re.search(F'''{start_token_escaped}(.*?){end_token_escaped}''' , A , re.IGNORECASE ) if content is not None: lowercase_ : int = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowercase_ : List[Any] = self.tokenajson(A , is_inner_value=A , added_vocab=A ) if value: if len(A ) == 1: lowercase_ : Optional[int] = value[0] lowercase_ : str = value else: # leaf nodes lowercase_ : int = [] for leaf in content.split(R'''<sep/>''' ): lowercase_ : Optional[int] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowercase_ : List[Any] = leaf[1:-2] # for categorical special tokens output[key].append(A ) if len(output[key] ) == 1: lowercase_ : Dict = output[key][0] lowercase_ : int = tokens[tokens.find(A ) + len(A ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=A , added_vocab=A ) if len(A ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def A ( self : Any ) -> str: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , A , ) return self.image_processor_class @property def A ( self : Optional[int] ) -> Union[str, Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , A , ) return self.image_processor
33
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase): @slow def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids SCREAMING_SNAKE_CASE : List[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ).loss SCREAMING_SNAKE_CASE : int = -tf.math.reduce_mean(UpperCamelCase__ ).numpy() SCREAMING_SNAKE_CASE : List[str] = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
182
0
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ): '''simple docstring''' lowerCAmelCase__ :Tuple = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } lowerCAmelCase__ :Optional[int] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCAmelCase__ :Any = token_dict['token'] lowerCAmelCase__ :int = Tokenizer(Unigram() ) lowerCAmelCase__ :Tuple = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) lowerCAmelCase__ :Any = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) lowerCAmelCase__ :List[str] = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = TemplateProcessing( single=F"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) lowerCAmelCase__ :Optional[int] = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = 8_0_0_0 , __UpperCAmelCase = True , ): '''simple docstring''' lowerCAmelCase__ :int = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :int = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase ) self.add_unk_id() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = 8_0_0_0 , __UpperCAmelCase = True , ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase ) self.add_unk_id() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = json.loads(self._tokenizer.to_str() ) lowerCAmelCase__ :List[str] = self.special_tokens['unk']['id'] lowerCAmelCase__ :Union[str, Any] = Tokenizer.from_str(json.dumps(__UpperCAmelCase ) )
369
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A = logging.get_logger(__name__) __A = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( a , a ): """simple docstring""" __magic_name__ :int = """swin""" __magic_name__ :Tuple = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __UpperCAmelCase=2_2_4 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=9_6 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[3, 6, 1_2, 2_4] , __UpperCAmelCase=7 , __UpperCAmelCase=4.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=3_2 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ :Any = image_size lowerCAmelCase__ :List[Any] = patch_size lowerCAmelCase__ :Optional[int] = num_channels lowerCAmelCase__ :str = embed_dim lowerCAmelCase__ :Optional[int] = depths lowerCAmelCase__ :List[str] = len(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = num_heads lowerCAmelCase__ :List[Any] = window_size lowerCAmelCase__ :List[Any] = mlp_ratio lowerCAmelCase__ :int = qkv_bias lowerCAmelCase__ :Optional[int] = hidden_dropout_prob lowerCAmelCase__ :int = attention_probs_dropout_prob lowerCAmelCase__ :List[Any] = drop_path_rate lowerCAmelCase__ :Any = hidden_act lowerCAmelCase__ :Dict = use_absolute_embeddings lowerCAmelCase__ :int = layer_norm_eps lowerCAmelCase__ :Dict = initializer_range lowerCAmelCase__ :int = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase__ :str = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) ) lowerCAmelCase__ :str = ['stem'] + [F"stage{idx}" for idx in range(1 , len(__UpperCAmelCase ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names ) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :int = version.parse("""1.11""" ) @property def snake_case ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case ( self ): '''simple docstring''' return 1E-4
254
0
"""simple docstring""" def __magic_name__ ( lowercase ): if n_term == "": return [] SCREAMING_SNAKE_CASE_: list =[] for temp in range(int(lowercase ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": _UpperCAmelCase = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
173
"""simple docstring""" from __future__ import annotations import numpy as np def __magic_name__ ( lowercase ): return np.maximum(0 , lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
173
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCamelCase__ : '''simple docstring''' def __init__( self :Dict , a :Any , a :int=1_3 , a :List[str]=7 , a :List[str]=True , a :Any=True , a :Optional[Any]=False , a :Optional[int]=True , a :str=9_9 , a :Dict=3_2 , a :Optional[int]=5 , a :int=4 , a :str=3_7 , a :int="gelu" , a :Any=0.1 , a :Optional[int]=0.1 , a :Optional[int]=5_1_2 , a :Tuple=1_6 , a :Any=2 , a :str=0.02 , a :Optional[Any]=3 , a :Tuple=4 , a :Optional[Any]=None , ) -> Tuple: __UpperCamelCase : List[Any] = parent __UpperCamelCase : List[Any] = batch_size __UpperCamelCase : int = seq_length __UpperCamelCase : Union[str, Any] = is_training __UpperCamelCase : Union[str, Any] = use_input_mask __UpperCamelCase : Optional[int] = use_token_type_ids __UpperCamelCase : str = use_labels __UpperCamelCase : int = vocab_size __UpperCamelCase : Optional[int] = hidden_size __UpperCamelCase : Optional[Any] = num_hidden_layers __UpperCamelCase : Dict = num_attention_heads __UpperCamelCase : Union[str, Any] = intermediate_size __UpperCamelCase : Union[str, Any] = hidden_act __UpperCamelCase : Optional[int] = hidden_dropout_prob __UpperCamelCase : Any = attention_probs_dropout_prob __UpperCamelCase : Union[str, Any] = max_position_embeddings __UpperCamelCase : Any = type_vocab_size __UpperCamelCase : Dict = type_sequence_label_size __UpperCamelCase : Tuple = initializer_range __UpperCamelCase : Optional[int] = num_labels __UpperCamelCase : str = num_choices __UpperCamelCase : Optional[int] = scope def _lowerCamelCase ( self :List[Any] ) -> List[Any]: __UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : Tuple = None if self.use_input_mask: __UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : List[str] = None if self.use_token_type_ids: __UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : str = None __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Tuple = None if self.use_labels: __UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self :List[str] ) -> List[str]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self :Optional[Any] , a :Optional[int] , a :Dict , a :Optional[int] , a :Tuple , a :Any , a :Optional[Any] , a :List[str] ) -> Tuple: __UpperCamelCase : Optional[Any] = LlamaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __UpperCamelCase : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ ) __UpperCamelCase : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self :Any , a :Optional[Any] , a :Any , a :List[str] , a :Any , a :List[Any] , a :Union[str, Any] , a :str , a :List[str] , a :int , ) -> Union[str, Any]: __UpperCamelCase : Dict = True __UpperCamelCase : Optional[int] = LlamaModel(snake_case_ ) model.to(snake_case_ ) model.eval() __UpperCamelCase : Dict = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , ) __UpperCamelCase : List[str] = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , ) __UpperCamelCase : int = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self :List[str] , a :List[str] , a :Optional[Any] , a :Tuple , a :Tuple , a :int , a :List[str] , a :Tuple , a :Tuple , a :Optional[Any] , ) -> Optional[Any]: __UpperCamelCase : Tuple = LlamaForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() __UpperCamelCase : Dict = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self :str , a :str , a :Any , a :List[Any] , a :Union[str, Any] , a :Tuple , a :List[Any] , a :Union[str, Any] , a :int , a :Any , ) -> Union[str, Any]: __UpperCamelCase : Union[str, Any] = True __UpperCamelCase : List[Any] = True __UpperCamelCase : Tuple = LlamaForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() # first forward pass __UpperCamelCase : List[Any] = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , use_cache=snake_case_ , ) __UpperCamelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCamelCase : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase : Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCamelCase : Dict = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , output_hidden_states=snake_case_ , )["""hidden_states"""][0] __UpperCamelCase : List[str] = model( snake_case_ , attention_mask=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , past_key_values=snake_case_ , output_hidden_states=snake_case_ , )["""hidden_states"""][0] # select random slice __UpperCamelCase : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def _lowerCamelCase ( self :Tuple ) -> Tuple: __UpperCamelCase : List[str] = self.prepare_config_and_inputs() ( __UpperCamelCase ) : Tuple = config_and_inputs __UpperCamelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( _a , _a , _a , unittest.TestCase): '''simple docstring''' _A = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _A = (LlamaForCausalLM,) if is_torch_available() else () _A = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) _A = False _A = False def _lowerCamelCase ( self :List[Any] ) -> Union[str, Any]: __UpperCamelCase : Optional[int] = LlamaModelTester(self ) __UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def _lowerCamelCase ( self :Any ) -> int: self.config_tester.run_common_tests() def _lowerCamelCase ( self :Union[str, Any] ) -> str: __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def _lowerCamelCase ( self :List[Any] ) -> int: __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase : List[str] = type self.model_tester.create_and_check_model(*snake_case_ ) def _lowerCamelCase ( self :str ) -> Optional[int]: __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Dict = 3 __UpperCamelCase : List[Any] = input_dict["""input_ids"""] __UpperCamelCase : Optional[int] = input_ids.ne(1 ).to(snake_case_ ) __UpperCamelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase : List[Any] = LlamaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __UpperCamelCase : int = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self :List[str] ) -> Tuple: __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Dict = 3 __UpperCamelCase : List[Any] = """single_label_classification""" __UpperCamelCase : str = input_dict["""input_ids"""] __UpperCamelCase : Optional[Any] = input_ids.ne(1 ).to(snake_case_ ) __UpperCamelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase : Union[str, Any] = LlamaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __UpperCamelCase : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self :Optional[Any] ) -> Any: __UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : List[Any] = 3 __UpperCamelCase : Optional[Any] = """multi_label_classification""" __UpperCamelCase : List[str] = input_dict["""input_ids"""] __UpperCamelCase : List[Any] = input_ids.ne(1 ).to(snake_case_ ) __UpperCamelCase : Union[str, Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCamelCase : Any = LlamaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __UpperCamelCase : List[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def _lowerCamelCase ( self :Dict ) -> Tuple: pass @parameterized.expand([("linear",), ("dynamic",)] ) def _lowerCamelCase ( self :List[str] , a :str ) -> Optional[int]: __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : List[str] = ids_tensor([1, 1_0] , config.vocab_size ) __UpperCamelCase : Dict = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase : Union[str, Any] = LlamaModel(snake_case_ ) original_model.to(snake_case_ ) original_model.eval() __UpperCamelCase : Union[str, Any] = original_model(snake_case_ ).last_hidden_state __UpperCamelCase : str = original_model(snake_case_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase : Any = {"""type""": scaling_type, """factor""": 10.0} __UpperCamelCase : Optional[Any] = LlamaModel(snake_case_ ) scaled_model.to(snake_case_ ) scaled_model.eval() __UpperCamelCase : Optional[int] = scaled_model(snake_case_ ).last_hidden_state __UpperCamelCase : str = scaled_model(snake_case_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1E-5 ) ) @require_torch class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def _lowerCamelCase ( self :Optional[Any] ) -> Union[str, Any]: __UpperCamelCase : Optional[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] __UpperCamelCase : Tuple = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) __UpperCamelCase : str = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCamelCase : int = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , snake_case_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase : Optional[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , snake_case_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def _lowerCamelCase ( self :str ) -> List[Any]: __UpperCamelCase : int = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] __UpperCamelCase : Dict = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) __UpperCamelCase : int = model(torch.tensor(snake_case_ ) ) # Expected mean on dim = -1 __UpperCamelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , snake_case_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase : Dict = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , snake_case_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def _lowerCamelCase ( self :Dict ) -> Union[str, Any]: __UpperCamelCase : List[str] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] __UpperCamelCase : Optional[Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) __UpperCamelCase : Optional[Any] = model(torch.tensor(snake_case_ ) ) # Expected mean on dim = -1 __UpperCamelCase : Any = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , snake_case_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , snake_case_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def _lowerCamelCase ( self :Union[str, Any] ) -> int: __UpperCamelCase : Optional[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] __UpperCamelCase : Dict = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) __UpperCamelCase : List[str] = model(torch.tensor(snake_case_ ) ) __UpperCamelCase : Optional[Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , snake_case_ , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCamelCase : int = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , snake_case_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Model is curently gated" ) @slow def _lowerCamelCase ( self :Dict ) -> int: __UpperCamelCase : Tuple = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCamelCase : Dict = """Simply put, the theory of relativity states that """ __UpperCamelCase : List[Any] = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) __UpperCamelCase : Tuple = tokenizer.encode(snake_case_ , return_tensors="pt" ) __UpperCamelCase : Any = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=snake_case_ ) # greedy generation outputs __UpperCamelCase : Optional[Any] = model.generate(snake_case_ , max_new_tokens=6_4 , top_p=snake_case_ , temperature=1 , do_sample=snake_case_ ) __UpperCamelCase : int = tokenizer.decode(generated_ids[0] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ )
371
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowerCamelCase__ : '''simple docstring''' _A = 42 _A = 42 class lowerCamelCase__ : '''simple docstring''' def __init__( self :Optional[Any] , a :int ) -> Tuple: __UpperCamelCase : list[list[Edge]] = [[] for _ in range(a )] __UpperCamelCase : str = size def __getitem__( self :str , a :int ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _lowerCamelCase ( self :Any ) -> List[str]: return self._size def _lowerCamelCase ( self :Dict , a :int , a :int , a :int ) -> Any: if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(a , a ) ) def _lowerCamelCase ( self :List[str] , a :int , a :int ) -> int | None: __UpperCamelCase : Union[str, Any] = deque([start_vertex] ) __UpperCamelCase : list[int | None] = [None] * self.size __UpperCamelCase : Dict = 0 while queue: __UpperCamelCase : Tuple = queue.popleft() __UpperCamelCase : int = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: __UpperCamelCase : Optional[Any] = current_distance + edge.weight __UpperCamelCase : Dict = distances[edge.destination_vertex] if ( isinstance(a , a ) and new_distance >= dest_vertex_distance ): continue __UpperCamelCase : Optional[Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
151
0
from collections.abc import Iterable from typing import Any class __A : """simple docstring""" def __init__( self , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : Optional[Any] =value __UpperCamelCase : Node | None =None # Added in order to delete a node easier __UpperCamelCase : Node | None =None __UpperCamelCase : Node | None =None def __repr__( self ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'{self.value}': (self.left, self.right)} , indent=1 ) class __A : """simple docstring""" def __init__( self , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : List[str] =root def __str__( self ): """simple docstring""" return str(self.root ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if new_children is not None: # reset its kids __UpperCamelCase : Optional[int] =node.parent if node.parent is not None: # reset its parent if self.is_right(_UpperCAmelCase ): # If it is the right children __UpperCamelCase : str =new_children else: __UpperCamelCase : List[Any] =new_children else: __UpperCamelCase : int =new_children def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def __lowercase ( self ): """simple docstring""" return self.root is None def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =Node(_UpperCAmelCase ) # create a new Node if self.empty(): # if Tree is empty __UpperCamelCase : List[Any] =new_node # set its root else: # Tree is not empty __UpperCamelCase : Any =self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: __UpperCamelCase : Optional[Any] =new_node # We insert the new node in a leaf break else: __UpperCamelCase : List[Any] =parent_node.left else: if parent_node.right is None: __UpperCamelCase : Any =new_node break else: __UpperCamelCase : Optional[Any] =parent_node.right __UpperCamelCase : str =parent_node def __lowercase ( self , *lowerCamelCase__ ): """simple docstring""" for value in values: self.__insert(_UpperCAmelCase ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: __UpperCamelCase : Dict =self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: __UpperCamelCase : Tuple =node.left if value < node.value else node.right return node def __lowercase ( self , lowerCamelCase__ = None ): """simple docstring""" if node is None: if self.root is None: return None __UpperCamelCase : Dict =self.root if not self.empty(): while node.right is not None: __UpperCamelCase : Optional[int] =node.right return node def __lowercase ( self , lowerCamelCase__ = None ): """simple docstring""" if node is None: __UpperCamelCase : Optional[Any] =self.root if self.root is None: return None if not self.empty(): __UpperCamelCase : List[str] =self.root while node.left is not None: __UpperCamelCase : int =node.left return node def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =self.search(_UpperCAmelCase ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_UpperCAmelCase , _UpperCAmelCase ) elif node.left is None: # Has only right children self.__reassign_nodes(_UpperCAmelCase , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_UpperCAmelCase , node.left ) else: __UpperCamelCase : Optional[int] =self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore __UpperCamelCase : Any =( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __lowercase ( self , lowerCamelCase__=None ): """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if node: self.inorder(_UpperCAmelCase , node.left ) arr.append(node.value ) self.inorder(_UpperCAmelCase , node.right ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : list[int] =[] self.inorder(_UpperCAmelCase , _UpperCAmelCase ) # append all values to list using inorder traversal return arr[k - 1] def A ( a_ ) -> list[Node]: __UpperCamelCase : str =[] if curr_node is not None: __UpperCamelCase : Union[str, Any] =postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def A ( ) -> None: __UpperCamelCase : str =(8, 3, 6, 1, 10, 14, 13, 4, 7) __UpperCamelCase : Tuple =BinarySearchTree() for i in testlist: t.insert(__snake_case ) # Prints all the elements of the list in order traversal print(__snake_case ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' ,t.get_max().value ) # type: ignore print('Min Value: ' ,t.get_min().value ) # type: ignore for i in testlist: t.remove(__snake_case ) print(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
71
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase = "▁" , _UpperCAmelCase = True , _UpperCAmelCase = "<unk>" , _UpperCAmelCase = "</s>" , _UpperCAmelCase = "<pad>" , ): '''simple docstring''' __A : Dict = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __A : List[Any] = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): __A : List[str] = token_dict['token'] __A : str = Tokenizer(Unigram()) __A : Dict = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}') , ' '), normalizers.Lowercase(), ]) __A : Union[str, Any] = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase), pre_tokenizers.Punctuation(), ]) __A : Any = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase) __A : Dict = TemplateProcessing( single=F'$A {self.special_tokens["eos"]["token"]}' , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __A : Any = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = 8000 , _UpperCAmelCase = True , ): '''simple docstring''' __A : str = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Union[str, Any] = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase) self.add_unk_id() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = 8000 , _UpperCAmelCase = True , ): '''simple docstring''' __A : Dict = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase) self.add_unk_id() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = json.loads(self._tokenizer.to_str()) __A : Union[str, Any] = self.special_tokens['unk']['id'] __A : str = Tokenizer.from_str(json.dumps(_UpperCAmelCase))
190
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowercase__ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> List[Any]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: snake_case : str = k.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return k def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> PegasusForConditionalGeneration: '''simple docstring''' snake_case : List[str] = DEFAULTS.copy() cfg_kwargs.update(SCREAMING_SNAKE_CASE__ ) snake_case : List[Any] = PegasusConfig(**SCREAMING_SNAKE_CASE__ ) snake_case : Union[str, Any] = PegasusForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) snake_case : Any = torch_model.model.state_dict() snake_case : Any = {} for k, v in tf_weights.items(): snake_case : str = rename_state_dict_key(SCREAMING_SNAKE_CASE__ ) if new_k not in sd: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: snake_case : int = v.T snake_case : int = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected snake_case : List[Any] = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) snake_case : int = mapping['''shared.weight'''] snake_case : List[str] = mapping['''shared.weight'''] snake_case : Tuple = {k: torch.zeros_like(SCREAMING_SNAKE_CASE__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**SCREAMING_SNAKE_CASE__ ) snake_case ,snake_case : List[Any] = torch_model.model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) snake_case : Any = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _UpperCamelCase ( SCREAMING_SNAKE_CASE__="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' snake_case : Optional[Any] = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) snake_case : Optional[Any] = {} snake_case : Any = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(SCREAMING_SNAKE_CASE__ , desc='''converting tf checkpoint to dict''' ): snake_case : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case : int = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case : Any = array return tf_weights def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: '''simple docstring''' snake_case : Any = Path(SCREAMING_SNAKE_CASE__ ).parent.name snake_case : List[Any] = task_specific_params[F'summarization_{dataset}']['''max_position_embeddings'''] snake_case : str = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=SCREAMING_SNAKE_CASE__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(SCREAMING_SNAKE_CASE__ ) # convert model snake_case : Tuple = get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE__ ) snake_case : Any = task_specific_params[F'summarization_{dataset}'] if dataset == "large": snake_case : Union[str, Any] = task_specific_params snake_case : List[Any] = convert_pegasus(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case : Optional[Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(SCREAMING_SNAKE_CASE__ , Path(SCREAMING_SNAKE_CASE__ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") lowercase__ = parser.parse_args() if args.save_dir is None: lowercase__ = Path(args.tf_ckpt_path).parent.name lowercase__ = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
83
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case__ : """simple docstring""" def __init__( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int=13 , UpperCamelCase__ : Optional[int]=7 , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : str=99 , UpperCamelCase__ : str=16 , UpperCamelCase__ : Dict=36 , UpperCamelCase__ : List[str]=6 , UpperCamelCase__ : Any=6 , UpperCamelCase__ : Any=6 , UpperCamelCase__ : Union[str, Any]=37 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : List[str]=16 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Optional[int]=None , ) -> Optional[Any]: """simple docstring""" snake_case : Optional[Any] = parent snake_case : str = batch_size snake_case : Optional[Any] = seq_length snake_case : Optional[int] = is_training snake_case : Optional[int] = use_input_mask snake_case : List[Any] = use_token_type_ids snake_case : Tuple = use_labels snake_case : Optional[Any] = vocab_size snake_case : List[Any] = embedding_size snake_case : Any = hidden_size snake_case : Any = num_hidden_layers snake_case : Union[str, Any] = num_hidden_groups snake_case : List[str] = num_attention_heads snake_case : Any = intermediate_size snake_case : List[Any] = hidden_act snake_case : List[str] = hidden_dropout_prob snake_case : Union[str, Any] = attention_probs_dropout_prob snake_case : Dict = max_position_embeddings snake_case : Union[str, Any] = type_vocab_size snake_case : List[Any] = type_sequence_label_size snake_case : List[Any] = initializer_range snake_case : Union[str, Any] = num_labels snake_case : Optional[Any] = num_choices snake_case : Optional[int] = scope def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_input_mask: snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Optional[int] = None if self.use_token_type_ids: snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Union[str, Any] = None snake_case : List[Any] = None snake_case : int = None if self.use_labels: snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Tuple = ids_tensor([self.batch_size] , self.num_choices ) snake_case : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case : Optional[int] = AlbertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : List[str] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) snake_case : str = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) snake_case : int = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ) -> Any: """simple docstring""" snake_case : Optional[Any] = AlbertForPreTraining(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : List[Any] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , sentence_order_label=UpperCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" snake_case : str = AlbertForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" snake_case : int = AlbertForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : str = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ) -> Union[str, Any]: """simple docstring""" snake_case : Optional[int] = self.num_labels snake_case : List[str] = AlbertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ) -> Tuple: """simple docstring""" snake_case : Tuple = self.num_labels snake_case : int = AlbertForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : str = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : str ) -> Tuple: """simple docstring""" snake_case : int = self.num_choices snake_case : List[Any] = AlbertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Union[str, Any] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" snake_case : Optional[int] = self.prepare_config_and_inputs() ( ( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) , ) : List[str] = config_and_inputs snake_case : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = True def lowerCAmelCase ( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : int=False ) -> Optional[Any]: """simple docstring""" snake_case : Any = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): snake_case : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ ) snake_case : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case : Any = AlbertModelTester(self ) snake_case : Any = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : int = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : List[Any] = AlbertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class snake_case__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case : Tuple = AlbertModel.from_pretrained('''albert-base-v2''' ) snake_case : Dict = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) snake_case : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case : Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] snake_case : int = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) snake_case : Any = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1e-4 ) )
83
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Optional[Any] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys A__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
185
'''simple docstring''' import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger A__ : List[str] = get_logger(__name__) A__ : str = R""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class UpperCAmelCase_ : """simple docstring""" @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class UpperCAmelCase_ : """simple docstring""" @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: for processor in self: __lowerCamelCase : str = inspect.signature(processor.__call__ ).parameters if len(SCREAMING_SNAKE_CASE_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys() )} for ' f'{processor.__class__} are passed to the logits processor.' ) __lowerCamelCase : Tuple = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : int = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}' ) __lowerCamelCase : Optional[int] = temperature def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase : Dict = scores / self.temperature return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -float('Inf' ) , SCREAMING_SNAKE_CASE_ = 1 ) -> Union[str, Any]: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) __lowerCamelCase : str = top_p __lowerCamelCase : Tuple = filter_value __lowerCamelCase : Tuple = min_tokens_to_keep def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase , __lowerCamelCase : Any = lax.top_k(SCREAMING_SNAKE_CASE_ , scores.shape[-1] ) __lowerCamelCase : int = jnp.full_like(SCREAMING_SNAKE_CASE_ , self.filter_value ) __lowerCamelCase : Tuple = jax.nn.softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ).cumsum(axis=-1 ) __lowerCamelCase : List[str] = cumulative_probs < self.top_p # include the token that is higher than top_p as well __lowerCamelCase : Tuple = jnp.roll(SCREAMING_SNAKE_CASE_ , 1 ) score_mask |= score_mask.at[:, 0].set(SCREAMING_SNAKE_CASE_ ) # min tokens to keep __lowerCamelCase : Any = score_mask.at[:, : self.min_tokens_to_keep].set(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = jnp.where(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = jax.lax.sort_key_val(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[-1] return next_scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -float('Inf' ) , SCREAMING_SNAKE_CASE_ = 1 ) -> str: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}' ) __lowerCamelCase : List[str] = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = filter_value def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase , __lowerCamelCase : List[Any] = scores.shape __lowerCamelCase : Tuple = jnp.full(batch_size * vocab_size , self.filter_value ) __lowerCamelCase : int = min(self.top_k , scores.shape[-1] ) # Safety check __lowerCamelCase , __lowerCamelCase : Tuple = lax.top_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = jnp.broadcast_to((jnp.arange(SCREAMING_SNAKE_CASE_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __lowerCamelCase : List[Any] = topk_scores.flatten() __lowerCamelCase : Union[str, Any] = topk_indices.flatten() + shift __lowerCamelCase : Tuple = next_scores_flat.at[topk_indices_flat].set(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = next_scores_flat.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return next_scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Any = bos_token_id def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase : Optional[Any] = jnp.full(scores.shape , -float('inf' ) ) __lowerCamelCase : Optional[Any] = 1 - jnp.bool_(cur_len - 1 ) __lowerCamelCase : List[Any] = jnp.where(SCREAMING_SNAKE_CASE_ , new_scores.at[:, self.bos_token_id].set(0 ) , SCREAMING_SNAKE_CASE_ ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Tuple = max_length __lowerCamelCase : Any = eos_token_id def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase : List[str] = jnp.full(scores.shape , -float('inf' ) ) __lowerCamelCase : Any = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __lowerCamelCase : List[str] = jnp.where(SCREAMING_SNAKE_CASE_ , new_scores.at[:, self.eos_token_id].set(0 ) , SCREAMING_SNAKE_CASE_ ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) __lowerCamelCase : str = min_length __lowerCamelCase : Optional[int] = eos_token_id def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied __lowerCamelCase : Optional[Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __lowerCamelCase : str = jnp.where(SCREAMING_SNAKE_CASE_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , SCREAMING_SNAKE_CASE_ ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Union[str, Any] = list(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = begin_index def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : List[Any] = 1 - jnp.bool_(cur_len - self.begin_index ) __lowerCamelCase : str = jnp.where(SCREAMING_SNAKE_CASE_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , SCREAMING_SNAKE_CASE_ ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Tuple = list(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase : int = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = dict(SCREAMING_SNAKE_CASE_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __lowerCamelCase : Dict = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __lowerCamelCase : str = force_token_array.at[index].set(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = jnp.intaa(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: def _force_token(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : List[str] = scores.shape[0] __lowerCamelCase : Tuple = self.force_token_array[generation_idx] __lowerCamelCase : List[Any] = jnp.ones_like(SCREAMING_SNAKE_CASE_ , dtype=scores.dtype ) * -float('inf' ) __lowerCamelCase : Any = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __lowerCamelCase : str = lax.dynamic_update_slice(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (0, current_token) ) return new_scores __lowerCamelCase : int = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(SCREAMING_SNAKE_CASE_ ) , lambda: scores , ) , ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Any = generate_config.eos_token_id __lowerCamelCase : Dict = generate_config.no_timestamps_token_id __lowerCamelCase : Tuple = generate_config.no_timestamps_token_id + 1 __lowerCamelCase : List[str] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(SCREAMING_SNAKE_CASE_ , 'max_initial_timestamp_index' ): __lowerCamelCase : str = generate_config.max_initial_timestamp_index else: __lowerCamelCase : Optional[int] = model_config.vocab_size if self.max_initial_timestamp_index is None: __lowerCamelCase : Tuple = model_config.vocab_size def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: # suppress <|notimestamps|> which is handled by without_timestamps __lowerCamelCase : Union[str, Any] = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = jnp.where((cur_len - self.begin_index) >= 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Any = jnp.where((cur_len - self.begin_index) < 2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) return jnp.where( SCREAMING_SNAKE_CASE_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : List[Any] = jax.vmap(SCREAMING_SNAKE_CASE_ )(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = jnp.where(cur_len == self.begin_index , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Any = self.timestamp_begin + self.max_initial_timestamp_index __lowerCamelCase : str = jnp.where( SCREAMING_SNAKE_CASE_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , SCREAMING_SNAKE_CASE_ , ) # if sum of probability over timestamps is above any other token, sample timestamp __lowerCamelCase : Any = jax.nn.log_softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ) def handle_cumulative_probs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Union[str, Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __lowerCamelCase : List[str] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Dict = jax.vmap(SCREAMING_SNAKE_CASE_ )(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return scores
185
1
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 _UpperCAmelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase_ ( cls ): """simple docstring""" A_ : Optional[int] = TOKEN HfFolder.save_token(lowercase ) @classmethod def lowerCAmelCase_ ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('test-config' , use_auth_token=self._token ) A_ : Dict = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase , repo_id='test-config' , push_to_hub=lowercase , use_auth_token=self._token ) A_ : Dict = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[str] = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) A_ : List[Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase , repo_id='valid_org/test-config-org' , push_to_hub=lowercase , use_auth_token=self._token ) A_ : Optional[Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase , getattr(lowercase , lowercase ) ) def lowerCAmelCase_ ( self ): """simple docstring""" CustomConfig.register_for_auto_class() A_ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) A_ : Optional[int] = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=lowercase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 4_2 ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" A_ : int = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated A_ : Optional[int] = c.n_embd + 1 # int A_ : List[str] = c.resid_pdrop + 1.0 # float A_ : str = not c.scale_attn_weights # bool A_ : Optional[int] = c.summary_type + 'foo' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowercase , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(lowercase , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(lowercase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowercase , c.summary_type , 'mismatch for key: summary_type' ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = PretrainedConfig() A_ : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowercase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) A_ : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(lowercase , lowercase )] if len(lowercase ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F''' {', '.join(lowercase )}.''' ) def lowerCAmelCase_ ( self ): """simple docstring""" with self.assertRaises(lowercase ): # config is in subfolder, the following should not work without specifying the subfolder A_ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) A_ : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : int = mock.Mock() A_ : int = 5_0_0 A_ : Union[str, Any] = {} A_ : List[str] = HTTPError A_ : List[Any] = {} # Download this model to make sure it's in the cache. A_ : Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowercase ) as mock_head: A_ : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Any = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : int = AutoConfig.from_pretrained('bert-base-cased' ) A_ : Tuple = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowercase ) A_ : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(lowercase , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 A_ : Tuple = AutoConfig.from_pretrained(lowercase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 A_ : int = ['config.42.0.0.json'] A_ : str = 7_6_8 configuration.save_pretrained(lowercase ) shutil.move(os.path.join(lowercase , 'config.4.0.0.json' ) , os.path.join(lowercase , 'config.42.0.0.json' ) ) A_ : str = AutoConfig.from_pretrained(lowercase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers A_ : List[Any] = 'v4.0.0' A_ , A_ : List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( lowercase , return_unused_kwargs=lowercase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowercase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers A_ : Optional[int] = 'v3.0.0' A_ : List[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(lowercase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
