code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
lowerCamelCase : Optional[Any] =0 # The first color of the flag. lowerCamelCase : List[Any] =1 # The second color of the flag. lowerCamelCase : Dict =2 # The third color of the flag. lowerCamelCase : Optional[Any] =(red, white, blue) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Tuple: if not sequence: return [] if len(_A ) == 1: return list(_A ) UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : int = len(_A ) - 1 UpperCamelCase__ : Dict = 0 while mid <= high: if sequence[mid] == colors[0]: UpperCamelCase__ , UpperCamelCase__ : Any = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: UpperCamelCase__ , UpperCamelCase__ : Any = sequence[high], sequence[mid] high -= 1 else: UpperCamelCase__ : Optional[Any] = f'The elements inside the sequence must contains only {colors} values' raise ValueError(_A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Optional[Any] =input('''Enter numbers separated by commas:\n''').strip() lowerCamelCase : List[str] =[int(item.strip()) for item in user_input.split(''',''')] print(F"""{dutch_national_flag_sort(unsorted)}""")
189
import functools def lowerCamelCase__ ( _A , _A ): '''simple docstring''' if not isinstance(_A , _A ) or not all(isinstance(_A , _A ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_A ) != 3 or not all(isinstance(_A , _A ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_A ) == 0: return 0 if min(_A ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_A ) >= 366: raise ValueError("All days elements should be less than 366" ) snake_case_ = set(_A ) @functools.cache def dynamic_programming(_A ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
187
0
import argparse import struct import unittest class snake_case__ : """simple docstring""" def __init__( self , __lowercase ) -> None: """simple docstring""" a__ : Any = data # Initialize hash values a__ : Union[str, Any] = [ 0x6a09_e667, 0xbb67_ae85, 0x3c6e_f372, 0xa54f_f53a, 0x510e_527f, 0x9b05_688c, 0x1f83_d9ab, 0x5be0_cd19, ] # Initialize round constants a__ : List[Any] = [ 0x428a_2f98, 0x7137_4491, 0xb5c0_fbcf, 0xe9b5_dba5, 0x3956_c25b, 0x59f1_11f1, 0x923f_82a4, 0xab1c_5ed5, 0xd807_aa98, 0x1283_5b01, 0x2431_85be, 0x550c_7dc3, 0x72be_5d74, 0x80de_b1fe, 0x9bdc_06a7, 0xc19b_f174, 0xe49b_69c1, 0xefbe_4786, 0x0fc1_9dc6, 0x240c_a1cc, 0x2de9_2c6f, 0x4a74_84aa, 0x5cb0_a9dc, 0x76f9_88da, 0x983e_5152, 0xa831_c66d, 0xb003_27c8, 0xbf59_7fc7, 0xc6e0_0bf3, 0xd5a7_9147, 0x06ca_6351, 0x1429_2967, 0x27b7_0a85, 0x2e1b_2138, 0x4d2c_6dfc, 0x5338_0d13, 0x650a_7354, 0x766a_0abb, 0x81c2_c92e, 0x9272_2c85, 0xa2bf_e8a1, 0xa81a_664b, 0xc24b_8b70, 0xc76c_51a3, 0xd192_e819, 0xd699_0624, 0xf40e_3585, 0x106a_a070, 0x19a4_c116, 0x1e37_6c08, 0x2748_774c, 0x34b0_bcb5, 0x391c_0cb3, 0x4ed8_aa4a, 0x5b9c_ca4f, 0x682e_6ff3, 0x748f_82ee, 0x78a5_636f, 0x84c8_7814, 0x8cc7_0208, 0x90be_fffa, 0xa450_6ceb, 0xbef9_a3f7, 0xc671_78f2, ] a__ : Dict = self.preprocessing(self.data ) self.final_hash() @staticmethod def SCREAMING_SNAKE_CASE__( __lowercase ) -> bytes: """simple docstring""" a__ : List[str] = B"""\x80""" + (B"""\x00""" * (6_3 - (len(__lowercase ) + 8) % 6_4)) a__ : str = struct.pack(""">Q""" , (len(__lowercase ) * 8) ) return data + padding + big_endian_integer def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" a__ : Optional[int] = [ self.preprocessed_data[x : x + 6_4] for x in range(0 , len(self.preprocessed_data ) , 6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers a__ : List[str] = list(struct.unpack(""">16L""" , __lowercase ) ) # add 48 0-ed integers words += [0] * 4_8 a__ : int = self.hashes for index in range(0 , 6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array a__ : Tuple = ( self.ror(words[index - 1_5] , 7 ) ^ self.ror(words[index - 1_5] , 1_8 ) ^ (words[index - 1_5] >> 3) ) a__ : Union[str, Any] = ( self.ror(words[index - 2] , 1_7 ) ^ self.ror(words[index - 2] , 1_9 ) ^ (words[index - 2] >> 1_0) ) a__ : str = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression a__ : Optional[int] = self.ror(__lowercase , 6 ) ^ self.ror(__lowercase , 1_1 ) ^ self.ror(__lowercase , 2_5 ) a__ : List[str] = (e & f) ^ ((~e & 0xffff_ffff) & g) a__ : Dict = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 a__ : Tuple = self.ror(__lowercase , 2 ) ^ self.ror(__lowercase , 1_3 ) ^ self.ror(__lowercase , 2_2 ) a__ : Optional[Any] = (a & b) ^ (a & c) ^ (b & c) a__ : Tuple = (sa + maj) % 0x1_0000_0000 a__ : Dict = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) a__ : Tuple = [a, b, c, d, e, f, g, h] # Modify final values a__ : List[Any] = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] a__ : List[Any] = """""".join([hex(__lowercase )[2:].zfill(8 ) for value in self.hashes] ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> int: """simple docstring""" return 0xffff_ffff & (value << (3_2 - rotations)) | (value >> rotations) class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> None: """simple docstring""" import hashlib a__ : List[str] = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(__lowercase ).hash , hashlib.shaaaa(__lowercase ).hexdigest() ) def lowerCAmelCase_ ( ) -> None: """simple docstring""" import doctest doctest.testmod() a__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""") a__ : List[str] = parser.parse_args() a__ : Union[str, Any] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""") as f: a__ : Union[str, Any] = f.read() else: a__ : Union[str, Any] = bytes(_lowercase , """utf-8""") print(SHAaaa(_lowercase).hash) if __name__ == "__main__": main()
360
from __future__ import annotations import requests _lowercase : Dict =set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def lowerCAmelCase_ ( _lowercase : str , _lowercase : int = 1 , _lowercase : str = "new" , _lowercase : list | None = None) -> dict: """simple docstring""" a__ : Optional[Any] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(_lowercase) - valid_terms)): a__ : Any = F'''Invalid search term: {invalid_search_terms}''' raise ValueError(_lowercase) a__ : int = requests.get( F'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 429: raise requests.HTTPError a__ : int = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(_lowercase)} a__ : int = {} for id_ in range(_lowercase): a__ : List[Any] = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
266
0
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowerCamelCase = parse(importlib.metadata.version('''torch''')) def UpperCAmelCase__ ( _A : Union[str, Version] , _A : str , _A : str ): '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) a__ =STR_OPERATION_TO_FUNC[operation] if isinstance(_A , _A ): a__ =parse(importlib.metadata.version(_A ) ) return operation(_A , parse(_A ) ) def UpperCAmelCase__ ( _A : str , _A : str ): '''simple docstring''' return compare_versions(_A , _A , _A )
188
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase__ ( _A : List[Any] ): '''simple docstring''' if "resnet-50" in model_name: a__ =ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: a__ =ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) a__ =DetrConfig(use_timm_backbone=_A , backbone_config=_A ) # set label attributes a__ ='''panoptic''' in model_name if is_panoptic: a__ =2_50 else: a__ =91 a__ ='''huggingface/label-files''' a__ ='''coco-detection-id2label.json''' a__ =json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) a__ ={int(_A ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCAmelCase__ ( _A : Optional[int] ): '''simple docstring''' a__ =[] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def UpperCAmelCase__ ( _A : str , _A : Union[str, Any] , _A : int ): '''simple docstring''' a__ =state_dict.pop(_A ) a__ =val def UpperCAmelCase__ ( _A : Dict , _A : str=False ): '''simple docstring''' a__ ='''''' if is_panoptic: a__ ='''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a__ =state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) a__ =state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a__ =in_proj_weight[:2_56, :] a__ =in_proj_bias[:2_56] a__ =in_proj_weight[2_56:5_12, :] a__ =in_proj_bias[2_56:5_12] a__ =in_proj_weight[-2_56:, :] a__ =in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a__ =state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) a__ =state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a__ =in_proj_weight[:2_56, :] a__ =in_proj_bias[:2_56] a__ =in_proj_weight[2_56:5_12, :] a__ =in_proj_bias[2_56:5_12] a__ =in_proj_weight[-2_56:, :] a__ =in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention a__ =state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) a__ =state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict a__ =in_proj_weight_cross_attn[:2_56, :] a__ =in_proj_bias_cross_attn[:2_56] a__ =in_proj_weight_cross_attn[2_56:5_12, :] a__ =in_proj_bias_cross_attn[2_56:5_12] a__ =in_proj_weight_cross_attn[-2_56:, :] a__ =in_proj_bias_cross_attn[-2_56:] def UpperCAmelCase__ ( ): '''simple docstring''' a__ ='''http://images.cocodataset.org/val2017/000000039769.jpg''' a__ =Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( _A : Dict , _A : Optional[Any]=None , _A : List[str]=False ): '''simple docstring''' a__, a__ =get_detr_config(_A ) # load original model from torch hub a__ ={ '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(F"""Converting model {model_name}...""" ) a__ =torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=_A ).eval() a__ =detr.state_dict() # rename keys for src, dest in create_rename_keys(_A ): if is_panoptic: a__ ='''detr.''' + src rename_key(_A , _A , _A ) # query, key and value matrices need special treatment read_in_q_k_v(_A , is_panoptic=_A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a__ ='''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): a__ =state_dict.pop(_A ) a__ =val elif "class_labels_classifier" in key or "bbox_predictor" in key: a__ =state_dict.pop(_A ) a__ =val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: a__ =state_dict.pop(_A ) a__ =val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): a__ =state_dict.pop(_A ) a__ =val # finally, create HuggingFace model and load state dict a__ =DetrForSegmentation(_A ) if is_panoptic else DetrForObjectDetection(_A ) model.load_state_dict(_A ) model.eval() # verify our conversion on an image a__ ='''coco_panoptic''' if is_panoptic else '''coco_detection''' a__ =DetrImageProcessor(format=_A ) a__ =processor(images=prepare_img() , return_tensors='''pt''' ) a__ =encoding['''pixel_values'''] a__ =detr(_A ) a__ =model(_A ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) processor.save_pretrained(_A ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') lowerCamelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
188
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , __lowerCAmelCase , ) class UpperCAmelCase__ ( __lowerCAmelCase ): """simple docstring""" a = RobertaConfig a = "roberta" def __init__( self : Optional[int] , __lowerCamelCase : str ) -> Dict: super().__init__(lowerCamelCase__ ) SCREAMING_SNAKE_CASE__ = RobertaEmbeddings(lowerCamelCase__ ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , __lowerCAmelCase , ) class UpperCAmelCase__ ( __lowerCAmelCase ): """simple docstring""" a = RobertaConfig a = "roberta" def __init__( self : Dict , __lowerCamelCase : Tuple ) -> Union[str, Any]: super().__init__(lowerCamelCase__ ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = config.num_hidden_layers SCREAMING_SNAKE_CASE__ = DeeRobertaModel(lowerCamelCase__ ) SCREAMING_SNAKE_CASE__ = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(lowerCamelCase__ ) def lowercase_ ( self : int , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : Any=None , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str=None , __lowerCamelCase : List[str]=-1 , __lowerCamelCase : int=False , ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.num_layers try: SCREAMING_SNAKE_CASE__ = self.roberta( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , position_ids=lowerCamelCase__ , head_mask=lowerCamelCase__ , inputs_embeds=lowerCamelCase__ , ) SCREAMING_SNAKE_CASE__ = outputs[1] SCREAMING_SNAKE_CASE__ = self.dropout(lowerCamelCase__ ) SCREAMING_SNAKE_CASE__ = self.classifier(lowerCamelCase__ ) SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: SCREAMING_SNAKE_CASE__ = e.message SCREAMING_SNAKE_CASE__ = e.exit_layer SCREAMING_SNAKE_CASE__ = outputs[0] if not self.training: SCREAMING_SNAKE_CASE__ = entropy(lowerCamelCase__ ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] if labels is not None: if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ = MSELoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits SCREAMING_SNAKE_CASE__ = [] for highway_exit in outputs[-1]: SCREAMING_SNAKE_CASE__ = highway_exit[0] if not self.training: highway_logits_all.append(lowerCamelCase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ = MSELoss() SCREAMING_SNAKE_CASE__ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCamelCase__ ) if train_highway: SCREAMING_SNAKE_CASE__ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: SCREAMING_SNAKE_CASE__ = (loss,) + outputs if not self.training: SCREAMING_SNAKE_CASE__ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: SCREAMING_SNAKE_CASE__ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
357
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
218
0
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: '''simple docstring''' if gpta_config_file == "": lowercase : Union[str, Any] = GPTaConfig() else: lowercase : Tuple = GPTaConfig.from_json_file(_UpperCAmelCase ) lowercase : List[Any] = GPTaModel(_UpperCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model lowercase : Optional[Any] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowercase : Dict = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _UpperCAmelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCamelCase: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) _UpperCamelCase: Dict = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
255