192
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase=None , **lowercase ): """simple docstring""" logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) A_ : List[Any] = model A_ : Dict = kwargs.get('model_save_dir' , lowercase ) A_ : List[str] = kwargs.get('latest_model_name' , lowercase ) def __call__( self , **lowercase ): """simple docstring""" A_ : str = {k: np.array(lowercase ) for k, v in kwargs.items()} return self.model.run(lowercase , lowercase ) @staticmethod def lowerCAmelCase_ ( lowercase , lowercase=None , lowercase=None ): """simple docstring""" if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) A_ : List[Any] = 'CPUExecutionProvider' return ort.InferenceSession(lowercase , providers=[provider] , sess_options=lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase = None , **lowercase ): """simple docstring""" A_ : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME A_ : Optional[int] = self.model_save_dir.joinpath(self.latest_model_name ) A_ : int = Path(lowercase ).joinpath(lowercase ) try: shutil.copyfile(lowercase , lowercase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) A_ : Optional[Any] = self.model_save_dir.joinpath(lowercase ) if src_path.exists(): A_ : int = Path(lowercase ).joinpath(lowercase ) try: shutil.copyfile(lowercase , lowercase ) except shutil.SameFileError: pass def lowerCAmelCase_ ( self , lowercase , **lowercase , ): """simple docstring""" if os.path.isfile(lowercase ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(lowercase , exist_ok=lowercase ) # saving model weights/files self._save_pretrained(lowercase , **lowercase ) @classmethod def lowerCAmelCase_ ( cls , lowercase , lowercase = None , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = None , lowercase = None , **lowercase , ): """simple docstring""" A_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowercase ): A_ : Optional[int] = OnnxRuntimeModel.load_model( os.path.join(lowercase , lowercase ) , provider=lowercase , sess_options=lowercase ) A_ : Dict = Path(lowercase ) # load model from hub else: # download model A_ : List[str] = hf_hub_download( repo_id=lowercase , filename=lowercase , use_auth_token=lowercase , revision=lowercase , cache_dir=lowercase , force_download=lowercase , ) A_ : int = Path(lowercase ).parent A_ : Optional[Any] = Path(lowercase ).name A_ : Any = OnnxRuntimeModel.load_model(lowercase , provider=lowercase , sess_options=lowercase ) return cls(model=lowercase , **lowercase ) @classmethod def lowerCAmelCase_ ( cls , lowercase , lowercase = True , lowercase = None , lowercase = None , **lowercase , ): """simple docstring""" A_ : List[Any] = None if len(str(lowercase ).split('@' ) ) == 2: A_ , A_ : int = model_id.split('@' ) return cls._from_pretrained( model_id=lowercase , revision=lowercase , cache_dir=lowercase , force_download=lowercase , use_auth_token=lowercase , **lowercase , )
192
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class a_ ( _a ): lowercase = ["""input_values""", """padding_mask"""] def __init__( self , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 24000 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" super().__init__(feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = chunk_length_s UpperCamelCase = overlap @property def A__ ( self ) -> List[str]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A__ ( self ) -> List[Any]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ) -> Tuple: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" F" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs UpperCamelCase = True UpperCamelCase = bool( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): UpperCamelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase = [np.asarray(_SCREAMING_SNAKE_CASE ).T] # verify inputs are valid for idx, example in enumerate(_SCREAMING_SNAKE_CASE ): if example.ndim > 2: raise ValueError(F"Expected input shape (channels, length) but got shape {example.shape}" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F"Expected mono audio but example has {example.shape[-1]} channels" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F"Expected stereo audio but example has {example.shape[-1]} channels" ) UpperCamelCase = None UpperCamelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: UpperCamelCase = min(array.shape[0] for array in raw_audio ) UpperCamelCase = int(np.floor(max_length / self.chunk_stride ) ) UpperCamelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: UpperCamelCase = max(array.shape[0] for array in raw_audio ) UpperCamelCase = int(np.ceil(max_length / self.chunk_stride ) ) UpperCamelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length UpperCamelCase = """max_length""" else: UpperCamelCase = input_values # normal padding on batch if padded_inputs is None: UpperCamelCase = self.pad( _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) if padding: UpperCamelCase = padded_inputs.pop("""attention_mask""" ) UpperCamelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: UpperCamelCase = example[..., None] input_values.append(example.T ) UpperCamelCase = input_values if return_tensors is not None: UpperCamelCase = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs
321
"""simple docstring""" import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint a = { '169M': 1_2, '430M': 2_4, '1B5': 2_4, '3B': 3_2, '7B': 3_2, '14B': 4_0, } a = { '169M': 7_6_8, '430M': 1_0_2_4, '1B5': 2_0_4_8, '3B': 2_5_6_0, '7B': 4_0_9_6, '14B': 5_1_2_0, } def lowercase (snake_case__ : str ) -> List[Any]: '''simple docstring''' lowerCAmelCase = list(state_dict.keys() ) for name in state_dict_keys: lowerCAmelCase = state_dict.pop(snake_case__ ) # emb -> embedding if name.startswith("""emb.""" ): lowerCAmelCase = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): lowerCAmelCase = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention lowerCAmelCase = re.sub(R"""blocks\.(\d+)\.att""" , R"""blocks.\1.attention""" , snake_case__ ) # ffn -> feed_forward lowerCAmelCase = re.sub(R"""blocks\.(\d+)\.ffn""" , R"""blocks.\1.feed_forward""" , snake_case__ ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): lowerCAmelCase = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): lowerCAmelCase = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): lowerCAmelCase = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": lowerCAmelCase = """rwkv.""" + name lowerCAmelCase = weight return state_dict def lowercase (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : int=None , snake_case__ : Any=None , snake_case__ : Optional[int]=False , snake_case__ : List[str]=None ) -> Optional[Any]: '''simple docstring''' if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) lowerCAmelCase = 50_277 lowerCAmelCase = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: lowerCAmelCase = PreTrainedTokenizerFast(tokenizer_file=snake_case__ ) lowerCAmelCase = len(snake_case__ ) tokenizer.save_pretrained(snake_case__ ) # 2. Build the config lowerCAmelCase = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowerCAmelCase = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(f'''`size` should be one of {possible_sizes}, got {size}.''' ) lowerCAmelCase = RwkvConfig( vocab_size=snake_case__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(snake_case__ ) # 3. Download model file then convert state_dict lowerCAmelCase = hf_hub_download(snake_case__ , snake_case__ ) lowerCAmelCase = torch.load(snake_case__ , map_location="""cpu""" ) lowerCAmelCase = convert_state_dict(snake_case__ ) # 4. Split in shards and save lowerCAmelCase , lowerCAmelCase = shard_checkpoint(snake_case__ ) for shard_file, shard in shards.items(): torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) if index is not None: lowerCAmelCase = os.path.join(snake_case__ , snake_case__ ) # Save the index as well with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: lowerCAmelCase = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + """\n""" f.write(snake_case__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) lowerCAmelCase = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowerCAmelCase = torch.load(os.path.join(snake_case__ , snake_case__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case__ , snake_case__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) lowerCAmelCase = AutoModelForCausalLM.from_pretrained(snake_case__ ) model.push_to_hub(snake_case__ , max_shard_size="""2GB""" ) tokenizer.push_to_hub(snake_case__ ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) a = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
155
0
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A__ : List[str] = 'src/diffusers' # Matches is_xxx_available() A__ : Dict = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla A__ : str = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') A__ : List[str] = '\n{0} = None\n' A__ : str = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' A__ : Optional[Any] = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def _snake_case ( lowerCamelCase__ : List[str] ) -> Tuple: lowerCamelCase_ : Any =_re_backend.findall(lowerCamelCase__ ) if len(lowerCamelCase__ ) == 0: return None return "_and_".join(lowerCamelCase__ ) def _snake_case ( ) -> str: with open(os.path.join(lowerCamelCase__ , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase_ : Optional[Any] =f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase_ : List[str] =0 lowerCamelCase_ : Optional[Any] ={} # Go through the end of the file while line_index < len(lowerCamelCase__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase_ : Dict =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 lowerCamelCase_ : Dict =[] # Until we unindent, add backend objects to the list while line_index < len(lowerCamelCase__ ) and len(lines[line_index] ) > 1: lowerCamelCase_ : Tuple =lines[line_index] lowerCamelCase_ : List[Any] =_re_single_line_import.search(lowerCamelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowerCamelCase__ ) > 0: lowerCamelCase_ : Dict =objects else: line_index += 1 return backend_specific_objects def _snake_case ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict ) -> int: if name.isupper(): return DUMMY_CONSTANT.format(lowerCamelCase__ ) elif name.islower(): return DUMMY_FUNCTION.format(lowerCamelCase__ , lowerCamelCase__ ) else: return DUMMY_CLASS.format(lowerCamelCase__ , lowerCamelCase__ ) def _snake_case ( lowerCamelCase__ : Dict=None ) -> List[str]: if backend_specific_objects is None: lowerCamelCase_ : Optional[int] =read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase_ : Optional[int] ={} for backend, objects in backend_specific_objects.items(): lowerCamelCase_ : Tuple ="[" + ", ".join(F"""\"{b}\"""" for b in backend.split("_and_" ) ) + "]" lowerCamelCase_ : str ="# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowerCamelCase__ , lowerCamelCase__ ) for o in objects] ) lowerCamelCase_ : Any =dummy_file return dummy_files def _snake_case ( lowerCamelCase__ : int=False ) -> List[str]: lowerCamelCase_ : int =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase_ : Tuple ={"torch": "pt"} # Locate actual dummy modules and read their content. lowerCamelCase_ : List[Any] =os.path.join(lowerCamelCase__ , "utils" ) lowerCamelCase_ : Dict ={ backend: os.path.join(lowerCamelCase__ , F"""dummy_{short_names.get(lowerCamelCase__ , lowerCamelCase__ )}_objects.py""" ) for backend in dummy_files.keys() } lowerCamelCase_ : Union[str, Any] ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowerCamelCase__ ): with open(lowerCamelCase__ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase_ : List[Any] =f.read() else: lowerCamelCase_ : List[Any] ="" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"""Updating diffusers.utils.dummy_{short_names.get(lowerCamelCase__ , lowerCamelCase__ )}_objects.py as the main """ "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F"""diffusers.utils.dummy_{short_names.get(lowerCamelCase__ , lowerCamelCase__ )}_objects.py. Run `make fix-copies` """ "to fix this." ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A__ : Union[str, Any] = parser.parse_args() check_dummies(args.fix_and_overwrite)
358
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Optional[Any] =1 lowerCamelCase_ : Union[str, Any] =3 lowerCamelCase_ : Dict =(32, 32) lowerCamelCase_ : List[Any] =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ ) return image @property def UpperCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCamelCase_ : Dict =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCAmelCase__ ( self : List[Any] ): torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCAmelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) lowerCamelCase_ : Any =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(snake_case__ ) @property def UpperCAmelCase__ ( self : int ): def extract(*snake_case__ : Dict , **snake_case__ : int ): class lowercase__ : def __init__( self : Optional[Any] ): lowerCamelCase_ : Union[str, Any] =torch.ones([0] ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Any ): self.pixel_values.to(snake_case__ ) return self return Out() return extract def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Dict ="cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ : Dict =self.dummy_cond_unet lowerCamelCase_ : List[str] =PNDMScheduler(skip_prk_steps=snake_case__ ) lowerCamelCase_ : List[Any] =self.dummy_vae lowerCamelCase_ : Any =self.dummy_text_encoder lowerCamelCase_ : List[Any] =XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowerCamelCase_ : List[str] =77 lowerCamelCase_ : Optional[int] =self.dummy_image.to(snake_case__ ) lowerCamelCase_ : Any =init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCamelCase_ : List[Any] =AltDiffusionImgaImgPipeline( unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : int =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case__ ) lowerCamelCase_ : Optional[int] =alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Any ="A painting of a squirrel eating a burger" lowerCamelCase_ : Union[str, Any] =torch.Generator(device=snake_case__ ).manual_seed(0 ) lowerCamelCase_ : str =alt_pipe( [prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=snake_case__ , ) lowerCamelCase_ : List[Any] =output.images lowerCamelCase_ : str =torch.Generator(device=snake_case__ ).manual_seed(0 ) lowerCamelCase_ : Optional[Any] =alt_pipe( [prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=snake_case__ , return_dict=snake_case__ , )[0] lowerCamelCase_ : Tuple =image[0, -3:, -3:, -1] lowerCamelCase_ : Union[str, Any] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase_ : List[str] =np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : Dict =self.dummy_cond_unet lowerCamelCase_ : Any =PNDMScheduler(skip_prk_steps=snake_case__ ) lowerCamelCase_ : Tuple =self.dummy_vae lowerCamelCase_ : Union[str, Any] =self.dummy_text_encoder lowerCamelCase_ : Optional[Any] =XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowerCamelCase_ : Tuple =77 lowerCamelCase_ : str =self.dummy_image.to(snake_case__ ) # put models in fp16 lowerCamelCase_ : Optional[Any] =unet.half() lowerCamelCase_ : Dict =vae.half() lowerCamelCase_ : str =bert.half() # make sure here that pndm scheduler skips prk lowerCamelCase_ : Optional[int] =AltDiffusionImgaImgPipeline( unet=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , safety_checker=snake_case__ , feature_extractor=self.dummy_extractor , ) lowerCamelCase_ : List[Any] =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case__ ) lowerCamelCase_ : int =alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Tuple ="A painting of a squirrel eating a burger" lowerCamelCase_ : Tuple =torch.manual_seed(0 ) lowerCamelCase_ : List[Any] =alt_pipe( [prompt] , generator=snake_case__ , num_inference_steps=2 , output_type="np" , image=snake_case__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : int =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ : Any =init_image.resize((760, 504) ) lowerCamelCase_ : List[str] ="BAAI/AltDiffusion" lowerCamelCase_ : List[str] =AltDiffusionImgaImgPipeline.from_pretrained( snake_case__ , safety_checker=snake_case__ , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCamelCase_ : Optional[int] ="A fantasy landscape, trending on artstation" lowerCamelCase_ : List[Any] =torch.manual_seed(0 ) lowerCamelCase_ : Optional[int] =pipe( prompt=snake_case__ , image=snake_case__ , strength=0.75 , guidance_scale=7.5 , generator=snake_case__ , output_type="np" , ) lowerCamelCase_ : Optional[int] =output.images[0] lowerCamelCase_ : Tuple =image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowerCamelCase_ : Optional[int] =np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : str =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCamelCase_ : Any =init_image.resize((768, 512) ) lowerCamelCase_ : Optional[int] =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowerCamelCase_ : Dict ="BAAI/AltDiffusion" lowerCamelCase_ : List[str] =AltDiffusionImgaImgPipeline.from_pretrained( snake_case__ , safety_checker=snake_case__ , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCamelCase_ : Optional[Any] ="A fantasy landscape, trending on artstation" lowerCamelCase_ : Dict =torch.manual_seed(0 ) lowerCamelCase_ : int =pipe( prompt=snake_case__ , image=snake_case__ , strength=0.75 , guidance_scale=7.5 , generator=snake_case__ , output_type="np" , ) lowerCamelCase_ : int =output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
209
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def UpperCamelCase_ ( A__ : List[Any] ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : List[Any] = 2 while True: if is_prime(A__ ): yield num num += 1 def UpperCamelCase_ ( A__ : Dict = 2_00_00_00 ): '''simple docstring''' return sum(takewhile(lambda A__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
120
lowerCAmelCase : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase : Dict = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
253
0
'''simple docstring''' from __future__ import annotations __A : Dict = list[tuple[int, int]] __A : List[str] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __A : List[Any] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __snake_case : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : float , lowerCamelCase : Node | None , ) -> Any: lowerCAmelCase_ : Optional[int] = pos_x lowerCAmelCase_ : str = pos_y lowerCAmelCase_ : List[Any] = (pos_y, pos_x) lowerCAmelCase_ : Optional[int] = goal_x lowerCAmelCase_ : Dict = goal_y lowerCAmelCase_ : Dict = g_cost lowerCAmelCase_ : List[str] = parent lowerCAmelCase_ : List[Any] = self.calculate_heuristic() def __lowercase ( self : int ) -> float: lowerCAmelCase_ : List[Any] = abs(self.pos_x - self.goal_x ) lowerCAmelCase_ : Any = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Dict , lowerCamelCase : int ) -> bool: return self.f_cost < other.f_cost class __snake_case : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : tuple[int, int] , lowerCamelCase : tuple[int, int] ) -> int: lowerCAmelCase_ : List[str] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCamelCase ) lowerCAmelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , lowerCamelCase ) lowerCAmelCase_ : str = [self.start] lowerCAmelCase_ : list[Node] = [] lowerCAmelCase_ : Any = False def __lowercase ( self : List[Any] ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase_ : List[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowerCAmelCase_ : Optional[Any] = True return self.retrace_path(lowerCamelCase ) self.closed_nodes.append(lowerCamelCase ) lowerCAmelCase_ : int = self.get_successors(lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCamelCase ) else: # retrieve the best current path lowerCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCamelCase ) else: self.open_nodes.append(lowerCamelCase ) if not self.reached: return [self.start.pos] return None def __lowercase ( self : Any , lowerCamelCase : Node ) -> list[Node]: lowerCAmelCase_ : List[str] = [] for action in delta: lowerCAmelCase_ : Dict = parent.pos_x + action[1] lowerCAmelCase_ : Optional[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCamelCase , lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCamelCase , ) ) return successors def __lowercase ( self : Optional[Any] , lowerCamelCase : Node | None ) -> Path: lowerCAmelCase_ : Tuple = node lowerCAmelCase_ : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase_ : Dict = current_node.parent path.reverse() return path if __name__ == "__main__": __A : Any = (0, 0) __A : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") __A : int = GreedyBestFirst(init, goal) __A : Dict = greedy_bf.search() if path: for pos_x, pos_y in path: __A : Tuple = 2 for elem in grid: print(elem)
364
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __snake_case ( unittest.TestCase): """simple docstring""" @property def __lowercase ( self : str ) -> List[Any]: torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def __lowercase ( self : Tuple ) -> Optional[Any]: lowerCAmelCase_ : Optional[int] = self.dummy_uncond_unet lowerCAmelCase_ : Tuple = PNDMScheduler() lowerCAmelCase_ : List[Any] = PNDMPipeline(unet=lowerCamelCase , scheduler=lowerCamelCase ) pndm.to(lowerCamelCase ) pndm.set_progress_bar_config(disable=lowerCamelCase ) lowerCAmelCase_ : Dict = torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = pndm(generator=lowerCamelCase , num_inference_steps=20 , output_type="""numpy""" ).images lowerCAmelCase_ : str = torch.manual_seed(0 ) lowerCAmelCase_ : int = pndm(generator=lowerCamelCase , num_inference_steps=20 , output_type="""numpy""" , return_dict=lowerCamelCase )[0] lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ : int = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : str ) -> Tuple: lowerCAmelCase_ : str = """google/ddpm-cifar10-32""" lowerCAmelCase_ : Dict = UNetaDModel.from_pretrained(lowerCamelCase ) lowerCAmelCase_ : Dict = PNDMScheduler() lowerCAmelCase_ : Union[str, Any] = PNDMPipeline(unet=lowerCamelCase , scheduler=lowerCamelCase ) pndm.to(lowerCamelCase ) pndm.set_progress_bar_config(disable=lowerCamelCase ) lowerCAmelCase_ : Any = torch.manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = pndm(generator=lowerCamelCase , output_type="""numpy""" ).images lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ : List[Any] = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
89
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : Any = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class _A ( UpperCamelCase__): SCREAMING_SNAKE_CASE : Tuple = '''bridgetower_vision_model''' def __init__( self , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=288 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1e-05 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : Any = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[Any] = num_channels SCREAMING_SNAKE_CASE_ : List[str] = patch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = image_size SCREAMING_SNAKE_CASE_ : str = initializer_factor SCREAMING_SNAKE_CASE_ : Any = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = stop_gradient SCREAMING_SNAKE_CASE_ : List[Any] = share_layernorm SCREAMING_SNAKE_CASE_ : Tuple = remove_last_layer @classmethod def UpperCAmelCase ( cls , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) if config_dict.get('model_type' ) == "bridgetower": SCREAMING_SNAKE_CASE_ : List[str] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _A ( UpperCamelCase__): SCREAMING_SNAKE_CASE : List[str] = '''bridgetower_text_model''' def __init__( self , _SCREAMING_SNAKE_CASE=5_0265 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=514 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1e-05 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE_ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Dict = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_factor SCREAMING_SNAKE_CASE_ : int = intermediate_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = position_embedding_type SCREAMING_SNAKE_CASE_ : Tuple = use_cache SCREAMING_SNAKE_CASE_ : Tuple = pad_token_id SCREAMING_SNAKE_CASE_ : int = bos_token_id SCREAMING_SNAKE_CASE_ : List[str] = eos_token_id @classmethod def UpperCAmelCase ( cls , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) if config_dict.get('model_type' ) == "bridgetower": SCREAMING_SNAKE_CASE_ : List[Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _A ( UpperCamelCase__): SCREAMING_SNAKE_CASE : Tuple = '''bridgetower''' def __init__( self , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1e-05 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="add" , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('text_config_dict' , __lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop('vision_config_dict' , __lowerCamelCase ) super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Any = share_cross_modal_transformer_layers SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_factor SCREAMING_SNAKE_CASE_ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Any = share_link_tower_layers SCREAMING_SNAKE_CASE_ : List[str] = link_tower_type SCREAMING_SNAKE_CASE_ : str = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : str = tie_word_embeddings SCREAMING_SNAKE_CASE_ : Dict = init_layernorm_from_vision_encoder if text_config is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = {} logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' ) if vision_config is None: SCREAMING_SNAKE_CASE_ : Dict = {} logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' ) SCREAMING_SNAKE_CASE_ : Any = BridgeTowerTextConfig(**__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = BridgeTowerVisionConfig(**__lowerCamelCase ) @classmethod def UpperCAmelCase ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCamelCase ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : int = self.text_config.to_dict() SCREAMING_SNAKE_CASE_ : int = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ : List[str] = self.__class__.model_type return output
253
from collections import deque class _a : """simple docstring""" def __init__( self: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: Optional[Any] = process_name # process name UpperCamelCase__: Optional[Any] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCamelCase__: Tuple = arrival_time UpperCamelCase__: str = burst_time # remaining burst time UpperCamelCase__: int = 0 # total time of the process wait in ready queue UpperCamelCase__: List[Any] = 0 # time from arrival time to completion time class _a : """simple docstring""" def __init__( self: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: list[int] , __lowerCamelCase: deque[Process] , __lowerCamelCase: int , ): '''simple docstring''' UpperCamelCase__: List[str] = number_of_queues # time slice of queues that round robin algorithm applied UpperCamelCase__: Optional[Any] = time_slices # unfinished process is in this ready_queue UpperCamelCase__: Optional[int] = queue # current time UpperCamelCase__: Any = current_time # finished process is in this sequence queue UpperCamelCase__: deque[Process] = deque() def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: str = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def UpperCAmelCase_ ( self: Any , __lowerCamelCase: list[Process] ): '''simple docstring''' UpperCamelCase__: Dict = [] for i in range(len(__lowerCamelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def UpperCAmelCase_ ( self: int , __lowerCamelCase: list[Process] ): '''simple docstring''' UpperCamelCase__: int = [] for i in range(len(__lowerCamelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def UpperCAmelCase_ ( self: int , __lowerCamelCase: list[Process] ): '''simple docstring''' UpperCamelCase__: Optional[int] = [] for i in range(len(__lowerCamelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def UpperCAmelCase_ ( self: int , __lowerCamelCase: deque[Process] ): '''simple docstring''' return [q.burst_time for q in queue] def UpperCAmelCase_ ( self: Optional[int] , __lowerCamelCase: Process ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: deque[Process] ): '''simple docstring''' UpperCamelCase__: deque[Process] = deque() # sequence deque of finished process while len(__lowerCamelCase ) != 0: UpperCamelCase__: int = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__lowerCamelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCamelCase__: Optional[int] = 0 # set the process's turnaround time because it is finished UpperCamelCase__: Optional[Any] = self.current_time - cp.arrival_time # set the completion time UpperCamelCase__: List[Any] = self.current_time # add the process to queue that has finished queue finished.append(__lowerCamelCase ) self.finish_queue.extend(__lowerCamelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCAmelCase_ ( self: Any , __lowerCamelCase: deque[Process] , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__lowerCamelCase ) ): UpperCamelCase__: str = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__lowerCamelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCamelCase__: Optional[int] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__lowerCamelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCamelCase__: Optional[int] = 0 # set the finish time UpperCamelCase__: Union[str, Any] = self.current_time # update the process' turnaround time because it is finished UpperCamelCase__: Dict = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__lowerCamelCase ) self.finish_queue.extend(__lowerCamelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): UpperCamelCase__ , UpperCamelCase__: Dict = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A__: Any = Process('''P1''', 0, 53) A__: Tuple = Process('''P2''', 0, 17) A__: Tuple = Process('''P3''', 0, 68) A__: Tuple = Process('''P4''', 0, 24) A__: Any = 3 A__: str = [17, 25] A__: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) A__: str = Process('''P1''', 0, 53) A__: Union[str, Any] = Process('''P2''', 0, 17) A__: Optional[Any] = Process('''P3''', 0, 68) A__: str = Process('''P4''', 0, 24) A__: Any = 3 A__: Optional[Any] = [17, 25] A__: Any = deque([Pa, Pa, Pa, Pa]) A__: Tuple = MLFQ(number_of_queues, time_slices, queue, 0) A__: str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( f"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( f"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
149
0
'''simple docstring''' import sys def __lowerCamelCase ( A__ ) -> Tuple: """simple docstring""" UpperCamelCase = len(A__ ) UpperCamelCase = [[0 for x in range(A__ )] for x in range(A__ )] UpperCamelCase = [[0 for x in range(A__ )] for x in range(A__ )] for chain_length in range(2 , A__ ): for a in range(1 , n - chain_length + 1 ): UpperCamelCase = a + chain_length - 1 UpperCamelCase = sys.maxsize for c in range(A__ , A__ ): UpperCamelCase = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCamelCase = cost UpperCamelCase = c return matrix, sol def __lowerCamelCase ( A__ , A__ , A__ ) -> Optional[Any]: """simple docstring""" if i == j: print('A' + str(A__ ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(A__ , A__ , optimal_solution[i][j] ) print_optiomal_solution(A__ , optimal_solution[i][j] + 1 , A__ ) print(')' , end=' ' ) def __lowerCamelCase ( ) -> List[str]: """simple docstring""" UpperCamelCase = [30, 35, 15, 5, 10, 20, 25] UpperCamelCase = len(A__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCamelCase , UpperCamelCase = matrix_chain_order(A__ ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(A__ , 1 , n - 1 ) if __name__ == "__main__": main()
249
'''simple docstring''' def __lowerCamelCase ( A__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = [0] * len(A__ ) UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(A__ ) ): if indegree[i] == 0: queue.append(A__ ) while queue: UpperCamelCase = queue.pop(0 ) cnt += 1 topo.append(A__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(A__ ) if cnt != len(A__ ): print('Cycle exists' ) else: print(A__ ) # Adjacency List of Graph _lowerCamelCase : Optional[Any] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
249
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A_ : '''simple docstring''' @staticmethod def UpperCamelCase__ ( *lowercase_ , **lowercase_ ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class A_ (unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ : List[str] = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = vqa_pipeline(lowercase_ , top_k=1 ) self.assertEqual( lowercase_ , [ [{"score": ANY(lowercase_ ), "answer": ANY(lowercase_ )}], [{"score": ANY(lowercase_ ), "answer": ANY(lowercase_ )}], ] , ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ : Optional[int] = "./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ : Any = "How many cats are there?" UpperCAmelCase_ : List[str] = vqa_pipeline(image=lowercase_ , question="How many cats are there?" , top_k=2 ) self.assertEqual( lowercase_ , [{"score": ANY(lowercase_ ), "answer": ANY(lowercase_ )}, {"score": ANY(lowercase_ ), "answer": ANY(lowercase_ )}] ) UpperCAmelCase_ : str = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( lowercase_ , [{"score": ANY(lowercase_ ), "answer": ANY(lowercase_ )}, {"score": ANY(lowercase_ ), "answer": ANY(lowercase_ )}] ) @slow @require_torch def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ : str = "./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ : List[Any] = "How many cats are there?" UpperCAmelCase_ : str = vqa_pipeline(image=lowercase_ , question=lowercase_ , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ : Tuple = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ : int = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def UpperCamelCase__ ( self ): """simple docstring""" pass
61
"""simple docstring""" def __a ( __lowerCamelCase = 3, __lowerCamelCase = 7, __lowerCamelCase = 100_0000 ): UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = 1 for current_denominator in range(1, limit + 1 ): UpperCAmelCase_ : Dict = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: UpperCAmelCase_ : List[Any] = current_numerator UpperCAmelCase_ : Optional[int] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
61
1
'''simple docstring''' import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = 'microsoft/speecht5_tts' _SCREAMING_SNAKE_CASE : Any = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) _SCREAMING_SNAKE_CASE : str = 'text_reader' _SCREAMING_SNAKE_CASE : Any = SpeechTaProcessor _SCREAMING_SNAKE_CASE : Any = SpeechTaForTextToSpeech _SCREAMING_SNAKE_CASE : int = SpeechTaHifiGan _SCREAMING_SNAKE_CASE : Optional[int] = ['text'] _SCREAMING_SNAKE_CASE : List[Any] = ['audio'] def __A ( self ) -> str: '''simple docstring''' if self.post_processor is None: __UpperCAmelCase : Optional[Any] = """microsoft/speecht5_hifigan""" super().setup() def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = self.pre_processor(text=__lowerCAmelCase , return_tensors="""pt""" , truncation=__lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __UpperCAmelCase : List[str] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __UpperCAmelCase : Dict = torch.tensor(embeddings_dataset[7_305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**__lowerCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.post_processor(__lowerCAmelCase ).cpu().detach()
359
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=8 , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : int = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[int] = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Any = scope __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[int] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) __UpperCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = SwinvaForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.type_sequence_label_size __UpperCAmelCase : str = SwinvaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = config_and_inputs __UpperCAmelCase : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = SwinvaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(__UpperCAmelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : str = outputs.attentions __UpperCAmelCase : Any = len(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : int = config.window_size**2 __UpperCAmelCase : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : Dict = len(__UpperCAmelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Any = True __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): __UpperCAmelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[int] = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCAmelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swinv2 has a different seq_length __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : int = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(__UpperCAmelCase , __UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : int = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = SwinvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def __A ( self ) -> int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase : Any = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__UpperCAmelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCamelCase : def __init__( self : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict=1_3 , __UpperCAmelCase : Optional[Any]=7 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : str=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[Any]=9_9 , __UpperCAmelCase : Optional[int]=3_2 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : Dict=3_7 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : Optional[int]=5_1_2 , __UpperCAmelCase : Union[str, Any]=1_6 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : int=True , __UpperCAmelCase : Dict="None" , __UpperCAmelCase : int=3 , __UpperCAmelCase : Any=4 , __UpperCAmelCase : Optional[Any]=None , ) -> str: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = relative_attention SCREAMING_SNAKE_CASE__ = position_biased_input SCREAMING_SNAKE_CASE__ = pos_att_type SCREAMING_SNAKE_CASE__ = scope def SCREAMING_SNAKE_CASE ( self : str ) -> str: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : str ) -> Tuple: SCREAMING_SNAKE_CASE__ = TFDebertaVaModel(config=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ = [input_ids, input_mask] SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ = TFDebertaVaForMaskedLM(config=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any ) -> int: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFDebertaVaForSequenceClassification(config=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFDebertaVaForTokenClassification(config=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple ) -> str: SCREAMING_SNAKE_CASE__ = TFDebertaVaForQuestionAnswering(config=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCamelCase (A__ ,A__ ,unittest.TestCase ): lowerCamelCase__ : List[Any] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase__ : Optional[Any] = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ : int = False lowerCamelCase__ : List[str] = False def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = TFDebertaVaModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class lowerCamelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: pass @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) SCREAMING_SNAKE_CASE__ = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) SCREAMING_SNAKE_CASE__ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] SCREAMING_SNAKE_CASE__ = tf.constant( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1e-4 )
165