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = StableDiffusionDiffEditPipeline _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} _lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCamelCase = frozenset([] ) def lowercase ( self : Any ) -> Dict: torch.manual_seed(0 ) lowercase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase, ) lowercase : Tuple = DDIMScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowerCAmelCase, set_alpha_to_one=lowerCAmelCase, ) lowercase : Any = DDIMInverseScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowerCAmelCase, set_alpha_to_zero=lowerCAmelCase, ) torch.manual_seed(0 ) lowercase : int = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) lowercase : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) lowercase : str = CLIPTextModel(lowerCAmelCase ) lowercase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase : Tuple = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase ( self : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : Tuple=0 ) -> Union[str, Any]: lowercase : List[Any] = floats_tensor((1, 16, 16), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : Union[str, Any] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : Optional[Any] = torch.manual_seed(lowerCAmelCase ) else: lowercase : Optional[Any] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : Tuple = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self : Union[str, Any], lowerCAmelCase : Tuple, lowerCAmelCase : Dict=0 ) -> Optional[Any]: lowercase : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : List[str] = image.cpu().permute(0, 2, 3, 1 )[0] lowercase : Optional[int] = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('RGB' ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : Optional[int] = torch.manual_seed(lowerCAmelCase ) else: lowercase : Optional[Any] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : List[Any] = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self : Optional[int], lowerCAmelCase : Any, lowerCAmelCase : List[str]=0 ) -> Union[str, Any]: lowercase : Optional[int] = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : Tuple = image.cpu().permute(0, 2, 3, 1 )[0] lowercase : Tuple = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('RGB' ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : Optional[int] = torch.manual_seed(lowerCAmelCase ) else: lowercase : List[str] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : Union[str, Any] = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def lowercase ( self : Optional[int] ) -> str: if not hasattr(self.pipeline_class, '_optional_components' ): return lowercase : Optional[int] = self.get_dummy_components() lowercase : int = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase : List[Any] = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Any = pipe(**lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase ) lowercase : Any = self.pipeline_class.from_pretrained(lowerCAmelCase ) pipe_loaded.to(lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase, lowerCAmelCase ) is None, f'''`{optional_component}` did not stay set to None after loading.''', ) lowercase : Tuple = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Optional[Any] = pipe_loaded(**lowerCAmelCase )[0] lowercase : List[Any] = np.abs(output - output_loaded ).max() self.assertLess(lowerCAmelCase, 1e-4 ) def lowercase ( self : Any ) -> str: lowercase : Union[str, Any] = 'cpu' lowercase : Optional[int] = self.get_dummy_components() lowercase : List[str] = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Any = self.get_dummy_mask_inputs(lowerCAmelCase ) lowercase : str = pipe.generate_mask(**lowerCAmelCase ) lowercase : str = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) lowercase : List[str] = np.array([0] * 9 ) lowercase : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase, 1e-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def lowercase ( self : int ) -> str: lowercase : int = 'cpu' lowercase : Dict = self.get_dummy_components() lowercase : Optional[int] = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Any = self.get_dummy_inversion_inputs(lowerCAmelCase ) lowercase : Tuple = pipe.invert(**lowerCAmelCase ).images lowercase : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) lowercase : List[Any] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799], ) lowercase : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase, 1e-3 ) def lowercase ( self : str ) -> int: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def lowercase ( self : List[str] ) -> Tuple: lowercase : Dict = 'cpu' lowercase : Any = self.get_dummy_components() lowercase : List[Any] = {'beta_start': 0.0_0085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} lowercase : List[str] = DPMSolverMultistepScheduler(**lowerCAmelCase ) lowercase : Dict = DPMSolverMultistepInverseScheduler(**lowerCAmelCase ) lowercase : str = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : List[Any] = self.get_dummy_inversion_inputs(lowerCAmelCase ) lowercase : int = pipe.invert(**lowerCAmelCase ).images lowercase : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) lowercase : Dict = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799], ) lowercase : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase, 1e-3 ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowercase ( cls : Optional[int] ) -> Tuple: lowercase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) lowercase : Optional[Any] = raw_image.convert('RGB' ).resize((768, 768) ) lowercase : Any = raw_image def lowercase ( self : Optional[Any] ) -> List[Any]: lowercase : str = torch.manual_seed(0 ) lowercase : int = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowercase : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase : List[Any] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : List[Any] = 'a bowl of fruit' lowercase : List[Any] = 'a bowl of pears' lowercase : int = pipe.generate_mask( image=self.raw_image, source_prompt=lowerCAmelCase, target_prompt=lowerCAmelCase, generator=lowerCAmelCase, ) lowercase : Tuple = pipe.invert( prompt=lowerCAmelCase, image=self.raw_image, inpaint_strength=0.7, generator=lowerCAmelCase ).latents lowercase : str = pipe( prompt=lowerCAmelCase, mask_image=lowerCAmelCase, image_latents=lowerCAmelCase, generator=lowerCAmelCase, negative_prompt=lowerCAmelCase, inpaint_strength=0.7, output_type='numpy', ).images[0] lowercase : Dict = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def lowercase ( self : Union[str, Any] ) -> List[Any]: lowercase : Dict = torch.manual_seed(0 ) lowercase : Union[str, Any] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase : Any = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Union[str, Any] = 'a bowl of fruit' lowercase : List[Any] = 'a bowl of pears' lowercase : List[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=lowerCAmelCase, target_prompt=lowerCAmelCase, generator=lowerCAmelCase, ) lowercase : List[str] = pipe.invert( prompt=lowerCAmelCase, image=self.raw_image, inpaint_strength=0.7, generator=lowerCAmelCase, num_inference_steps=25, ).latents lowercase : int = pipe( prompt=lowerCAmelCase, mask_image=lowerCAmelCase, image_latents=lowerCAmelCase, generator=lowerCAmelCase, negative_prompt=lowerCAmelCase, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] lowercase : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
255
1
"""simple docstring""" __UpperCamelCase : Optional[Any] = { '''meter''': '''m''', '''kilometer''': '''km''', '''megametre''': '''Mm''', '''gigametre''': '''Gm''', '''terametre''': '''Tm''', '''petametre''': '''Pm''', '''exametre''': '''Em''', '''zettametre''': '''Zm''', '''yottametre''': '''Ym''', } # Exponent of the factor(meter) __UpperCamelCase : Tuple = { '''m''': 0, '''km''': 3, '''Mm''': 6, '''Gm''': 9, '''Tm''': 1_2, '''Pm''': 1_5, '''Em''': 1_8, '''Zm''': 2_1, '''Ym''': 2_4, } def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): lowerCAmelCase__ : str = from_type.lower().strip('''s''' ) lowerCAmelCase__ : Dict = to_type.lower().strip('''s''' ) lowerCAmelCase__ : str = UNIT_SYMBOL.get(A_ , A_ ) lowerCAmelCase__ : str = UNIT_SYMBOL.get(A_ , A_ ) if from_sanitized not in METRIC_CONVERSION: lowerCAmelCase__ : List[Any] = ( f'Invalid \'from_type\' value: {from_type!r}.\n' f'Conversion abbreviations are: {", ".join(A_ )}' ) raise ValueError(A_ ) if to_sanitized not in METRIC_CONVERSION: lowerCAmelCase__ : Tuple = ( f'Invalid \'to_type\' value: {to_type!r}.\n' f'Conversion abbreviations are: {", ".join(A_ )}' ) raise ValueError(A_ ) lowerCAmelCase__ : Optional[Any] = METRIC_CONVERSION[from_sanitized] lowerCAmelCase__ : Dict = METRIC_CONVERSION[to_sanitized] lowerCAmelCase__ : Optional[Any] = 1 if from_exponent > to_exponent: lowerCAmelCase__ : Tuple = from_exponent - to_exponent else: lowerCAmelCase__ : Optional[int] = -(to_exponent - from_exponent) return value * pow(10 , A_ ) if __name__ == "__main__": from doctest import testmod testmod()
355
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __UpperCamelCase : Any = NewType('''DataClass''', Any) __UpperCamelCase : List[str] = NewType('''DataClassType''', Any) def __SCREAMING_SNAKE_CASE ( A_ ): if isinstance(A_ , A_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : int = {str(A_ ): choice for choice in choices} return lambda A_ : str_to_choice.get(A_ , A_ ) def __SCREAMING_SNAKE_CASE ( *, A_ = None , A_ = None , A_ = dataclasses.MISSING , A_ = dataclasses.MISSING , A_ = None , **A_ , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCAmelCase__ : Dict = {} if aliases is not None: lowerCAmelCase__ : int = aliases if help is not None: lowerCAmelCase__ : Optional[int] = help return dataclasses.field(metadata=A_ , default=A_ , default_factory=A_ , **A_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 42 def __init__( self : Dict ,lowercase_ : Union[DataClassType, Iterable[DataClassType]] ,**lowercase_ : str ): # To make the default appear when using --help if "formatter_class" not in kwargs: lowerCAmelCase__ : Tuple = ArgumentDefaultsHelpFormatter super().__init__(**lowercase_ ) if dataclasses.is_dataclass(lowercase_ ): lowerCAmelCase__ : Tuple = [dataclass_types] lowerCAmelCase__ : List[str] = list(lowercase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowercase_ ) @staticmethod def __lowerCAmelCase ( lowercase_ : ArgumentParser ,lowercase_ : dataclasses.Field ): lowerCAmelCase__ : Dict = F'--{field.name}' lowerCAmelCase__ : List[str] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,lowercase_ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) lowerCAmelCase__ : List[str] = kwargs.pop('''aliases''' ,[] ) if isinstance(lowercase_ ,lowercase_ ): lowerCAmelCase__ : Optional[Any] = [aliases] lowerCAmelCase__ : Union[str, Any] = getattr(field.type ,'''__origin__''' ,field.type ) if origin_type is Union or (hasattr(lowercase_ ,'''UnionType''' ) and isinstance(lowercase_ ,types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowercase_ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F' Problem encountered in field \'{field.name}\'.' ) if type(lowercase_ ) not in field.type.__args__: # filter `str` in Union lowerCAmelCase__ : int = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCAmelCase__ : List[str] = getattr(field.type ,'''__origin__''' ,field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCAmelCase__ : Optional[int] = ( field.type.__args__[0] if isinstance(lowercase_ ,field.type.__args__[1] ) else field.type.__args__[1] ) lowerCAmelCase__ : Optional[Any] = getattr(field.type ,'''__origin__''' ,field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCAmelCase__ : List[Any] = {} if origin_type is Literal or (isinstance(field.type ,lowercase_ ) and issubclass(field.type ,lowercase_ )): if origin_type is Literal: lowerCAmelCase__ : Union[str, Any] = field.type.__args__ else: lowerCAmelCase__ : Optional[Any] = [x.value for x in field.type] lowerCAmelCase__ : List[str] = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: lowerCAmelCase__ : int = field.default else: lowerCAmelCase__ : Any = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCAmelCase__ : List[Any] = copy(lowercase_ ) # Hack because type=bool in argparse does not behave as we want. lowerCAmelCase__ : Tuple = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCAmelCase__ : List[Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCAmelCase__ : Tuple = default # This tells argparse we accept 0 or 1 value after --field_name lowerCAmelCase__ : Union[str, Any] = '''?''' # This is the value that will get picked if we do --field_name (without value) lowerCAmelCase__ : Any = True elif isclass(lowercase_ ) and issubclass(lowercase_ ,lowercase_ ): lowerCAmelCase__ : List[str] = field.type.__args__[0] lowerCAmelCase__ : str = '''+''' if field.default_factory is not dataclasses.MISSING: lowerCAmelCase__ : Dict = field.default_factory() elif field.default is dataclasses.MISSING: lowerCAmelCase__ : str = True else: lowerCAmelCase__ : List[Any] = field.type if field.default is not dataclasses.MISSING: lowerCAmelCase__ : str = field.default elif field.default_factory is not dataclasses.MISSING: lowerCAmelCase__ : Any = field.default_factory() else: lowerCAmelCase__ : Optional[Any] = True parser.add_argument(lowercase_ ,*lowercase_ ,**lowercase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCAmelCase__ : Optional[Any] = False parser.add_argument(F'--no_{field.name}' ,action='''store_false''' ,dest=field.name ,**lowercase_ ) def __lowerCAmelCase ( self : str ,lowercase_ : DataClassType ): if hasattr(lowercase_ ,'''_argument_group_name''' ): lowerCAmelCase__ : Optional[int] = self.add_argument_group(dtype._argument_group_name ) else: lowerCAmelCase__ : List[str] = self try: lowerCAmelCase__ : Dict[str, type] = get_type_hints(lowercase_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(lowercase_ ): lowerCAmelCase__ : int = '''.'''.join(map(lowercase_ ,sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(lowercase_ ): if not field.init: continue lowerCAmelCase__ : Any = type_hints[field.name] self._parse_dataclass_field(lowercase_ ,lowercase_ ) def __lowerCAmelCase ( self : Any ,lowercase_ : Optional[Any]=None ,lowercase_ : str=False ,lowercase_ : str=True ,lowercase_ : Any=None ,lowercase_ : List[str]=None ,): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowerCAmelCase__ : int = [] if args_filename: args_files.append(Path(lowercase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCAmelCase__ : List[str] = ArgumentParser() args_file_parser.add_argument(lowercase_ ,type=lowercase_ ,action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = args_file_parser.parse_known_args(args=lowercase_ ) lowerCAmelCase__ : int = vars(lowercase_ ).get(args_file_flag.lstrip('''-''' ) ,lowercase_ ) if cmd_args_file_paths: args_files.extend([Path(lowercase_ ) for p in cmd_args_file_paths] ) lowerCAmelCase__ : Tuple = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCAmelCase__ : Dict = file_args + args if args is not None else file_args + sys.argv[1:] lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = self.parse_known_args(args=lowercase_ ) lowerCAmelCase__ : Optional[Any] = [] for dtype in self.dataclass_types: lowerCAmelCase__ : int = {f.name for f in dataclasses.fields(lowercase_ ) if f.init} lowerCAmelCase__ : int = {k: v for k, v in vars(lowercase_ ).items() if k in keys} for k in keys: delattr(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Optional[Any] = dtype(**lowercase_ ) outputs.append(lowercase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowercase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def __lowerCAmelCase ( self : Any ,lowercase_ : Dict[str, Any] ,lowercase_ : bool = False ): lowerCAmelCase__ : List[Any] = set(args.keys() ) lowerCAmelCase__ : Any = [] for dtype in self.dataclass_types: lowerCAmelCase__ : Optional[Any] = {f.name for f in dataclasses.fields(lowercase_ ) if f.init} lowerCAmelCase__ : Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowerCAmelCase__ : Union[str, Any] = dtype(**lowercase_ ) outputs.append(lowercase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(lowercase_ )}' ) return tuple(lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : str ,lowercase_ : bool = False ): with open(Path(lowercase_ ) ,encoding='''utf-8''' ) as open_json_file: lowerCAmelCase__ : Union[str, Any] = json.loads(open_json_file.read() ) lowerCAmelCase__ : List[str] = self.parse_dict(lowercase_ ,allow_extra_keys=lowercase_ ) return tuple(lowercase_ ) def __lowerCAmelCase ( self : Dict ,lowercase_ : str ,lowercase_ : bool = False ): lowerCAmelCase__ : Tuple = self.parse_dict(yaml.safe_load(Path(lowercase_ ).read_text() ) ,allow_extra_keys=lowercase_ ) return tuple(lowercase_ )