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase__ : Optional[str] = field( default='./' ,metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-train' ,metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' ,metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase__ : Optional[int] = field(default=2 ,metadata={'help': 'Batch size for training.'} ) lowerCamelCase__ : Optional[int] = field(default=2 ,metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase__ : Optional[float] = field(default=0.1 ,metadata={'help': 'Value of weight decay.'} ) lowerCamelCase__ : Optional[int] = field( default=1_0_0_0_0 ,metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase__ : Optional[float] = field(default=2E-4 ,metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase__ : Optional[str] = field(default='cosine' ,metadata={'help': 'Learning rate.'} ) lowerCamelCase__ : Optional[int] = field( default=7_5_0 ,metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase__ : Optional[int] = field( default=1_6 ,metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase__ : Optional[bool] = field( default=A__ ,metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase__ : Optional[int] = field(default=5_0_0_0_0 ,metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase__ : Optional[int] = field( default=-1 ,metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=1_0_2_4 ,metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase__ : Optional[int] = field(default=1 ,metadata={'help': 'Training seed.'} ) lowerCamelCase__ : Optional[int] = field( default=1_0_2_4 ,metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} ,) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase__ : Optional[bool] = field(default=A__ ,metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' ,metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase__ : Optional[int] = field(default=2 ,metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase__ : Optional[int] = field( default=-1 ,metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=1_0_2_4 ,metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=1 ,metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=A__ ,metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase__ : Optional[int] = field( default=A__ ,metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} ,) lowerCamelCase__ : Optional[bool] = field( default=A__ ,metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase__ : Optional[float] = field(default=0.2 ,metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase__ : Optional[int] = field(default=2_5_6 ,metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase__ : Optional[int] = field(default=0 ,metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase__ : Optional[float] = field(default=0.9_5 ,metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase__ : Optional[int] = field(default=1_0 ,metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase__ : Optional[int] = field( default=2_0_0 ,metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase__ : Optional[int] = field(default=1 ,metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase__ : Optional[str] = field( default='eval_results.json' ,metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase__ : Optional[str] = field( default='0' ,metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase__ : Optional[int] = field( default=-1 ,metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } ,) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[int] = field( default=A__ ,metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } ,) lowerCamelCase__ : Optional[str] = field( default='transformersbook/codeparrot' ,metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot-clean' ,metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase__ : Optional[int] = field( default=1_0_0_0_0_0 ,metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase__ : Optional[str] = field(default='content' ,metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase__ : Optional[float] = field( default=1_0_0_0 ,metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=1_0_0 ,metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=0.2_5 ,metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=1.5 ,metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=0.7 ,metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Name or path to the tokenizer.'} ,) lowerCamelCase__ : Optional[bool] = field( default=A__ ,metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase__ : Optional[float] = field( default=0.8_5 ,metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='gpt2' ,metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase__ : Optional[str] = field( default='transformersbook/codeparrot-train' ,metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase__ : Optional[str] = field(default='content' ,metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase__ : Optional[int] = field(default=2_0_0_0_0_0 ,metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase__ : Optional[int] = field( default=3_2_7_6_8 ,metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase__ : Optional[str] = field(default='codeparrot' ,metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase__ : Optional[bool] = field(default=A__ ,metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-train' ,metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase__ : Optional[str] = field( default='tokenized-codeparrot-train' ,metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase__ : Optional[int] = field(default=A__ ,metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='gpt2-large' ,metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase__ : Optional[str] = field(default='codeparrot' ,metadata={'help': 'Name of the created model.'} ) lowerCamelCase__ : Optional[bool] = field(default=A__ ,metadata={'help': 'Push saved tokenizer to the hub.'} )
165
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bool: lowerCAmelCase__ : int = int(number**0.5 ) return number == sq * sq def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> tuple[int, int]: lowerCAmelCase__ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowerCAmelCase__ : int = x_den * y_den * z_den lowerCAmelCase__ : int = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) top //= hcf bottom //= hcf return top, bottom def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 35 ) -> int: lowerCAmelCase__ : set = set() lowerCAmelCase__ : int lowerCAmelCase__ : Fraction = Fraction(0 ) lowerCAmelCase__ : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowerCAmelCase__ : Any = x_num * y_den + x_den * y_num lowerCAmelCase__ : Dict = x_den * y_den lowerCAmelCase__ : Optional[Any] = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase__ : Dict = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) # n=2 lowerCAmelCase__ : int = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowerCAmelCase__ : Tuple = x_den * x_den * y_den * y_den if is_sq(SCREAMING_SNAKE_CASE_ ) and is_sq(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Optional[int] = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : Tuple = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : List[Any] = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase__ : Union[str, Any] = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) # n=-1 lowerCAmelCase__ : Tuple = x_num * y_num lowerCAmelCase__ : Union[str, Any] = x_den * y_num + x_num * y_den lowerCAmelCase__ : Optional[int] = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase__ : Dict = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) # n=2 lowerCAmelCase__ : Any = x_num * x_num * y_num * y_num lowerCAmelCase__ : Optional[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(SCREAMING_SNAKE_CASE_ ) and is_sq(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : int = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : List[str] = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase__ : Any = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) for num, den in unique_s: total += Fraction(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
307
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCamelCase__ = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=99 , _lowerCamelCase=13 , _lowerCamelCase=16 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=2 , _lowerCamelCase=32 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=30 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=None , ): a :Union[str, Any] = parent a :Dict = batch_size a :Tuple = decoder_seq_length # For common tests a :int = self.decoder_seq_length a :Optional[int] = is_training a :Optional[Any] = use_attention_mask a :Tuple = use_labels a :Any = vocab_size a :Union[str, Any] = d_model a :str = d_model a :int = decoder_layers a :Tuple = decoder_layers a :Optional[int] = decoder_ffn_dim a :str = decoder_attention_heads a :Optional[int] = decoder_attention_heads a :List[Any] = eos_token_id a :Tuple = bos_token_id a :Any = pad_token_id a :Union[str, Any] = decoder_start_token_id a :Optional[Any] = use_cache a :Optional[Any] = max_position_embeddings a :Dict = None a :Optional[Any] = decoder_seq_length a :Optional[int] = 2 a :int = 1 def SCREAMING_SNAKE_CASE__ ( self ): a :Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) a :int = None if self.use_attention_mask: a :Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) a :Dict = None if self.use_labels: a :Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) a :List[Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): a :int = True a :Any = TrOCRDecoder(config=_lowerCamelCase ).to(_lowerCamelCase ).eval() a :Tuple = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass a :Any = model(_lowerCamelCase , use_cache=_lowerCamelCase ) a :List[Any] = model(_lowerCamelCase ) a :Union[str, Any] = model(_lowerCamelCase , use_cache=_lowerCamelCase ) self.parent.assertTrue(len(_lowerCamelCase ) == len(_lowerCamelCase ) ) self.parent.assertTrue(len(_lowerCamelCase ) == len(_lowerCamelCase ) + 1 ) a :Optional[Any] = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids a :int = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and a :str = torch.cat([input_ids, next_tokens] , dim=-1 ) a :List[Any] = model(_lowerCamelCase )['''last_hidden_state'''] a :List[Any] = model(_lowerCamelCase , past_key_values=_lowerCamelCase )['''last_hidden_state'''] # select random slice a :List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() a :Optional[int] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() a :List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = self.prepare_config_and_inputs() a , a , a , a :Union[str, Any] = config_and_inputs a :Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class _snake_case ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = (TrOCRForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = TrOCRStandaloneDecoderModelTester(self , is_training=_lowerCamelCase ) a :Tuple = ConfigTester(self , config_class=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): a :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def SCREAMING_SNAKE_CASE__ ( self ): pass
94
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCAmelCase__ = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def _A ( A__=None ): """simple docstring""" if subparsers is not None: __lowercase = subparsers.add_parser('''tpu-config''' , description=_description ) else: __lowercase = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments __lowercase = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=A__ , default=A__ , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=A__ , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=A__ , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) __lowercase = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=A__ , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def _A ( A__ ): """simple docstring""" __lowercase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(A__ ): __lowercase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __lowercase = defaults.command_file if not args.command and defaults.commands is not None: __lowercase = defaults.commands if not args.tpu_name: __lowercase = defaults.tpu_name if not args.tpu_zone: __lowercase = defaults.tpu_zone if args.accelerate_version == "dev": __lowercase = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": __lowercase = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , A__ ): __lowercase = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: __lowercase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , A__ ): __lowercase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __lowercase = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command __lowercase = '''; '''.join(A__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __lowercase = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(A__ )}" ) return subprocess.run(A__ ) print('''Successfully setup pod.''' ) def _A ( ): """simple docstring""" __lowercase = tpu_command_parser() __lowercase = parser.parse_args() tpu_command_launcher(A__ )
104
0
import math def __A ( __lowerCamelCase ) -> str: a = 0 a = 0 while num > 0: a = num % 8 a = octal + (remainder * math.floor(math.pow(10 , __lowerCamelCase ) )) counter += 1 a = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f'0o{int(__lowerCamelCase )}' def __A ( ) -> None: print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(216 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(512 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
351
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self :List[str] , __magic_name__ :int="</s>" , __magic_name__ :List[Any]="<unk>" , __magic_name__ :Optional[Any]="<pad>" , __magic_name__ :Optional[int]=125 , __magic_name__ :List[str]=None , **__magic_name__ :List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: a = [F'<extra_id_{i}>' for i in range(__magic_name__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens a = len(set(filter(lambda __magic_name__ : bool("""extra_id""" in str(__magic_name__ ) ) , __magic_name__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else pad_token a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else eos_token a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else unk_token super().__init__( eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , ) a = extra_ids a = 2**8 # utf is 8 bits # define special tokens dict a = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } a = len(self.special_tokens_encoder ) a = len(__magic_name__ ) for i, token in enumerate(__magic_name__ ): a = self.vocab_size + i - n a = {v: k for k, v in self.special_tokens_encoder.items()} @property def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def lowerCamelCase__ ( self :Any , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None , __magic_name__ :bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__magic_name__ )) + [1] return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1] def lowerCamelCase__ ( self :str , __magic_name__ :List[int] ): '''simple docstring''' if len(__magic_name__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ): '''simple docstring''' a = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[int] , __magic_name__ :Optional[List[int]] = None ): '''simple docstring''' a = self._add_eos_if_not_present(__magic_name__ ) if token_ids_a is None: return token_ids_a else: a = self._add_eos_if_not_present(__magic_name__ ) return token_ids_a + token_ids_a def lowerCamelCase__ ( self :List[str] , __magic_name__ :str ): '''simple docstring''' a = [chr(__magic_name__ ) for i in text.encode("""utf-8""" )] return tokens def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ): '''simple docstring''' if token in self.special_tokens_encoder: a = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: a = self.added_tokens_encoder[token] elif len(__magic_name__ ) != 1: a = self.unk_token_id else: a = ord(__magic_name__ ) + self._num_special_tokens return token_id def lowerCamelCase__ ( self :List[str] , __magic_name__ :Dict ): '''simple docstring''' if index in self.special_tokens_decoder: a = self.special_tokens_decoder[index] else: a = chr(index - self._num_special_tokens ) return token def lowerCamelCase__ ( self :Tuple , __magic_name__ :Optional[int] ): '''simple docstring''' a = b"""""" for token in tokens: if token in self.special_tokens_decoder: a = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: a = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: a = token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: a = token.encode("""utf-8""" ) else: a = bytes([ord(__magic_name__ )] ) bstring += tok_string a = bstring.decode("""utf-8""" , errors="""ignore""" ) return string def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :str , __magic_name__ :Optional[str] = None ): '''simple docstring''' return ()
347
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Any = """Hello, World!""" UpperCAmelCase : int = """en_XX""" def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ): """simple docstring""" a__ : Any =Path("data_bin" ) a__ : Optional[Any] =FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe="sentencepiece" , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) a__ : int =xmod.model.encoder.sentence_encoder a__ : Any =XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: a__ : Union[str, Any] =xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , SCREAMING_SNAKE_CASE ) a__ : str =XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings a__ : Tuple =xmod_sent_encoder.embed_tokens.weight a__ : int =xmod_sent_encoder.embed_positions.weight a__ : List[str] =torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. a__ : Tuple =xmod_sent_encoder.layernorm_embedding.weight a__ : Any =xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer a__ : List[Any] =model.roberta.encoder.layer[i] a__ : str =xmod_sent_encoder.layers[i] # self attention a__ : Union[str, Any] =layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) a__ : Any =xmod_layer.self_attn.q_proj.weight a__ : Optional[Any] =xmod_layer.self_attn.q_proj.bias a__ : Optional[int] =xmod_layer.self_attn.k_proj.weight a__ : Optional[int] =xmod_layer.self_attn.k_proj.bias a__ : Any =xmod_layer.self_attn.v_proj.weight a__ : List[str] =xmod_layer.self_attn.v_proj.bias # self-attention output a__ : Union[str, Any] =layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) a__ : Any =xmod_layer.self_attn.out_proj.weight a__ : str =xmod_layer.self_attn.out_proj.bias a__ : Dict =xmod_layer.self_attn_layer_norm.weight a__ : Any =xmod_layer.self_attn_layer_norm.bias # intermediate a__ : List[Any] =layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) a__ : Any =xmod_layer.fca.weight a__ : str =xmod_layer.fca.bias # output a__ : Union[str, Any] =layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) a__ : int =xmod_layer.fca.weight a__ : str =xmod_layer.fca.bias a__ : str =xmod_layer.final_layer_norm.weight a__ : Optional[Any] =xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: a__ : Union[str, Any] =xmod_layer.adapter_layer_norm.weight a__ : List[str] =xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): a__ : int =bert_output.adapter_modules[lang_code] a__ : List[Any] =xmod_layer.adapter_modules[lang_code] a__ : List[str] =from_adapter.fca.weight a__ : List[Any] =from_adapter.fca.bias a__ : Optional[int] =from_adapter.fca.weight a__ : List[Any] =from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: a__ : Any =xmod_sent_encoder.layer_norm.weight a__ : Tuple =xmod_sent_encoder.layer_norm.bias if classification_head: a__ : int =xmod.model.classification_heads["mnli"].dense.weight a__ : Union[str, Any] =xmod.model.classification_heads["mnli"].dense.bias a__ : List[str] =xmod.model.classification_heads["mnli"].out_proj.weight a__ : Any =xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head a__ : Optional[Any] =xmod.model.encoder.lm_head.dense.weight a__ : Dict =xmod.model.encoder.lm_head.dense.bias a__ : List[str] =xmod.model.encoder.lm_head.layer_norm.weight a__ : Any =xmod.model.encoder.lm_head.layer_norm.bias a__ : Dict =xmod.model.encoder.lm_head.weight a__ : Optional[int] =xmod.model.encoder.lm_head.bias # Let's check that we get the same results. a__ : Tuple =xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) a__ : List[Any] =model(SCREAMING_SNAKE_CASE )[0] if classification_head: a__ : Optional[int] =xmod.model.classification_heads["mnli"](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: a__ : Any =xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) a__ : Any =torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 a__ : List[str] =torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) UpperCAmelCase : List[Any] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
95
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
0
"""simple docstring""" import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _a : List[Any]= None _a : str= "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _a : Dict= [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase : bool = True UpperCAmelCase : Optional[str] = None # Automatically constructed UpperCAmelCase : ClassVar[str] = "PIL.Image.Image" UpperCAmelCase : ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) UpperCAmelCase : str = field(default="""Image""" , init=__snake_case , repr=__snake_case ) def __call__(self : Tuple) -> Union[str, Any]: return self.pa_type def _lowercase (self : Optional[Any] , _A : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.') if isinstance(lowerCamelCase_ , lowerCamelCase_): __snake_case : Optional[int] = np.array(lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_): return {"path": value, "bytes": None} elif isinstance(lowerCamelCase_ , lowerCamelCase_): return {"path": None, "bytes": value} elif isinstance(lowerCamelCase_ , np.ndarray): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCamelCase_) elif isinstance(lowerCamelCase_ , PIL.Image.Image): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCamelCase_) elif value.get('path') is not None and os.path.isfile(value['path']): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path')} elif value.get('bytes') is not None or value.get('path') is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes'), "path": value.get('path')} else: raise ValueError( f"An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.") def _lowercase (self : List[str] , _A : dict , _A : Union[str, Any]=None) -> "PIL.Image.Image": if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.') if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.') if token_per_repo_id is None: __snake_case : Tuple = {} __snake_case : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f"An image should have one of \'path\' or \'bytes\' but both are None in {value}.") else: if is_local_path(lowerCamelCase_): __snake_case : Any = PIL.Image.open(lowerCamelCase_) else: __snake_case : int = path.split('::')[-1] try: __snake_case : Optional[int] = string_to_dict(lowerCamelCase_ , config.HUB_DATASETS_URL)["""repo_id"""] __snake_case : str = token_per_repo_id.get(lowerCamelCase_) except ValueError: __snake_case : Optional[int] = None with xopen(lowerCamelCase_ , 'rb' , use_auth_token=lowerCamelCase_) as f: __snake_case : Optional[int] = BytesIO(f.read()) __snake_case : List[Any] = PIL.Image.open(bytes_) else: __snake_case : Dict = PIL.Image.open(BytesIO(bytes_)) image.load() # to avoid "Too many open files" errors return image def _lowercase (self : List[Any]) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value('binary'), "path": Value('string'), } ) def _lowercase (self : Tuple , _A : Union[pa.StringArray, pa.StructArray, pa.ListArray]) -> pa.StructArray: if pa.types.is_string(storage.type): __snake_case : Tuple = pa.array([None] * len(lowerCamelCase_) , type=pa.binary()) __snake_case : List[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): __snake_case : int = pa.array([None] * len(lowerCamelCase_) , type=pa.string()) __snake_case : List[Any] = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('bytes') >= 0: __snake_case : str = storage.field('bytes') else: __snake_case : Dict = pa.array([None] * len(lowerCamelCase_) , type=pa.binary()) if storage.type.get_field_index('path') >= 0: __snake_case : Optional[int] = storage.field('path') else: __snake_case : Optional[int] = pa.array([None] * len(lowerCamelCase_) , type=pa.string()) __snake_case : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_list(storage.type): __snake_case : str = pa.array( [encode_np_array(np.array(lowerCamelCase_))['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __snake_case : Tuple = pa.array([None] * len(lowerCamelCase_) , type=pa.string()) __snake_case : int = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null()) return array_cast(lowerCamelCase_ , self.pa_type) def _lowercase (self : Union[str, Any] , _A : pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_A : Union[str, Any]): with xopen(lowerCamelCase_ , 'rb') as f: __snake_case : str = f.read() return bytes_ __snake_case : str = pa.array( [ (path_to_bytes(x['path']) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __snake_case : List[str] = pa.array( [os.path.basename(lowerCamelCase_) if path is not None else None for path in storage.field('path').to_pylist()] , type=pa.string() , ) __snake_case : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null()) return array_cast(lowerCamelCase_ , self.pa_type) def __UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __snake_case : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __UpperCAmelCase ( UpperCAmelCase_ : "PIL.Image.Image" ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = BytesIO() if image.format in list_image_compression_formats(): __snake_case : Union[str, Any] = image.format else: __snake_case : Optional[int] = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(_a , format=_a ) return buffer.getvalue() def __UpperCAmelCase ( UpperCAmelCase_ : "PIL.Image.Image" ) -> Union[str, Any]: '''simple docstring''' if hasattr(_a , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_a )} def __UpperCAmelCase ( UpperCAmelCase_ : np.ndarray ) -> Optional[Any]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) __snake_case : Optional[Any] = array.dtype __snake_case : Optional[Any] = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER __snake_case : int = dtype.kind __snake_case : Tuple = dtype.itemsize __snake_case : List[str] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __snake_case : Tuple = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( F"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __snake_case : List[Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __snake_case : List[Any] = dtype_byteorder + dtype_kind + str(_a ) __snake_case : Union[str, Any] = np.dtype(_a ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) __snake_case : int = PIL.Image.fromarray(array.astype(_a ) ) return {"path": None, "bytes": image_to_bytes(_a )} def __UpperCAmelCase ( UpperCAmelCase_ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: __snake_case : List[str] = first_non_null_value(_a ) if isinstance(_a , _a ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_a , np.ndarray ): __snake_case : Dict = no_op_if_value_is_null(_a ) return [obj_to_image_dict_func(_a ) for obj in objs] elif isinstance(_a , PIL.Image.Image ): __snake_case : Optional[int] = no_op_if_value_is_null(_a ) return [obj_to_image_dict_func(_a ) for obj in objs] else: return objs else: return objs
365
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : Union[str, Any]) -> Optional[int]: __snake_case : Optional[Any] = 0 def _lowercase (self : Tuple) -> int: __snake_case : Optional[Any] = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32') self.assertIsInstance(_A , _A) def _lowercase (self : str) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[str] = Path(_A) / 'preprocessor_config.json' __snake_case : Optional[Any] = Path(_A) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) __snake_case : Optional[int] = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : Any) -> Optional[int]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Any = Path(_A) / 'preprocessor_config.json' __snake_case : List[Any] = Path(_A) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) __snake_case : Tuple = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : List[Any]) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : str = CLIPConfig() # Create a dummy config file with image_proceesor_type __snake_case : List[Any] = Path(_A) / 'preprocessor_config.json' __snake_case : Optional[Any] = Path(_A) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __snake_case : List[str] = AutoImageProcessor.from_pretrained(_A).to_dict() config_dict.pop('image_processor_type') __snake_case : Optional[int] = CLIPImageProcessor(**_A) # save in new folder model_config.save_pretrained(_A) config.save_pretrained(_A) __snake_case : Optional[int] = AutoImageProcessor.from_pretrained(_A) # make sure private variable is not incorrectly saved __snake_case : int = json.loads(config.to_json_string()) self.assertTrue('_processor_class' not in dict_as_saved) self.assertIsInstance(_A , _A) def _lowercase (self : Union[str, Any]) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : int = Path(_A) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) __snake_case : List[str] = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : Optional[int]) -> Dict: with self.assertRaisesRegex( _A , 'clip-base is not a local folder and is not a valid model identifier'): __snake_case : Tuple = AutoImageProcessor.from_pretrained('clip-base') def _lowercase (self : str) -> int: with self.assertRaisesRegex( _A , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __snake_case : str = AutoImageProcessor.from_pretrained(_A , revision='aaaaaa') def _lowercase (self : List[Any]) -> str: with self.assertRaisesRegex( _A , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __snake_case : List[Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model') def _lowercase (self : Optional[int]) -> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_A): __snake_case : Any = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') # If remote code is disabled, we can't load this config. with self.assertRaises(_A): __snake_case : Tuple = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) __snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A) __snake_case : Optional[int] = AutoImageProcessor.from_pretrained(_A , trust_remote_code=_A) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor') def _lowercase (self : int) -> Optional[int]: try: AutoConfig.register('custom' , _A) AutoImageProcessor.register(_A , _A) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A): AutoImageProcessor.register(_A , _A) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Tuple = Path(_A) / 'preprocessor_config.json' __snake_case : Dict = Path(_A) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) __snake_case : Tuple = CustomImageProcessor.from_pretrained(_A) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A) __snake_case : Tuple = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowercase (self : List[Any]) -> Tuple: class UpperCamelCase ( lowercase ): UpperCAmelCase : str = True try: AutoConfig.register('custom' , _A) AutoImageProcessor.register(_A , _A) # If remote code is not set, the default is to use local __snake_case : Tuple = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. __snake_case : Optional[int] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub __snake_case : List[Any] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(not hasattr(_A , 'is_local')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
95
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = 1 UpperCamelCase = 3 UpperCamelCase = (32, 32) UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowerCamelCase_ ( self : str ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(lowerCamelCase_ ) @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" def extract(*lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : str ): class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] ): """simple docstring""" UpperCamelCase = torch.ones([0] ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : str ): """simple docstring""" self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.dummy_cond_unet UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) UpperCamelCase = self.dummy_vae UpperCamelCase = self.dummy_text_encoder UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCamelCase = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = """A painting of a squirrel eating a burger""" UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) UpperCamelCase = output.images UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCamelCase_ , )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.dummy_cond_unet UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCamelCase = self.dummy_vae UpperCamelCase = self.dummy_text_encoder UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCamelCase = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = """A painting of a squirrel eating a burger""" UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) UpperCamelCase = output.images UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCamelCase_ , )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.dummy_cond_unet UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCamelCase = self.dummy_vae UpperCamelCase = self.dummy_text_encoder UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 UpperCamelCase = unet.half() UpperCamelCase = vae.half() UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = """A painting of a squirrel eating a burger""" UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowerCamelCase_ ) UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) UpperCamelCase = 40_0366_0346 UpperCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowerCamelCase_ ) UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity""" UpperCamelCase = 27_3497_1755 UpperCamelCase = 7 UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) UpperCamelCase = 10_4435_5234 UpperCamelCase = 12 UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
343
def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = [0] * len(_a ) UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Dict = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_a ) ): if indegree[i] == 0: queue.append(_a ) while queue: UpperCAmelCase_ : List[str] = queue.pop(0 ) cnt += 1 topo.append(_a ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_a ) if cnt != len(_a ): print("""Cycle exists""" ) else: print(_a ) # Adjacency List of Graph UpperCamelCase_ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
345
0
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __UpperCamelCase ( lowercase__ : str ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = torch.exp(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = torch.sum(lowercase__ , dim=1 ) # sum of exp(x_i) lowerCAmelCase_ : Any = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(lowercase__ ) - B / A class __a ( nn.Module ): def __init__( self : str , UpperCAmelCase : Union[str, Any] ): super().__init__() lowerCAmelCase_ : Union[str, Any] = config.output_attentions lowerCAmelCase_ : Dict = config.output_hidden_states lowerCAmelCase_ : Tuple = nn.ModuleList([BertLayer(UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) lowerCAmelCase_ : List[Any] = nn.ModuleList([BertHighway(UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) lowerCAmelCase_ : Any = [-1 for _ in range(config.num_hidden_layers )] def A ( self : Any , UpperCAmelCase : str ): if (type(UpperCAmelCase ) is float) or (type(UpperCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): lowerCAmelCase_ : Tuple = x else: lowerCAmelCase_ : List[str] = x def A ( self : Any , UpperCAmelCase : Dict ): lowerCAmelCase_ : List[Any] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def A ( self : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[int]=None , ): lowerCAmelCase_ : Optional[Any] = () lowerCAmelCase_ : Dict = () lowerCAmelCase_ : List[Any] = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: lowerCAmelCase_ : str = all_hidden_states + (hidden_states,) lowerCAmelCase_ : Optional[int] = layer_module( UpperCAmelCase , UpperCAmelCase , head_mask[i] , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = layer_outputs[0] if self.output_attentions: lowerCAmelCase_ : List[Any] = all_attentions + (layer_outputs[1],) lowerCAmelCase_ : Optional[int] = (hidden_states,) if self.output_hidden_states: lowerCAmelCase_ : Any = current_outputs + (all_hidden_states,) if self.output_attentions: lowerCAmelCase_ : int = current_outputs + (all_attentions,) lowerCAmelCase_ : Any = self.highway[i](UpperCAmelCase ) # logits, pooled_output if not self.training: lowerCAmelCase_ : str = highway_exit[0] lowerCAmelCase_ : Tuple = entropy(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowerCAmelCase_ : Union[str, Any] = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowerCAmelCase_ : List[str] = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCAmelCase , i + 1 ) else: lowerCAmelCase_ : str = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowerCAmelCase_ : Any = all_hidden_states + (hidden_states,) lowerCAmelCase_ : List[Any] = (hidden_states,) if self.output_hidden_states: lowerCAmelCase_ : str = outputs + (all_hidden_states,) if self.output_attentions: lowerCAmelCase_ : List[str] = outputs + (all_attentions,) lowerCAmelCase_ : Optional[Any] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ ,__UpperCamelCase ,) class __a ( __UpperCamelCase ): def __init__( self : List[str] , UpperCAmelCase : Dict ): super().__init__(UpperCAmelCase ) lowerCAmelCase_ : Dict = config lowerCAmelCase_ : Dict = BertEmbeddings(UpperCAmelCase ) lowerCAmelCase_ : List[str] = DeeBertEncoder(UpperCAmelCase ) lowerCAmelCase_ : Tuple = BertPooler(UpperCAmelCase ) self.init_weights() def A ( self : str ): self.encoder.init_highway_pooler(self.pooler ) def A ( self : List[Any] ): return self.embeddings.word_embeddings def A ( self : List[Any] , UpperCAmelCase : Dict ): lowerCAmelCase_ : Optional[Any] = value def A ( self : int , UpperCAmelCase : str ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCAmelCase ) @add_start_docstrings_to_model_forward(UpperCAmelCase ) def A ( self : Any , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : str=None , UpperCAmelCase : Dict=None , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : int=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[str]=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: lowerCAmelCase_ : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase_ : Any = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) lowerCAmelCase_ : List[str] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase_ : List[Any] = torch.ones(UpperCAmelCase , device=UpperCAmelCase ) if encoder_attention_mask is None: lowerCAmelCase_ : Any = torch.ones(UpperCAmelCase , device=UpperCAmelCase ) if token_type_ids is None: lowerCAmelCase_ : List[str] = torch.zeros(UpperCAmelCase , dtype=torch.long , device=UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase_ : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowerCAmelCase_ : Optional[int] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowerCAmelCase_ : Tuple = encoder_attention_mask[:, None, None, :] lowerCAmelCase_ : List[Any] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility lowerCAmelCase_ : str = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase_ : Optional[Any] = self.get_head_mask(UpperCAmelCase , self.config.num_hidden_layers ) lowerCAmelCase_ : List[str] = self.embeddings( input_ids=UpperCAmelCase , position_ids=UpperCAmelCase , token_type_ids=UpperCAmelCase , inputs_embeds=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = self.encoder( UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = encoder_outputs[0] lowerCAmelCase_ : Any = self.pooler(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __a ( __UpperCamelCase ): def __init__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any ): lowerCAmelCase_ : str = message lowerCAmelCase_ : int = exit_layer # start from 1! class __a ( nn.Module ): def __init__( self : Any , UpperCAmelCase : Optional[Any] ): super().__init__() lowerCAmelCase_ : Optional[int] = BertPooler(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase_ : Optional[int] = nn.Linear(config.hidden_size , config.num_labels ) def A ( self : Tuple , UpperCAmelCase : List[Any] ): # Pooler lowerCAmelCase_ : List[str] = encoder_outputs[0] lowerCAmelCase_ : Dict = self.pooler(UpperCAmelCase ) # "return" pooler_output # BertModel lowerCAmelCase_ : List[Any] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowerCAmelCase_ : Tuple = bmodel_output[1] lowerCAmelCase_ : List[str] = self.dropout(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = self.classifier(UpperCAmelCase ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ ,__UpperCamelCase ,) class __a ( __UpperCamelCase ): def __init__( self : int , UpperCAmelCase : List[str] ): super().__init__(UpperCAmelCase ) lowerCAmelCase_ : Tuple = config.num_labels lowerCAmelCase_ : int = config.num_hidden_layers lowerCAmelCase_ : Union[str, Any] = DeeBertModel(UpperCAmelCase ) lowerCAmelCase_ : Any = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase_ : str = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Tuple=-1 , UpperCAmelCase : str=False , ): lowerCAmelCase_ : List[str] = self.num_layers try: lowerCAmelCase_ : Any = self.bert( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , position_ids=UpperCAmelCase , head_mask=UpperCAmelCase , inputs_embeds=UpperCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowerCAmelCase_ : Optional[Any] = outputs[1] lowerCAmelCase_ : List[Any] = self.dropout(UpperCAmelCase ) lowerCAmelCase_ : Dict = self.classifier(UpperCAmelCase ) lowerCAmelCase_ : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCAmelCase_ : Optional[int] = e.message lowerCAmelCase_ : Optional[int] = e.exit_layer lowerCAmelCase_ : Any = outputs[0] if not self.training: lowerCAmelCase_ : List[Any] = entropy(UpperCAmelCase ) lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCAmelCase_ : List[str] = MSELoss() lowerCAmelCase_ : Union[str, Any] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase_ : str = CrossEntropyLoss() lowerCAmelCase_ : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowerCAmelCase_ : List[str] = [] for highway_exit in outputs[-1]: lowerCAmelCase_ : Union[str, Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCAmelCase_ : Any = MSELoss() lowerCAmelCase_ : Tuple = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase_ : Optional[Any] = CrossEntropyLoss() lowerCAmelCase_ : List[Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCAmelCase ) if train_highway: lowerCAmelCase_ : Union[str, Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCAmelCase_ : List[str] = (loss,) + outputs if not self.training: lowerCAmelCase_ : int = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCAmelCase_ : List[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
28
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
28
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = tempfile.mkdtemp() # fmt: off snake_case_ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on snake_case_ = dict(zip(a__ , range(len(a__ ) ) ) ) snake_case_ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] snake_case_ = {"unk_token": "<unk>"} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a__ ) ) snake_case_ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } snake_case_ = os.path.join(self.tmpdirname , a__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(a__ , a__ ) def lowerCAmelCase__ ( self , **a__ ) -> Dict: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase__ ( self , **a__ ) -> List[str]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase__ ( self , **a__ ) -> Tuple: '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **a__ ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = CLIPProcessor(tokenizer=a__ , image_processor=a__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case_ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=a__ ) snake_case_ = CLIPProcessor(tokenizer=a__ , image_processor=a__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case_ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , a__ ) self.assertIsInstance(processor_fast.tokenizer , a__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , a__ ) self.assertIsInstance(processor_fast.image_processor , a__ ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case_ = self.get_image_processor(do_normalize=a__ , padding_value=1.0 ) snake_case_ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=a__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPProcessor(tokenizer=a__ , image_processor=a__ ) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(a__ , return_tensors="np" ) snake_case_ = processor(images=a__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPProcessor(tokenizer=a__ , image_processor=a__ ) snake_case_ = "lower newer" snake_case_ = processor(text=a__ ) snake_case_ = tokenizer(a__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPProcessor(tokenizer=a__ , image_processor=a__ ) snake_case_ = "lower newer" snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(a__ ): processor() def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPProcessor(tokenizer=a__ , image_processor=a__ ) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.batch_decode(a__ ) snake_case_ = tokenizer.batch_decode(a__ ) self.assertListEqual(a__ , a__ ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPProcessor(tokenizer=a__ , image_processor=a__ ) snake_case_ = "lower newer" snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
85
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency __A = { "E": 1_2.7_0, "T": 9.0_6, "A": 8.1_7, "O": 7.5_1, "I": 6.9_7, "N": 6.7_5, "S": 6.3_3, "H": 6.0_9, "R": 5.9_9, "D": 4.2_5, "L": 4.0_3, "C": 2.7_8, "U": 2.7_6, "M": 2.4_1, "W": 2.3_6, "F": 2.2_3, "G": 2.0_2, "Y": 1.9_7, "P": 1.9_3, "B": 1.2_9, "V": 0.9_8, "K": 0.7_7, "J": 0.1_5, "X": 0.1_5, "Q": 0.1_0, "Z": 0.0_7, } __A = "ETAOINSHRDLCUMWFGYPBVKJXQZ" __A = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> dict[str, int]: """simple docstring""" __lowerCamelCase = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def lowerCamelCase_ ( UpperCamelCase__ : tuple ) -> str: """simple docstring""" return x[0] def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str: """simple docstring""" __lowerCamelCase = get_letter_count(UpperCamelCase__ ) __lowerCamelCase = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(UpperCamelCase__ ) __lowerCamelCase = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=UpperCamelCase__ ) __lowerCamelCase = ''.join(freq_to_letter[freq] ) __lowerCamelCase = list(freq_to_letter_str.items() ) freq_pairs.sort(key=UpperCamelCase__ , reverse=UpperCamelCase__ ) __lowerCamelCase = [freq_pair[1] for freq_pair in freq_pairs] return "".join(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : str ) -> int: """simple docstring""" __lowerCamelCase = get_frequency_order(UpperCamelCase__ ) __lowerCamelCase = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
90
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ : Optional[Any] = ''' import os ''' snake_case__ : Tuple = ''' def foo(): import os return False ''' snake_case__ : Any = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case__ : Any = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case__ : int = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case__ : Any = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case__ : int = ''' import os try: import bar except: raise ValueError() ''' snake_case__ : List[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case__ : Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case__ : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ): lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) lowerCAmelCase : Tuple = get_imports(_snake_case ) assert parsed_imports == ["os"]
314
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Tuple = logging.get_logger(__name__) snake_case : Optional[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class _snake_case ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 'data2vec-text' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) a :int = vocab_size a :Dict = hidden_size a :Optional[int] = num_hidden_layers a :Dict = num_attention_heads a :int = hidden_act a :Optional[int] = intermediate_size a :Optional[Any] = hidden_dropout_prob a :int = attention_probs_dropout_prob a :List[Any] = max_position_embeddings a :Union[str, Any] = type_vocab_size a :Tuple = initializer_range a :Optional[Any] = layer_norm_eps a :Optional[int] = position_embedding_type a :Optional[int] = use_cache a :Dict = classifier_dropout class _snake_case ( snake_case_ ): @property def SCREAMING_SNAKE_CASE__ ( self ): if self.task == "multiple-choice": a :Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: a :List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
94
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase_ = logging.getLogger(__name__) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30_522, type=int) lowercase_ = parser.parse_args() logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file, """rb""") as fp: lowercase_ = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") lowercase_ = Counter() for tk_ids in data: counter.update(tk_ids) lowercase_ = [0] * args.vocab_size for k, v in counter.items(): lowercase_ = v logger.info(f"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
58
0
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : list[int] ) ->list[list[int]]: A__ : Union[str, Any] = [] if len(UpperCAmelCase__ ) == 1: return [nums.copy()] for _ in range(len(UpperCAmelCase__ ) ): A__ : str = nums.pop(0 ) A__ : Any = permute(UpperCAmelCase__ ) for perm in permutations: perm.append(UpperCAmelCase__ ) result.extend(UpperCAmelCase__ ) nums.append(UpperCAmelCase__ ) return result def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->str: def backtrack(UpperCAmelCase__ : Optional[Any] ): if start == len(UpperCAmelCase__ ) - 1: output.append(nums[:] ) else: for i in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A__ , A__ : Optional[int] = nums[i], nums[start] backtrack(start + 1 ) A__ , A__ : Union[str, Any] = nums[i], nums[start] # backtrack A__ : Union[str, Any] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function A_ = permutea([1, 2, 3]) print(res) doctest.testmod()
296
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''spiece.model'''} A_ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } A_ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) A_ = 0 A_ = 1 A_ = 2 A_ = 3 A_ = 4 class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = 'left' def __init__( self : Dict , snake_case : int , snake_case : List[Any]=False , snake_case : List[str]=True , snake_case : Dict=False , snake_case : Optional[Any]="<s>" , snake_case : List[str]="</s>" , snake_case : Tuple="<unk>" , snake_case : Tuple="<sep>" , snake_case : Union[str, Any]="<pad>" , snake_case : Dict="<cls>" , snake_case : Optional[Any]="<mask>" , snake_case : Optional[int]=["<eop>", "<eod>"] , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Dict , ): '''simple docstring''' A__ : Optional[int] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token A__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) A__ : str = 3 A__ : str = do_lower_case A__ : Optional[Any] = remove_space A__ : List[Any] = keep_accents A__ : Union[str, Any] = vocab_file A__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' return len(self.sp_model ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : int = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): '''simple docstring''' A__ : int = self.__dict__.copy() A__ : int = None return state def __setstate__( self : Tuple , snake_case : Union[str, Any] ): '''simple docstring''' A__ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ : Optional[int] = {} A__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] ): '''simple docstring''' if self.remove_space: A__ : Optional[Any] = """ """.join(inputs.strip().split() ) else: A__ : Dict = inputs A__ : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: A__ : Any = unicodedata.normalize("""NFKD""" , snake_case ) A__ : Optional[int] = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] ) if self.do_lower_case: A__ : Any = outputs.lower() return outputs def _UpperCamelCase ( self : Union[str, Any] , snake_case : str ): '''simple docstring''' A__ : Dict = self.preprocess_text(snake_case ) A__ : Dict = self.sp_model.encode(snake_case , out_type=snake_case ) A__ : Optional[int] = [] for piece in pieces: if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): A__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A__ : int = cur_pieces[1:] else: A__ : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case ) else: new_pieces.append(snake_case ) return new_pieces def _UpperCamelCase ( self : List[str] , snake_case : Tuple ): '''simple docstring''' return self.sp_model.PieceToId(snake_case ) def _UpperCamelCase ( self : List[str] , snake_case : Any ): '''simple docstring''' return self.sp_model.IdToPiece(snake_case ) def _UpperCamelCase ( self : Optional[int] , snake_case : Any ): '''simple docstring''' A__ : Union[str, Any] = """""".join(snake_case ).replace(snake_case , """ """ ).strip() return out_string def _UpperCamelCase ( self : int , snake_case : List[int] , snake_case : bool = False , snake_case : bool = None , snake_case : bool = True , **snake_case : Union[str, Any] , ): '''simple docstring''' A__ : List[str] = kwargs.pop("""use_source_tokenizer""" , snake_case ) A__ : Any = self.convert_ids_to_tokens(snake_case , skip_special_tokens=snake_case ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A__ : Any = [] A__ : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) A__ : str = [] sub_texts.append(snake_case ) else: current_sub_text.append(snake_case ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A__ : Dict = """""".join(snake_case ) A__ : int = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A__ : Tuple = self.clean_up_tokenization(snake_case ) return clean_text else: return text def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' A__ : Tuple = [self.sep_token_id] A__ : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _UpperCamelCase ( self : Dict , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is not None: return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1, 1] return ([0] * len(snake_case )) + [1, 1] def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' A__ : Any = [self.sep_token_id] A__ : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _UpperCamelCase ( self : Optional[Any] , snake_case : str , snake_case : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A__ : List[Any] = os.path.join( snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , """wb""" ) as fi: A__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
296
1
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
55
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar a_ : List[str] = TypeVar("""T""") class snake_case ( Generic[T] ): """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = data lowerCamelCase_ = self lowerCamelCase_ = 0 class snake_case ( Generic[T] ): """simple docstring""" def __init__( self ): """simple docstring""" # map from node name to the node object lowerCamelCase_ = {} def snake_case ( self , UpperCamelCase ): """simple docstring""" # create a new set with x as its member lowerCamelCase_ = DisjointSetTreeNode(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" # find the set x belongs to (with path-compression) lowerCamelCase_ = self.map[data] if elem_ref != elem_ref.parent: lowerCamelCase_ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" # helper function for union operation if nodea.rank > nodea.rank: lowerCamelCase_ = nodea else: lowerCamelCase_ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" # merge 2 disjoint sets self.link(self.find_set(UpperCamelCase ) , self.find_set(UpperCamelCase ) ) class snake_case ( Generic[T] ): """simple docstring""" def __init__( self ): """simple docstring""" # connections: map from the node to the neighbouring nodes (with weights) lowerCamelCase_ = {} def snake_case ( self , UpperCamelCase ): """simple docstring""" # add a node ONLY if its not present in the graph if node not in self.connections: lowerCamelCase_ = {} def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" # add an edge with the given weight self.add_node(UpperCamelCase ) self.add_node(UpperCamelCase ) lowerCamelCase_ = weight lowerCamelCase_ = weight def snake_case ( self ): """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda UpperCamelCase : x[2] ) # creating the disjoint set lowerCamelCase_ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(UpperCamelCase ) # MST generation lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = edges[index] index += 1 lowerCamelCase_ = disjoint_set.find_set(UpperCamelCase ) lowerCamelCase_ = disjoint_set.find_set(UpperCamelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(UpperCamelCase , UpperCamelCase , UpperCamelCase ) disjoint_set.union(UpperCamelCase , UpperCamelCase ) return graph
55
1
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __snake_case : def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' return None class __snake_case : def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' return None class __snake_case ( unittest.TestCase ): _a : int= [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case ,"""tf""" ,12 ,**snake_case ) @require_torch @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case ,"""pt""" ,12 ,**snake_case ) @require_torch @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' from transformers import BertModel lowercase : Optional[Any] = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(snake_case ) ) vocab_file.flush() lowercase : Optional[int] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase : List[str] = BertModel(BertConfig(vocab_size=len(snake_case ) ) ) model.save_pretrained(snake_case ) self._test_export(snake_case ,"""pt""" ,12 ,snake_case ) @require_tf @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase : Union[str, Any] = self._test_export(snake_case ,"""tf""" ,12 ,**snake_case ) lowercase : int = quantize(Path(snake_case ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase : Tuple = self._test_export(snake_case ,"""pt""" ,12 ,**snake_case ) lowercase : str = quantize(snake_case ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case=None ,**snake_case ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowercase : Dict = Path(snake_case ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,**snake_case ) return path except Exception as e: self.fail(snake_case ) @require_torch @require_tokenizers @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' from transformers import BertModel lowercase : List[Any] = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowercase : Optional[int] = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(snake_case ,snake_case ,"""pt""" ) @require_tf @require_tokenizers @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' from transformers import TFBertModel lowercase : List[str] = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowercase : Dict = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(snake_case ,snake_case ,"""tf""" ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = FeatureExtractionPipeline(snake_case ,snake_case ) lowercase : Optional[int] = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] lowercase , lowercase , lowercase , lowercase : Optional[int] = infer_shapes(snake_case ,snake_case ) # Assert all variables are present self.assertEqual(len(snake_case ) ,len(snake_case ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,snake_case ) self.assertSequenceEqual(variable_names[3:] ,snake_case ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] ,{0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] ,{0: """batch"""} ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = ["""input_ids""", """attention_mask""", """token_type_ids"""] lowercase : Tuple = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} lowercase , lowercase : Optional[int] = ensure_valid_input(FuncContiguousArgs() ,snake_case ,snake_case ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(snake_case ) ,3 ) # Should have exactly the same input names self.assertEqual(set(snake_case ) ,set(snake_case ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(snake_case ,(tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase , lowercase : int = ensure_valid_input(FuncNonContiguousArgs() ,snake_case ,snake_case ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(snake_case ) ,1 ) self.assertEqual(len(snake_case ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] ,"""input_ids""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) ,"""-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" ,generated.as_posix() )
285
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = tempfile.mkdtemp() lowercase : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] lowercase : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase : Any = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], """do_convert_rgb""": True, } lowercase : List[str] = os.path.join(self.tmpdirname ,snake_case ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase : str = [Image.fromarray(np.moveaxis(snake_case ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.get_tokenizer() lowercase : Dict = self.get_rust_tokenizer() lowercase : Union[str, Any] = self.get_image_processor() lowercase : Optional[Any] = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) processor_slow.save_pretrained(self.tmpdirname ) lowercase : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=snake_case ) lowercase : List[Any] = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) processor_fast.save_pretrained(self.tmpdirname ) lowercase : Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,snake_case ) self.assertIsInstance(processor_fast.tokenizer ,snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,snake_case ) self.assertIsInstance(processor_fast.image_processor ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase : int = self.get_tokenizer(cls_token="""(CLS)""" ,sep_token="""(SEP)""" ) lowercase : Dict = self.get_image_processor(do_normalize=snake_case ) lowercase : Optional[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname ,cls_token="""(CLS)""" ,sep_token="""(SEP)""" ,do_normalize=snake_case ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,snake_case ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.get_image_processor() lowercase : List[str] = self.get_tokenizer() lowercase : Optional[Any] = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : Optional[int] = self.prepare_image_inputs() lowercase : Tuple = image_processor(snake_case ,return_tensors="""np""" ) lowercase : Optional[int] = processor(images=snake_case ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.get_image_processor() lowercase : Union[str, Any] = self.get_tokenizer() lowercase : Any = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : Any = """Alexandra,T-shirt的价格是15便士。""" lowercase : int = processor(text=snake_case ) lowercase : Dict = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.get_image_processor() lowercase : Optional[Any] = self.get_tokenizer() lowercase : Dict = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : List[str] = """Alexandra,T-shirt的价格是15便士。""" lowercase : Any = self.prepare_image_inputs() lowercase : Optional[Any] = processor(text=snake_case ,images=snake_case ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.get_image_processor() lowercase : str = self.get_tokenizer() lowercase : Dict = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : Any = processor.batch_decode(snake_case ) lowercase : str = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = self.get_image_processor() lowercase : Dict = self.get_tokenizer() lowercase : List[Any] = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : str = """Alexandra,T-shirt的价格是15便士。""" lowercase : Optional[Any] = self.prepare_image_inputs() lowercase : Dict = processor(text=snake_case ,images=snake_case ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
285
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase__ = {'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil lowerCAmelCase__ = 100 lowerCAmelCase__ = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowerCAmelCase__ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase : set[int] = set() lowerCAmelCase : int lowerCAmelCase : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def a__ ( SCREAMING_SNAKE_CASE : int = 5_0_0_0 ): '''simple docstring''' for number_to_partition in range(1 , SCREAMING_SNAKE_CASE ): if len(partition(SCREAMING_SNAKE_CASE ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
108
1
"""simple docstring""" from timeit import timeit _lowerCAmelCase : List[Any] = { '''MALAYALAM''': True, '''String''': False, '''rotor''': True, '''level''': True, '''A''': True, '''BB''': True, '''ABC''': False, '''amanaplanacanalpanama''': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : List[Any] = len(SCREAMING_SNAKE_CASE_ ) // 2 _lowerCamelCase : Dict = len(SCREAMING_SNAKE_CASE_ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE_ ) ) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' if len(SCREAMING_SNAKE_CASE_ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE_ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return s == s[::-1] def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Optional[Any] = F"""all({name}(key) is value for key, value in test_data.items())""" _lowerCamelCase : Optional[Any] = F"""from __main__ import test_data, {name}""" _lowerCamelCase : Any = 500000 _lowerCamelCase : Dict = timeit(stmt=SCREAMING_SNAKE_CASE_ , setup=SCREAMING_SNAKE_CASE_ , number=SCREAMING_SNAKE_CASE_ ) print(F"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'''{key:21} {value}''') print('''a man a plan a canal panama''') # finished 500,000 runs in 0.46793 seconds benchmark_function('''is_palindrome_slice''') # finished 500,000 runs in 0.85234 seconds benchmark_function('''is_palindrome''') # finished 500,000 runs in 1.32028 seconds benchmark_function('''is_palindrome_recursive''') # finished 500,000 runs in 2.08679 seconds benchmark_function('''is_palindrome_traversal''')
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def snake_case__ ( _A: Tuple , _A: Dict=0.999 , _A: str="cosine" , ) -> int: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_A: Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A: List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowerCAmelCase = [] for i in range(_A ): lowerCAmelCase = i / num_diffusion_timesteps lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class a__( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Any = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase_ : Optional[Any] = 2 @register_to_config def __init__( self , __lowerCAmelCase = 1000 , __lowerCAmelCase = 0.00085 , __lowerCAmelCase = 0.012 , __lowerCAmelCase = "linear" , __lowerCAmelCase = None , __lowerCAmelCase = "epsilon" , __lowerCAmelCase = "linspace" , __lowerCAmelCase = 0 , ): """simple docstring""" if trained_betas is not None: lowerCAmelCase = torch.tensor(__lowerCAmelCase , dtype=torch.floataa) elif beta_schedule == "linear": lowerCAmelCase = torch.linspace(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowerCAmelCase , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase = betas_for_alpha_bar(__lowerCAmelCase) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") lowerCAmelCase = 1.0 - self.betas lowerCAmelCase = torch.cumprod(self.alphas , dim=0) # set all values self.set_timesteps(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=None): """simple docstring""" if schedule_timesteps is None: lowerCAmelCase = self.timesteps lowerCAmelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: lowerCAmelCase = 1 if len(__lowerCAmelCase) > 1 else 0 else: lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(__lowerCAmelCase) else timestep lowerCAmelCase = self._index_counter[timestep_int] return indices[pos].item() @property def a_ ( self): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = self.index_for_timestep(__lowerCAmelCase) if self.state_in_first_order: lowerCAmelCase = self.sigmas[step_index] else: lowerCAmelCase = self.sigmas_interpol[step_index] lowerCAmelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , ): """simple docstring""" lowerCAmelCase = num_inference_steps lowerCAmelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase = np.linspace(0 , num_train_timesteps - 1 , __lowerCAmelCase , dtype=__lowerCAmelCase)[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase = (np.arange(0 , __lowerCAmelCase) * step_ratio).round()[::-1].copy().astype(__lowerCAmelCase) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase = (np.arange(__lowerCAmelCase , 0 , -step_ratio)).round().copy().astype(__lowerCAmelCase) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") lowerCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) lowerCAmelCase = torch.from_numpy(np.log(__lowerCAmelCase)).to(__lowerCAmelCase) lowerCAmelCase = np.interp(__lowerCAmelCase , np.arange(0 , len(__lowerCAmelCase)) , __lowerCAmelCase) lowerCAmelCase = np.concatenate([sigmas, [0.0]]).astype(np.floataa) lowerCAmelCase = torch.from_numpy(__lowerCAmelCase).to(device=__lowerCAmelCase) # interpolate sigmas lowerCAmelCase = sigmas.log().lerp(sigmas.roll(1).log() , 0.5).exp() lowerCAmelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) lowerCAmelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]) if str(__lowerCAmelCase).startswith("""mps"""): # mps does not support float64 lowerCAmelCase = torch.from_numpy(__lowerCAmelCase).to(__lowerCAmelCase , dtype=torch.floataa) else: lowerCAmelCase = torch.from_numpy(__lowerCAmelCase).to(__lowerCAmelCase) # interpolate timesteps lowerCAmelCase = self.sigma_to_t(__lowerCAmelCase).to(__lowerCAmelCase , dtype=timesteps.dtype) lowerCAmelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1).flatten() lowerCAmelCase = torch.cat([timesteps[:1], interleaved_timesteps]) lowerCAmelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase = defaultdict(__lowerCAmelCase) def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = sigma.log() # get distribution lowerCAmelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range lowerCAmelCase = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) lowerCAmelCase = low_idx + 1 lowerCAmelCase = self.log_sigmas[low_idx] lowerCAmelCase = self.log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase = (low - log_sigma) / (low - high) lowerCAmelCase = w.clamp(0 , 1) # transform interpolation to time range lowerCAmelCase = (1 - w) * low_idx + w * high_idx lowerCAmelCase = t.view(sigma.shape) return t @property def a_ ( self): """simple docstring""" return self.sample is None def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True , ): """simple docstring""" lowerCAmelCase = self.index_for_timestep(__lowerCAmelCase) # advance index counter by 1 lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(__lowerCAmelCase) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase = self.sigmas[step_index] lowerCAmelCase = self.sigmas_interpol[step_index + 1] lowerCAmelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowerCAmelCase = self.sigmas[step_index - 1] lowerCAmelCase = self.sigmas_interpol[step_index] lowerCAmelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase = 0 lowerCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_interpol lowerCAmelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_interpol lowerCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""") else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`") if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase = sigma_interpol - sigma_hat # store for 2nd order step lowerCAmelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowerCAmelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowerCAmelCase = sigma_next - sigma_hat lowerCAmelCase = self.sample lowerCAmelCase = None lowerCAmelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(__lowerCAmelCase): # mps does not support float64 lowerCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa) lowerCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa) else: lowerCAmelCase = self.timesteps.to(original_samples.device) lowerCAmelCase = timesteps.to(original_samples.device) lowerCAmelCase = [self.index_for_timestep(__lowerCAmelCase , __lowerCAmelCase) for t in timesteps] lowerCAmelCase = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): lowerCAmelCase = sigma.unsqueeze(-1) lowerCAmelCase = original_samples + noise * sigma return noisy_samples def __len__( self): """simple docstring""" return self.config.num_train_timesteps
272
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class a__( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Dict = MvpTokenizer UpperCAmelCase_ : Optional[Any] = MvpTokenizerFast UpperCAmelCase_ : str = True UpperCAmelCase_ : List[Any] = filter_roberta_detectors def a_ ( self): """simple docstring""" super().setUp() lowerCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCAmelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase)))) lowerCAmelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCAmelCase = {"""unk_token""": """<unk>"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(__lowerCAmelCase) + """\n""") with open(self.merges_file , """w""" , encoding="""utf-8""") as fp: fp.write("""\n""".join(__lowerCAmelCase)) def a_ ( self , **__lowerCAmelCase): """simple docstring""" kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self , **__lowerCAmelCase): """simple docstring""" kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self , __lowerCAmelCase): """simple docstring""" return "lower newer", "lower newer" @cached_property def a_ ( self): """simple docstring""" return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""") @cached_property def a_ ( self): """simple docstring""" return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""") @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowerCAmelCase = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(__lowerCAmelCase , max_length=len(__lowerCAmelCase) , padding=__lowerCAmelCase , return_tensors="""pt""") self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) # Test that special tokens are reset @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors="""pt""") # check if input_ids are returned and no labels self.assertIn("""input_ids""" , __lowerCAmelCase) self.assertIn("""attention_mask""" , __lowerCAmelCase) self.assertNotIn("""labels""" , __lowerCAmelCase) self.assertNotIn("""decoder_attention_mask""" , __lowerCAmelCase) @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(text_target=__lowerCAmelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""") self.assertEqual(32 , targets["""input_ids"""].shape[1]) @require_torch def a_ ( self): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""") self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase) self.assertEqual(batch.input_ids.shape , (2, 1024)) @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = ["""A long paragraph for summarization."""] lowerCAmelCase = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(__lowerCAmelCase , text_target=__lowerCAmelCase , return_tensors="""pt""") lowerCAmelCase = inputs["""input_ids"""] lowerCAmelCase = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) def a_ ( self): """simple docstring""" pass def a_ ( self): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = """A, <mask> AllenNLP sentence.""" lowerCAmelCase = tokenizer_r.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase) lowerCAmelCase = tokenizer_p.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""]) , sum(tokens_p["""token_type_ids"""])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""]) / len(tokens_r["""attention_mask"""]) , sum(tokens_p["""attention_mask"""]) / len(tokens_p["""attention_mask"""]) , ) lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""]) lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""]) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( __lowerCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""]) self.assertSequenceEqual( __lowerCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""])
272
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase: Optional[Any] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Tuple = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Dict = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase: Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
336
"""simple docstring""" import cva import numpy as np class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if k in (0.04, 0.06): _lowercase : Optional[Any] = k _lowercase : Optional[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ): return str(self.k ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = cva.imread(UpperCAmelCase_ ,0 ) _lowercase , _lowercase : Dict = img.shape _lowercase : list[list[int]] = [] _lowercase : int = img.copy() _lowercase : List[str] = cva.cvtColor(UpperCAmelCase_ ,cva.COLOR_GRAY2RGB ) _lowercase , _lowercase : Optional[Any] = np.gradient(UpperCAmelCase_ ) _lowercase : Optional[int] = dx**2 _lowercase : Optional[Any] = dy**2 _lowercase : Optional[Any] = dx * dy _lowercase : List[str] = 0.04 _lowercase : Optional[Any] = self.window_size // 2 for y in range(UpperCAmelCase_ ,h - offset ): for x in range(UpperCAmelCase_ ,w - offset ): _lowercase : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Dict = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Union[str, Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : int = (wxx * wyy) - (wxy**2) _lowercase : Union[str, Any] = wxx + wyy _lowercase : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_55 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase: Optional[int] = HarrisCorner(0.04, 3) UpperCAmelCase , UpperCAmelCase: List[Any] = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
336
1
"""simple docstring""" import re import string import numpy as np import datasets UpperCAmelCase__ : str = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' UpperCAmelCase__ : int = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It\'s like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It\'s like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n' UpperCAmelCase__ : List[str] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ (datasets.Metric ): """simple docstring""" def __magic_name__ (self ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , ) -> Tuple: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: SCREAMING_SNAKE_CASE__ : List[Any] = np.array([re.sub(_A , """""" , _A ) for x in predictions] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array([re.sub(_A , """""" , _A ) for x in references] ) else: SCREAMING_SNAKE_CASE__ : Dict = np.asarray(_A ) SCREAMING_SNAKE_CASE__ : Tuple = np.asarray(_A ) if ignore_case: SCREAMING_SNAKE_CASE__ : List[str] = np.char.lower(_A ) SCREAMING_SNAKE_CASE__ : Any = np.char.lower(_A ) if ignore_punctuation: SCREAMING_SNAKE_CASE__ : int = string.punctuation.maketrans("""""" , """""" , string.punctuation ) SCREAMING_SNAKE_CASE__ : Tuple = np.char.translate(_A , table=_A ) SCREAMING_SNAKE_CASE__ : str = np.char.translate(_A , table=_A ) if ignore_numbers: SCREAMING_SNAKE_CASE__ : Optional[int] = string.digits.maketrans("""""" , """""" , string.digits ) SCREAMING_SNAKE_CASE__ : str = np.char.translate(_A , table=_A ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.char.translate(_A , table=_A ) SCREAMING_SNAKE_CASE__ : int = predictions == references return {"exact_match": np.mean(_A ) * 1_00}
25
import sys _SCREAMING_SNAKE_CASE = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE__ ( __a = N ): snake_case_ : Optional[Any] = -sys.maxsize - 1 for i in range(len(__a ) - 12 ): snake_case_ : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case_ : int = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
327
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCamelCase_ ( ) -> Any: """simple docstring""" snake_case_ : Any = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=_UpperCamelCase , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=_UpperCamelCase , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=_UpperCamelCase ) return parser.parse_args() def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[Any] = parse_args() # Import training_script as a module. snake_case_ : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case_ : str = script_fpath.stem snake_case_ : Optional[int] = importlib.import_module(_UpperCamelCase ) # Patch sys.argv snake_case_ : Optional[int] = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
371
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=13 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=99 , __magic_name__=32 , __magic_name__=5 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=512 , __magic_name__=16 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=4 , ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = parent snake_case_ : Optional[Any] = batch_size snake_case_ : List[Any] = seq_length snake_case_ : Tuple = is_training snake_case_ : List[str] = use_attention_mask snake_case_ : Any = use_token_type_ids snake_case_ : Dict = use_labels snake_case_ : Optional[Any] = vocab_size snake_case_ : Dict = hidden_size snake_case_ : List[Any] = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Optional[int] = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : Optional[int] = max_position_embeddings snake_case_ : Optional[int] = type_vocab_size snake_case_ : List[Any] = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : Dict = num_choices def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Any = None if self.use_attention_mask: snake_case_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[Any] = None if self.use_token_type_ids: snake_case_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : List[Any] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[int] = config_and_inputs snake_case_ : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase (self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Dict = model_class_name.from_pretrained('''albert-base-v2''' ) snake_case_ : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[Any] = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) snake_case_ : Optional[int] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) snake_case_ : Dict = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ )[0] snake_case_ : Tuple = (1, 11, 768) self.assertEqual(output.shape , __magic_name__ ) snake_case_ : str = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __magic_name__ , atol=1e-4 ) )
279