74
0
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowercase = '''.''' if __name__ == "__main__": __lowercase = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') __lowercase = [] __lowercase = [] with open(doctest_file_path) as fp: for line in fp: __lowercase = line.strip() __lowercase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowercase = '''\n'''.join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
43
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a : str = logging.get_logger(__name__) __a : int = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Any = '''wavlm''' def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="group" , lowerCAmelCase__="gelu" , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=1_28 , lowerCAmelCase__=16 , lowerCAmelCase__=3_20 , lowerCAmelCase__=8_00 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.05 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=3_20 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_00 , lowerCAmelCase__=2_56 , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__="mean" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=2_56 , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 15_00) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=5_12 , lowerCAmelCase__=80 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) __lowercase = hidden_size __lowercase = feat_extract_norm __lowercase = feat_extract_activation __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = conv_bias __lowercase = num_buckets __lowercase = max_bucket_distance __lowercase = num_conv_pos_embeddings __lowercase = num_conv_pos_embedding_groups __lowercase = len(self.conv_dim ) __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_attention_heads __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = feat_proj_dropout __lowercase = final_dropout __lowercase = layerdrop __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = num_ctc_classes __lowercase = vocab_size __lowercase = do_stable_layer_norm __lowercase = use_weighted_layer_sum __lowercase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase = apply_spec_augment __lowercase = mask_time_prob __lowercase = mask_time_length __lowercase = mask_time_min_masks __lowercase = mask_feature_prob __lowercase = mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase = num_codevectors_per_group __lowercase = num_codevector_groups __lowercase = contrastive_logits_temperature __lowercase = num_negatives __lowercase = codevector_dim __lowercase = proj_codevector_dim __lowercase = diversity_loss_weight # ctc loss __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # adapter __lowercase = add_adapter __lowercase = adapter_kernel_size __lowercase = adapter_stride __lowercase = num_adapter_layers __lowercase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = xvector_output_dim @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
210
0
'''simple docstring''' from math import factorial def A__ ( UpperCAmelCase_ = 1_0_0 ): return sum(int(UpperCAmelCase_ ) for x in str(factorial(UpperCAmelCase_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
236
'''simple docstring''' from __future__ import annotations import numpy as np def A__ ( UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : Optional[int] = np.shape(UpperCAmelCase_ ) if rows != columns: _UpperCamelCase : Union[str, Any] = ( '\'table\' has to be of square shaped array but got a ' f'{rows}x{columns} array:\n{table}' ) raise ValueError(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = np.zeros((rows, columns) ) _UpperCamelCase : Tuple = np.zeros((rows, columns) ) for i in range(UpperCAmelCase_ ): for j in range(UpperCAmelCase_ ): _UpperCamelCase : Optional[Any] = sum(lower[i][k] * upper[k][j] for k in range(UpperCAmelCase_ ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) _UpperCamelCase : Optional[Any] = (table[i][j] - total) / upper[j][j] _UpperCamelCase : int = 1 for j in range(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = sum(lower[i][k] * upper[k][j] for k in range(UpperCAmelCase_ ) ) _UpperCamelCase : Tuple = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
236
1
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=64 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): _lowerCamelCase : List[Any] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Dict = is_training _lowerCamelCase : int = use_input_mask _lowerCamelCase : List[Any] = use_token_type_ids _lowerCamelCase : int = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : str = hidden_size _lowerCamelCase : Any = embedding_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : List[Any] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : List[Any] = type_sequence_label_size _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : str = num_labels _lowerCamelCase : int = num_choices _lowerCamelCase : Any = scope def A_ ( self ): _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : int = None if self.use_input_mask: _lowerCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[Any] = None if self.use_token_type_ids: _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : Dict = None _lowerCamelCase : Any = None _lowerCamelCase : Union[str, Any] = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = MobileBertModel(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[int] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) _lowerCamelCase : Union[str, Any] = model(lowercase , token_type_ids=lowercase ) _lowerCamelCase : List[str] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = MobileBertForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : List[Any] = MobileBertForNextSentencePrediction(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : List[str] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : str = MobileBertForPreTraining(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : int = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , next_sentence_label=lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Any = MobileBertForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : str = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = self.num_labels _lowerCamelCase : List[str] = MobileBertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : str = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Dict = self.num_labels _lowerCamelCase : Optional[int] = MobileBertForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : List[str] = self.num_choices _lowerCamelCase : Optional[int] = MobileBertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : Tuple = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self ): _lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : Union[str, Any] = config_and_inputs _lowerCamelCase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True def A_ ( self , lowercase , lowercase , lowercase=False ): _lowerCamelCase : Optional[int] = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class in get_values(lowercase ): _lowerCamelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase ) _lowerCamelCase : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def A_ ( self ): _lowerCamelCase : int = MobileBertModelTester(self ) _lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowercase ) def A_ ( self ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowercase ) def A_ ( self ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowercase ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowercase ) def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowercase ) def A_ ( self ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowercase ) def A_ ( self ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowercase ) def _snake_case ( lowercase__ ): return torch.tensor( lowercase__ , dtype=torch.long , device=lowercase__ , ) lowercase__ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Optional[int] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowercase ) _lowerCamelCase : Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): _lowerCamelCase : Any = model(lowercase )[0] _lowerCamelCase : Tuple = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[Any] = torch.tensor( [ [ [-2.473_6526E07, 8.269_1656E04, 1.652_1838E05], [-5.754_1704E-01, 3.905_6022E00, 4.401_1507E00], [2.604_7359E00, 1.567_7652E00, -1.732_4188E-01], ] ] , device=lowercase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE _lowerCamelCase : Any = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) _lowerCamelCase : str = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
96
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
249
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCAmelCase__ ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" a = StableDiffusionLatentUpscalePipeline a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } a = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a = frozenset([] ) a = True @property def lowercase_ ( self : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = (16, 16) SCREAMING_SNAKE_CASE__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase ) return image def lowercase_ ( self : Optional[int] ) -> List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=__lowerCamelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=__lowerCamelCase , only_cross_attention=__lowerCamelCase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) SCREAMING_SNAKE_CASE__ = EulerDiscreteScheduler(prediction_type='''sample''' ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) SCREAMING_SNAKE_CASE__ = CLIPTextModel(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowercase_ ( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]=0 ) -> int: if str(__lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : Any ) -> Dict: SCREAMING_SNAKE_CASE__ = '''cpu''' SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe(**__lowerCamelCase ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) SCREAMING_SNAKE_CASE__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) SCREAMING_SNAKE_CASE__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1e-3 ) def lowercase_ ( self : Optional[Any] ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def lowercase_ ( self : int ) -> str: super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def lowercase_ ( self : int ) -> Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def lowercase_ ( self : Any ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def lowercase_ ( self : List[Any] ) -> str: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def lowercase_ ( self : Any ) -> int: super().test_save_load_local(expected_max_difference=3e-3 ) def lowercase_ ( self : List[Any] ) -> Tuple: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def lowercase_ ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__lowerCamelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , scheduler_enum.name ) SCREAMING_SNAKE_CASE__ = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE__ = pipe(**__lowerCamelCase )[0] outputs.append(__lowerCamelCase ) assert check_same_shape(__lowerCamelCase ) @require_torch_gpu @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Any ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) SCREAMING_SNAKE_CASE__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) SCREAMING_SNAKE_CASE__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' SCREAMING_SNAKE_CASE__ = pipe(__lowerCamelCase , generator=__lowerCamelCase , output_type='''latent''' ).images SCREAMING_SNAKE_CASE__ = upscaler( prompt=__lowerCamelCase , image=__lowerCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=__lowerCamelCase , output_type='''np''' , ).images[0] SCREAMING_SNAKE_CASE__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def lowercase_ ( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) SCREAMING_SNAKE_CASE__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' SCREAMING_SNAKE_CASE__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) SCREAMING_SNAKE_CASE__ = upscaler( prompt=__lowerCamelCase , image=__lowerCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=__lowerCamelCase , output_type='''np''' , ).images[0] SCREAMING_SNAKE_CASE__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
367
from __future__ import annotations def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(_A ) // 2 # choose the middle 3 elements SCREAMING_SNAKE_CASE__ = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
218
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class lowerCAmelCase ( __UpperCamelCase ): def __init__( self : Optional[Any] , UpperCAmelCase : int ) -> int: lowerCamelCase__ : Tuple = data def __iter__( self : Dict ) -> List[str]: for element in self.data: yield element def SCREAMING_SNAKE_CASE ( _UpperCAmelCase=True ) -> int: lowerCamelCase__ : Optional[int] = Accelerator(even_batches=_UpperCAmelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False ) -> List[str]: if iterable: lowerCamelCase__ : Optional[Any] = DummyIterableDataset(torch.as_tensor(range(_UpperCAmelCase ) ) ) else: lowerCamelCase__ : Tuple = TensorDataset(torch.as_tensor(range(_UpperCAmelCase ) ) ) lowerCamelCase__ : str = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase ) lowerCamelCase__ : str = accelerator.prepare(_UpperCAmelCase ) return dl def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> str: lowerCamelCase__ : Any = create_dataloader(accelerator=_UpperCAmelCase , dataset_size=_UpperCAmelCase , batch_size=_UpperCAmelCase ) lowerCamelCase__ : Any = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: lowerCamelCase__ : List[str] = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( _UpperCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( _UpperCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: lowerCamelCase__ : Tuple = create_accelerator(even_batches=_UpperCAmelCase ) verify_dataloader_batch_sizes( _UpperCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( _UpperCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: lowerCamelCase__ : Tuple = create_accelerator(even_batches=_UpperCAmelCase ) lowerCamelCase__ : Any = torch.nn.Linear(1 , 1 ) lowerCamelCase__ : List[Any] = accelerator.prepare(_UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = create_dataloader(_UpperCAmelCase , dataset_size=3 , batch_size=1 ) lowerCamelCase__ : List[str] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = ddp_model(batch[0].float() ) lowerCamelCase__ : int = output.sum() loss.backward() batch_idxs.append(_UpperCAmelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: with warnings.catch_warnings(record=_UpperCAmelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , _UpperCAmelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Tuple = False lowerCamelCase__ : List[str] = create_accelerator(even_batches=_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = torch.nn.Linear(1 , 1 ) lowerCamelCase__ : List[Any] = accelerator.prepare(_UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = create_dataloader(_UpperCAmelCase , dataset_size=3 , batch_size=1 ) lowerCamelCase__ : List[Any] = create_dataloader(_UpperCAmelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = train_dl.batch_sampler.even_batches lowerCamelCase__ : Union[str, Any] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE ( ) -> List[Any]: lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Any = create_accelerator(even_batches=_UpperCAmelCase ) lowerCamelCase__ : Tuple = torch.nn.Linear(1 , 1 ) lowerCamelCase__ : Tuple = accelerator.prepare(_UpperCAmelCase ) create_dataloader(_UpperCAmelCase , dataset_size=3 , batch_size=1 , iterable=_UpperCAmelCase ) lowerCamelCase__ : int = create_dataloader(_UpperCAmelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('ignore' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_UpperCAmelCase ): lowerCamelCase__ : str = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE ( ) -> Dict: lowerCamelCase__ : int = create_accelerator() lowerCamelCase__ : str = torch.nn.Linear(1 , 1 ) lowerCamelCase__ : Any = accelerator.prepare(_UpperCAmelCase ) create_dataloader(_UpperCAmelCase , dataset_size=3 , batch_size=1 , iterable=_UpperCAmelCase ) with warnings.catch_warnings(record=_UpperCAmelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_UpperCAmelCase ): pass assert issubclass(w[-1].category , _UpperCAmelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: lowerCamelCase__ : str = create_accelerator() accelerator.print('Test that even_batches variable ensures uniform batches across processes' ) test_default_ensures_even_batch_sizes() accelerator.print('Run tests with even_batches disabled' ) test_can_disable_even_batches() accelerator.print('Test joining uneven inputs' ) test_can_join_uneven_inputs() accelerator.print('Test overriding even_batches when joining uneven inputs' ) test_join_can_override_even_batches() accelerator.print('Test overriding even_batches for mixed dataloader types' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('Test overriding even_batches raises a warning for iterable dataloaders' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('Test join with non DDP distributed raises warning' ) lowerCamelCase__ : Dict = accelerator.state.distributed_type lowerCamelCase__ : List[Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(_UpperCAmelCase ) lowerCamelCase__ : Dict = original_state if __name__ == "__main__": main()
50
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __A : List[Any] = True except ImportError: __A : int = False __A : str = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase_ ( A__ : Namespace ): '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" @staticmethod def __lowercase ( lowerCamelCase : ArgumentParser ) -> int: lowerCAmelCase_ : Optional[int] = parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=lowerCamelCase , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=lowerCamelCase , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=lowerCamelCase ) def __init__( self : List[str] , lowerCamelCase : bool , lowerCamelCase : str , lowerCamelCase : Any=None , *lowerCamelCase : List[str] ) -> Optional[Any]: lowerCAmelCase_ : int = testing lowerCAmelCase_ : Union[str, Any] = testing_file lowerCAmelCase_ : Tuple = path def __lowercase ( self : Tuple ) -> int: warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won't pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowerCAmelCase_ : int = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:22]] if len(lowerCamelCase ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) lowerCAmelCase_ : List[Any] = ( Path(lowerCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowerCAmelCase_ : Dict = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCamelCase ) ) else: with open(self._testing_file , """r""" ) as configuration_file: lowerCAmelCase_ : Tuple = json.load(lowerCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCamelCase , extra_context=lowerCamelCase , ) lowerCAmelCase_ : List[str] = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:22]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: lowerCAmelCase_ : Tuple = json.load(lowerCamelCase ) lowerCAmelCase_ : str = configuration["""lowercase_modelname"""] lowerCAmelCase_ : List[str] = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(F'{directory}/configuration.json' ) lowerCAmelCase_ : Dict = """PyTorch""" in generate_tensorflow_pytorch_and_flax lowerCAmelCase_ : Optional[int] = """TensorFlow""" in generate_tensorflow_pytorch_and_flax lowerCAmelCase_ : List[str] = """Flax""" in generate_tensorflow_pytorch_and_flax lowerCAmelCase_ : Union[str, Any] = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=lowerCamelCase ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , """w""" ): pass shutil.move( F'{directory}/__init__.py' , F'{model_dir}/__init__.py' , ) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' , F'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(lowerCamelCase : Any ): with open(lowerCamelCase , """r""" ) as f: lowerCAmelCase_ : List[str] = f.readlines() with open(lowerCamelCase , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' , F'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' , F'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' , F'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' , F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : List[str] ): # Create temp file lowerCAmelCase_, lowerCAmelCase_ : int = mkstemp() lowerCAmelCase_ : List[Any] = False with fdopen(lowerCamelCase , """w""" ) as new_file: with open(lowerCamelCase ) as old_file: for line in old_file: new_file.write(lowerCamelCase ) if line_to_copy_below in line: lowerCAmelCase_ : List[str] = True for line_to_copy in lines_to_copy: new_file.write(lowerCamelCase ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(lowerCamelCase , lowerCamelCase ) # Remove original file remove(lowerCamelCase ) # Move new file move(lowerCamelCase , lowerCamelCase ) def skip_units(lowerCamelCase : Optional[int] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCamelCase : Any ): with open(lowerCamelCase ) as datafile: lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : str = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowerCAmelCase_ : Dict = line.split("""\"""" )[1] lowerCAmelCase_ : int = skip_units(lowerCamelCase ) elif "# Below: " in line and "##" not in line: lowerCAmelCase_ : Any = line.split("""\"""" )[1] lowerCAmelCase_ : Tuple = skip_units(lowerCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Dict = [] elif "# Replace with" in line and "##" not in line: lowerCAmelCase_ : int = [] elif "##" not in line: lines_to_copy.append(lowerCamelCase ) remove(lowerCamelCase ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(lowerCamelCase )
120
0
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _lowerCAmelCase ( ) -> int: __A : Any = 10 __A : Dict = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __A : Dict = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(lowerCamelCase__ ) ), } , features=lowerCamelCase__ , ) return dataset @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : str , __snake_case : List[str] ) -> Union[str, Any]: __A : Dict = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowerCamelCase__ ) return filename # FILE_CONTENT + files lowercase__ : str = '''\ Text data. Second line of data.''' @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Dict ) -> List[str]: __A : Union[str, Any] = tmp_path_factory.mktemp('data' ) / '''file.txt''' __A : int = FILE_CONTENT with open(lowerCamelCase__ , 'w' ) as f: f.write(lowerCamelCase__ ) return filename @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: import bza __A : int = tmp_path_factory.mktemp('data' ) / '''file.txt.bz2''' __A : Union[str, Any] = bytes(lowerCamelCase__ , 'utf-8' ) with bza.open(lowerCamelCase__ , 'wb' ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : List[str] ) -> List[Any]: import gzip __A : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __A : int = bytes(lowerCamelCase__ , 'utf-8' ) with gzip.open(lowerCamelCase__ , 'wb' ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : List[str] ) -> Optional[Any]: if datasets.config.LZ4_AVAILABLE: import lza.frame __A : List[str] = tmp_path_factory.mktemp('data' ) / '''file.txt.lz4''' __A : Optional[int] = bytes(lowerCamelCase__ , 'utf-8' ) with lza.frame.open(lowerCamelCase__ , 'wb' ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : str , __snake_case : Any ) -> List[str]: if datasets.config.PY7ZR_AVAILABLE: import pyazr __A : int = tmp_path_factory.mktemp('data' ) / '''file.txt.7z''' with pyazr.SevenZipFile(lowerCamelCase__ , 'w' ) as archive: archive.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : int , __snake_case : str ) -> List[Any]: import tarfile __A : Optional[Any] = tmp_path_factory.mktemp('data' ) / '''file.txt.tar''' with tarfile.TarFile(lowerCamelCase__ , 'w' ) as f: f.add(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : str ) -> str: import lzma __A : List[str] = tmp_path_factory.mktemp('data' ) / '''file.txt.xz''' __A : Any = bytes(lowerCamelCase__ , 'utf-8' ) with lzma.open(lowerCamelCase__ , 'wb' ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Dict ) -> Union[str, Any]: import zipfile __A : Union[str, Any] = tmp_path_factory.mktemp('data' ) / '''file.txt.zip''' with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : List[str] ) -> int: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __A : Any = tmp_path_factory.mktemp('data' ) / '''file.txt.zst''' __A : List[str] = bytes(lowerCamelCase__ , 'utf-8' ) with zstd.open(lowerCamelCase__ , 'wb' ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Tuple ) -> Tuple: __A : List[Any] = tmp_path_factory.mktemp('data' ) / '''file.xml''' __A : Optional[int] = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowerCamelCase__ , 'w' ) as f: f.write(lowerCamelCase__ ) return filename lowercase__ : Optional[Any] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] lowercase__ : Optional[Any] = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] lowercase__ : int = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } lowercase__ : List[str] = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] lowercase__ : List[Any] = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope='session' ) def _lowerCAmelCase ( ) -> List[str]: return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : List[Any] ) -> Any: __A : Optional[Any] = datasets.Dataset.from_dict(lowerCamelCase__ ) __A : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowerCamelCase__ ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : List[str] ) -> List[Any]: __A : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowerCamelCase__ ) ) as con: __A : str = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : int ) -> Optional[int]: __A : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowerCamelCase__ , 'w' , newline='' ) as f: __A : Any = csv.DictWriter(lowerCamelCase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase__ ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : List[str] ) -> Optional[int]: __A : str = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowerCamelCase__ , 'w' , newline='' ) as f: __A : str = csv.DictWriter(lowerCamelCase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase__ ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : List[Any] ) -> int: import bza __A : List[str] = tmp_path_factory.mktemp('data' ) / '''dataset.csv.bz2''' with open(lowerCamelCase__ , 'rb' ) as f: __A : Union[str, Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCamelCase__ , 'wb' ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> List[Any]: __A : Tuple = tmp_path_factory.mktemp('data' ) / '''dataset.csv.zip''' with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Optional[Any] ) -> Optional[int]: __A : Dict = tmp_path_factory.mktemp('data' ) / '''dataset.csv.zip''' with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : int , __snake_case : Optional[int] , __snake_case : Any ) -> List[Any]: __A : Optional[int] = tmp_path_factory.mktemp('data' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f: f.write(lowerCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase__ ) ) ) f.write(lowerCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> List[str]: __A : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __A : Optional[int] = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowerCamelCase__ , 'wb' ) as f: __A : List[str] = pq.ParquetWriter(lowerCamelCase__ , schema=lowerCamelCase__ ) __A : Union[str, Any] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCamelCase__ ) )] for k in DATA[0]} , schema=lowerCamelCase__ ) writer.write_table(lowerCamelCase__ ) writer.close() return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : int ) -> List[Any]: __A : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __A : List[Any] = {'''data''': DATA} with open(lowerCamelCase__ , 'w' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : str ) -> Dict: __A : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __A : Optional[Any] = {'''data''': DATA_DICT_OF_LISTS} with