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging snake_case : Any = logging.get_logger(__name__) class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = ['input_values', 'attention_mask'] def __init__( self , _lowerCamelCase = 1 , _lowerCamelCase = 1_6000 , _lowerCamelCase = 0.0 , _lowerCamelCase = False , _lowerCamelCase = 80 , _lowerCamelCase = 16 , _lowerCamelCase = 64 , _lowerCamelCase = "hann_window" , _lowerCamelCase = 1.0 , _lowerCamelCase = 80 , _lowerCamelCase = 7600 , _lowerCamelCase = 1e-10 , _lowerCamelCase = 2 , _lowerCamelCase = True , **_lowerCamelCase , ): super().__init__(feature_size=_lowerCamelCase , sampling_rate=_lowerCamelCase , padding_value=_lowerCamelCase , **_lowerCamelCase ) a :Union[str, Any] = do_normalize a :List[Any] = return_attention_mask a :List[str] = num_mel_bins a :List[str] = hop_length a :List[Any] = win_length a :List[Any] = win_function a :List[str] = frame_signal_scale a :List[str] = fmin a :Tuple = fmax a :List[Any] = mel_floor a :Union[str, Any] = reduction_factor a :Union[str, Any] = win_length * sampling_rate // 1000 a :Dict = hop_length * sampling_rate // 1000 a :Any = optimal_fft_length(self.sample_size ) a :List[Any] = (self.n_fft // 2) + 1 a :Any = window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowerCamelCase ) a :str = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , _lowerCamelCase , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , _lowerCamelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def SCREAMING_SNAKE_CASE__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0.0 ): if attention_mask is not None: a :List[Any] = np.array(_lowerCamelCase , np.intaa ) a :List[str] = [] for vector, length in zip(_lowerCamelCase , attention_mask.sum(-1 ) ): a :Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: a :Union[str, Any] = padding_value normed_input_values.append(_lowerCamelCase ) else: a :List[str] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , ): a :Union[str, Any] = spectrogram( _lowerCamelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: a :Optional[Any] = self._process_audio( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase , ) else: a :int = None if audio_target is not None: a :Optional[int] = self._process_audio( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase , ) if inputs is None: return inputs_target else: a :Optional[Any] = inputs_target['''input_values'''] a :Union[str, Any] = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: a :str = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): a :Optional[int] = isinstance(_lowerCamelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a :List[Any] = is_batched_numpy or ( isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a :str = [np.asarray(_lowerCamelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_lowerCamelCase , np.ndarray ): a :Union[str, Any] = np.asarray(_lowerCamelCase , dtype=np.floataa ) elif isinstance(_lowerCamelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): a :List[Any] = speech.astype(np.floataa ) # always return batch if not is_batched: a :List[Any] = [speech] # needed to make pad() work on spectrogram inputs a :Optional[int] = self.feature_size # convert into correct format for padding if is_target: a :List[Any] = [self._extract_mel_features(_lowerCamelCase ) for waveform in speech] a :List[Any] = BatchFeature({'''input_values''': features} ) a :List[Any] = self.num_mel_bins else: a :List[str] = BatchFeature({'''input_values''': speech} ) a :Optional[int] = self.pad( _lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) a :List[str] = feature_size_hack # convert input values to correct format a :Tuple = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): a :int = [np.asarray(_lowerCamelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_lowerCamelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): a :Union[str, Any] = [array.astype(np.floataa ) for array in input_values] elif isinstance(_lowerCamelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): a :Optional[int] = input_values.astype(np.floataa ) # convert attention_mask to correct format a :Any = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: a :Union[str, Any] = [np.asarray(_lowerCamelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: a :Union[str, Any] = ( attention_mask if self._get_padding_strategies(_lowerCamelCase , max_length=_lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) a :List[str] = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=_lowerCamelCase , padding_value=self.padding_value ) if return_tensors is not None: a :Any = padded_inputs.convert_to_tensors(_lowerCamelCase ) return padded_inputs def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = super().to_dict() # Don't serialize these as they are derived from the other properties. a :Tuple = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
94
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int ,A_ : int ) -> Union[str, Any]: A = n A = [None] * self.n A = 0 # index of the first element A = 0 A = 0 def __len__( self : int ) -> int: return self.size def _SCREAMING_SNAKE_CASE ( self : Any ) -> bool: return self.size == 0 def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: return False if self.is_empty() else self.array[self.front] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ) -> int: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) A = data A = (self.rear + 1) % self.n self.size += 1 return self def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: if self.size == 0: raise Exception('UNDERFLOW' ) A = self.array[self.front] A = None A = (self.front + 1) % self.n self.size -= 1 return temp
74
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCamelCase ( _A, _A, _A = "x", _A = 10**-10, _A = 1, ): """simple docstring""" __magic_name__ : int = symbols(_A ) __magic_name__ : Tuple = lambdify(_A, _A ) __magic_name__ : Dict = lambdify(_A, diff(_A, _A ) ) __magic_name__ : Any = starting_point while True: if diff_function(_A ) != 0: __magic_name__ : Any = prev_guess - multiplicity * func(_A ) / diff_function( _A ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __magic_name__ : Optional[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F"""{newton_raphson('exp(x) - 1', 10, precision=0.0_05)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
368
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=30 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , lowerCAmelCase__=2 , ) -> Optional[Any]: __magic_name__ : Optional[Any] = parent __magic_name__ : List[str] = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[Any] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : Union[str, Any] = is_training __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Tuple = hidden_size __magic_name__ : List[str] = num_hidden_layers __magic_name__ : Optional[Any] = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Union[str, Any] = hidden_act __magic_name__ : str = hidden_dropout_prob __magic_name__ : List[str] = attention_probs_dropout_prob __magic_name__ : Tuple = type_sequence_label_size __magic_name__ : Any = initializer_range __magic_name__ : str = scope __magic_name__ : str = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __magic_name__ : Dict = (image_size // patch_size) ** 2 __magic_name__ : int = num_patches + 2 def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Tuple = None if self.use_labels: __magic_name__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[str]: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TFDeiTModel(config=lowerCAmelCase__ ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : int = TFDeiTForMaskedImageModeling(config=lowerCAmelCase__ ) __magic_name__ : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Tuple = 1 __magic_name__ : List[Any] = TFDeiTForMaskedImageModeling(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Union[str, Any] = self.type_sequence_label_size __magic_name__ : str = TFDeiTForImageClassification(lowerCAmelCase__ ) __magic_name__ : List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : int = 1 __magic_name__ : List[str] = TFDeiTForImageClassification(lowerCAmelCase__ ) __magic_name__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Union[str, Any] = config_and_inputs __magic_name__ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowercase__ : Any = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowercase__ : int = False lowercase__ : List[Any] = False lowercase__ : Tuple = False lowercase__ : int = False def __magic_name__ ( self ) -> str: __magic_name__ : str = TFDeiTModelTester(self ) __magic_name__ : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def __magic_name__ ( self ) -> Union[str, Any]: pass def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ ,__magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , tf.keras.layers.Dense ) ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Any = model_class(lowerCAmelCase__ ) __magic_name__ : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : int = [*signature.parameters.keys()] __magic_name__ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> str: __magic_name__ : Any = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __magic_name__ ( self ) -> Dict: for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : int = TFDeiTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) __magic_name__ : Any = self.default_image_processor __magic_name__ : Tuple = prepare_img() __magic_name__ : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="""tf""" ) # forward pass __magic_name__ : Dict = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : List[Any] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
138
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) @dataclass class __lowerCAmelCase ( datasets.BuilderConfig ): """simple docstring""" _snake_case : int = 1_0_0_0_0 _snake_case : Optional[List[str]] = None _snake_case : Optional[datasets.Features] = None class __lowerCAmelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" _snake_case : Optional[int] = ParquetConfig def snake_case__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> Tuple: '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case__ , (str, list, tuple) ): _UpperCamelCase = data_files if isinstance(snake_case__ , snake_case__ ): _UpperCamelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _UpperCamelCase = [dl_manager.iter_files(snake_case__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(snake_case__ , snake_case__ ): _UpperCamelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _UpperCamelCase = [dl_manager.iter_files(snake_case__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(snake_case__ ): with open(snake_case__ , '''rb''' ) as f: _UpperCamelCase = datasets.Features.from_arrow_schema(pq.read_schema(snake_case__ ) ) break splits.append(datasets.SplitGenerator(name=snake_case__ , gen_kwargs={'''files''': files} ) ) return splits def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : pa.Table ) -> Tuple: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _UpperCamelCase = table_cast(snake_case__ , self.info.features.arrow_schema ) return pa_table def snake_case__ ( self : Tuple , lowerCAmelCase__ : Optional[Any] ) -> str: '''simple docstring''' _UpperCamelCase = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case__ ) ): with open(snake_case__ , '''rb''' ) as f: _UpperCamelCase = pq.ParquetFile(snake_case__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): _UpperCamelCase = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(snake_case__ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(snake_case__ )}: {e}""" ) raise
324
"""simple docstring""" import re from filelock import FileLock try: import nltk A__ : Any = True except (ImportError, ModuleNotFoundError): A__ : str = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _snake_case ( lowerCamelCase__ : str ) -> str: re.sub("<n>" , "" , lowerCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCamelCase__ ) )
144
0
"""simple docstring""" import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() _snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCamelCase ( lowerCAmelCase__ ): def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : int ) -> Any: os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) _a : str = {"""source""": """What is love ?""", """target""": """life"""} _a : Optional[int] = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _a : Optional[Any] = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(_SCREAMING_SNAKE_CASE , f"""{split}.{field}""" ) , """w""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) def _lowercase ( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] = "pytorch" ) -> List[str]: _a : Optional[int] = self.get_auto_remove_tmp_dir() _a : List[Any] = os.path.join(_SCREAMING_SNAKE_CASE , """output""" ) _a : List[Any] = os.path.join(_SCREAMING_SNAKE_CASE , """data""" ) self._create_dummy_data(data_dir=_SCREAMING_SNAKE_CASE ) _a : Dict = f"""\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) _a : Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=self.get_env() ) _a : int = os.path.join(_SCREAMING_SNAKE_CASE , """metrics.json""" ) with open(_SCREAMING_SNAKE_CASE ) as f: _a : int = json.load(_SCREAMING_SNAKE_CASE ) return result @require_torch_gpu def _lowercase ( self : Dict ) -> Tuple: _a : List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _lowercase ( self : Dict ) -> List[str]: _a : List[Any] = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _lowercase ( self : str ) -> Any: _a : Any = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : Tuple = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
355
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
324
0
from pathlib import Path import fire from tqdm import tqdm def _snake_case( SCREAMING_SNAKE_CASE__="ro" , SCREAMING_SNAKE_CASE__="en" , SCREAMING_SNAKE_CASE__="wmt16" , SCREAMING_SNAKE_CASE__=None ) -> None: try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) lowercase : Tuple = f"{src_lang}-{tgt_lang}" print(f"Converting {dataset}-{pair}" ) lowercase : List[str] = datasets.load_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if save_dir is None: lowercase : Tuple = f"{dataset}-{pair}" lowercase : List[Any] = Path(SCREAMING_SNAKE_CASE__ ) save_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) for split in ds.keys(): print(f"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets lowercase : Dict = """val""" if split == """validation""" else split lowercase : Any = save_dir.joinpath(f"{fn}.source" ) lowercase : Union[str, Any] = save_dir.joinpath(f"{fn}.target" ) lowercase : Any = src_path.open("""w+""" ) lowercase : str = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowercase : str = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(f"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : str = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
1
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
368
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) UpperCAmelCase_ = logging.getLogger(__name__) UpperCAmelCase_ = 'Hello world! cécé herlolip' UpperCAmelCase_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' UpperCAmelCase__ = BertAbsConfig( temp_dir=""".""" , finetune_bert=SCREAMING_SNAKE_CASE__ , large=SCREAMING_SNAKE_CASE__ , share_emb=SCREAMING_SNAKE_CASE__ , use_bert_emb=SCREAMING_SNAKE_CASE__ , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) UpperCAmelCase__ = torch.load(SCREAMING_SNAKE_CASE__ , lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : storage ) UpperCAmelCase__ = AbsSummarizer(SCREAMING_SNAKE_CASE__ , torch.device("""cpu""" ) , SCREAMING_SNAKE_CASE__ ) original.eval() UpperCAmelCase__ = BertAbsSummarizer(SCREAMING_SNAKE_CASE__ , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) UpperCAmelCase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs UpperCAmelCase__ = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE__ )) ) UpperCAmelCase__ = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) UpperCAmelCase__ = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE__ )) ) UpperCAmelCase__ = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase__ = encoder_input_ids UpperCAmelCase__ = decoder_input_ids UpperCAmelCase__ = UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = UpperCAmelCase__ = None UpperCAmelCase__ = UpperCAmelCase__ = None UpperCAmelCase__ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase__ = original(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] UpperCAmelCase__ = original.generator(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = new_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] UpperCAmelCase__ = new_model.generator(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) UpperCAmelCase_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
61
0
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "efficientnet" def __init__( self : Optional[Any] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 6_0_0 , lowerCAmelCase_ : float = 2.0 , lowerCAmelCase_ : float = 3.1 , lowerCAmelCase_ : int = 8 , lowerCAmelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase_ : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , lowerCAmelCase_ : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , lowerCAmelCase_ : List[int] = [] , lowerCAmelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase_ : float = 0.25 , lowerCAmelCase_ : str = "swish" , lowerCAmelCase_ : int = 2_5_6_0 , lowerCAmelCase_ : str = "mean" , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : float = 0.001 , lowerCAmelCase_ : float = 0.99 , lowerCAmelCase_ : float = 0.5 , lowerCAmelCase_ : float = 0.2 , **lowerCAmelCase_ : List[str] , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = num_channels lowercase_ = image_size lowercase_ = width_coefficient lowercase_ = depth_coefficient lowercase_ = depth_divisor lowercase_ = kernel_sizes lowercase_ = in_channels lowercase_ = out_channels lowercase_ = depthwise_padding lowercase_ = strides lowercase_ = num_block_repeats lowercase_ = expand_ratios lowercase_ = squeeze_expansion_ratio lowercase_ = hidden_act lowercase_ = hidden_dim lowercase_ = pooling_type lowercase_ = initializer_range lowercase_ = batch_norm_eps lowercase_ = batch_norm_momentum lowercase_ = dropout_rate lowercase_ = drop_connect_rate lowercase_ = sum(lowerCAmelCase_) * 4 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = version.parse("1.11" ) @property def _UpperCAmelCase ( self : int): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _UpperCAmelCase ( self : Tuple): """simple docstring""" return 1E-5
136
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : int = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "encodec" def __init__( self : Union[str, Any] , lowerCAmelCase_ : Tuple=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase_ : Tuple=2_4_0_0_0 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Dict=1_2_8 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : Dict=[8, 5, 4, 2] , lowerCAmelCase_ : Optional[Any]="weight_norm" , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : int=7 , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : int="reflect" , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : List[Any]=1.0 , lowerCAmelCase_ : Dict=1_0_2_4 , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=True , **lowerCAmelCase_ : List[str] , ): """simple docstring""" lowercase_ = target_bandwidths lowercase_ = sampling_rate lowercase_ = audio_channels lowercase_ = normalize lowercase_ = chunk_length_s lowercase_ = overlap lowercase_ = hidden_size lowercase_ = num_filters lowercase_ = num_residual_layers lowercase_ = upsampling_ratios lowercase_ = norm_type lowercase_ = kernel_size lowercase_ = last_kernel_size lowercase_ = residual_kernel_size lowercase_ = dilation_growth_rate lowercase_ = use_causal_conv lowercase_ = pad_mode lowercase_ = compress lowercase_ = num_lstm_layers lowercase_ = trim_right_ratio lowercase_ = codebook_size lowercase_ = codebook_dim if codebook_dim is not None else hidden_size lowercase_ = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''') super().__init__(**lowerCAmelCase_) @property def _UpperCAmelCase ( self : Dict): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length)) @property def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = np.prod(self.upsampling_ratios) return math.ceil(self.sampling_rate / hop_length) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return int(1_0_0_0 * self.target_bandwidths[-1] // (self.frame_rate * 1_0))
136
1
"""simple docstring""" import requests from bsa import BeautifulSoup def lowercase ( A_ , A_ )-> str: '''simple docstring''' a : Tuple = BeautifulSoup(requests.get(A_ , params=A_ ).content , "html.parser" ) a : List[Any] = soup.find("div" , attrs={"class": "gs_ri"} ) a : Optional[Any] = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": __lowercase = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
226
"""simple docstring""" import sys import turtle def lowercase ( A_ , A_ )-> tuple[float, float]: '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase ( A_ , A_ , A_ , A_ , )-> None: '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) __lowercase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") __lowercase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
226
1
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : CLIPSegForImageSegmentation , SCREAMING_SNAKE_CASE_ : CLIPSegProcessor , SCREAMING_SNAKE_CASE_ : AutoencoderKL , SCREAMING_SNAKE_CASE_ : CLIPTextModel , SCREAMING_SNAKE_CASE_ : CLIPTokenizer , SCREAMING_SNAKE_CASE_ : UNetaDConditionModel , SCREAMING_SNAKE_CASE_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , SCREAMING_SNAKE_CASE_ : StableDiffusionSafetyChecker , SCREAMING_SNAKE_CASE_ : CLIPImageProcessor , ) -> List[str]: '''simple docstring''' super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: A: Tuple = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , SCREAMING_SNAKE_CASE_ , standard_warn=SCREAMING_SNAKE_CASE_ ) A: Any = dict(scheduler.config ) A: int = 1 A: Optional[Any] = FrozenDict(SCREAMING_SNAKE_CASE_ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: A: List[Any] = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , SCREAMING_SNAKE_CASE_ , standard_warn=SCREAMING_SNAKE_CASE_ ) A: str = dict(scheduler.config ) A: List[str] = True A: Any = FrozenDict(SCREAMING_SNAKE_CASE_ ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=SCREAMING_SNAKE_CASE_ , segmentation_processor=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, int]] = "auto" ) -> Optional[Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A: Dict = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> List[Any]: '''simple docstring''' self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Dict ) -> Tuple: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) A: Union[str, Any] = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case ( self : int ) -> List[str]: '''simple docstring''' if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : int , SCREAMING_SNAKE_CASE_ : Union[str, List[str]] , SCREAMING_SNAKE_CASE_ : Union[torch.FloatTensor, PIL.Image.Image] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int = 5_12 , SCREAMING_SNAKE_CASE_ : int = 5_12 , SCREAMING_SNAKE_CASE_ : int = 50 , SCREAMING_SNAKE_CASE_ : float = 7.5 , SCREAMING_SNAKE_CASE_ : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE_ : int = 1 , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> Tuple: '''simple docstring''' A: int = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) A: List[Any] = self.segmentation_model(**SCREAMING_SNAKE_CASE_ ) A: List[Any] = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() A: Any = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask A: List[Any] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , )
319
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } UpperCamelCase = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: A: Tuple = EfficientNetConfig() A: Optional[int] = CONFIG_MAP[model_name]['''hidden_dim'''] A: Optional[int] = CONFIG_MAP[model_name]['''width_coef'''] A: str = CONFIG_MAP[model_name]['''depth_coef'''] A: Dict = CONFIG_MAP[model_name]['''image_size'''] A: str = CONFIG_MAP[model_name]['''dropout_rate'''] A: Optional[Any] = CONFIG_MAP[model_name]['''dw_padding'''] A: Optional[Any] = '''huggingface/label-files''' A: List[str] = '''imagenet-1k-id2label.json''' A: Dict = 1_0_0_0 A: Any = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Tuple = {int(__lowercase ): v for k, v in idalabel.items()} A: int = idalabel A: Tuple = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE( ) -> Any: A: Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A: Union[str, Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: A: List[str] = CONFIG_MAP[model_name]['''image_size'''] A: List[Any] = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=__lowercase , ) return preprocessor def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: A: List[str] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] A: List[str] = sorted(set(__lowercase ) ) A: Dict = len(__lowercase ) A: List[str] = {b: str(__lowercase ) for b, i in zip(__lowercase , range(__lowercase ) )} A: Optional[int] = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: A: int = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) A: Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: A: str = '''efficientnet.''' + item[1] A: int = '''classifier.weight''' A: Tuple = '''classifier.bias''' return key_mapping def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue A: Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: A: List[str] = torch.from_numpy(__lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: A: List[Any] = torch.from_numpy(__lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: A: Optional[Any] = torch.from_numpy(np.transpose(__lowercase ) ) else: A: Any = torch.from_numpy(__lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__lowercase ) @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple: A: Optional[int] = model_classes[model_name]( include_top=__lowercase , weights='''imagenet''' , input_tensor=__lowercase , input_shape=__lowercase , pooling=__lowercase , classes=1_0_0_0 , classifier_activation='''softmax''' , ) A: List[str] = original_model.trainable_variables A: Optional[Any] = original_model.non_trainable_variables A: Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: A: int = param.numpy() A: Tuple = list(tf_params.keys() ) # Load HuggingFace model A: Dict = get_efficientnet_config(__lowercase ) A: Union[str, Any] = EfficientNetForImageClassification(__lowercase ).eval() A: Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) A: int = rename_keys(__lowercase ) replace_params(__lowercase , __lowercase , __lowercase ) # Initialize preprocessor and preprocess input image A: List[Any] = convert_image_processor(__lowercase ) A: Optional[Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): A: str = hf_model(**__lowercase ) A: List[Any] = outputs.logits.detach().numpy() # Original model inference A: Any = False A: List[Any] = CONFIG_MAP[model_name]['''image_size'''] A: List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) A: str = image.img_to_array(__lowercase ) A: Dict = np.expand_dims(__lowercase , axis=0 ) A: Any = original_model.predict(__lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__lowercase , __lowercase , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(__lowercase ): os.mkdir(__lowercase ) # Save converted model and image processor hf_model.save_pretrained(__lowercase ) preprocessor.save_pretrained(__lowercase ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) A: int = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(__lowercase ) hf_model.push_to_hub(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') UpperCamelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
1
from __future__ import annotations def snake_case (A_ :list[int] , A_ :int ): '''simple docstring''' a : list[list[int]] = [] a : list[int] = [] a : Optional[Any] = 0 a : List[str] = sum(A_ ) create_state_space_tree(A_ , A_ , A_ , A_ , A_ , A_ ) return result def snake_case (A_ :list[int] , A_ :int , A_ :int , A_ :list[int] , A_ :list[list[int]] , A_ :int , ): '''simple docstring''' if sum(A_ ) > max_sum or (remaining_nums_sum + sum(A_ )) < max_sum: return if sum(A_ ) == max_sum: result.append(A_ ) return for index in range(A_ , len(A_ ) ): create_state_space_tree( A_ , A_ , index + 1 , [*path, nums[index]] , A_ , remaining_nums_sum - nums[index] , ) _UpperCamelCase : Tuple = [3, 34, 4, 12, 5, 2] _UpperCamelCase : List[Any] = 9 _UpperCamelCase : List[str] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
364
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _UpperCamelCase : List[str] = logging.get_logger(__name__) _UpperCamelCase : Optional[Any] = '▁' _UpperCamelCase : List[Any] = {'vocab_file': 'sentencepiece.bpe.model'} _UpperCamelCase : Optional[int] = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } _UpperCamelCase : List[str] = { 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off _UpperCamelCase : List[str] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class snake_case ( UpperCAmelCase ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ['''input_ids''', '''attention_mask'''] __magic_name__ = [] __magic_name__ = [] def __init__( self : List[str] , A : Union[str, Any] , A : List[Any]="<s>" , A : Dict="</s>" , A : List[Any]="</s>" , A : Any="<s>" , A : Dict="<unk>" , A : Any="<pad>" , A : Optional[int]="<mask>" , A : str=None , A : Tuple=None , A : List[str]=None , A : Optional[Dict[str, Any]] = None , A : Any=None , A : List[Any]=False , **A : Tuple , ): '''simple docstring''' a : int = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token a : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs a : Optional[Any] = legacy_behaviour super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , tokenizer_file=A , src_lang=A , tgt_lang=A , additional_special_tokens=A , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=A , **A , ) a : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) a : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token a : List[str] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a : Any = 1 a : int = len(self.sp_model ) a : Optional[int] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A ) } a : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} a : Optional[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) a : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} a : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) a : Optional[int] = src_lang if src_lang is not None else 'eng_Latn' a : List[Any] = self.lang_code_to_id[self._src_lang] a : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ): '''simple docstring''' a : Dict = self.__dict__.copy() a : int = None a : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , A : Any ): '''simple docstring''' a : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): a : Any = {} a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return self._src_lang @src_lang.setter def lowerCamelCase__ ( self : Dict , A : str ): '''simple docstring''' a : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__ ( self : Optional[int] , A : List[int] , A : Optional[List[int]] = None , A : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) a : Tuple = [1] * len(self.prefix_tokens ) a : int = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A )) + suffix_ones return prefix_ones + ([0] * len(A )) + ([0] * len(A )) + suffix_ones def lowerCamelCase__ ( self : Any , A : List[int] , A : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ ( self : Optional[int] , A : List[int] , A : Optional[List[int]] = None ): '''simple docstring''' a : List[str] = [self.sep_token_id] a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : List[str] , A : Optional[int] , A : str , A : Optional[str] , A : Optional[str] , **A : str ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) a : Any = src_lang a : Any = self(A , add_special_tokens=A , return_tensors=A , **A ) a : Tuple = self.convert_tokens_to_ids(A ) a : Optional[Any] = tgt_lang_id return inputs def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' a : Union[str, Any] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self : Any , A : str ): '''simple docstring''' return self.sp_model.encode(A , out_type=A ) def lowerCamelCase__ ( self : Union[str, Any] , A : Tuple ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a : int = self.sp_model.PieceToId(A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self : Tuple , A : List[str] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self : List[str] , A : Dict ): '''simple docstring''' a : List[str] = ''.join(A ).replace(A , ' ' ).strip() return out_string def lowerCamelCase__ ( self : Any , A : str , A : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a : Optional[int] = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , 'wb' ) as fi: a : Tuple = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def lowerCamelCase__ ( self : Any , A : List[str] , A : str = "eng_Latn" , A : Optional[List[str]] = None , A : str = "fra_Latn" , **A : Optional[int] , ): '''simple docstring''' a : Union[str, Any] = src_lang a : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(A , A , **A ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ ( self : Union[str, Any] , A : Dict ): '''simple docstring''' a : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: a : List[Any] = [] a : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: a : Union[str, Any] = [self.cur_lang_code] a : List[str] = [self.eos_token_id] def lowerCamelCase__ ( self : Optional[Any] , A : str ): '''simple docstring''' a : Tuple = self.lang_code_to_id[lang] if self.legacy_behaviour: a : List[str] = [] a : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: a : Union[str, Any] = [self.cur_lang_code] a : List[str] = [self.eos_token_id]
186
0
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowercase : Union[str, Any] = logging.getLogger(__name__) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=3_0522, type=int) lowercase : str = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, "rb") as fp: lowercase : Any = pickle.load(fp) logger.info("Counting occurrences for MLM.") lowercase : Dict = Counter() for tk_ids in data: counter.update(tk_ids) lowercase : Optional[Any] = [0] * args.vocab_size for k, v in counter.items(): lowercase : Optional[int] = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
42
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowercase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowercase : list[int] = [ord(letter) for letter in string.ascii_lowercase] lowercase : set[int] = {ord(char) for char in VALID_CHARS} lowercase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> str | None: _snake_case = "" _snake_case = 42 _snake_case = 42 _snake_case = 42 for keychar, cipherchar in zip(cycle(__A ) , __A ): _snake_case = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__A ) return decoded def SCREAMING_SNAKE_CASE__ ( __A ) -> list[str]: _snake_case = [] for key in product(__A , repeat=3 ): _snake_case = try_key(__A , __A ) if encoded is not None: possibles.append(__A ) return possibles def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def SCREAMING_SNAKE_CASE__ ( __A = "p059_cipher.txt" ) -> int: _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = Path(__A ).parent.joinpath(__A ).read_text(encoding='utf-8' ) _snake_case = [int(__A ) for number in data.strip().split(',' )] _snake_case = filter_valid_chars(__A ) for common_word in COMMON_WORDS: _snake_case = filter_common_word(__A , __A ) if len(__A ) == 1: break _snake_case = possibles[0] return sum(ord(__A ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
42
1
"""simple docstring""" import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : Optional[Any] = VideoToVideoSDPipeline UpperCAmelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} UpperCAmelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} UpperCAmelCase : Dict = PipelineTesterMixin.required_optional_params - {"""latents"""} UpperCAmelCase : Tuple = False # No `output_type`. UpperCAmelCase : Tuple = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def __snake_case ( self : str): torch.manual_seed(0) a : Tuple = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) a : Optional[int] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0) a : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) a : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) a : Optional[int] = CLIPTextModel(__UpperCAmelCase) a : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") a : int = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __snake_case ( self : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple=0): # 3 frames a : Optional[Any] = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__UpperCAmelCase)).to(__UpperCAmelCase) if str(__UpperCAmelCase).startswith("mps"): a : List[str] = torch.manual_seed(__UpperCAmelCase) else: a : List[str] = torch.Generator(device=__UpperCAmelCase).manual_seed(__UpperCAmelCase) a : Tuple = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def __snake_case ( self : Optional[int]): a : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator a : Tuple = self.get_dummy_components() a : Tuple = VideoToVideoSDPipeline(**__UpperCAmelCase) a : Optional[int] = sd_pipe.to(__UpperCAmelCase) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase) a : Optional[int] = self.get_dummy_inputs(__UpperCAmelCase) a : Optional[Any] = "np" a : Optional[Any] = sd_pipe(**__UpperCAmelCase).frames a : int = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) a : Union[str, Any] = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __snake_case ( self : List[Any]): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCAmelCase , expected_max_diff=5e-3) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.") def __snake_case ( self : List[Any]): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.") def __snake_case ( self : Tuple): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline.") def __snake_case ( self : Dict): pass def __snake_case ( self : Optional[Any]): return super().test_progress_bar() @slow @skip_mps class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Optional[Any]): a : Optional[int] = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa) pipe.enable_model_cpu_offload() # 10 frames a : Union[str, Any] = torch.Generator(device="cpu").manual_seed(0) a : Optional[Any] = torch.randn((1, 10, 3, 1024, 576) , generator=__UpperCAmelCase) a : Optional[int] = video.to("cuda") a : int = "Spiderman is surfing" a : Optional[Any] = pipe(__UpperCAmelCase , video=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=3 , output_type="pt").frames a : Union[str, Any] = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656]) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array).sum() < 1e-2
226