open(lowerCamelCase__ , 'w' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : List[Any] ) -> Optional[int]: __A : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowerCamelCase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> List[str]: __A : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowerCamelCase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : int ) -> List[Any]: __A : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowerCamelCase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowerCamelCase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: __A : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowerCamelCase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowerCamelCase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : str ) -> List[Any]: import gzip __A : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowerCamelCase__ , 'rb' ) as orig_file: with gzip.open(lowerCamelCase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowerCamelCase__ ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : Union[str, Any] ) -> List[str]: import gzip __A : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowerCamelCase__ , 'rb' ) as orig_file: with gzip.open(lowerCamelCase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowerCamelCase__ ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] , __snake_case : List[Any] ) -> str: __A : Any = tmp_path_factory.mktemp('data' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> Union[str, Any]: __A : str = tmp_path_factory.mktemp('data' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f: f.write(lowerCamelCase__ , arcname=os.path.join('nested' , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> List[str]: __A : Optional[int] = tmp_path_factory.mktemp('data' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f: f.write(lowerCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase__ ) ) ) f.write(lowerCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : int ) -> Tuple: __A : List[Any] = tmp_path_factory.mktemp('data' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(lowerCamelCase__ , 'w' ) as f: f.add(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.add(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : List[Any] ) -> Any: __A : int = tmp_path_factory.mktemp('data' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(lowerCamelCase__ , 'w' ) as f: f.add(lowerCamelCase__ , arcname=os.path.join('nested' , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Tuple ) -> Tuple: __A : Any = ['''0''', '''1''', '''2''', '''3'''] __A : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowerCamelCase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Dict ) -> Any: __A : Union[str, Any] = ['''0''', '''1''', '''2''', '''3'''] __A : int = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowerCamelCase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : int ) -> Union[str, Any]: __A : Union[str, Any] = ['''0''', '''1''', '''2''', '''3'''] __A : str = tmp_path_factory.mktemp('data' ) / '''dataset.abc''' with open(lowerCamelCase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Any , __snake_case : Union[str, Any] ) -> Optional[int]: __A : Dict = tmp_path_factory.mktemp('data' ) / '''dataset.text.zip''' with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Any ) -> List[Any]: __A : int = tmp_path_factory.mktemp('data' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f: f.write(lowerCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase__ ) ) ) f.write(lowerCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> str: __A : Union[str, Any] = tmp_path_factory.mktemp('data' ) / '''dataset.ext.zip''' with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowerCamelCase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : int ) -> List[Any]: __A : Union[str, Any] = '''\n'''.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __A : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( ) -> List[Any]: return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _lowerCAmelCase ( ) -> Optional[int]: return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : int , __snake_case : int ) -> List[str]: __A : Tuple = tmp_path_factory.mktemp('data' ) / '''dataset.img.zip''' with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Any ) -> Tuple: __A : Union[str, Any] = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
354
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowercase__ : Dict = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowercase__ : Any = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def _lowerCAmelCase ( __snake_case : Any ) -> Optional[Any]: __A : Dict = (images / 2 + 0.5).clamp(0 , 1 ) __A : str = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __A : Dict = numpy_to_pil(__snake_case ) return images def _lowerCAmelCase ( __snake_case : List[Any] ) -> Optional[Any]: if images.ndim == 3: __A : List[Any] = images[None, ...] __A : List[str] = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __A : str = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: __A : str = [Image.fromarray(__snake_case ) for image in images] return pil_images
190
0
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : List[Any] = FileLock(str(tmpdir / "foo.lock" ) ) lowerCAmelCase : Dict = FileLock(str(tmpdir / "foo.lock" ) ) lowerCAmelCase : int = 0.01 with locka.acquire(): with pytest.raises(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Dict = time.time() locka.acquire(SCREAMING_SNAKE_CASE ) assert time.time() - _start > timeout def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : List[str] = "a" * 1_0_0_0 + ".lock" lowerCAmelCase : Optional[Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(SCREAMING_SNAKE_CASE ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 lowerCAmelCase : List[str] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(SCREAMING_SNAKE_CASE ): locka.acquire(0 )
108
"""simple docstring""" from __future__ import annotations import math class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = size # approximate the overall size of segment tree with given value lowerCAmelCase : Optional[int] = [0 for i in range(0 , 4 * size )] # create array to store lazy update lowerCAmelCase : List[str] = [0 for i in range(0 , 4 * size )] lowerCAmelCase : Dict = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowercase__ ( self , snake_case__ ): """simple docstring""" return idx * 2 def lowercase__ ( self , snake_case__ ): """simple docstring""" return idx * 2 + 1 def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if left_element == right_element: lowerCAmelCase : List[str] = a[left_element - 1] else: lowerCAmelCase : Tuple = (left_element + right_element) // 2 self.build(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ ) self.build(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = max( self.segment_tree[self.left(snake_case__ )] , self.segment_tree[self.right(snake_case__ )] ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if self.flag[idx] is True: lowerCAmelCase : Optional[int] = self.lazy[idx] lowerCAmelCase : List[str] = False if left_element != right_element: lowerCAmelCase : Optional[Any] = self.lazy[idx] lowerCAmelCase : List[Any] = self.lazy[idx] lowerCAmelCase : List[Any] = True lowerCAmelCase : Optional[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowerCAmelCase : str = val if left_element != right_element: lowerCAmelCase : Optional[Any] = val lowerCAmelCase : Union[str, Any] = val lowerCAmelCase : int = True lowerCAmelCase : int = True return True lowerCAmelCase : List[str] = (left_element + right_element) // 2 self.update(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.update(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Optional[int] = max( self.segment_tree[self.left(snake_case__ )] , self.segment_tree[self.right(snake_case__ )] ) return True def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if self.flag[idx] is True: lowerCAmelCase : List[Any] = self.lazy[idx] lowerCAmelCase : str = False if left_element != right_element: lowerCAmelCase : Tuple = self.lazy[idx] lowerCAmelCase : List[Any] = self.lazy[idx] lowerCAmelCase : Optional[int] = True lowerCAmelCase : str = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowerCAmelCase : Any = (left_element + right_element) // 2 lowerCAmelCase : Optional[int] = self.query(self.left(snake_case__ ) , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Dict = self.query(self.right(snake_case__ ) , mid + 1 , snake_case__ , snake_case__ , snake_case__ ) return max(snake_case__ , snake_case__ ) def __str__( self ): """simple docstring""" return str([self.query(1 , 1 , self.size , snake_case__ , snake_case__ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": lowerCAmelCase__ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowerCAmelCase__ = 15 lowerCAmelCase__ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
108
1
from __future__ import annotations from typing import Any class __a ( __UpperCamelCase ): pass class __a : def __init__( self , lowerCAmelCase__ ) -> None: '''simple docstring''' lowercase__: Any = data lowercase__: Node | None = None def __iter__( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Tuple = self lowercase__: Tuple = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCAmelCase__ ) yield node.data lowercase__: Optional[int] = node.next_node @property def SCREAMING_SNAKE_CASE__ ( self ) -> bool: '''simple docstring''' try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": __lowerCAmelCase = Node(1) __lowerCAmelCase = Node(2) __lowerCAmelCase = Node(3) __lowerCAmelCase = Node(4) print(root_node.has_loop) # False __lowerCAmelCase = root_node.next_node print(root_node.has_loop) # True __lowerCAmelCase = Node(5) __lowerCAmelCase = Node(6) __lowerCAmelCase = Node(5) __lowerCAmelCase = Node(6) print(root_node.has_loop) # False __lowerCAmelCase = Node(1) print(root_node.has_loop) # False
288
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __lowerCAmelCase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __a ( __UpperCamelCase ): def __init__( self , lowerCAmelCase__ = 101 ) -> Any: '''simple docstring''' lowercase__: Any = length def __len__( self ) -> List[Any]: '''simple docstring''' return self.length def __getitem__( self , lowerCAmelCase__ ) -> int: '''simple docstring''' return i class __a : def __call__( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return {"input_ids": torch.tensor(lowerCAmelCase__ ), "labels": torch.tensor(lowerCAmelCase__ )} class __a ( nn.Module ): def __init__( self ) -> Tuple: '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. lowercase__: List[str] = nn.Linear(120 , 80 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> int: '''simple docstring''' if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class __a ( __UpperCamelCase ): @require_torch_neuroncore def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: int = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() lowercase__: Tuple = self.get_auto_remove_tmp_dir() lowercase__: Optional[int] = F'--output_dir {output_dir}'.split() lowercase__: int = ['torchrun'] + distributed_args + args execute_subprocess_async(lowerCAmelCase__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __a ( __UpperCamelCase ): @require_torch_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: List[str] = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() lowercase__: Tuple = self.get_auto_remove_tmp_dir() lowercase__: List[str] = F'--output_dir {output_dir}'.split() lowercase__: int = ['torchrun'] + distributed_args + args execute_subprocess_async(lowerCAmelCase__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __lowerCAmelCase = HfArgumentParser((TrainingArguments,)) __lowerCAmelCase = parser.parse_args_into_dataclasses()[0] logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_01, 40, 7]: __lowerCAmelCase = DummyDataset(dataset_length) def snake_case_ ( snake_case ) -> Dict: lowercase__: str = list(range(len(snake_case ) ) ) lowercase__: Tuple = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} __lowerCAmelCase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __lowerCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase = 2 __lowerCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase = None
288
1
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase ( __UpperCAmelCase): def __init__( self : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Any=13 , _lowerCamelCase : List[str]=7 , _lowerCamelCase : Any=True , _lowerCamelCase : int=True , _lowerCamelCase : Dict=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Optional[Any]=99 , _lowerCamelCase : int=32 , _lowerCamelCase : Tuple=5 , _lowerCamelCase : Tuple=4 , _lowerCamelCase : List[str]=37 , _lowerCamelCase : Any="gelu" , _lowerCamelCase : str=0.1 , _lowerCamelCase : List[str]=0.1 , _lowerCamelCase : Union[str, Any]=5_12 , _lowerCamelCase : Union[str, Any]=16 , _lowerCamelCase : Optional[int]=2 , _lowerCamelCase : Any=0.02 , _lowerCamelCase : Dict=False , _lowerCamelCase : List[str]=True , _lowerCamelCase : int="None" , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : Union[str, Any]=4 , _lowerCamelCase : int=None , ): """simple docstring""" A_ : Tuple = parent A_ : str = batch_size A_ : Union[str, Any] = seq_length A_ : Tuple = is_training A_ : Dict = use_input_mask A_ : List[Any] = use_token_type_ids A_ : Any = use_labels A_ : List[Any] = vocab_size A_ : str = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : Dict = intermediate_size A_ : int = hidden_act A_ : int = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : Tuple = max_position_embeddings A_ : str = type_vocab_size A_ : Dict = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : str = num_labels A_ : str = num_choices A_ : List[Any] = relative_attention A_ : Optional[int] = position_biased_input A_ : Optional[int] = pos_att_type A_ : Dict = scope def a_ ( self : int ): """simple docstring""" A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : int = None if self.use_input_mask: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A_ : Tuple = None if self.use_token_type_ids: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Optional[int] = None A_ : str = None A_ : Tuple = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Any = ids_tensor([self.batch_size] , self.num_choices ) A_ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self : int ): """simple docstring""" return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def a_ ( self : Any , _lowerCamelCase : Dict ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def a_ ( self : int , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : int ): """simple docstring""" A_ : Union[str, Any] = DebertaVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase )[0] A_ : List[str] = model(_lowerCamelCase , token_type_ids=_lowerCamelCase )[0] A_ : Optional[Any] = model(_lowerCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def a_ ( self : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : Tuple ): """simple docstring""" A_ : List[Any] = DebertaVaForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple ): """simple docstring""" A_ : Dict = self.num_labels A_ : Any = DebertaVaForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_lowerCamelCase ) def a_ ( self : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : List[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Optional[int] = self.num_labels A_ : Tuple = DebertaVaForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple ): """simple docstring""" A_ : int = DebertaVaForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[str] ): """simple docstring""" A_ : List[str] = DebertaVaForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Tuple = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self : Union[str, Any] ): """simple docstring""" A_ : List[Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Dict = config_and_inputs A_ : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase): __lowerCAmelCase : Union[str, Any] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __lowerCAmelCase : List[str] = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase : Optional[Any] = True __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : str = False __lowerCAmelCase : int = False def a_ ( self : Union[str, Any] ): """simple docstring""" A_ : Optional[Any] = DebertaVaModelTester(self ) A_ : Tuple = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def a_ ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : str ): """simple docstring""" A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_lowerCamelCase ) def a_ ( self : Dict ): """simple docstring""" A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_lowerCamelCase ) def a_ ( self : Any ): """simple docstring""" A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_lowerCamelCase ) def a_ ( self : int ): """simple docstring""" A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_lowerCamelCase ) def a_ ( self : Optional[int] ): """simple docstring""" A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_lowerCamelCase ) def a_ ( self : int ): """simple docstring""" A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*_lowerCamelCase ) @slow def a_ ( self : List[Any] ): """simple docstring""" for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = DebertaVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase): @unittest.skip(reason='''Model not available yet''' ) def a_ ( self : Union[str, Any] ): """simple docstring""" pass @slow def a_ ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) A_ : int = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) A_ : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A_ : List[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] # compare the actual values for a slice. A_ : Optional[Any] = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1E-4 ) , F"""{output[:, 1:4, 1:4]}""" )
167
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _lowerCamelCase : Tuple = 'Create a default config file for Accelerate with only a few flags set.' def lowercase_ ( _UpperCAmelCase="no" , _UpperCAmelCase = default_json_config_file , _UpperCAmelCase = False ): """simple docstring""" A_ : str = Path(_UpperCAmelCase ) path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) if path.exists(): print( f"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False A_ : Optional[Any] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) A_ : str = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): A_ : int = torch.cuda.device_count() A_ : int = num_gpus A_ : Tuple = False if num_gpus > 1: A_ : Optional[int] = '''MULTI_GPU''' else: A_ : Union[str, Any] = '''NO''' elif is_xpu_available() and use_xpu: A_ : str = torch.xpu.device_count() A_ : Optional[int] = num_xpus A_ : List[str] = False if num_xpus > 1: A_ : Any = '''MULTI_XPU''' else: A_ : Optional[Any] = '''NO''' elif is_npu_available(): A_ : Union[str, Any] = torch.npu.device_count() A_ : Optional[int] = num_npus A_ : Union[str, Any] = False if num_npus > 1: A_ : List[str] = '''MULTI_NPU''' else: A_ : Tuple = '''NO''' else: A_ : Union[str, Any] = 0 A_ : str = True A_ : str = 1 A_ : List[Any] = '''NO''' A_ : Dict = ClusterConfig(**_UpperCAmelCase ) config.to_json_file(_UpperCAmelCase ) return path def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : List[str] = parser.add_parser('''default''' , parents=_UpperCAmelCase , help=_UpperCAmelCase , formatter_class=_UpperCAmelCase ) parser.add_argument( '''--config_file''' , default=_UpperCAmelCase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=_UpperCAmelCase , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=_UpperCAmelCase ) return parser def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : str = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"""accelerate configuration saved at {config_file}""" )
167
1
'''simple docstring''' def lowerCAmelCase__ ( lowerCamelCase : list[list] ): _A : Optional[Any] = current_set.copy() for row_index, row in enumerate(lowerCamelCase ): _A : Any = row[0] for column_index, column in enumerate(lowerCamelCase ): if magnitude == 0: _A : Any = column continue _A : int = column / magnitude # Subtract to cancel term _A : Optional[int] = current_set[0] _A : Optional[int] = [first_row] _A : Any = current_set[1::] for row in current_set: _A : Any = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase ) continue for column_index in range(len(lowerCamelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: _A : List[str] = final_set[0] _A : List[str] = [] _A : Union[str, Any] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _A : Any = simplify(lowerCamelCase ) for i in range(len(lowerCamelCase ) ): resultant[i].insert(0 ,current_first_column[i] ) resultant.insert(0 ,lowerCamelCase ) _A : Any = resultant return final_set def lowerCAmelCase__ ( lowerCamelCase : list[list] ): if len(lowerCamelCase ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) _A : Any = len(lowerCamelCase ) + 1 if any(len(lowerCamelCase ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(lowerCamelCase ,(int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(lowerCamelCase ) == 1: return [equations[0][-1] / equations[0][0]] _A : List[str] = equations.copy() if any(0 in row for row in data_set ): _A : Optional[Any] = data_set.copy() _A : Optional[int] = [] for row_index, row in enumerate(lowerCamelCase ): if 0 not in row: _A : List[str] = data_set.pop(lowerCamelCase ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 ,lowerCamelCase ) _A : str = data_set.copy() _A : Union[str, Any] = simplify(lowerCamelCase ) _A : Dict = simplified[::-1] _A : list = [] for row in simplified: _A : Tuple = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _A : str = row.copy()[: len(lowerCamelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase ) == 0: solutions.append(0 ) continue _A : Optional[int] = temp_row[1::] _A : int = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase ) _A : List[str] = [] for item in solutions: final.append(float(round(lowerCamelCase ,5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() A : List[Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
227
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( a_ , unittest.TestCase ): """simple docstring""" a = KandinskyVaaPriorPipeline a = ["prompt"] a = ["prompt", "negative_prompt"] a = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] a = False @property def A ( self : List[str]): return 32 @property def A ( self : List[Any]): return 32 @property def A ( self : Dict): return self.time_input_dim @property def A ( self : Tuple): return self.time_input_dim * 4 @property def A ( self : Optional[int]): return 100 @property def A ( self : Dict): _A : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def A ( self : Optional[Any]): torch.manual_seed(0) _A : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE) @property def A ( self : List[Any]): torch.manual_seed(0) _A : Optional[Any] = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } _A : Any = PriorTransformer(**SCREAMING_SNAKE_CASE) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _A : str = nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def A ( self : List[str]): torch.manual_seed(0) _A : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _A : Union[str, Any] = CLIPVisionModelWithProjection(SCREAMING_SNAKE_CASE) return model @property def A ( self : int): _A : Optional[Any] = CLIPImageProcessor( crop_size=224 , do_center_crop=SCREAMING_SNAKE_CASE , do_normalize=SCREAMING_SNAKE_CASE , do_resize=SCREAMING_SNAKE_CASE , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor def A ( self : Optional[Any]): _A : Optional[int] = self.dummy_prior _A : Dict = self.dummy_image_encoder _A : Dict = self.dummy_text_encoder _A : str = self.dummy_tokenizer _A : Optional[Any] = self.dummy_image_processor _A : Optional[Any] = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=SCREAMING_SNAKE_CASE , clip_sample_range=10.0 , ) _A : Dict = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def A ( self : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str]=0): if str(SCREAMING_SNAKE_CASE).startswith('mps'): _A : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE) else: _A : int = torch.Generator(device=SCREAMING_SNAKE_CASE).manual_seed(SCREAMING_SNAKE_CASE) _A : List[Any] = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def A ( self : List[Any]): _A : str = 'cpu' _A : Tuple = self.get_dummy_components() _A : List[Any] = self.pipeline_class(**SCREAMING_SNAKE_CASE) _A : Any = pipe.to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _A : Dict = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE)) _A : str = output.image_embeds _A : Optional[int] = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE) , return_dict=SCREAMING_SNAKE_CASE , )[0] _A : Optional[int] = image[0, -10:] _A : int = image_from_tuple[0, -10:] assert image.shape == (1, 32) _A : Dict = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def A ( self : Any): _A : Tuple = torch_device == 'cpu' _A : Optional[int] = True _A : Tuple = False self._test_inference_batch_single_identical( test_max_difference=SCREAMING_SNAKE_CASE , relax_max_difference=SCREAMING_SNAKE_CASE , test_mean_pixel_difference=SCREAMING_SNAKE_CASE , ) @skip_mps def A ( self : int): _A : Tuple = torch_device == 'cpu' _A : Optional[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=SCREAMING_SNAKE_CASE , test_mean_pixel_difference=SCREAMING_SNAKE_CASE , )
227
1
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Dict , lowercase_ :str = "▁" , lowercase_ :bool = True , lowercase_ :Union[str, AddedToken] = "<unk>" , lowercase_ :Union[str, AddedToken] = "</s>" , lowercase_ :Union[str, AddedToken] = "<pad>" , ) -> str: UpperCAmelCase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } UpperCAmelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCAmelCase = token_dict['token'] UpperCAmelCase = Tokenizer(Unigram() ) UpperCAmelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) UpperCAmelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ), pre_tokenizers.Digits(individual_digits=lowercase_ ), pre_tokenizers.Punctuation(), ] ) UpperCAmelCase = decoders.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase = TemplateProcessing( single=f"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) UpperCAmelCase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Union[str, List[str]] , lowercase_ :int = 80_00 , lowercase_ :bool = True , ) -> Union[str, Any]: UpperCAmelCase = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [files] self._tokenizer.train(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def UpperCAmelCase__ ( self :str , lowercase_ :Union[Iterator[str], Iterator[Iterator[str]]] , lowercase_ :int = 80_00 , lowercase_ :bool = True , ) -> Tuple: UpperCAmelCase = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) self._tokenizer.train_from_iterator(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def UpperCAmelCase__ ( self :Union[str, Any] ) -> int: UpperCAmelCase = json.loads(self._tokenizer.to_str() ) UpperCAmelCase = self.special_tokens['unk']['id'] UpperCAmelCase = Tokenizer.from_str(json.dumps(lowercase_ ) )
78
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin __UpperCamelCase : Optional[Any] = False @skip_mps class __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): UpperCamelCase__ = StableDiffusionAttendAndExcitePipeline UpperCamelCase__ = False UpperCamelCase__ = TEXT_TO_IMAGE_PARAMS UpperCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) UpperCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowerCamelCase__ ( cls :Union[str, Any] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__magic_name__ ) @classmethod def lowerCamelCase__ ( cls :Union[str, Any] ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__magic_name__ ) def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__magic_name__ , ) a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) a = CLIPTextModel(__magic_name__ ) a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) a = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ ( self :Dict , __magic_name__ :Optional[int] , __magic_name__ :Optional[int]=0 ): '''simple docstring''' if str(__magic_name__ ).startswith("""mps""" ): a = torch.manual_seed(__magic_name__ ) else: a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a = a = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def lowerCamelCase__ ( self :str ): '''simple docstring''' a = """cpu""" a = self.get_dummy_components() a = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_dummy_inputs(__magic_name__ ) a = pipe(**__magic_name__ ).images a = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) a = np.array( [0.63905364, 0.62897307, 0.48599017, 0.5133624, 0.5550048, 0.45769516, 0.50326973, 0.5023139, 0.45384496] ) a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__magic_name__ , 1E-3 ) def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def lowerCamelCase__ ( self :str ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): @classmethod def lowerCamelCase__ ( cls :int ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__magic_name__ ) @classmethod def lowerCamelCase__ ( cls :Any ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__magic_name__ ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self :int ): '''simple docstring''' a = torch.manual_seed(51 ) a = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=__magic_name__ , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) a = """a painting of an elephant with glasses""" a = [5, 7] a = pipe( prompt=__magic_name__ , token_indices=__magic_name__ , guidance_scale=7.5 , generator=__magic_name__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] a = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-1