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __lowercase = logging.get_logger(__name__) # General docstring __lowercase = """MobileNetV1Config""" # Base docstring __lowercase = """google/mobilenet_v1_1.0_224""" __lowercase = [1, 1024, 7, 7] # Image classification docstring __lowercase = """google/mobilenet_v1_1.0_224""" __lowercase = """tabby, tabby cat""" __lowercase = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowercase ( A_ , A_ , A_=None )-> int: '''simple docstring''' a : Union[str, Any] = {} if isinstance(A_ , A_ ): a : Tuple = model.mobilenet_va else: a : Optional[int] = model a : Any = "MobilenetV1/Conv2d_0/" a : List[Any] = backbone.conv_stem.convolution.weight a : Tuple = backbone.conv_stem.normalization.bias a : int = backbone.conv_stem.normalization.weight a : Optional[int] = backbone.conv_stem.normalization.running_mean a : Dict = backbone.conv_stem.normalization.running_var for i in range(13 ): a : Dict = i + 1 a : str = i * 2 a : str = backbone.layer[pt_index] a : Tuple = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' a : Union[str, Any] = pointer.convolution.weight a : Optional[int] = pointer.normalization.bias a : Any = pointer.normalization.weight a : Optional[int] = pointer.normalization.running_mean a : Dict = pointer.normalization.running_var a : Dict = backbone.layer[pt_index + 1] a : List[str] = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' a : Dict = pointer.convolution.weight a : Any = pointer.normalization.bias a : List[Any] = pointer.normalization.weight a : Tuple = pointer.normalization.running_mean a : List[str] = pointer.normalization.running_var if isinstance(A_ , A_ ): a : Dict = "MobilenetV1/Logits/Conv2d_1c_1x1/" a : List[Any] = model.classifier.weight a : Optional[int] = model.classifier.bias return tf_to_pt_map def lowercase ( A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model a : List[str] = tf.train.list_variables(A_ ) a : Dict = {} for name, shape in init_vars: logger.info(F'''Loading TF weight {name} with shape {shape}''' ) a : List[str] = tf.train.load_variable(A_ , A_ ) a : int = array # Build TF to PyTorch weights loading map a : int = _build_tf_to_pytorch_map(A_ , A_ , A_ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'''Importing {name}''' ) if name not in tf_weights: logger.info(F'''{name} not in tf pre-trained weights, skipping''' ) continue a : Tuple = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) a : Optional[Any] = np.transpose(A_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer a : List[str] = array.squeeze().transpose() else: a : List[str] = np.transpose(A_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' ) a : Any = torch.from_numpy(A_ ) tf_weights.pop(A_ , A_ ) tf_weights.pop(name + "/RMSProp" , A_ ) tf_weights.pop(name + "/RMSProp_1" , A_ ) tf_weights.pop(name + "/ExponentialMovingAverage" , A_ ) logger.info(F'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' ) return model def lowercase ( A_ , A_ )-> torch.Tensor: '''simple docstring''' a , a : str = features.shape[-2:] a , a : Tuple = conv_layer.stride a , a : Union[str, Any] = conv_layer.kernel_size if in_height % stride_height == 0: a : Union[str, Any] = max(kernel_height - stride_height , 0 ) else: a : Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: a : Optional[int] = max(kernel_width - stride_width , 0 ) else: a : int = max(kernel_width - (in_width % stride_width) , 0 ) a : List[Any] = pad_along_width // 2 a : List[str] = pad_along_width - pad_left a : str = pad_along_height // 2 a : Any = pad_along_height - pad_top a : Tuple = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(A_ , A_ , "constant" , 0.0 ) class _A ( nn.Module ): """simple docstring""" def __init__( self : Dict , __UpperCAmelCase : MobileNetVaConfig , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[bool] = True , __UpperCAmelCase : Optional[bool or str] = True , ): super().__init__() a : Optional[Any] = config if in_channels % groups != 0: raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''') if out_channels % groups != 0: raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''') a : Dict = 0 if config.tf_padding else int((kernel_size - 1) / 2) a : List[str] = nn.Convad( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , kernel_size=__UpperCAmelCase , stride=__UpperCAmelCase , padding=__UpperCAmelCase , groups=__UpperCAmelCase , bias=__UpperCAmelCase , padding_mode="zeros" , ) if use_normalization: a : str = nn.BatchNormad( num_features=__UpperCAmelCase , eps=config.layer_norm_eps , momentum=0.9_997 , affine=__UpperCAmelCase , track_running_stats=__UpperCAmelCase , ) else: a : List[str] = None if use_activation: if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : Optional[int] = ACTaFN[use_activation] elif isinstance(config.hidden_act , __UpperCAmelCase): a : Optional[Any] = ACTaFN[config.hidden_act] else: a : str = config.hidden_act else: a : Dict = None def __snake_case ( self : Tuple , __UpperCAmelCase : torch.Tensor): if self.config.tf_padding: a : Tuple = apply_tf_padding(__UpperCAmelCase , self.convolution) a : Dict = self.convolution(__UpperCAmelCase) if self.normalization is not None: a : List[str] = self.normalization(__UpperCAmelCase) if self.activation is not None: a : Optional[Any] = self.activation(__UpperCAmelCase) return features class _A ( _a ): """simple docstring""" UpperCAmelCase : Union[str, Any] = MobileNetVaConfig UpperCAmelCase : str = load_tf_weights_in_mobilenet_va UpperCAmelCase : List[str] = """mobilenet_v1""" UpperCAmelCase : Dict = """pixel_values""" UpperCAmelCase : str = False def __snake_case ( self : str , __UpperCAmelCase : Union[nn.Linear, nn.Convad]): if isinstance(__UpperCAmelCase , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(__UpperCAmelCase , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) __lowercase = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ __lowercase = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" ,_a ,) class _A ( _a ): """simple docstring""" def __init__( self : Optional[int] , __UpperCAmelCase : MobileNetVaConfig , __UpperCAmelCase : bool = True): super().__init__(__UpperCAmelCase) a : List[str] = config a : List[Any] = 32 a : Union[str, Any] = max(int(depth * config.depth_multiplier) , config.min_depth) a : List[str] = MobileNetVaConvLayer( __UpperCAmelCase , in_channels=config.num_channels , out_channels=__UpperCAmelCase , kernel_size=3 , stride=2 , ) a : int = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] a : List[Any] = nn.ModuleList() for i in range(13): a : Optional[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 a : List[str] = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( __UpperCAmelCase , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , kernel_size=3 , stride=strides[i] , groups=__UpperCAmelCase , )) self.layer.append( MobileNetVaConvLayer( __UpperCAmelCase , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , kernel_size=1 , )) a : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Any): raise NotImplementedError @add_start_docstrings_to_model_forward(__UpperCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __snake_case ( self : List[Any] , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , ): a : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") a : Optional[int] = self.conv_stem(__UpperCAmelCase) a : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): a : Union[str, Any] = layer_module(__UpperCAmelCase) if output_hidden_states: a : str = all_hidden_states + (hidden_states,) a : Dict = hidden_states if self.pooler is not None: a : Optional[int] = torch.flatten(self.pooler(__UpperCAmelCase) , start_dim=1) else: a : List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCAmelCase , pooler_output=__UpperCAmelCase , hidden_states=__UpperCAmelCase , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,_a ,) class _A ( _a ): """simple docstring""" def __init__( self : int , __UpperCAmelCase : MobileNetVaConfig): super().__init__(__UpperCAmelCase) a : Dict = config.num_labels a : Union[str, Any] = MobileNetVaModel(__UpperCAmelCase) a : List[Any] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head a : Union[str, Any] = nn.Dropout(config.classifier_dropout_prob , inplace=__UpperCAmelCase) a : Optional[int] = nn.Linear(__UpperCAmelCase , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __snake_case ( self : Dict , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[bool] = None , ): a : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict a : Dict = self.mobilenet_va(__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase) a : List[Any] = outputs.pooler_output if return_dict else outputs[1] a : List[Any] = self.classifier(self.dropout(__UpperCAmelCase)) a : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a : List[str] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a : Any = "single_label_classification" else: a : Optional[Any] = "multi_label_classification" if self.config.problem_type == "regression": a : Union[str, Any] = MSELoss() if self.num_labels == 1: a : Tuple = loss_fct(logits.squeeze() , labels.squeeze()) else: a : Dict = loss_fct(__UpperCAmelCase , __UpperCAmelCase) elif self.config.problem_type == "single_label_classification": a : Optional[Any] = CrossEntropyLoss() a : Tuple = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": a : Dict = BCEWithLogitsLoss() a : List[Any] = loss_fct(__UpperCAmelCase , __UpperCAmelCase) if not return_dict: a : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states , )
226
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case :int = logging.get_logger(__name__) __snake_case :Tuple = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class _A ( __UpperCAmelCase ): UpperCamelCase__ : Union[str, Any] = '''data2vec-text''' def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]=30_522 , __SCREAMING_SNAKE_CASE : Dict=768 , __SCREAMING_SNAKE_CASE : Union[str, Any]=12 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : str=3_072 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Dict=2 , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , __SCREAMING_SNAKE_CASE : int=1E-12 , __SCREAMING_SNAKE_CASE : Tuple=1 , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Dict="absolute" , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = classifier_dropout class _A ( __UpperCAmelCase ): @property def _lowerCamelCase ( self : Tuple): '''simple docstring''' if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
49
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Initialise PyTorch model __a = BigBirdConfig.from_json_file(_UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: __a = BigBirdForQuestionAnswering(_UpperCAmelCase ) else: __a = BigBirdForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_UpperCAmelCase , _UpperCAmelCase , is_trivia_qa=_UpperCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __snake_case :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) __snake_case :Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
49
1
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase ): # TODO: is there an appropriate internal test set? snake_case_ = 'ssube/stable-diffusion-x4-upscaler-onnx' def _UpperCamelCase ( self : Tuple , snake_case : Any=0 ): '''simple docstring''' A__ : Optional[Any] = floats_tensor((1, 3, 128, 128) , rng=random.Random(__lowerCAmelCase ) ) A__ : Union[str, Any] = torch.manual_seed(__lowerCAmelCase ) A__ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) A__ : Dict = self.get_dummy_inputs() A__ : int = pipe(**__lowerCAmelCase ).images A__ : Tuple = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) A__ : int = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A__ : Union[str, Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) A__ : Dict = self.get_dummy_inputs() A__ : int = pipe(**__lowerCAmelCase ).images A__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ : Union[str, Any] = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A__ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) A__ : Union[str, Any] = self.get_dummy_inputs() A__ : Tuple = pipe(**__lowerCAmelCase ).images A__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ : Any = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A__ : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) A__ : List[Any] = self.get_dummy_inputs() A__ : Union[str, Any] = pipe(**__lowerCAmelCase ).images A__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ : Optional[Any] = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A__ : Dict = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) A__ : List[str] = self.get_dummy_inputs() A__ : Optional[Any] = pipe(**__lowerCAmelCase ).images A__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ : str = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @property def _UpperCamelCase ( self : str ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Union[str, Any] = ort.SessionOptions() A__ : Dict = False return options def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) A__ : Tuple = init_image.resize((128, 128) ) # using the PNDM scheduler by default A__ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) A__ : List[Any] = """A fantasy landscape, trending on artstation""" A__ : str = torch.manual_seed(0 ) A__ : str = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=__lowerCAmelCase , output_type="""np""" , ) A__ : Any = output.images A__ : List[str] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) A__ : Dict = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) A__ : Any = init_image.resize((128, 128) ) A__ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) A__ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=__lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) A__ : Optional[int] = """A fantasy landscape, trending on artstation""" A__ : List[Any] = torch.manual_seed(0 ) A__ : List[Any] = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=__lowerCAmelCase , output_type="""np""" , ) A__ : Optional[int] = output.images A__ : Union[str, Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) A__ : Dict = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
358
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : List[Any] ): '''simple docstring''' super().__init__() A__ : int = nn.Linear(3 , 4 ) A__ : Union[str, Any] = nn.BatchNormad(4 ) A__ : Union[str, Any] = nn.Linear(4 , 5 ) def _UpperCamelCase ( self : str , snake_case : List[str] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(snake_case ) ) ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : int = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , model.state_dict() ) A__ : List[str] = os.path.join(snake_case , """index.json""" ) self.assertTrue(os.path.isfile(snake_case ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: A__ : List[str] = os.path.join(snake_case , F'{key}.dat' ) self.assertTrue(os.path.isfile(snake_case ) ) # TODO: add tests on the fact weights are properly loaded def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: A__ : str = torch.randn(2 , 3 , dtype=snake_case ) with TemporaryDirectory() as tmp_dir: A__ : List[str] = offload_weight(snake_case , """weight""" , snake_case , {} ) A__ : Union[str, Any] = os.path.join(snake_case , """weight.dat""" ) self.assertTrue(os.path.isfile(snake_case ) ) self.assertDictEqual(snake_case , {"""weight""": {"""shape""": [2, 3], """dtype""": str(snake_case ).split(""".""" )[1]}} ) A__ : str = load_offloaded_weight(snake_case , index["""weight"""] ) self.assertTrue(torch.equal(snake_case , snake_case ) ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : str = ModelForTest() A__ : Union[str, Any] = model.state_dict() A__ : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" not in k} A__ : List[Any] = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) A__ : Dict = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) A__ : int = {k: v for k, v in state_dict.items() if """weight""" in k} A__ : Tuple = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) A__ : Optional[Any] = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) # Duplicates are removed A__ : int = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : List[str] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} A__ : str = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] ) self.assertDictEqual(snake_case , {"""a.1""": 0, """a.2""": 2} ) A__ : Dict = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} A__ : int = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] ) self.assertDictEqual(snake_case , {"""a.1.a""": 0, """a.2.a""": 2} )
296
0
from __future__ import annotations import math def _UpperCamelCase ( lowercase__ , lowercase__ ): if len(lowercase__ ) != 2 or len(a[0] ) != 2 or len(lowercase__ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) __SCREAMING_SNAKE_CASE : str = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def _UpperCamelCase ( lowercase__ , lowercase__ ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase__ ) ) ] def _UpperCamelCase ( lowercase__ , lowercase__ ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase__ ) ) ] def _UpperCamelCase ( lowercase__ ): if len(lowercase__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) __SCREAMING_SNAKE_CASE : int = len(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = matrix_length // 2 __SCREAMING_SNAKE_CASE : Tuple = [[a[i][j] for j in range(lowercase__ , lowercase__ )] for i in range(lowercase__ )] __SCREAMING_SNAKE_CASE : Optional[Any] = [ [a[i][j] for j in range(lowercase__ , lowercase__ )] for i in range(lowercase__ , lowercase__ ) ] __SCREAMING_SNAKE_CASE : int = [[a[i][j] for j in range(lowercase__ )] for i in range(lowercase__ )] __SCREAMING_SNAKE_CASE : int = [[a[i][j] for j in range(lowercase__ )] for i in range(lowercase__ , lowercase__ )] return top_left, top_right, bot_left, bot_right def _UpperCamelCase ( lowercase__ ): return len(lowercase__ ), len(matrix[0] ) def _UpperCamelCase ( lowercase__ ): print('''\n'''.join(str(lowercase__ ) for line in matrix ) ) def _UpperCamelCase ( lowercase__ , lowercase__ ): if matrix_dimensions(lowercase__ ) == (2, 2): return default_matrix_multiplication(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = split_matrix(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = split_matrix(lowercase__ ) __SCREAMING_SNAKE_CASE : str = actual_strassen(lowercase__ , matrix_subtraction(lowercase__ , lowercase__ ) ) __SCREAMING_SNAKE_CASE : List[str] = actual_strassen(matrix_addition(lowercase__ , lowercase__ ) , lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = actual_strassen(matrix_addition(lowercase__ , lowercase__ ) , lowercase__ ) __SCREAMING_SNAKE_CASE : int = actual_strassen(lowercase__ , matrix_subtraction(lowercase__ , lowercase__ ) ) __SCREAMING_SNAKE_CASE : int = actual_strassen(matrix_addition(lowercase__ , lowercase__ ) , matrix_addition(lowercase__ , lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = actual_strassen(matrix_subtraction(lowercase__ , lowercase__ ) , matrix_addition(lowercase__ , lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = actual_strassen(matrix_subtraction(lowercase__ , lowercase__ ) , matrix_addition(lowercase__ , lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[int] = matrix_addition(matrix_subtraction(matrix_addition(lowercase__ , lowercase__ ) , lowercase__ ) , lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = matrix_addition(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = matrix_addition(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = matrix_subtraction(matrix_subtraction(matrix_addition(lowercase__ , lowercase__ ) , lowercase__ ) , lowercase__ ) # construct the new matrix from our 4 quadrants __SCREAMING_SNAKE_CASE : int = [] for i in range(len(lowercase__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowercase__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def _UpperCamelCase ( lowercase__ , lowercase__ ): if matrix_dimensions(lowercase__ )[1] != matrix_dimensions(lowercase__ )[0]: __SCREAMING_SNAKE_CASE : str = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F'''Matrix A: {matrixa}\n''' F'''Matrix B: {matrixa}''' ) raise Exception(lowercase__ ) __SCREAMING_SNAKE_CASE : int = matrix_dimensions(lowercase__ ) __SCREAMING_SNAKE_CASE : int = matrix_dimensions(lowercase__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __SCREAMING_SNAKE_CASE : Optional[int] = max(*lowercase__ , *lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = int(math.pow(2 , math.ceil(math.loga(lowercase__ ) ) ) ) __SCREAMING_SNAKE_CASE : str = matrixa __SCREAMING_SNAKE_CASE : List[str] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , lowercase__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowercase__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , lowercase__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __SCREAMING_SNAKE_CASE : int = actual_strassen(lowercase__ , lowercase__ ) # Removing the additional zeros for i in range(0 , lowercase__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowercase__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": __lowerCAmelCase : str =[ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] __lowerCAmelCase : Any =[[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
9
'''simple docstring''' def a ( __a ) -> "list[int]": '''simple docstring''' if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) UpperCamelCase__ :Optional[Any] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCamelCase__ :int = 1 if upper_limit > 0: UpperCamelCase__ :int = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__a ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: __snake_case = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
97
0
import heapq def lowerCamelCase_ ( UpperCamelCase__ : dict ) -> set[int]: """simple docstring""" __lowerCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(UpperCamelCase__ , [-1 * len(UpperCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices __lowerCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __lowerCamelCase = heapq.heappop(UpperCamelCase__ )[1][0] chosen_vertices.add(UpperCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __lowerCamelCase = elem[1][1].index(UpperCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(UpperCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __A = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
348
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float: """simple docstring""" __lowerCamelCase = sorted(numsa + numsa ) __lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __A = [float(x) for x in input("Enter the elements of first array: ").split()] __A = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
348
1
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class snake_case : """simple docstring""" def __init__( self : List[Any] ,lowerCamelCase__ : List[str] ,): UpperCAmelCase__ = parent UpperCAmelCase__ = 13 UpperCAmelCase__ = 7 UpperCAmelCase__ = 30 UpperCAmelCase__ = self.seq_length + self.mem_len UpperCAmelCase__ = 15 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 99 UpperCAmelCase__ = [10, 50, 80] UpperCAmelCase__ = 32 UpperCAmelCase__ = 32 UpperCAmelCase__ = 4 UpperCAmelCase__ = 8 UpperCAmelCase__ = 128 UpperCAmelCase__ = 2 UpperCAmelCase__ = 2 UpperCAmelCase__ = None UpperCAmelCase__ = 1 UpperCAmelCase__ = 0 UpperCAmelCase__ = 3 UpperCAmelCase__ = self.vocab_size - 1 UpperCAmelCase__ = 0.0_1 def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ = TransfoXLConfig( vocab_size=self.vocab_size ,mem_len=self.mem_len ,clamp_len=self.clamp_len ,cutoffs=self.cutoffs ,d_model=self.hidden_size ,d_embed=self.d_embed ,n_head=self.num_attention_heads ,d_head=self.d_head ,d_inner=self.d_inner ,div_val=self.div_val ,n_layer=self.num_hidden_layers ,eos_token_id=self.eos_token_id ,pad_token_id=self.vocab_size - 1 ,init_range=self.init_range ,num_labels=self.num_labels ,) return (config, input_ids_a, input_ids_a, lm_labels) def __lowerCAmelCase ( self : Union[str, Any] ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Any ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any] ): UpperCAmelCase__ = TFTransfoXLModel(lowerCamelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ = model(lowerCamelCase__ ).to_tuple() UpperCAmelCase__ = {'input_ids': input_ids_a, 'mems': mems_a} UpperCAmelCase__ , UpperCAmelCase__ = model(lowerCamelCase__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Tuple ): UpperCAmelCase__ = TFTransfoXLLMHeadModel(lowerCamelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ = model(lowerCamelCase__ ).to_tuple() UpperCAmelCase__ = {'input_ids': input_ids_a, 'labels': lm_labels} UpperCAmelCase__ , UpperCAmelCase__ = model(lowerCamelCase__ ).to_tuple() UpperCAmelCase__ , UpperCAmelCase__ = model([input_ids_a, mems_a] ).to_tuple() UpperCAmelCase__ = {'input_ids': input_ids_a, 'mems': mems_a, 'labels': lm_labels} UpperCAmelCase__ , UpperCAmelCase__ = model(lowerCamelCase__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Any ): UpperCAmelCase__ = TFTransfoXLForSequenceClassification(lowerCamelCase__ ) UpperCAmelCase__ = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids_a} return config, inputs_dict @require_tf class snake_case ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case__ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) snake_case__ = () if is_tf_available() else () snake_case__ = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : str ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = TFTransfoXLModelTester(self ) UpperCAmelCase__ = ConfigTester(self ,config_class=lowerCamelCase__ ,d_embed=37 ) def __lowerCAmelCase ( self : int ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Tuple ): self.model_tester.set_seed() UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowerCamelCase__ ) def __lowerCAmelCase ( self : int ): self.model_tester.set_seed() UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(lowerCamelCase__ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: UpperCAmelCase__ = model.get_output_embeddings() assert isinstance(lowerCamelCase__ ,tf.keras.layers.Layer ) UpperCAmelCase__ = model.get_bias() assert name is None else: UpperCAmelCase__ = model.get_output_embeddings() assert x is None UpperCAmelCase__ = model.get_bias() assert name is None def __lowerCAmelCase ( self : List[str] ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __lowerCAmelCase ( self : Optional[Any] ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = TFTransfoXLModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip(reason='This model doesn\'t play well with fit() due to not returning a single loss.' ) def __lowerCAmelCase ( self : str ): pass @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" @unittest.skip('Skip test until #12651 is resolved.' ) @slow def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103' ) # fmt: off UpperCAmelCase__ = tf.convert_to_tensor([[33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0]] ,dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off UpperCAmelCase__ = [33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0,33,1,1_857,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,28,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> UpperCAmelCase__ = model.generate(lowerCamelCase__ ,max_length=200 ,do_sample=lowerCamelCase__ ) self.assertListEqual(output_ids[0].numpy().tolist() ,lowerCamelCase__ )
98
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCAmelCase__ : List[Any] = '\\n\n' lowerCAmelCase__ : Tuple = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' lowerCAmelCase__ : str = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) ,reference_urls=['https://huggingface.co/docs/transformers/perplexity'] ,) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : int = 16 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : List[str]=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase__ = 'cuda' else: UpperCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCAmelCase__ = model.to(lowerCamelCase__ ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowerCamelCase__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase__ = model.config.max_length - 1 else: UpperCAmelCase__ = model.config.max_length UpperCAmelCase__ = tokenizer( lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=lowerCamelCase__ ,return_tensors='pt' ,return_attention_mask=lowerCamelCase__ ,).to(lowerCamelCase__ ) UpperCAmelCase__ = encodings['input_ids'] UpperCAmelCase__ = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) ,1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) ,2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase__ = [] UpperCAmelCase__ = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 ,len(lowerCamelCase__ ) ,lowerCamelCase__ ) ): UpperCAmelCase__ = min(start_index + batch_size ,len(lowerCamelCase__ ) ) UpperCAmelCase__ = encoded_texts[start_index:end_index] UpperCAmelCase__ = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowerCamelCase__ ) UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] ,dim=1 ) UpperCAmelCase__ = torch.cat( [torch.ones(bos_tokens_tensor.size() ,dtype=torch.intaa ).to(lowerCamelCase__ ), attn_mask] ,dim=1 ) UpperCAmelCase__ = encoded_batch with torch.no_grad(): UpperCAmelCase__ = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ).logits UpperCAmelCase__ = out_logits[..., :-1, :].contiguous() UpperCAmelCase__ = labels[..., 1:].contiguous() UpperCAmelCase__ = attn_mask[..., 1:].contiguous() UpperCAmelCase__ = torch.expa( (loss_fct(shift_logits.transpose(1 ,2 ) ,lowerCamelCase__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowerCamelCase__ )}
98
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : Optional[Any]=6 , lowercase_ : int=17 , lowercase_ : List[Any]=23 , lowercase_ : List[Any]=11 , lowercase_ : Dict=True , ) -> List[str]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = act_dim _UpperCamelCase = state_dim _UpperCamelCase = hidden_size _UpperCamelCase = max_length _UpperCamelCase = is_training def __UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1)) _UpperCamelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000) _UpperCamelCase = random_attention_mask((self.batch_size, self.seq_length)) _UpperCamelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __UpperCAmelCase ( self : str) -> Any: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __UpperCAmelCase ( self : str , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Dict , ) -> int: """simple docstring""" _UpperCamelCase = DecisionTransformerModel(config=lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) self.parent.assertEqual(result.state_preds.shape , states.shape) self.parent.assertEqual(result.action_preds.shape , actions.shape) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size)) # seq length *3 as there are 3 modelities: states, returns and actions def __UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = (DecisionTransformerModel,) if is_torch_available() else () __A = () __A = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __A = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __A = False __A = False __A = False __A = False __A = False __A = False __A = False __A = False __A = False def __UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCamelCase = DecisionTransformerModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ , hidden_size=37) def __UpperCAmelCase ( self : Tuple) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) @slow def __UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = DecisionTransformerModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def __UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(lowercase_)] , lowercase_) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" _UpperCamelCase = 2 # number of steps of autoregressive prediction we will perform _UpperCamelCase = 10 # defined by the RL environment, may be normalized _UpperCamelCase = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert") _UpperCamelCase = model.to(lowercase_) _UpperCamelCase = model.config torch.manual_seed(0) _UpperCamelCase = torch.randn(1 , 1 , config.state_dim).to(device=lowercase_ , dtype=torch.floataa) # env.reset() _UpperCamelCase = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=lowercase_) _UpperCamelCase = torch.tensor(lowercase_ , device=lowercase_ , dtype=torch.floataa).reshape(1 , 1 , 1) _UpperCamelCase = state _UpperCamelCase = torch.zeros(1 , 0 , config.act_dim , device=lowercase_ , dtype=torch.floataa) _UpperCamelCase = torch.zeros(1 , 0 , device=lowercase_ , dtype=torch.floataa) _UpperCamelCase = torch.tensor(0 , device=lowercase_ , dtype=torch.long).reshape(1 , 1) for step in range(lowercase_): _UpperCamelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowercase_)] , dim=1) _UpperCamelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=lowercase_)] , dim=1) _UpperCamelCase = torch.ones(1 , states.shape[1]).to(dtype=torch.long , device=states.device) with torch.no_grad(): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = model( states=lowercase_ , actions=lowercase_ , rewards=lowercase_ , returns_to_go=lowercase_ , timesteps=lowercase_ , attention_mask=lowercase_ , return_dict=lowercase_ , ) self.assertEqual(action_pred.shape , actions.shape) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4)) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim).to(device=lowercase_ , dtype=torch.floataa), 1.0, False, {}, ) _UpperCamelCase = action_pred[0, -1] _UpperCamelCase = torch.cat([states, state] , dim=1) _UpperCamelCase = returns_to_go[0, -1] - reward _UpperCamelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1)] , dim=1) _UpperCamelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=lowercase_ , dtype=torch.long) * (step + 1)] , dim=1)
63
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Optional[Any] , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = 13 _UpperCamelCase = 7 _UpperCamelCase = 30 _UpperCamelCase = self.seq_length + self.mem_len _UpperCamelCase = 15 _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = 99 _UpperCamelCase = [10, 50, 80] _UpperCamelCase = 32 _UpperCamelCase = 32 _UpperCamelCase = 4 _UpperCamelCase = 8 _UpperCamelCase = 128 _UpperCamelCase = 2 _UpperCamelCase = 2 _UpperCamelCase = None _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = 3 _UpperCamelCase = self.vocab_size - 1 _UpperCamelCase = 0.01 def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" random.seed(self.seed) tf.random.set_seed(self.seed) def __UpperCAmelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase , _UpperCamelCase = model([input_ids_a, mems_a]).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict) -> str: """simple docstring""" _UpperCamelCase = TFTransfoXLForSequenceClassification(lowercase_) _UpperCamelCase = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __A = () if is_tf_available() else () __A = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __A = False __A = False __A = False __A = False def __UpperCAmelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[str]) -> Any: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" _UpperCamelCase = TFTransfoXLModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ , d_embed=37) def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowercase_) def __UpperCAmelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase_) def __UpperCAmelCase ( self : Dict) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: _UpperCamelCase = model.get_output_embeddings() assert isinstance(lowercase_ , tf.keras.layers.Layer) _UpperCamelCase = model.get_bias() assert name is None else: _UpperCamelCase = model.get_output_embeddings() assert x is None _UpperCamelCase = model.get_bias() assert name is None def __UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" pass @slow def __UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFTransfoXLModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss.") def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" pass @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved.") @slow def __UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103") # fmt: off _UpperCamelCase = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _UpperCamelCase = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _UpperCamelCase = model.generate(lowercase_ , max_length=200 , do_sample=lowercase_) self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_)
63
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" def get_masked_lm_array(_lowerCAmelCase : str ): UpperCAmelCase__ = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' UpperCAmelCase__ = tf.train.load_variable(_lowerCAmelCase , _lowerCAmelCase ) if "kernel" in name: UpperCAmelCase__ = array.transpose() return torch.from_numpy(_lowerCAmelCase ) def get_encoder_array(_lowerCAmelCase : str ): UpperCAmelCase__ = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' UpperCAmelCase__ = tf.train.load_variable(_lowerCAmelCase , _lowerCAmelCase ) if "kernel" in name: UpperCAmelCase__ = array.transpose() return torch.from_numpy(_lowerCAmelCase ) def get_encoder_layer_array(_lowerCAmelCase : int , _lowerCAmelCase : str ): UpperCAmelCase__ = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' UpperCAmelCase__ = tf.train.load_variable(_lowerCAmelCase , _lowerCAmelCase ) if "kernel" in name: UpperCAmelCase__ = array.transpose() return torch.from_numpy(_lowerCAmelCase ) def get_encoder_attention_layer_array(_lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] ): UpperCAmelCase__ = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' UpperCAmelCase__ = tf.train.load_variable(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ = array.reshape(_lowerCAmelCase ) if "kernel" in name: UpperCAmelCase__ = array.transpose() return torch.from_numpy(_lowerCAmelCase ) print(F'''Loading model based on config from {config_path}...''' ) UpperCAmelCase__ = BertConfig.from_json_file(_lowerCAmelCase ) UpperCAmelCase__ = BertForMaskedLM(_lowerCAmelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): UpperCAmelCase__ = model.bert.encoder.layer[layer_index] # Self-attention UpperCAmelCase__ = layer.attention.self UpperCAmelCase__ = get_encoder_attention_layer_array( _lowerCAmelCase , "_query_dense/kernel" , self_attn.query.weight.data.shape ) UpperCAmelCase__ = get_encoder_attention_layer_array( _lowerCAmelCase , "_query_dense/bias" , self_attn.query.bias.data.shape ) UpperCAmelCase__ = get_encoder_attention_layer_array( _lowerCAmelCase , "_key_dense/kernel" , self_attn.key.weight.data.shape ) UpperCAmelCase__ = get_encoder_attention_layer_array( _lowerCAmelCase , "_key_dense/bias" , self_attn.key.bias.data.shape ) UpperCAmelCase__ = get_encoder_attention_layer_array( _lowerCAmelCase , "_value_dense/kernel" , self_attn.value.weight.data.shape ) UpperCAmelCase__ = get_encoder_attention_layer_array( _lowerCAmelCase , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output UpperCAmelCase__ = layer.attention.output UpperCAmelCase__ = get_encoder_attention_layer_array( _lowerCAmelCase , "_output_dense/kernel" , self_output.dense.weight.data.shape ) UpperCAmelCase__ = get_encoder_attention_layer_array( _lowerCAmelCase , "_output_dense/bias" , self_output.dense.bias.data.shape ) UpperCAmelCase__ = get_encoder_layer_array(_lowerCAmelCase , "_attention_layer_norm/gamma" ) UpperCAmelCase__ = get_encoder_layer_array(_lowerCAmelCase , "_attention_layer_norm/beta" ) # Intermediate UpperCAmelCase__ = layer.intermediate UpperCAmelCase__ = get_encoder_layer_array(_lowerCAmelCase , "_intermediate_dense/kernel" ) UpperCAmelCase__ = get_encoder_layer_array(_lowerCAmelCase , "_intermediate_dense/bias" ) # Output UpperCAmelCase__ = layer.output UpperCAmelCase__ = get_encoder_layer_array(_lowerCAmelCase , "_output_dense/kernel" ) UpperCAmelCase__ = get_encoder_layer_array(_lowerCAmelCase , "_output_dense/bias" ) UpperCAmelCase__ = get_encoder_layer_array(_lowerCAmelCase , "_output_layer_norm/gamma" ) UpperCAmelCase__ = get_encoder_layer_array(_lowerCAmelCase , "_output_layer_norm/beta" ) # Embeddings UpperCAmelCase__ = get_encoder_array("_position_embedding_layer/embeddings" ) UpperCAmelCase__ = get_encoder_array("_type_embedding_layer/embeddings" ) UpperCAmelCase__ = get_encoder_array("_embedding_norm_layer/gamma" ) UpperCAmelCase__ = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head UpperCAmelCase__ = model.cls.predictions.transform UpperCAmelCase__ = get_masked_lm_array("dense/kernel" ) UpperCAmelCase__ = get_masked_lm_array("dense/bias" ) UpperCAmelCase__ = get_masked_lm_array("layer_norm/gamma" ) UpperCAmelCase__ = get_masked_lm_array("layer_norm/beta" ) UpperCAmelCase__ = get_masked_lm_array("embedding_table" ) # Pooling UpperCAmelCase__ = BertPooler(config=_lowerCAmelCase ) UpperCAmelCase__ = get_encoder_array("_pooler_layer/kernel" ) UpperCAmelCase__ = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(_lowerCAmelCase ) # Integration test - should load without any errors ;) UpperCAmelCase__ = BertForMaskedLM.from_pretrained(_lowerCAmelCase ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : List[str] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
169
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _lowerCAmelCase : int = get_logger(__name__) _lowerCAmelCase : Any = r"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class _UpperCamelCase : @add_start_docstrings(lowerCamelCase ) def __call__( self :Tuple , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray ) -> jnp.ndarray: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _UpperCamelCase : @add_start_docstrings(lowerCamelCase ) def __call__( self :Union[str, Any] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray ) -> jnp.ndarray: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _UpperCamelCase ( lowerCAmelCase ): @add_start_docstrings(lowerCamelCase ) def __call__( self :List[Any] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int , **lowerCamelCase :str ) -> jnp.ndarray: for processor in self: UpperCAmelCase__ = inspect.signature(processor.__call__ ).parameters if len(lowerCamelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) UpperCAmelCase__ = processor(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) else: UpperCAmelCase__ = processor(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :str , lowerCamelCase :float ) -> Tuple: if not isinstance(lowerCamelCase , lowerCamelCase ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) UpperCAmelCase__ = temperature def __call__( self :int , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ = scores / self.temperature return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Optional[int] , lowerCamelCase :float , lowerCamelCase :float = -float("Inf" ) , lowerCamelCase :int = 1 ) -> Union[str, Any]: if not isinstance(lowerCamelCase , lowerCamelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(lowerCamelCase , lowerCamelCase ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) UpperCAmelCase__ = top_p UpperCAmelCase__ = filter_value UpperCAmelCase__ = min_tokens_to_keep def __call__( self :Tuple , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ , UpperCAmelCase__ = lax.top_k(lowerCamelCase , scores.shape[-1] ) UpperCAmelCase__ = jnp.full_like(lowerCamelCase , self.filter_value ) UpperCAmelCase__ = jax.nn.softmax(lowerCamelCase , axis=-1 ).cumsum(axis=-1 ) UpperCAmelCase__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCAmelCase__ = jnp.roll(lowerCamelCase , 1 ) score_mask |= score_mask.at[:, 0].set(lowerCamelCase ) # min tokens to keep UpperCAmelCase__ = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCamelCase ) UpperCAmelCase__ = jnp.where(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jax.lax.sort_key_val(lowerCamelCase , lowerCamelCase )[-1] return next_scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Union[str, Any] , lowerCamelCase :int , lowerCamelCase :float = -float("Inf" ) , lowerCamelCase :int = 1 ) -> List[str]: if not isinstance(lowerCamelCase , lowerCamelCase ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) UpperCAmelCase__ = max(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = filter_value def __call__( self :Optional[int] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ , UpperCAmelCase__ = scores.shape UpperCAmelCase__ = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCAmelCase__ = min(self.top_k , scores.shape[-1] ) # Safety check UpperCAmelCase__ , UpperCAmelCase__ = lax.top_k(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jnp.broadcast_to((jnp.arange(lowerCamelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCAmelCase__ = topk_scores.flatten() UpperCAmelCase__ = topk_indices.flatten() + shift UpperCAmelCase__ = next_scores_flat.at[topk_indices_flat].set(lowerCamelCase ) UpperCAmelCase__ = next_scores_flat.reshape(lowerCamelCase , lowerCamelCase ) return next_scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Any , lowerCamelCase :int ) -> List[Any]: UpperCAmelCase__ = bos_token_id def __call__( self :Optional[int] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ = jnp.full(scores.shape , -float("inf" ) ) UpperCAmelCase__ = 1 - jnp.bool_(cur_len - 1 ) UpperCAmelCase__ = jnp.where(lowerCamelCase , new_scores.at[:, self.bos_token_id].set(0 ) , lowerCamelCase ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Tuple , lowerCamelCase :int , lowerCamelCase :int ) -> List[Any]: UpperCAmelCase__ = max_length UpperCAmelCase__ = eos_token_id def __call__( self :Union[str, Any] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ = jnp.full(scores.shape , -float("inf" ) ) UpperCAmelCase__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCAmelCase__ = jnp.where(lowerCamelCase , new_scores.at[:, self.eos_token_id].set(0 ) , lowerCamelCase ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Optional[Any] , lowerCamelCase :int , lowerCamelCase :int ) -> Tuple: if not isinstance(lowerCamelCase , lowerCamelCase ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(lowerCamelCase , lowerCamelCase ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) UpperCAmelCase__ = min_length UpperCAmelCase__ = eos_token_id def __call__( self :int , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied UpperCAmelCase__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCAmelCase__ = jnp.where(lowerCamelCase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , lowerCamelCase ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :int , lowerCamelCase :List[str] , lowerCamelCase :str ) -> Any: UpperCAmelCase__ = list(lowerCamelCase ) UpperCAmelCase__ = begin_index def __call__( self :Union[str, Any] , lowerCamelCase :Union[str, Any] , lowerCamelCase :List[str] , lowerCamelCase :int ) -> List[Any]: UpperCAmelCase__ = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCAmelCase__ = jnp.where(lowerCamelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , lowerCamelCase ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :List[Any] , lowerCamelCase :list ) -> Tuple: UpperCAmelCase__ = list(lowerCamelCase ) def __call__( self :Optional[Any] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :List[Any] , lowerCamelCase :List[str] ) -> Union[str, Any]: UpperCAmelCase__ = dict(lowerCamelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCAmelCase__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCAmelCase__ = force_token_array.at[index].set(lowerCamelCase ) UpperCAmelCase__ = jnp.intaa(lowerCamelCase ) def __call__( self :Optional[int] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: def _force_token(lowerCamelCase :str ): UpperCAmelCase__ = scores.shape[0] UpperCAmelCase__ = self.force_token_array[generation_idx] UpperCAmelCase__ = jnp.ones_like(lowerCamelCase , dtype=scores.dtype ) * -float("inf" ) UpperCAmelCase__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCAmelCase__ = lax.dynamic_update_slice(lowerCamelCase , lowerCamelCase , (0, current_token) ) return new_scores UpperCAmelCase__ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowerCamelCase ) , lambda: scores , ) , ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Optional[Any] , lowerCamelCase :List[Any] , lowerCamelCase :Optional[int] , lowerCamelCase :Tuple ) -> Dict: UpperCAmelCase__ = generate_config.eos_token_id UpperCAmelCase__ = generate_config.no_timestamps_token_id UpperCAmelCase__ = generate_config.no_timestamps_token_id + 1 UpperCAmelCase__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCamelCase , "max_initial_timestamp_index" ): UpperCAmelCase__ = generate_config.max_initial_timestamp_index else: UpperCAmelCase__ = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCAmelCase__ = model_config.vocab_size def __call__( self :List[str] , lowerCamelCase :str , lowerCamelCase :int , lowerCamelCase :Any ) -> Union[str, Any]: # suppress <|notimestamps|> which is handled by without_timestamps UpperCAmelCase__ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(lowerCamelCase :int , lowerCamelCase :Union[str, Any] ): UpperCAmelCase__ = jnp.where((cur_len - self.begin_index) >= 1 , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowerCamelCase , ) UpperCAmelCase__ = jnp.where((cur_len - self.begin_index) < 2 , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowerCamelCase , lowerCamelCase , ) return jnp.where( lowerCamelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , lowerCamelCase , ) UpperCAmelCase__ = jax.vmap(lowerCamelCase )(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jnp.where(cur_len == self.begin_index , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowerCamelCase , ) UpperCAmelCase__ = self.timestamp_begin + self.max_initial_timestamp_index UpperCAmelCase__ = jnp.where( lowerCamelCase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , lowerCamelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCAmelCase__ = jax.nn.log_softmax(lowerCamelCase , axis=-1 ) def handle_cumulative_probs(lowerCamelCase :Optional[int] , lowerCamelCase :Optional[Any] ): UpperCAmelCase__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCAmelCase__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , lowerCamelCase , ) UpperCAmelCase__ = jax.vmap(lowerCamelCase )(lowerCamelCase , lowerCamelCase ) return scores
169
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( snake_case__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def UpperCamelCase ( self,__lowerCamelCase=0 ): A__ = floats_tensor((1, 3, 128, 128),rng=random.Random(_A ) ) A__ = np.random.RandomState(_A ) A__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCamelCase ( self ): A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint,provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_A ) A__ = self.get_dummy_inputs() A__ = pipe(**_A ).images A__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A__ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def UpperCamelCase ( self ): A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint,provider='''CPUExecutionProvider''' ) A__ = PNDMScheduler.from_config(pipe.scheduler.config,skip_prk_steps=_A ) pipe.set_progress_bar_config(disable=_A ) A__ = self.get_dummy_inputs() A__ = pipe(**_A ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase ( self ): A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint,provider='''CPUExecutionProvider''' ) A__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) # warmup pass to apply optimizations A__ = pipe(**self.get_dummy_inputs() ) A__ = self.get_dummy_inputs() A__ = pipe(**_A ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase ( self ): A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint,provider='''CPUExecutionProvider''' ) A__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) A__ = self.get_dummy_inputs() A__ = pipe(**_A ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase ( self ): A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint,provider='''CPUExecutionProvider''' ) A__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) A__ = self.get_dummy_inputs() A__ = pipe(**_A ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase ( self ): A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint,provider='''CPUExecutionProvider''' ) A__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) A__ = self.get_dummy_inputs() A__ = pipe(**_A ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def UpperCamelCase ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self ): A__ = ort.SessionOptions() A__ = False return options def UpperCamelCase ( self ): A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) A__ = init_image.resize((768, 512) ) # using the PNDM scheduler by default A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''',revision='''onnx''',safety_checker=_A,feature_extractor=_A,provider=self.gpu_provider,sess_options=self.gpu_options,) pipe.set_progress_bar_config(disable=_A ) A__ = '''A fantasy landscape, trending on artstation''' A__ = np.random.RandomState(0 ) A__ = pipe( prompt=_A,image=_A,strength=0.75,guidance_scale=7.5,num_inference_steps=10,generator=_A,output_type='''np''',) A__ = output.images A__ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A__ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def UpperCamelCase ( self ): A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) A__ = init_image.resize((768, 512) ) A__ = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''',subfolder='''scheduler''',revision='''onnx''' ) A__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''',revision='''onnx''',scheduler=_A,safety_checker=_A,feature_extractor=_A,provider=self.gpu_provider,sess_options=self.gpu_options,) pipe.set_progress_bar_config(disable=_A ) A__ = '''A fantasy landscape, trending on artstation''' A__ = np.random.RandomState(0 ) A__ = pipe( prompt=_A,image=_A,strength=0.75,guidance_scale=7.5,num_inference_steps=20,generator=_A,output_type='''np''',) A__ = output.images A__ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A__ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
363
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = ['''image_processor''', '''tokenizer'''] __SCREAMING_SNAKE_CASE = '''Pix2StructImageProcessor''' __SCREAMING_SNAKE_CASE = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self,__lowerCamelCase,__lowerCamelCase ): A__ = False super().__init__(__lowerCamelCase,__lowerCamelCase ) def __call__( self,__lowerCamelCase=None,__lowerCamelCase = None,__lowerCamelCase = True,__lowerCamelCase = False,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = 2048,__lowerCamelCase = 0,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = True,__lowerCamelCase = None,**__lowerCamelCase,): if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: A__ = self.tokenizer A__ = self.tokenizer( text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values A__ = self.image_processor( __lowerCamelCase,return_tensors=__lowerCamelCase,max_patches=__lowerCamelCase,**__lowerCamelCase ) else: # add pixel_values and bbox A__ = self.image_processor( __lowerCamelCase,return_tensors=__lowerCamelCase,max_patches=__lowerCamelCase,header_text=__lowerCamelCase,**__lowerCamelCase ) if text is not None and not self.image_processor.is_vqa: A__ = self.tokenizer( text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,) if "attention_mask" in text_encoding: A__ = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: A__ = text_encoding.pop('''input_ids''' ) else: A__ = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.batch_decode(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.decode(*__lowerCamelCase,**__lowerCamelCase ) @property def UpperCamelCase ( self ): A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
39
0
"""simple docstring""" import numpy as np def lowercase (snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase (snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
155
"""simple docstring""" def lowercase (snake_case__ : list ) -> list: '''simple docstring''' if len(snake_case__ ) <= 1: return [tuple(snake_case__ )] lowerCAmelCase = [] def generate(snake_case__ : int , snake_case__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even lowerCAmelCase , lowerCAmelCase = arr[k - 1], arr[i] else: # k is odd lowerCAmelCase , lowerCAmelCase = arr[k - 1], arr[0] generate(k - 1 , snake_case__ ) generate(len(snake_case__ ) , snake_case__ ) return res if __name__ == "__main__": a = input('Enter numbers separated by a comma:\n').strip() a = [int(item) for item in user_input.split(',')] print(heaps(arr))
155
1
'''simple docstring''' from sklearn.metrics import fa_score import datasets _lowercase : Any = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" _lowercase : Optional[Any] = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" _lowercase : List[Any] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class __magic_name__ ( datasets.Metric): def SCREAMING_SNAKE_CASE_ ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : str=None , lowercase_ : Any=1 , lowercase_ : str="binary" , lowercase_ : Union[str, Any]=None ): lowercase_ : Optional[int] = fa_score( lowercase_ , lowercase_ , labels=lowercase_ , pos_label=lowercase_ , average=lowercase_ , sample_weight=lowercase_ ) return {"f1": float(lowercase_ ) if score.size == 1 else score}
21
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
1
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) def _A ( lowercase , lowercase ): """simple docstring""" def run_func(lowercase ): @wraps(lowercase ) def run_in_eager_mode(*lowercase , **lowercase ): return func(*lowercase , **lowercase ) @wraps(lowercase ) @tf.function(experimental_compile=lowercase ) def run_in_graph_mode(*lowercase , **lowercase ): return func(*lowercase , **lowercase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _A ( lowercase , lowercase , lowercase ): """simple docstring""" a =random.Random() a =[rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowercase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = "TensorFlow" @property def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: return tf.__version__ def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> float: # initialize GPU on separate process a =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) a =self._prepare_inference_func(__A , __A , __A ) return self._measure_speed(_inference ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> float: a =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) a =self._prepare_train_func(__A , __A , __A ) return self._measure_speed(_train ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __A ) a =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) a =self._prepare_inference_func(__A , __A , __A ) return self._measure_memory(_inference ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __A ) a =self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) a =self._prepare_train_func(__A , __A , __A ) return self._measure_memory(_train ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Callable[[], None]: a =self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) a =( hasattr(__A , '''architectures''' ) and isinstance(config.architectures , __A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: a ='''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model a =__import__('''transformers''' , fromlist=[model_class] ) a =getattr(__A , __A ) a =model_cls(__A ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: a =TF_MODEL_MAPPING[config.__class__](__A ) # encoder-decoder has vocab size saved differently a =config.vocab_size if hasattr(__A , '''vocab_size''' ) else config.encoder.vocab_size a =random_input_ids(__A , __A , __A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__A , decoder_input_ids=__A , training=__A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__A , training=__A ) a =encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Callable[[], None]: a =self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) a =( hasattr(__A , '''architectures''' ) and isinstance(config.architectures , __A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: a ='''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model a =__import__('''transformers''' , fromlist=[model_class] ) a =getattr(__A , __A ) a =model_cls(__A ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: a =TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__A ) # encoder-decoder has vocab size saved differently a =config.vocab_size if hasattr(__A , '''vocab_size''' ) else config.encoder.vocab_size a =random_input_ids(__A , __A , __A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): a =model(__A , decoder_input_ids=__A , labels=__A , training=__A )[0] a =tf.gradients(__A , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): a =model(__A , labels=__A , training=__A )[0] a =tf.gradients(__A , model.trainable_variables ) return gradients a =encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def SCREAMING_SNAKE_CASE ( self , __A ) -> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(__A , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average a =timeit.repeat( __A , repeat=self.args.repeat , number=10 , ) return min(__A ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def SCREAMING_SNAKE_CASE ( self , __A ) -> [Memory, MemorySummary]: logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) a =start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) a ='''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() a =nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) a =nvml.nvmlDeviceGetMemoryInfo(__A ) a =meminfo.used a =Memory(__A ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) a =None else: a =measure_peak_memory_cpu(__A ) a =Memory(__A ) if isinstance(__A , __A ) else memory_bytes if self.args.trace_memory_line_by_line: a =stop_memory_tracing(__A ) if memory is None: a =summary.total else: a =None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
81
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __snake_case = parser.parse_args() __snake_case = '''cpu''' __snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __snake_case = '''path-to-your-trained-model''' __snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __snake_case = pipe.to(device) # to channels last __snake_case = pipe.unet.to(memory_format=torch.channels_last) __snake_case = pipe.vae.to(memory_format=torch.channels_last) __snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __snake_case = torch.randn(2, 4, 64, 64) __snake_case = torch.rand(1) * 9_99 __snake_case = torch.randn(2, 77, 7_68) __snake_case = (sample, timestep, encoder_hidden_status) try: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __snake_case = 6_66 __snake_case = torch.Generator(device).manual_seed(seed) __snake_case = {'''generator''': generator} if args.steps is not None: __snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
348
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = '''trocr''' __A = ['''past_key_values'''] __A = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self : int , lowercase_ : Any=50265 , lowercase_ : Tuple=1024 , lowercase_ : Any=12 , lowercase_ : str=16 , lowercase_ : Any=4096 , lowercase_ : str="gelu" , lowercase_ : Any=512 , lowercase_ : Dict=0.1 , lowercase_ : List[Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : Optional[int]=2 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Any=0.0 , lowercase_ : Optional[Any]=True , lowercase_ : Union[str, Any]=False , lowercase_ : Dict=True , lowercase_ : Dict=True , lowercase_ : int=1 , lowercase_ : Union[str, Any]=0 , lowercase_ : int=2 , **lowercase_ : Any , ) -> Any: """simple docstring""" _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , **lowercase_ , )
63
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class _UpperCAmelCase ( TensorFormatter[Mapping, '''torch.Tensor''', Mapping] ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : Tuple=None , **lowercase_ : Union[str, Any]) -> Union[str, Any]: """simple docstring""" super().__init__(features=lowercase_) _UpperCamelCase = torch_tensor_kwargs import torch # noqa import torch at initialization def __UpperCAmelCase ( self : List[str] , lowercase_ : Union[str, Any]) -> List[str]: """simple docstring""" import torch if isinstance(lowercase_ , lowercase_) and column: if all( isinstance(lowercase_ , torch.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return torch.stack(lowercase_) return column def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : Union[str, Any]) -> str: """simple docstring""" import torch if isinstance(lowercase_ , (str, bytes, type(lowercase_))): return value elif isinstance(lowercase_ , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() _UpperCamelCase = {} if isinstance(lowercase_ , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): _UpperCamelCase = {"dtype": torch.intaa} elif isinstance(lowercase_ , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): _UpperCamelCase = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowercase_ , PIL.Image.Image): _UpperCamelCase = np.asarray(lowercase_) return torch.tensor(lowercase_ , **{**default_dtype, **self.torch_tensor_kwargs}) def __UpperCAmelCase ( self : str , lowercase_ : Dict) -> Dict: """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(lowercase_ , "__array__") and not isinstance(lowercase_ , torch.Tensor): _UpperCamelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowercase_ , np.ndarray): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowercase_) for substruct in data_struct]) elif isinstance(lowercase_ , (list, tuple)): return self._consolidate([self.recursive_tensorize(lowercase_) for substruct in data_struct]) return self._tensorize(lowercase_) def __UpperCAmelCase ( self : Optional[int] , lowercase_ : dict) -> Optional[int]: """simple docstring""" return map_nested(self._recursive_tensorize , lowercase_ , map_list=lowercase_) def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : pa.Table) -> Mapping: """simple docstring""" _UpperCamelCase = self.numpy_arrow_extractor().extract_row(lowercase_) _UpperCamelCase = self.python_features_decoder.decode_row(lowercase_) return self.recursive_tensorize(lowercase_) def __UpperCAmelCase ( self : List[str] , lowercase_ : pa.Table) -> "torch.Tensor": """simple docstring""" _UpperCamelCase = self.numpy_arrow_extractor().extract_column(lowercase_) _UpperCamelCase = self.python_features_decoder.decode_column(lowercase_ , pa_table.column_names[0]) _UpperCamelCase = self.recursive_tensorize(lowercase_) _UpperCamelCase = self._consolidate(lowercase_) return column def __UpperCAmelCase ( self : Tuple , lowercase_ : pa.Table) -> Mapping: """simple docstring""" _UpperCamelCase = self.numpy_arrow_extractor().extract_batch(lowercase_) _UpperCamelCase = self.python_features_decoder.decode_batch(lowercase_) _UpperCamelCase = self.recursive_tensorize(lowercase_) for column_name in batch: _UpperCamelCase = self._consolidate(batch[column_name]) return batch
63
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCAmelCase_ : def __init__( self, __a = "cpu", __a = "openai/clip-vit-large-patch14"): '''simple docstring''' _lowerCAmelCase : Optional[int] = device _lowerCAmelCase : Optional[int] = CLIPTokenizerFast.from_pretrained(__a) _lowerCAmelCase : Any = [0.48_145_466, 0.4_578_275, 0.40_821_073] _lowerCAmelCase : Union[str, Any] = [0.26_862_954, 0.26_130_258, 0.27_577_711] _lowerCAmelCase : Tuple = torchvision.transforms.Normalize(self.image_mean, self.image_std) _lowerCAmelCase : Optional[int] = torchvision.transforms.Resize(224) _lowerCAmelCase : Dict = torchvision.transforms.CenterCrop(224) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.resize(__a) _lowerCAmelCase : List[str] = self.center_crop(__a) _lowerCAmelCase : Optional[Any] = self.normalize(__a) return images def __call__( self, __a=None, __a=None, **__a): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer(text=__a, **__a) _lowerCAmelCase : List[str] = self.preprocess_img(__a) _lowerCAmelCase : Tuple = {key: value.to(self.device) for (key, value) in encoding.items()} return encoding class UpperCAmelCase_ ( nn.Module): def __init__( self, __a=10, __a=0.01, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=False, __a=True, __a="image", __a=True, __a=False, __a=False, __a=False, ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = None _lowerCAmelCase : List[str] = device if device else get_device() if vqgan: _lowerCAmelCase : Union[str, Any] = vqgan else: _lowerCAmelCase : Optional[Any] = load_vqgan(self.device, conf_path=__a, ckpt_path=__a) self.vqgan.eval() if clip: _lowerCAmelCase : str = clip else: _lowerCAmelCase : int = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") self.clip.to(self.device) _lowerCAmelCase : Optional[int] = ProcessorGradientFlow(device=self.device) _lowerCAmelCase : Any = iterations _lowerCAmelCase : List[Any] = lr _lowerCAmelCase : Tuple = log _lowerCAmelCase : List[str] = make_grid _lowerCAmelCase : int = return_val _lowerCAmelCase : Dict = quantize _lowerCAmelCase : Any = self.vqgan.decoder.z_shape def snake_case__ ( self, __a=None, __a=None, __a=5, __a=True): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] if output_path is None: _lowerCAmelCase : List[Any] = "./animation.gif" if input_path is None: _lowerCAmelCase : str = self.save_path _lowerCAmelCase : str = sorted(glob(input_path + "/*")) if not len(__a): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)") if len(__a) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)") _lowerCAmelCase : Optional[int] = total_duration / len(__a) _lowerCAmelCase : Union[str, Any] = [frame_duration] * len(__a) if extend_frames: _lowerCAmelCase : Any = 1.5 _lowerCAmelCase : List[str] = 3 for file_name in paths: if file_name.endswith(".png"): images.append(imageio.imread(__a)) imageio.mimsave(__a, __a, duration=__a) print(f"gif saved to {output_path}") def snake_case__ ( self, __a=None, __a=None): '''simple docstring''' if not (path or img): raise ValueError("Input either path or tensor") if img is not None: raise NotImplementedError _lowerCAmelCase : Dict = preprocess(Image.open(__a), target_image_size=256).to(self.device) _lowerCAmelCase : Dict = preprocess_vqgan(__a) _lowerCAmelCase , *_lowerCAmelCase : str = self.vqgan.encode(__a) return z def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.latent.detach().requires_grad_() _lowerCAmelCase : Dict = base_latent + transform_vector if self.quantize: _lowerCAmelCase , *_lowerCAmelCase : List[Any] = self.vqgan.quantize(__a) else: _lowerCAmelCase : Any = trans_latent return self.vqgan.decode(__a) def snake_case__ ( self, __a, __a, __a=None): '''simple docstring''' _lowerCAmelCase : int = self.clip_preprocessor(text=__a, images=__a, return_tensors="pt", padding=__a) _lowerCAmelCase : Optional[int] = self.clip(**__a) _lowerCAmelCase : Any = clip_outputs.logits_per_image if weights is not None: _lowerCAmelCase : Tuple = similarity_logits * weights return similarity_logits.sum() def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self._get_clip_similarity(pos_prompts["prompts"], __a, weights=(1 / pos_prompts["weights"])) if neg_prompts: _lowerCAmelCase : List[Any] = self._get_clip_similarity(neg_prompts["prompts"], __a, weights=neg_prompts["weights"]) else: _lowerCAmelCase : Union[str, Any] = torch.tensor([1], device=self.device) _lowerCAmelCase : List[str] = -torch.log(__a) + torch.log(__a) return loss def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.randn_like(self.latent, requires_grad=__a, device=self.device) _lowerCAmelCase : Optional[int] = torch.optim.Adam([vector], lr=self.lr) for i in range(self.iterations): optim.zero_grad() _lowerCAmelCase : Any = self._add_vector(__a) _lowerCAmelCase : Optional[Any] = loop_post_process(__a) _lowerCAmelCase : Optional[Any] = self._get_CLIP_loss(__a, __a, __a) print("CLIP loss", __a) if self.log: wandb.log({"CLIP Loss": clip_loss}) clip_loss.backward(retain_graph=__a) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0]) else: yield vector def snake_case__ ( self, __a, __a, __a): '''simple docstring''' wandb.init(reinit=__a, project="face-editor") wandb.config.update({"Positive Prompts": positive_prompts}) wandb.config.update({"Negative Prompts": negative_prompts}) wandb.config.update({"lr": self.lr, "iterations": self.iterations}) if image_path: _lowerCAmelCase : str = Image.open(__a) _lowerCAmelCase : int = image.resize((256, 256)) wandb.log("Original Image", wandb.Image(__a)) def snake_case__ ( self, __a): '''simple docstring''' if not prompts: return [] _lowerCAmelCase : int = [] _lowerCAmelCase : List[str] = [] if isinstance(__a, __a): _lowerCAmelCase : Union[str, Any] = [prompt.strip() for prompt in prompts.split("|")] for prompt in prompts: if isinstance(__a, (tuple, list)): _lowerCAmelCase : Optional[Any] = prompt[0] _lowerCAmelCase : Union[str, Any] = float(prompt[1]) elif ":" in prompt: _lowerCAmelCase , _lowerCAmelCase : int = prompt.split(":") _lowerCAmelCase : Optional[Any] = float(__a) else: _lowerCAmelCase : Optional[int] = prompt _lowerCAmelCase : List[Any] = 1.0 processed_prompts.append(__a) weights.append(__a) return { "prompts": processed_prompts, "weights": torch.tensor(__a, device=self.device), } def snake_case__ ( self, __a, __a=None, __a=None, __a=True, __a=False, __a=True, __a=True, __a=None, ): '''simple docstring''' if image_path: _lowerCAmelCase : List[Any] = self._get_latent(__a) else: _lowerCAmelCase : Any = torch.randn(self.latent_dim, device=self.device) if self.log: self._init_logging(__a, __a, __a) assert pos_prompts, "You must provide at least one positive prompt." _lowerCAmelCase : int = self.process_prompts(__a) _lowerCAmelCase : List[str] = self.process_prompts(__a) if save_final and save_path is None: _lowerCAmelCase : int = os.path.join("./outputs/", "_".join(pos_prompts["prompts"])) if not os.path.exists(__a): os.makedirs(__a) else: _lowerCAmelCase : Tuple = save_path + "_" + get_timestamp() os.makedirs(__a) _lowerCAmelCase : Tuple = save_path _lowerCAmelCase : List[Any] = self.vqgan.decode(self.latent)[0] if show_intermediate: print("Original Image") show_pil(custom_to_pil(__a)) _lowerCAmelCase : int = loop_post_process(__a) for iter, transformed_img in enumerate(self._optimize_CLIP(__a, __a, __a)): if show_intermediate: show_pil(__a) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png")) if self.log: wandb.log({"Image": wandb.Image(__a)}) if show_final: show_pil(__a) if save_final: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png"))
36
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def constraint_to_multiple_of(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=None ): _lowerCAmelCase : Tuple = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowerCAmelCase : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: _lowerCAmelCase : List[str] = math.ceil(val / multiple ) * multiple return x _lowerCAmelCase : Union[str, Any] = (output_size, output_size) if isinstance(_lowerCamelCase , _lowerCamelCase ) else output_size _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = get_image_size(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Any = output_size # determine new height and width _lowerCAmelCase : List[Any] = output_height / input_height _lowerCAmelCase : Any = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowerCAmelCase : Union[str, Any] = scale_width else: # fit height _lowerCAmelCase : Union[str, Any] = scale_height _lowerCAmelCase : List[str] = constraint_to_multiple_of(scale_height * input_height , multiple=_lowerCamelCase ) _lowerCAmelCase : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=_lowerCamelCase ) return (new_height, new_width) class UpperCAmelCase_ ( a): lowerCamelCase__ = ['pixel_values'] def __init__( self, __a = True, __a = None, __a = PILImageResampling.BILINEAR, __a = False, __a = 1, __a = True, __a = 1 / 255, __a = True, __a = None, __a = None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Any = size if size is not None else {"height": 384, "width": 384} _lowerCAmelCase : Optional[int] = get_size_dict(__a) _lowerCAmelCase : Optional[Any] = do_resize _lowerCAmelCase : Dict = size _lowerCAmelCase : Any = keep_aspect_ratio _lowerCAmelCase : str = ensure_multiple_of _lowerCAmelCase : str = resample _lowerCAmelCase : Dict = do_rescale _lowerCAmelCase : Optional[int] = rescale_factor _lowerCAmelCase : Dict = do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self, __a, __a, __a = False, __a = 1, __a = PILImageResampling.BICUBIC, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}") _lowerCAmelCase : List[Any] = get_resize_output_image_size( __a, output_size=(size["height"], size["width"]), keep_aspect_ratio=__a, multiple=__a, ) return resize(__a, size=__a, resample=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a = None, **__a, ): '''simple docstring''' return rescale(__a, scale=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a, __a = None, **__a, ): '''simple docstring''' return normalize(__a, mean=__a, std=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = ChannelDimension.FIRST, **__a, ): '''simple docstring''' _lowerCAmelCase : int = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : List[Any] = size if size is not None else self.size _lowerCAmelCase : str = get_size_dict(__a) _lowerCAmelCase : Dict = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowerCAmelCase : Any = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowerCAmelCase : int = resample if resample is not None else self.resample _lowerCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : List[str] = image_std if image_std is not None else self.image_std _lowerCAmelCase : Optional[Any] = make_list_of_images(__a) if not valid_images(__a): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. _lowerCAmelCase : List[Any] = [to_numpy_array(__a) for image in images] if do_resize: _lowerCAmelCase : Any = [self.resize(image=__a, size=__a, resample=__a) for image in images] if do_rescale: _lowerCAmelCase : List[str] = [self.rescale(image=__a, scale=__a) for image in images] if do_normalize: _lowerCAmelCase : Dict = [self.normalize(image=__a, mean=__a, std=__a) for image in images] _lowerCAmelCase : List[str] = [to_channel_dimension_format(__a, __a) for image in images] _lowerCAmelCase : Optional[Any] = {"pixel_values": images} return BatchFeature(data=__a, tensor_type=__a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__a) != len(__a): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(__a): _lowerCAmelCase : List[Any] = target_sizes.numpy() _lowerCAmelCase : Dict = [] for idx in range(len(__a)): _lowerCAmelCase : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=__a) _lowerCAmelCase : int = resized_logits[0].argmax(dim=0) semantic_segmentation.append(__a) else: _lowerCAmelCase : Dict = logits.argmax(dim=1) _lowerCAmelCase : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
36
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = "▁" SCREAMING_SNAKE_CASE__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowerCAmelCase__ ( __lowerCamelCase , unittest.TestCase ): a__ : List[Any] = BertGenerationTokenizer a__ : Optional[Any] = False a__ : str = True def __A ( self : Tuple ) -> Dict: super().setUp() __lowerCamelCase = BertGenerationTokenizer(__lowercase , keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : Tuple ) -> Tuple: __lowerCamelCase = '''<s>''' __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def __A ( self : Union[str, Any] ) -> Dict: __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__lowercase ) , 10_02 ) def __A ( self : Optional[Any] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def __A ( self : Optional[int] ) -> Tuple: __lowerCamelCase = BertGenerationTokenizer(__lowercase , keep_accents=__lowercase ) __lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [2_85, 46, 10, 1_70, 3_82] , ) __lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __A ( self : int ) -> Any: return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __A ( self : Union[str, Any] ) -> Dict: __lowerCamelCase = '''Hello World!''' __lowerCamelCase = [1_85_36, 22_60, 1_01] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @slow def __A ( self : Optional[Any] ) -> Dict: __lowerCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __lowerCamelCase = [ 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, ] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @require_torch @slow def __A ( self : List[Any] ) -> Dict: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __lowerCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] __lowerCamelCase = ''' '''.join(__lowercase ) __lowerCamelCase = self.big_tokenizer.encode_plus(__lowercase , return_tensors='''pt''' , return_token_type_ids=__lowercase ) __lowerCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__lowercase ) __lowerCamelCase = BertGenerationConfig() __lowerCamelCase = BertGenerationEncoder(__lowercase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__lowercase ) model(**__lowercase ) @slow def __A ( self : int ) -> Union[str, Any]: # fmt: off __lowerCamelCase = {'''input_ids''': [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
350
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowerCamelCase , __lowerCamelCase = y, x % y return abs(__lowerCAmelCase ) def __magic_name__ ( ) -> Tuple: try: __lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __lowerCamelCase = int(nums[0] ) __lowerCamelCase = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
339
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __snake_case = logging.getLogger(__name__) class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> Optional[int]: UpperCamelCase :Union[str, Any] = False def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: if not self.initialized: UpperCamelCase :str = RagRetriever( SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=SCREAMING_SNAKE_CASE_ , generator_tokenizer=SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ , init_retrieval=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase :str = True def UpperCAmelCase ( self ) -> Optional[int]: self.retriever.index.init_index() def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase , UpperCamelCase :Optional[int] = self.retriever._main_retrieve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[str]: if index is not None and index.is_initialized() and len(SCREAMING_SNAKE_CASE_ ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=SCREAMING_SNAKE_CASE_ , generator_tokenizer=SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ , init_retrieval=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase :Optional[Any] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for worker in self.retrieval_workers ] ) def UpperCAmelCase ( self ) -> Optional[int]: logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. UpperCamelCase :Optional[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] UpperCamelCase , UpperCamelCase :Dict = ray.get(random_worker.retrieve.remote(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) else: UpperCamelCase , UpperCamelCase :int = self._main_retrieve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(SCREAMING_SNAKE_CASE_ ) @classmethod def UpperCAmelCase ( cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> Tuple: return super(SCREAMING_SNAKE_CASE_ , cls ).get_tokenizers(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @classmethod def UpperCAmelCase ( cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase :Union[str, Any] = kwargs.pop('''config''' , SCREAMING_SNAKE_CASE_ ) or RagConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Tuple = RagTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = rag_tokenizer.question_encoder UpperCamelCase :Optional[Any] = rag_tokenizer.generator if indexed_dataset is not None: UpperCamelCase :Optional[int] = '''custom''' UpperCamelCase :List[str] = CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase :List[str] = cls._build_index(SCREAMING_SNAKE_CASE_ ) return cls( SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=SCREAMING_SNAKE_CASE_ , generator_tokenizer=SCREAMING_SNAKE_CASE_ , retrieval_workers=SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ , )
259
def _A ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): # Return True if there is node that has not iterated. UpperCamelCase :Tuple = [False] * len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Tuple = [] queue.append(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :int = True while queue: UpperCamelCase :Optional[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Union[str, Any] = True UpperCamelCase :Optional[int] = u return visited[t] def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ): # This array is filled by BFS and to store path UpperCamelCase :Optional[int] = [-1] * (len(SCREAMING_SNAKE_CASE__ )) UpperCamelCase :Optional[int] = 0 while bfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Dict = float('''Inf''' ) UpperCamelCase :str = sink while s != source: # Find the minimum value in select path UpperCamelCase :Optional[Any] = min(SCREAMING_SNAKE_CASE__ , graph[parent[s]][s] ) UpperCamelCase :Any = parent[s] max_flow += path_flow UpperCamelCase :Tuple = sink while v != source: UpperCamelCase :List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCamelCase :Any = parent[v] return max_flow __snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __snake_case , __snake_case = 0, 5 print(ford_fulkerson(graph, source, sink))
259
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Tuple: if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(A_ ) * abs(A_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
358
'''simple docstring''' import random def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = False ) -> dict: _snake_case = {i: [] for i in range(__A )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(__A ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(__A ): for j in range(i + 1 , __A ): if random.random() < probability: graph[i].append(__A ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(__A ) return graph def SCREAMING_SNAKE_CASE__ ( __A ) -> dict: return { i: [j for j in range(__A ) if i != j] for i in range(__A ) } if __name__ == "__main__": import doctest doctest.testmod()
160
0
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def A ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) UpperCAmelCase = '''xvjiarui/stable-diffusion-2-inpainting''' UpperCAmelCase , UpperCAmelCase = FlaxStableDiffusionInpaintPipeline.from_pretrained(lowercase , safety_checker=lowercase ) UpperCAmelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCAmelCase = jax.random.PRNGKey(0 ) UpperCAmelCase = 50 UpperCAmelCase = jax.device_count() UpperCAmelCase = num_samples * [prompt] UpperCAmelCase = num_samples * [init_image] UpperCAmelCase = num_samples * [mask_image] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = pipeline.prepare_inputs(lowercase , lowercase , lowercase ) # shard inputs and rng UpperCAmelCase = replicate(lowercase ) UpperCAmelCase = jax.random.split(lowercase , jax.device_count() ) UpperCAmelCase = shard(lowercase ) UpperCAmelCase = shard(lowercase ) UpperCAmelCase = shard(lowercase ) UpperCAmelCase = pipeline( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , jit=lowercase ) UpperCAmelCase = output.images.reshape(lowercase , 512 , 512 , 3 ) UpperCAmelCase = images[0, 253:256, 253:256, -1] UpperCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
34
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A =input('Enter image url: ').strip() print(f"""Downloading image from {url} ...""") A =BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image A =soup.find('meta', {'property': 'og:image'})['content'] A =requests.get(image_url).content A =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, 'wb') as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
34
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : List[str] = logging.get_logger(__name__) a_ : str = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """git_vision_model""" def __init__( self , __magic_name__=7_68 , __magic_name__=30_72 , __magic_name__=12 , __magic_name__=12 , __magic_name__=3 , __magic_name__=2_24 , __magic_name__=16 , __magic_name__="quick_gelu" , __magic_name__=1e-5 , __magic_name__=0.0 , __magic_name__=0.0_2 , **__magic_name__ , ) -> Union[str, Any]: super().__init__(**__magic_name__ ) _a = hidden_size _a = intermediate_size _a = num_hidden_layers _a = num_attention_heads _a = num_channels _a = patch_size _a = image_size _a = initializer_range _a = attention_dropout _a = layer_norm_eps _a = hidden_act @classmethod def __UpperCAmelCase ( cls , __magic_name__ , **__magic_name__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) _a , _a = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": _a = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """git""" def __init__( self , __magic_name__=None , __magic_name__=3_05_22 , __magic_name__=7_68 , __magic_name__=6 , __magic_name__=12 , __magic_name__=30_72 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=10_24 , __magic_name__=0.0_2 , __magic_name__=1e-12 , __magic_name__=0 , __magic_name__="absolute" , __magic_name__=True , __magic_name__=False , __magic_name__=1_01 , __magic_name__=1_02 , __magic_name__=None , **__magic_name__ , ) -> Optional[int]: super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , pad_token_id=__magic_name__ , **__magic_name__ ) if vision_config is None: _a = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) _a = GitVisionConfig(**__magic_name__ ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache _a = tie_word_embeddings _a = num_image_with_embedding _a = bos_token_id _a = eos_token_id def __UpperCAmelCase ( self ) -> List[str]: _a = copy.deepcopy(self.__dict__ ) _a = self.vision_config.to_dict() _a = self.__class__.model_type return output
104
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict ) -> Optional[int]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _a = np.full((len(lowerCAmelCase__ ), sequence_length, 2) , lowerCAmelCase__ ) else: _a = np.full((len(lowerCAmelCase__ ), sequence_length) , lowerCAmelCase__ ) for i, tensor in enumerate(lowerCAmelCase__ ): if padding_side == "right": if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _a = tensor[:sequence_length] else: _a = tensor[:sequence_length] else: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _a = tensor[:sequence_length] else: _a = tensor[:sequence_length] return out_tensor.tolist() def _A (lowerCAmelCase__ :Any ) -> Union[str, Any]: '''simple docstring''' _a = ord(lowerCAmelCase__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _a = unicodedata.category(lowerCAmelCase__ ) if cat.startswith('P' ): return True return False @dataclass class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = 42 _lowerCAmelCase = True _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = -1_0_0 _lowerCAmelCase = "pt" def __UpperCAmelCase ( self , __magic_name__ ) -> Any: import torch _a = 'label' if 'label' in features[0].keys() else 'labels' _a = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _a = self.tokenizer.pad( __magic_name__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' if labels is None else None , ) if labels is None: return batch _a = torch.tensor(batch['entity_ids'] ).shape[1] _a = self.tokenizer.padding_side if padding_side == "right": _a = [ list(__magic_name__ ) + [self.label_pad_token_id] * (sequence_length - len(__magic_name__ )) for label in labels ] else: _a = [ [self.label_pad_token_id] * (sequence_length - len(__magic_name__ )) + list(__magic_name__ ) for label in labels ] _a = [feature['ner_tags'] for feature in features] _a = padding_tensor(__magic_name__ , -1 , __magic_name__ , __magic_name__ ) _a = [feature['original_entity_spans'] for feature in features] _a = padding_tensor(__magic_name__ , (-1, -1) , __magic_name__ , __magic_name__ ) _a = {k: torch.tensor(__magic_name__ , dtype=torch.intaa ) for k, v in batch.items()} return batch
104
1
import sys from collections import defaultdict class __lowerCAmelCase : def __init__( self : int) -> str: """simple docstring""" _UpperCAmelCase = [] def _lowerCamelCase ( self : Any , A : List[str]) -> int: """simple docstring""" return self.node_position[vertex] def _lowerCamelCase ( self : Optional[Any] , A : Optional[int] , A : str) -> List[str]: """simple docstring""" _UpperCAmelCase = pos def _lowerCamelCase ( self : Tuple , A : Tuple , A : Dict , A : List[str] , A : Optional[Any]) -> Dict: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCAmelCase = 2 * start + 1 else: _UpperCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCAmelCase , _UpperCAmelCase = heap[smallest_child], positions[smallest_child] _UpperCAmelCase , _UpperCAmelCase = ( heap[start], positions[start], ) _UpperCAmelCase , _UpperCAmelCase = temp, tempa _UpperCAmelCase = self.get_position(positions[smallest_child]) self.set_position( positions[smallest_child] , self.get_position(positions[start])) self.set_position(positions[start] , A) self.top_to_bottom(A , A , A , A) def _lowerCamelCase ( self : Optional[int] , A : str , A : Optional[Any] , A : Optional[int] , A : str) -> Any: """simple docstring""" _UpperCAmelCase = position[index] while index != 0: _UpperCAmelCase = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2) if val < heap[parent]: _UpperCAmelCase = heap[parent] _UpperCAmelCase = position[parent] self.set_position(position[parent] , A) else: _UpperCAmelCase = val _UpperCAmelCase = temp self.set_position(A , A) break _UpperCAmelCase = parent else: _UpperCAmelCase = val _UpperCAmelCase = temp self.set_position(A , 0) def _lowerCamelCase ( self : Union[str, Any] , A : Optional[int] , A : Tuple) -> str: """simple docstring""" _UpperCAmelCase = len(A) // 2 - 1 for i in range(A , -1 , -1): self.top_to_bottom(A , A , len(A) , A) def _lowerCamelCase ( self : Optional[int] , A : int , A : str) -> List[str]: """simple docstring""" _UpperCAmelCase = positions[0] _UpperCAmelCase = sys.maxsize self.top_to_bottom(A , 0 , len(A) , A) return temp def A ( _UpperCAmelCase : int ) -> Any: '''simple docstring''' _UpperCAmelCase = Heap() _UpperCAmelCase = [0] * len(_UpperCAmelCase ) _UpperCAmelCase = [-1] * len(_UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCAmelCase = [] for vertex in range(len(_UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCAmelCase ) heap.node_position.append(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = 1 _UpperCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCAmelCase = 0 _UpperCAmelCase = distance heap.heapify(_UpperCAmelCase , _UpperCAmelCase ) for _ in range(1 , len(_UpperCAmelCase ) ): _UpperCAmelCase = heap.delete_minimum(_UpperCAmelCase , _UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCAmelCase )] ): _UpperCAmelCase = distance heap.bottom_to_top( _UpperCAmelCase , heap.get_position(_UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase__ = int(input("Enter number of edges: ").strip()) UpperCAmelCase__ = defaultdict(list) for _ in range(edges_number): UpperCAmelCase__ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
339
import os UpperCAmelCase__ = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} def A ( _UpperCAmelCase : str ) -> int: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(_UpperCAmelCase ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' _UpperCAmelCase = '' _UpperCAmelCase = num // 1_000 numerals += m_count * "M" num %= 1_000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def A ( _UpperCAmelCase : str = "/p089_roman.txt" ) -> int: '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(_UpperCAmelCase ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(_UpperCAmelCase ) _UpperCAmelCase = generate_roman_numerals(_UpperCAmelCase ) savings += len(_UpperCAmelCase ) - len(_UpperCAmelCase ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
339
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase : Dict = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = ['''DeiTFeatureExtractor'''] lowercase : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys lowercase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): snake_case_ : List[Any] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Dict = "sshleifer/tiny-gpt2" snake_case_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : Optional[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> int: snake_case_ : List[Any] = "sgugger/tiny-distilbert-classification" snake_case_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , only_pretrain_model=_SCREAMING_SNAKE_CASE , ) snake_case_ : int = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : List[str] = "sshleifer/tiny-gpt2" snake_case_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : Optional[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> int: snake_case_ : Union[str, Any] = "sshleifer/tiny-gpt2" snake_case_ : List[str] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) snake_case_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : str = "sshleifer/tiny-gpt2" snake_case_ : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) snake_case_ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> str: snake_case_ : List[str] = "sshleifer/tiny-gpt2" snake_case_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCAmelCase ( self ) -> Dict: snake_case_ : str = "sshleifer/tiny-gpt2" snake_case_ : str = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : Optional[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) snake_case_ : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : List[str] = "patrickvonplaten/t5-tiny-random" snake_case_ : Union[str, Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) snake_case_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def _lowerCAmelCase ( self ) -> Dict: snake_case_ : int = "sshleifer/tiny-gpt2" snake_case_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Union[str, Any] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , save_to_csv=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , "inf_mem.csv" ) , env_info_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , "env.csv" ) , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : Dict = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) benchmark.run() self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , "env.csv" ) ).exists() ) def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : int = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(_SCREAMING_SNAKE_CASE ): self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "sequential" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "cumulative" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "current" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_SCREAMING_SNAKE_CASE , "log.txt" ) , log_print=_SCREAMING_SNAKE_CASE , trace_memory_line_by_line=_SCREAMING_SNAKE_CASE , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) snake_case_ : Tuple = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) snake_case_ : int = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , "log.txt" ) ).exists() )
36
0
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
178
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=16 , a=2 , a=0.02 , a=4 , ) -> int: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_choices def _UpperCamelCase ( self ) -> List[str]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_attention_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def _UpperCamelCase ( self ) -> List[str]: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = True snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCamelCase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = True lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = FlaxRobertaModelTester(self ) @slow def _UpperCamelCase ( self ) -> str: for model_class_name in self.all_model_classes: snake_case_ = model_class_name.from_pretrained('roberta-base' , from_pt=a ) snake_case_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(a )
178
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Optional[int]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=[0.5, 0.5, 0.5] , lowerCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Tuple=1 / 255 , lowerCAmelCase__ : int=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE_: Optional[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Tuple = batch_size SCREAMING_SNAKE_CASE_: Tuple = num_channels SCREAMING_SNAKE_CASE_: Union[str, Any] = min_resolution SCREAMING_SNAKE_CASE_: Tuple = max_resolution SCREAMING_SNAKE_CASE_: List[Any] = do_resize SCREAMING_SNAKE_CASE_: Optional[int] = size SCREAMING_SNAKE_CASE_: Optional[int] = do_normalize SCREAMING_SNAKE_CASE_: Any = image_mean SCREAMING_SNAKE_CASE_: Dict = image_std SCREAMING_SNAKE_CASE_: Tuple = do_rescale SCREAMING_SNAKE_CASE_: int = rescale_factor SCREAMING_SNAKE_CASE_: int = do_pad def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int=False): if not batched: SCREAMING_SNAKE_CASE_: List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_: List[Any] = int(self.size["shortest_edge"] * h / w) SCREAMING_SNAKE_CASE_: Union[str, Any] = self.size["shortest_edge"] elif w > h: SCREAMING_SNAKE_CASE_: Any = self.size["shortest_edge"] SCREAMING_SNAKE_CASE_: Union[str, Any] = int(self.size["shortest_edge"] * w / h) else: SCREAMING_SNAKE_CASE_: int = self.size["shortest_edge"] SCREAMING_SNAKE_CASE_: Dict = self.size["shortest_edge"] else: SCREAMING_SNAKE_CASE_: int = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) SCREAMING_SNAKE_CASE_: Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__: item[0])[0] SCREAMING_SNAKE_CASE_: Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Any = DeformableDetrImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = DeformableDetrImageProcessingTester(self) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase__ , "image_mean")) self.assertTrue(hasattr(lowerCAmelCase__ , "image_std")) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize")) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize")) self.assertTrue(hasattr(lowerCAmelCase__ , "do_rescale")) self.assertTrue(hasattr(lowerCAmelCase__ , "do_pad")) self.assertTrue(hasattr(lowerCAmelCase__ , "size")) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Dict = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333}) self.assertEqual(image_processor.do_pad , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84}) self.assertEqual(image_processor.do_pad , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): pass def _SCREAMING_SNAKE_CASE ( self : List[Any]): # Initialize image_processing SCREAMING_SNAKE_CASE_: List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images SCREAMING_SNAKE_CASE_: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image) # Test not batched input SCREAMING_SNAKE_CASE_: Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = image_processing(lowerCAmelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE ( self : str): # Initialize image_processing SCREAMING_SNAKE_CASE_: Optional[Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors SCREAMING_SNAKE_CASE_: List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray) # Test not batched input SCREAMING_SNAKE_CASE_: str = image_processing(image_inputs[0] , return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_: Any = image_processing(lowerCAmelCase__ , return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]): # Initialize image_processing SCREAMING_SNAKE_CASE_: List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors SCREAMING_SNAKE_CASE_: int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor) # Test not batched input SCREAMING_SNAKE_CASE_: Dict = image_processing(image_inputs[0] , return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_: Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple): # prepare image and target SCREAMING_SNAKE_CASE_: Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r") as f: SCREAMING_SNAKE_CASE_: str = json.loads(f.read()) SCREAMING_SNAKE_CASE_: Optional[int] = {"image_id": 3_9769, "annotations": target} # encode them SCREAMING_SNAKE_CASE_: str = DeformableDetrImageProcessor() SCREAMING_SNAKE_CASE_: Dict = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors="pt") # verify pixel values SCREAMING_SNAKE_CASE_: Optional[Any] = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4)) # verify area SCREAMING_SNAKE_CASE_: int = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase__)) # verify boxes SCREAMING_SNAKE_CASE_: str = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase__ , atol=1E-3)) # verify image_id SCREAMING_SNAKE_CASE_: str = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase__)) # verify is_crowd SCREAMING_SNAKE_CASE_: int = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase__)) # verify class_labels SCREAMING_SNAKE_CASE_: Tuple = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase__)) # verify orig_size SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase__)) # verify size SCREAMING_SNAKE_CASE_: str = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple): # prepare image, target and masks_path SCREAMING_SNAKE_CASE_: Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r") as f: SCREAMING_SNAKE_CASE_: List[Any] = json.loads(f.read()) SCREAMING_SNAKE_CASE_: Optional[Any] = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} SCREAMING_SNAKE_CASE_: int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic") # encode them SCREAMING_SNAKE_CASE_: Any = DeformableDetrImageProcessor(format="coco_panoptic") SCREAMING_SNAKE_CASE_: Optional[Any] = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors="pt") # verify pixel values SCREAMING_SNAKE_CASE_: Dict = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4)) # verify area SCREAMING_SNAKE_CASE_: Optional[Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase__)) # verify boxes SCREAMING_SNAKE_CASE_: List[str] = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase__ , atol=1E-3)) # verify image_id SCREAMING_SNAKE_CASE_: Any = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase__)) # verify is_crowd SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase__)) # verify class_labels SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase__)) # verify masks SCREAMING_SNAKE_CASE_: Tuple = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCAmelCase__) # verify orig_size SCREAMING_SNAKE_CASE_: str = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase__)) # verify size SCREAMING_SNAKE_CASE_: Optional[int] = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase__))
127
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : Any = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowerCAmelCase : str = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = EfficientNetConfig() SCREAMING_SNAKE_CASE_: Any = CONFIG_MAP[model_name]["hidden_dim"] SCREAMING_SNAKE_CASE_: Optional[Any] = CONFIG_MAP[model_name]["width_coef"] SCREAMING_SNAKE_CASE_: List[Any] = CONFIG_MAP[model_name]["depth_coef"] SCREAMING_SNAKE_CASE_: Union[str, Any] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE_: Optional[int] = CONFIG_MAP[model_name]["dropout_rate"] SCREAMING_SNAKE_CASE_: Dict = CONFIG_MAP[model_name]["dw_padding"] SCREAMING_SNAKE_CASE_: str = "huggingface/label-files" SCREAMING_SNAKE_CASE_: str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_: int = 10_00 SCREAMING_SNAKE_CASE_: int = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_: int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Any = idalabel SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in idalabel.items()} return config def A_ ( ): SCREAMING_SNAKE_CASE_: Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_: int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE_: Optional[Any] = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_UpperCAmelCase , ) return preprocessor def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] SCREAMING_SNAKE_CASE_: Optional[Any] = sorted(set(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: int = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = {b: str(_UpperCAmelCase ) for b, i in zip(_UpperCAmelCase , range(_UpperCAmelCase ) )} SCREAMING_SNAKE_CASE_: List[Any] = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: SCREAMING_SNAKE_CASE_: List[str] = block_name_mapping[b] rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) SCREAMING_SNAKE_CASE_: Optional[Any] = {} for item in rename_keys: if item[0] in original_param_names: SCREAMING_SNAKE_CASE_: str = "efficientnet." + item[1] SCREAMING_SNAKE_CASE_: List[str] = "classifier.weight" SCREAMING_SNAKE_CASE_: Optional[Any] = "classifier.bias" return key_mapping def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for key, value in tf_params.items(): if "normalization" in key: continue SCREAMING_SNAKE_CASE_: List[str] = key_mapping[key] if "_conv" in key and "kernel" in key: SCREAMING_SNAKE_CASE_: str = torch.from_numpy(_UpperCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: SCREAMING_SNAKE_CASE_: Tuple = torch.from_numpy(np.transpose(_UpperCAmelCase ) ) else: SCREAMING_SNAKE_CASE_: List[str] = torch.from_numpy(_UpperCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCAmelCase ) @torch.no_grad() def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model_classes[model_name]( include_top=_UpperCAmelCase , weights="imagenet" , input_tensor=_UpperCAmelCase , input_shape=_UpperCAmelCase , pooling=_UpperCAmelCase , classes=10_00 , classifier_activation="softmax" , ) SCREAMING_SNAKE_CASE_: Tuple = original_model.trainable_variables SCREAMING_SNAKE_CASE_: Dict = original_model.non_trainable_variables SCREAMING_SNAKE_CASE_: List[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: SCREAMING_SNAKE_CASE_: str = param.numpy() SCREAMING_SNAKE_CASE_: Union[str, Any] = list(tf_params.keys() ) # Load HuggingFace model SCREAMING_SNAKE_CASE_: Any = get_efficientnet_config(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = EfficientNetForImageClassification(_UpperCAmelCase ).eval() SCREAMING_SNAKE_CASE_: str = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) SCREAMING_SNAKE_CASE_: Tuple = rename_keys(_UpperCAmelCase ) replace_params(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Initialize preprocessor and preprocess input image SCREAMING_SNAKE_CASE_: Optional[Any] = convert_image_processor(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Union[str, Any] = hf_model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = outputs.logits.detach().numpy() # Original model inference SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE_: int = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) SCREAMING_SNAKE_CASE_: Tuple = image.img_to_array(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = np.expand_dims(_UpperCAmelCase , axis=0 ) SCREAMING_SNAKE_CASE_: str = original_model.predict(_UpperCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCAmelCase ): os.mkdir(_UpperCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCAmelCase ) preprocessor.save_pretrained(_UpperCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f"Pushing converted {model_name} to the hub..." ) SCREAMING_SNAKE_CASE_: Optional[Any] = f"efficientnet-{model_name}" preprocessor.push_to_hub(_UpperCAmelCase ) hf_model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowerCAmelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
127
1
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: float , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: str , UpperCamelCase_: bool = False , ) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ = nn.Embedding(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = nn.Embedding(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = False lowercase__ = nn.Dropout(p=UpperCamelCase_ ) lowercase__ = TaConfig( vocab_size=UpperCamelCase_ , d_model=UpperCamelCase_ , num_heads=UpperCamelCase_ , d_kv=UpperCamelCase_ , d_ff=UpperCamelCase_ , dropout_rate=UpperCamelCase_ , feed_forward_proj=UpperCamelCase_ , is_decoder=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , ) lowercase__ = nn.ModuleList() for lyr_num in range(UpperCamelCase_ ): lowercase__ = TaBlock(UpperCamelCase_ ) self.encoders.append(UpperCamelCase_ ) lowercase__ = TaLayerNorm(UpperCamelCase_ ) lowercase__ = nn.Dropout(p=UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.token_embedder(UpperCamelCase_ ) lowercase__ = encoder_input_tokens.shape[1] lowercase__ = torch.arange(UpperCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase_ ) lowercase__ = self.dropout_pre(UpperCamelCase_ ) # inverted the attention mask lowercase__ = encoder_input_tokens.size() lowercase__ = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ ) for lyr in self.encoders: lowercase__ = lyr(UpperCamelCase_ , UpperCamelCase_ )[0] lowercase__ = self.layer_norm(UpperCamelCase_ ) return self.dropout_post(UpperCamelCase_ ), encoder_inputs_mask
110
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: with open(SCREAMING_SNAKE_CASE , '''rb''' ) as flax_state_f: lowercase__ = from_bytes(SCREAMING_SNAKE_CASE , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowercase__ = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE ) ).values() if any(SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowercase__ = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE ) lowercase__ = '''''' lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE , sep='''.''' ) lowercase__ = pt_model.state_dict() # keep track of unexpected & missing keys lowercase__ = [] lowercase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = jnp.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] lowercase__ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowercase__ = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) lowercase__ = '''.'''.join(SCREAMING_SNAKE_CASE ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict lowercase__ = np.asarray(SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor lowercase__ = torch.from_numpy(SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list lowercase__ = list(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) return pt_model
110
1
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any ): """simple docstring""" UpperCamelCase = {} def A ( self : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=1 ): """simple docstring""" if self.graph.get(UpperCamelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: UpperCamelCase = [[w, v]] if not self.graph.get(UpperCamelCase__ ): UpperCamelCase = [] def A ( self : Optional[int] ): """simple docstring""" return list(self.graph ) def A ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): """simple docstring""" if self.graph.get(UpperCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCamelCase__ ) def A ( self : Tuple , UpperCamelCase__ : Any=-2 , UpperCamelCase__ : Tuple=-1 ): """simple docstring""" if s == d: return [] UpperCamelCase = [] UpperCamelCase = [] if s == -2: UpperCamelCase = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) UpperCamelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCamelCase__ ) != 0: UpperCamelCase = stack[len(UpperCamelCase__ ) - 1] else: UpperCamelCase = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return visited def A ( self : List[Any] , UpperCamelCase__ : Any=-1 ): """simple docstring""" if c == -1: UpperCamelCase = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(UpperCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): UpperCamelCase = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCamelCase__ , UpperCamelCase__ , 1 ) def A ( self : Optional[int] , UpperCamelCase__ : Optional[Any]=-2 ): """simple docstring""" UpperCamelCase = deque() UpperCamelCase = [] if s == -2: UpperCamelCase = list(self.graph )[0] d.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) while d: UpperCamelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def A ( self : List[str] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def A ( self : Union[str, Any] , UpperCamelCase__ : int ): """simple docstring""" return len(self.graph[u] ) def A ( self : Tuple , UpperCamelCase__ : Tuple=-2 ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] if s == -2: UpperCamelCase = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) UpperCamelCase = s UpperCamelCase = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(UpperCamelCase__ ) != 0: UpperCamelCase = stack[len(UpperCamelCase__ ) - 1] else: UpperCamelCase = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return sorted_nodes def A ( self : Tuple ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) UpperCamelCase = -2 UpperCamelCase = [] UpperCamelCase = s UpperCamelCase = False UpperCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase = len(UpperCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase = True if len(UpperCamelCase__ ) != 0: UpperCamelCase = stack[len(UpperCamelCase__ ) - 1] else: UpperCamelCase = False indirect_parents.append(UpperCamelCase__ ) UpperCamelCase = s UpperCamelCase = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return list(UpperCamelCase__ ) def A ( self : str ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) UpperCamelCase = -2 UpperCamelCase = [] UpperCamelCase = s UpperCamelCase = False UpperCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase = len(UpperCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase = True if len(UpperCamelCase__ ) != 0: UpperCamelCase = stack[len(UpperCamelCase__ ) - 1] else: UpperCamelCase = False indirect_parents.append(UpperCamelCase__ ) UpperCamelCase = s UpperCamelCase = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return False def A ( self : List[str] , UpperCamelCase__ : Union[str, Any]=-2 , UpperCamelCase__ : Union[str, Any]=-1 ): """simple docstring""" UpperCamelCase = time() self.dfs(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = time() return end - begin def A ( self : Dict , UpperCamelCase__ : int=-2 ): """simple docstring""" UpperCamelCase = time() self.bfs(UpperCamelCase__ ) UpperCamelCase = time() return end - begin class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : int ): """simple docstring""" UpperCamelCase = {} def A ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any]=1 ): """simple docstring""" if self.graph.get(UpperCamelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist UpperCamelCase = [[w, v]] # add the other way if self.graph.get(UpperCamelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist UpperCamelCase = [[w, u]] def A ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ): """simple docstring""" if self.graph.get(UpperCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCamelCase__ ) # the other way round if self.graph.get(UpperCamelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(UpperCamelCase__ ) def A ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any]=-2 , UpperCamelCase__ : Tuple=-1 ): """simple docstring""" if s == d: return [] UpperCamelCase = [] UpperCamelCase = [] if s == -2: UpperCamelCase = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) UpperCamelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCamelCase__ ) != 0: UpperCamelCase = stack[len(UpperCamelCase__ ) - 1] else: UpperCamelCase = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return visited def A ( self : Optional[Any] , UpperCamelCase__ : int=-1 ): """simple docstring""" if c == -1: UpperCamelCase = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(UpperCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): UpperCamelCase = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCamelCase__ , UpperCamelCase__ , 1 ) def A ( self : List[Any] , UpperCamelCase__ : Union[str, Any]=-2 ): """simple docstring""" UpperCamelCase = deque() UpperCamelCase = [] if s == -2: UpperCamelCase = list(self.graph )[0] d.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) while d: UpperCamelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def A ( self : Any , UpperCamelCase__ : Any ): """simple docstring""" return len(self.graph[u] ) def A ( self : int ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) UpperCamelCase = -2 UpperCamelCase = [] UpperCamelCase = s UpperCamelCase = False UpperCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase = len(UpperCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase = True if len(UpperCamelCase__ ) != 0: UpperCamelCase = stack[len(UpperCamelCase__ ) - 1] else: UpperCamelCase = False indirect_parents.append(UpperCamelCase__ ) UpperCamelCase = s UpperCamelCase = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return list(UpperCamelCase__ ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) UpperCamelCase = -2 UpperCamelCase = [] UpperCamelCase = s UpperCamelCase = False UpperCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase = len(UpperCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase = True if len(UpperCamelCase__ ) != 0: UpperCamelCase = stack[len(UpperCamelCase__ ) - 1] else: UpperCamelCase = False indirect_parents.append(UpperCamelCase__ ) UpperCamelCase = s UpperCamelCase = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return False def A ( self : Union[str, Any] ): """simple docstring""" return list(self.graph ) def A ( self : Tuple , UpperCamelCase__ : Dict=-2 , UpperCamelCase__ : str=-1 ): """simple docstring""" UpperCamelCase = time() self.dfs(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = time() return end - begin def A ( self : Union[str, Any] , UpperCamelCase__ : Optional[int]=-2 ): """simple docstring""" UpperCamelCase = time() self.bfs(UpperCamelCase__ ) UpperCamelCase = time() return end - begin
249
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: """simple docstring""" # Load configuration defined in the metadata file with open(A__ ) as metadata_file: UpperCamelCase = json.load(A__ ) UpperCamelCase = LukeConfig(use_entity_aware_attention=A__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path UpperCamelCase = torch.load(A__ , map_location='cpu' )['module'] # Load the entity vocab file UpperCamelCase = load_original_entity_vocab(A__ ) # add an entry for [MASK2] UpperCamelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCamelCase = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase = AddedToken('<ent>' , lstrip=A__ , rstrip=A__ ) UpperCamelCase = AddedToken('<ent2>' , lstrip=A__ , rstrip=A__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(A__ ) with open(os.path.join(A__ , 'tokenizer_config.json' ) , 'r' ) as f: UpperCamelCase = json.load(A__ ) UpperCamelCase = 'MLukeTokenizer' with open(os.path.join(A__ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(A__ , A__ ) with open(os.path.join(A__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(A__ , A__ ) UpperCamelCase = MLukeTokenizer.from_pretrained(A__ ) # Initialize the embeddings of the special tokens UpperCamelCase = tokenizer.convert_tokens_to_ids(['@'] )[0] UpperCamelCase = tokenizer.convert_tokens_to_ids(['#'] )[0] UpperCamelCase = state_dict['embeddings.word_embeddings.weight'] UpperCamelCase = word_emb[ent_init_index].unsqueeze(0 ) UpperCamelCase = word_emb[enta_init_index].unsqueeze(0 ) UpperCamelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCamelCase = state_dict[bias_name] UpperCamelCase = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCamelCase = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCamelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase = F"""encoder.layer.{layer_index}.attention.self.""" UpperCamelCase = state_dict[prefix + matrix_name] UpperCamelCase = state_dict[prefix + matrix_name] UpperCamelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase = state_dict['entity_embeddings.entity_embeddings.weight'] UpperCamelCase = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCamelCase = state_dict['entity_predictions.bias'] UpperCamelCase = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCamelCase = LukeForMaskedLM(config=A__ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): UpperCamelCase = state_dict[key] else: UpperCamelCase = state_dict[key] UpperCamelCase , UpperCamelCase = model.load_state_dict(A__ , strict=A__ ) if set(A__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(A__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCamelCase = MLukeTokenizer.from_pretrained(A__ , task='entity_classification' ) UpperCamelCase = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' UpperCamelCase = (0, 9) UpperCamelCase = tokenizer(A__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase = model(**A__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase = torch.Size((1, 33, 768) ) UpperCamelCase = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , A__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase = torch.Size((1, 1, 768) ) UpperCamelCase = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , A__ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction UpperCamelCase = MLukeTokenizer.from_pretrained(A__ ) UpperCamelCase = 'Tokyo is the capital of <mask>.' UpperCamelCase = (24, 30) UpperCamelCase = tokenizer(A__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase = model(**A__ ) UpperCamelCase = encoding['input_ids'][0].tolist() UpperCamelCase = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) UpperCamelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(A__ ) UpperCamelCase = outputs.entity_logits[0][0].argmax().item() UpperCamelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(A__ ) ) model.save_pretrained(A__ ) def __lowerCamelCase ( A__ ) -> int: """simple docstring""" UpperCamelCase = ['[MASK]', '[PAD]', '[UNK]'] UpperCamelCase = [json.loads(A__ ) for line in open(A__ )] UpperCamelCase = {} for entry in data: UpperCamelCase = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCamelCase = entity_id break UpperCamelCase = F"""{language}:{entity_name}""" UpperCamelCase = entity_id return new_mapping if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
249
1
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCamelCase : @staticmethod def __a ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: pass @is_pipeline_test @require_vision class __UpperCamelCase ( unittest.TestCase ): @require_torch def __a ( self ) -> Dict: a : List[Any] = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) a : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) a : List[str] = image_classifier(lowerCAmelCase__ , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowerCAmelCase__ ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) a : Optional[int] = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], ] , ) @require_tf def __a ( self ) -> int: a : Tuple = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) a : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) a : int = image_classifier(lowerCAmelCase__ , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) a : List[str] = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, {"score": 0.333, "label": ANY(lowerCAmelCase__ )}, ], ] , ) @slow @require_torch def __a ( self ) -> Union[str, Any]: a : Optional[int] = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes a : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) a : str = image_classifier(lowerCAmelCase__ , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) a : List[str] = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def __a ( self ) -> Optional[Any]: a : List[str] = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes a : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) a : Optional[Any] = image_classifier(lowerCAmelCase__ , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) a : Optional[int] = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
105
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : list ) ->int: '''simple docstring''' if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] a : Union[str, Any] = grid[0] for row_n in range(1 , len(_lowercase ) ): a : Optional[Any] = grid[row_n] a : Tuple = fill_row(_lowercase , _lowercase ) a : List[Any] = grid[row_n] return grid[-1][-1] def _SCREAMING_SNAKE_CASE ( _lowercase : list , _lowercase : list ) ->list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(_lowercase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
105
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
352
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('''DownBlock2D''', '''AttnDownBlock2D'''), up_block_types=('''AttnUpBlock2D''', '''UpBlock2D'''), ) return model def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.dummy_uncond_unet lowerCAmelCase_ = KarrasVeScheduler() lowerCAmelCase_ = KarrasVePipeline(unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=2, generator=UpperCamelCase__, output_type='''numpy''' ).images lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=2, generator=UpperCamelCase__, output_type='''numpy''', return_dict=UpperCamelCase__ )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = '''google/ncsnpp-celebahq-256''' lowerCAmelCase_ = UNetaDModel.from_pretrained(UpperCamelCase__ ) lowerCAmelCase_ = KarrasVeScheduler() lowerCAmelCase_ = KarrasVePipeline(unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=20, generator=UpperCamelCase__, output_type='''numpy''' ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase_ = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
167
0