228
0
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowercase_ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowercase_ = [file for file in filepaths if file != file.lower()] if upper_files: print(F'{len(upper_files)} files contain uppercase characters:') print("""\n""".join(upper_files) + """\n""") lowercase_ = [file for file in filepaths if """ """ in file] if space_files: print(F'{len(space_files)} files contain space characters:') print("""\n""".join(space_files) + """\n""") lowercase_ = [file for file in filepaths if """-""" in file] if hyphen_files: print(F'{len(hyphen_files)} files contain hyphen characters:') print("""\n""".join(hyphen_files) + """\n""") lowercase_ = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'{len(nodir_files)} files are not in a directory:') print("""\n""".join(nodir_files) + """\n""") lowercase_ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
224
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowercase_ = logging.get_logger(__name__) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = r"\w+[.]\d+" lowercase__ = re.findall(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for pat in pats: lowercase__ = key.replace(SCREAMING_SNAKE_CASE_ , "_".join(pat.split("." ) ) ) return key def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowercase__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowercase__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowercase__ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowercase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowercase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=42 ): # Step 1: Convert pytorch tensor to numpy lowercase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowercase__ = flax_model.init_weights(PRNGKey(SCREAMING_SNAKE_CASE_ ) ) lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE_ ) lowercase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ = rename_key(SCREAMING_SNAKE_CASE_ ) lowercase__ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowercase__ , lowercase__ = rename_key_and_reshape_tensor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowercase__ = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ )
224
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class snake_case__ : """simple docstring""" def __init__( self : int, _snake_case : str, _snake_case : List[str]=1_3, _snake_case : Union[str, Any]=7, _snake_case : Tuple=True, _snake_case : str=True, _snake_case : List[Any]=True, _snake_case : List[Any]=True, _snake_case : List[Any]=9_9, _snake_case : Any=6_4, _snake_case : Optional[Any]=5, _snake_case : Any=4, _snake_case : Optional[int]=3_7, _snake_case : Tuple="gelu", _snake_case : Any=0.1, _snake_case : Optional[Any]=0.1, _snake_case : Any=5_1_2, _snake_case : Optional[Any]=1_6, _snake_case : List[str]=2, _snake_case : Dict=0.0_2, _snake_case : Dict=3, _snake_case : int=4, _snake_case : Optional[int]=None, ) ->Any: snake_case__ : List[Any] = parent snake_case__ : Tuple = batch_size snake_case__ : Optional[int] = seq_length snake_case__ : List[str] = is_training snake_case__ : Union[str, Any] = use_input_mask snake_case__ : Tuple = use_token_type_ids snake_case__ : Union[str, Any] = use_labels snake_case__ : Union[str, Any] = vocab_size snake_case__ : List[str] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : Tuple = num_attention_heads snake_case__ : Optional[Any] = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : Union[str, Any] = max_position_embeddings snake_case__ : int = type_vocab_size snake_case__ : List[Any] = type_sequence_label_size snake_case__ : Any = initializer_range snake_case__ : str = num_labels snake_case__ : str = num_choices snake_case__ : List[Any] = scope snake_case__ : Any = vocab_size - 1 def lowercase_ ( self : int ) ->int: snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case__ : int = None if self.use_input_mask: snake_case__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : str = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) snake_case__ : Tuple = self.get_config() return config, input_ids, input_mask, token_labels def lowercase_ ( self : Optional[int] ) ->Optional[Any]: return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_snake_case, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def lowercase_ ( self : Optional[Any] ) ->Optional[Any]: snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = self.prepare_config_and_inputs() snake_case__ : List[Any] = True return config, input_ids, input_mask, token_labels def lowercase_ ( self : Any, _snake_case : List[str], _snake_case : Optional[Any], _snake_case : Optional[Any] ) ->List[str]: snake_case__ : Any = GPTNeoXModel(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[int] = model(_snake_case, attention_mask=_snake_case ) snake_case__ : List[str] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Union[str, Any], _snake_case : Optional[Any], _snake_case : Tuple, _snake_case : List[str] ) ->Optional[Any]: snake_case__ : Any = True snake_case__ : Union[str, Any] = GPTNeoXModel(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Any = model(_snake_case, attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : int, _snake_case : int, _snake_case : List[Any], _snake_case : List[str], _snake_case : List[str] ) ->Tuple: snake_case__ : Dict = GPTNeoXForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : List[str] = model(_snake_case, attention_mask=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Optional[int], _snake_case : List[str], _snake_case : Union[str, Any], _snake_case : Optional[Any], _snake_case : Any ) ->List[str]: snake_case__ : Optional[int] = self.num_labels snake_case__ : int = GPTNeoXForQuestionAnswering(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : int = model(_snake_case, attention_mask=_snake_case ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase_ ( self : Any, _snake_case : Any, _snake_case : Dict, _snake_case : Optional[Any], _snake_case : str ) ->Union[str, Any]: snake_case__ : str = self.num_labels snake_case__ : List[Any] = GPTNeoXForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : Any = model(_snake_case, attention_mask=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase_ ( self : Dict, _snake_case : str, _snake_case : Optional[Any], _snake_case : Optional[int], _snake_case : List[Any] ) ->str: snake_case__ : Optional[int] = self.num_labels snake_case__ : List[str] = GPTNeoXForTokenClassification(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Tuple = model(_snake_case, attention_mask=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : Any, _snake_case : List[str], _snake_case : str, _snake_case : int ) ->str: snake_case__ : Union[str, Any] = True snake_case__ : Union[str, Any] = GPTNeoXForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass snake_case__ : Tuple = model(_snake_case, attention_mask=_snake_case, use_cache=_snake_case ) snake_case__ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : Dict = ids_tensor((self.batch_size, 3), config.vocab_size ) snake_case__ : int = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and snake_case__ : Any = torch.cat([input_ids, next_tokens], dim=-1 ) snake_case__ : Union[str, Any] = torch.cat([input_mask, next_mask], dim=-1 ) snake_case__ : str = model(_snake_case, attention_mask=_snake_case, output_hidden_states=_snake_case ) snake_case__ : int = output_from_no_past['hidden_states'][0] snake_case__ : Optional[Any] = model( _snake_case, attention_mask=_snake_case, past_key_values=_snake_case, output_hidden_states=_snake_case, )['hidden_states'][0] # select random slice snake_case__ : int = ids_tensor((1,), output_from_past.shape[-1] ).item() snake_case__ : int = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case, _snake_case, atol=1e-3 ) ) def lowercase_ ( self : str ) ->Union[str, Any]: snake_case__ : str = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = config_and_inputs snake_case__ : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = (GPTNeoXForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def lowercase_ ( self : Optional[int] ) ->List[Any]: snake_case__ : Optional[int] = GPTNeoXModelTester(self ) snake_case__ : Optional[Any] = ConfigTester(self, config_class=_snake_case, hidden_size=6_4, num_attention_heads=8 ) def lowercase_ ( self : List[str] ) ->Any: self.config_tester.run_common_tests() def lowercase_ ( self : Union[str, Any] ) ->List[str]: snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_snake_case, _snake_case, _snake_case ) def lowercase_ ( self : Tuple ) ->int: snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_snake_case, _snake_case, _snake_case ) def lowercase_ ( self : Optional[Any] ) ->str: # This regression test was failing with PyTorch < 1.3 snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(_snake_case, _snake_case, _snake_case ) def lowercase_ ( self : Union[str, Any] ) ->Tuple: snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_snake_case, _snake_case, _snake_case ) def lowercase_ ( self : Any ) ->List[Any]: snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_snake_case ) def lowercase_ ( self : Tuple ) ->List[str]: snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) def lowercase_ ( self : Tuple ) ->Dict: snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def lowercase_ ( self : List[str] ) ->int: snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def lowercase_ ( self : Any ) ->List[str]: pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowercase_ ( self : List[str], _snake_case : Tuple ) ->List[Any]: snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[Any] = ids_tensor([1, 1_0], config.vocab_size ) snake_case__ : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Dict = GPTNeoXModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() snake_case__ : List[str] = original_model(_snake_case ).last_hidden_state snake_case__ : int = original_model(_snake_case ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : str = {'type': scaling_type, 'factor': 1_0.0} snake_case__ : str = GPTNeoXModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() snake_case__ : str = scaled_model(_snake_case ).last_hidden_state snake_case__ : Union[str, Any] = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case, _snake_case, atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_snake_case, _snake_case, atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case, _snake_case, atol=1e-5 ) ) @require_torch class snake_case__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : List[Any] ) ->Union[str, Any]: snake_case__ : int = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: snake_case__ : Any = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_snake_case ) snake_case__ : int = tokenizer('My favorite food is', return_tensors='pt' ).to(_snake_case ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 snake_case__ : Union[str, Any] = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' snake_case__ : List[Any] = model.generate(**_snake_case, do_sample=_snake_case, max_new_tokens=2_0 ) snake_case__ : str = tokenizer.batch_decode(_snake_case )[0] self.assertEqual(_snake_case, _snake_case )
277
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a_ :Optional[Any] = logging.getLogger(__name__) def lowercase_ (A : List[Any] , A : List[Any] ): # save results if os.path.exists(A ): if os.path.exists(os.path.join(A , 'config.json' ) ) and os.path.isfile( os.path.join(A , 'config.json' ) ): os.remove(os.path.join(A , 'config.json' ) ) if os.path.exists(os.path.join(A , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(A , 'pytorch_model.bin' ) ): os.remove(os.path.join(A , 'pytorch_model.bin' ) ) else: os.makedirs(A ) model.save_pretrained(A ) def lowercase_ (A : Any , A : Optional[Any]=False ): snake_case__ : str = 2 if unlogit: snake_case__ : Dict = torch.pow(A , A ) snake_case__ : Any = p * torch.log(A ) snake_case__ : Tuple = 0 return -plogp.sum(dim=-1 ) def lowercase_ (A : List[str] ): logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(A ) ) ) ) for row in range(len(A ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def lowercase_ (A : Tuple , A : Optional[Any] , A : str , A : int=True , A : Optional[int]=True , A : Any=None , A : int=False ): snake_case__ , snake_case__ : Optional[Any] = model.config.num_hidden_layers, model.config.num_attention_heads snake_case__ : int = torch.zeros(A , A ).to(args.device ) snake_case__ : Any = torch.zeros(A , A ).to(args.device ) if head_mask is None: snake_case__ : Dict = torch.ones(A , A ).to(args.device ) head_mask.requires_grad_(requires_grad=A ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: snake_case__ : Optional[int] = None snake_case__ : List[Any] = 0.0 snake_case__ : str = 0.0 for step, inputs in enumerate(tqdm(A , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): snake_case__ : Union[str, Any] = tuple(t.to(args.device ) for t in inputs ) ((snake_case__) , ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) snake_case__ : Union[str, Any] = model(A , labels=A , head_mask=A ) # (loss), lm_logits, presents, (all hidden_states), (attentions) snake_case__ , snake_case__ , snake_case__ : Dict = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(A ): snake_case__ : Optional[Any] = entropy(attn.detach() , A ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(A ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: snake_case__ : Union[str, Any] = 2 snake_case__ : List[Any] = torch.pow(torch.pow(A , A ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: snake_case__ : Tuple = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(A ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(A ) logger.info('Head ranked by importance scores' ) snake_case__ : Tuple = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) snake_case__ : Union[str, Any] = torch.arange( head_importance.numel() , device=args.device ) snake_case__ : str = head_ranks.view_as(A ) print_ad_tensor(A ) return attn_entropy, head_importance, total_loss def lowercase_ (A : Optional[int] , A : Dict , A : Optional[int] ): snake_case__ , snake_case__ , snake_case__ : Any = compute_heads_importance(A , A , A , compute_entropy=A ) snake_case__ : Tuple = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , A , original_score * args.masking_threshold ) snake_case__ : Optional[Any] = torch.ones_like(A ) snake_case__ : Union[str, Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) snake_case__ : Dict = original_score while current_score >= original_score * args.masking_threshold: snake_case__ : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads snake_case__ : List[Any] = float('Inf' ) snake_case__ : Union[str, Any] = head_importance.view(-1 ).sort()[1] if len(A ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads snake_case__ : int = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) snake_case__ : int = new_head_mask.view(-1 ) snake_case__ : int = 0.0 snake_case__ : Union[str, Any] = new_head_mask.view_as(A ) snake_case__ : List[str] = new_head_mask.clone().detach() print_ad_tensor(A ) # Compute metric and head importance again snake_case__ , snake_case__ , snake_case__ : Any = compute_heads_importance( A , A , A , compute_entropy=A , head_mask=A ) snake_case__ : Dict = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info('Final head mask' ) print_ad_tensor(A ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowercase_ (A : List[str] , A : Tuple , A : Optional[Any] , A : int ): snake_case__ : Any = datetime.now() snake_case__ , snake_case__ , snake_case__ : str = compute_heads_importance( A , A , A , compute_entropy=A , compute_importance=A , head_mask=A ) snake_case__ : Tuple = 1 / loss snake_case__ : Dict = datetime.now() - before_time snake_case__ : Union[str, Any] = sum(p.numel() for p in model.parameters() ) snake_case__ : Optional[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(A ) ) } for k, v in heads_to_prune.items(): if isinstance(A , A ): snake_case__ : Any = [ v, ] assert sum(len(A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(A ) snake_case__ : Dict = sum(p.numel() for p in model.parameters() ) snake_case__ : Tuple = datetime.now() snake_case__ , snake_case__ , snake_case__ : Dict = compute_heads_importance( A , A , A , compute_entropy=A , compute_importance=A , head_mask=A , actually_pruned=A , ) snake_case__ : Any = 1 / loss snake_case__ : int = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , A , A , pruned_num_params / original_num_params * 1_0_0 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , A , A ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_0_0 ) save_model(A , args.output_dir ) def lowercase_ (): snake_case__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=A , type=A , required=A , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=A , type=A , required=A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=A , type=A , required=A , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=A , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=A , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=A , type=A , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=A , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=A , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=A , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=A , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_2_8 , type=A , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=A , help='Batch size.' ) parser.add_argument('--seed' , type=A , default=4_2 ) parser.add_argument('--local_rank' , type=A , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=A , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=A , default='' , help='Can be used for distant debugging.' ) snake_case__ : Optional[int] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: snake_case__ : List[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) snake_case__ : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) snake_case__ : int = torch.device('cuda' , args.local_rank ) snake_case__ : List[str] = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) snake_case__ : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: snake_case__ : List[str] = nn.parallel.DistributedDataParallel( A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=A ) elif args.n_gpu > 1: snake_case__ : Optional[int] = nn.DataParallel(A ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=A ) torch.save(A , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , A ) # Prepare dataset snake_case__ : Optional[Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) snake_case__ : List[str] = (torch.from_numpy(A ),) snake_case__ : int = TensorDataset(*A ) snake_case__ : Union[str, Any] = RandomSampler(A ) snake_case__ : Any = DataLoader(A , sampler=A , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(A , A , A ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: snake_case__ : Dict = mask_heads(A , A , A ) prune_heads(A , A , A , A ) if __name__ == "__main__": main()
277
1
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A : str =logging.get_logger(__name__) _A : str ={ "nielsr/canine-s": 2_048, } # Unicode defines 1,114,112 total “codepoints” _A : List[str] =1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _A : Any =0 _A : Tuple =0xe_0_0_0 _A : Optional[Any] =0xe_0_0_1 _A : Tuple =0xe_0_0_2 _A : Union[str, Any] =0xe_0_0_3 _A : Dict =0xe_0_0_4 # Maps special codepoints to human-readable names. _A : Dict[int, str] ={ # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _A : Dict[str, int] ={name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class _lowercase ( snake_case__ ): a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self: Dict , UpperCamelCase__: int=chr(UpperCAmelCase_ ) , UpperCamelCase__: List[str]=chr(UpperCAmelCase_ ) , UpperCamelCase__: Union[str, Any]=chr(UpperCAmelCase_ ) , UpperCamelCase__: int=chr(UpperCAmelCase_ ) , UpperCamelCase__: List[Any]=chr(UpperCAmelCase_ ) , UpperCamelCase__: Any=chr(UpperCAmelCase_ ) , UpperCamelCase__: int=False , UpperCamelCase__: Optional[Any]=2_048 , **UpperCamelCase__: List[str] , ): lowerCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else bos_token lowerCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else eos_token lowerCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else sep_token lowerCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else cls_token lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , model_max_length=UpperCAmelCase_ , **UpperCAmelCase_ , ) # Creates a mapping for looking up the IDs of special symbols. lowerCamelCase__ : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowerCamelCase__ : Optional[Any] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowerCamelCase__ : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowerCamelCase__ : List[Any] = UNICODE_VOCAB_SIZE lowerCamelCase__ : str = len(self._special_codepoints ) @property def lowerCamelCase_ ( self: int ): return self._unicode_vocab_size def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: str ): return list(UpperCAmelCase_ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: str ): try: return ord(UpperCAmelCase_ ) except TypeError: raise ValueError(F'''invalid token: \'{token}\'''' ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: int ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCAmelCase_ ) except TypeError: raise ValueError(F'''invalid id: {index}''' ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: Optional[Any] ): return "".join(UpperCAmelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: List[int] , UpperCamelCase__: Optional[List[int]] = None ): lowerCamelCase__ : Any = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] lowerCamelCase__ : Union[str, Any] = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: List[int] , UpperCamelCase__: Optional[List[int]] = None , UpperCamelCase__: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) lowerCamelCase__ : List[str] = [1] + ([0] * len(UpperCAmelCase_ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCAmelCase_ )) + [1] return result def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: List[int] , UpperCamelCase__: Optional[List[int]] = None ): lowerCamelCase__ : List[str] = [self.sep_token_id] lowerCamelCase__ : List[Any] = [self.cls_token_id] lowerCamelCase__ : Optional[Any] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def lowerCamelCase_ ( self: Any , UpperCamelCase__: str , UpperCamelCase__: Optional[str] = None ): return ()
365
'''simple docstring''' from __future__ import annotations from typing import Any class _lowercase ( _lowercase ): pass class _lowercase : def __init__( self: Optional[int] , UpperCamelCase__: Any ): lowerCamelCase__ : Any = data lowerCamelCase__ : Node | None = None def __iter__( self: List[Any] ): lowerCamelCase__ : Optional[Any] = self lowerCamelCase__ : int = [] while node: if node in visited: raise ContainsLoopError visited.append(UpperCamelCase__ ) yield node.data lowerCamelCase__ : List[str] = node.next_node @property def lowerCamelCase_ ( self: Optional[Any] ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _A : Any =Node(1) _A : Optional[int] =Node(2) _A : Dict =Node(3) _A : Optional[Any] =Node(4) print(root_node.has_loop) # False _A : Any =root_node.next_node print(root_node.has_loop) # True _A : Dict =Node(5) _A : Union[str, Any] =Node(6) _A : str =Node(5) _A : int =Node(6) print(root_node.has_loop) # False _A : Optional[Any] =Node(1) print(root_node.has_loop) # False
129
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor snake_case : List[str] = logging.get_logger(__name__) class snake_case_ (lowerCAmelCase_ ): def __init__( self :Tuple ,*__snake_case :Optional[int] ,**__snake_case :Any ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' ,__snake_case ,) super().__init__(*__snake_case ,**__snake_case )
240
import argparse import os import re import packaging.version _A : Optional[int] = 'examples/' _A : str = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } _A : Any = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } _A : List[str] = 'README.md' def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" with open(UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase__ : Tuple = f.read() lowerCamelCase__ , lowerCamelCase__ : Optional[int] = REPLACE_PATTERNS[pattern] lowerCamelCase__ : Union[str, Any] = replace.replace('''VERSION''' , UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = re_pattern.sub(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" for folder, directories, fnames in os.walk(UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase , pattern='''examples''' ) def _a ( UpperCAmelCase , UpperCAmelCase=False ) -> Dict: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not patch: update_version_in_examples(UpperCAmelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : Any = '''🤗 Transformers currently provides the following architectures''' lowerCamelCase__ : Dict = '''1. Want to contribute a new model?''' with open(UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase__ : str = f.readlines() # Find the start of the list. lowerCamelCase__ : int = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase__ : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): lowerCamelCase__ : Any = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: lowerCamelCase__ : List[str] = f.read() lowerCamelCase__ : Any = REPLACE_PATTERNS['''init'''][0].search(UpperCAmelCase ).groups()[0] return packaging.version.parse(UpperCAmelCase ) def _a ( UpperCAmelCase=False ) -> str: """simple docstring""" lowerCamelCase__ : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: lowerCamelCase__ : Union[str, Any] = default_version.base_version elif patch: lowerCamelCase__ : str = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: lowerCamelCase__ : Dict = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. lowerCamelCase__ : str = input(f"Which version are you releasing? [{default_version}]" ) if len(UpperCAmelCase ) == 0: lowerCamelCase__ : int = default_version print(f"Updating version to {version}." ) global_version_update(UpperCAmelCase , patch=UpperCAmelCase ) def _a ( ) -> List[Any]: """simple docstring""" lowerCamelCase__ : List[str] = get_version() lowerCamelCase__ : Optional[int] = f"{current_version.major}.{current_version.minor + 1}.0.dev0" lowerCamelCase__ : Union[str, Any] = current_version.base_version # Check with the user we got that right. lowerCamelCase__ : Dict = input(f"Which version are we developing now? [{dev_version}]" ) if len(UpperCAmelCase ) == 0: lowerCamelCase__ : Tuple = dev_version print(f"Updating version to {version}." ) global_version_update(UpperCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": _A : Any = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _A : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
142
0
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=6 , __a=17 , __a=23 , __a=11 , __a=True , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = act_dim _UpperCamelCase = state_dim _UpperCamelCase = hidden_size _UpperCamelCase = max_length _UpperCamelCase = is_training def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1)) _UpperCamelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00) _UpperCamelCase = random_attention_mask((self.batch_size, self.seq_length)) _UpperCamelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , ) -> List[Any]: '''simple docstring''' _UpperCamelCase = DecisionTransformerModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , __a , __a , __a , __a , __a) self.parent.assertEqual(result.state_preds.shape , states.shape) self.parent.assertEqual(result.action_preds.shape , actions.shape) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size)) # seq length *3 as there are 3 modelities: states, returns and actions def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (DecisionTransformerModel,) if is_torch_available() else () lowercase__ = () lowercase__ = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowercase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = DecisionTransformerModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) @slow def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = DecisionTransformerModel.from_pretrained(__a) self.assertIsNotNone(__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(__a)] , __a) @require_torch class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = 2 # number of steps of autoregressive prediction we will perform _UpperCamelCase = 10 # defined by the RL environment, may be normalized _UpperCamelCase = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''') _UpperCamelCase = model.to(__a) _UpperCamelCase = model.config torch.manual_seed(0) _UpperCamelCase = torch.randn(1 , 1 , config.state_dim).to(device=__a , dtype=torch.floataa) # env.reset() _UpperCamelCase = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=__a) _UpperCamelCase = torch.tensor(__a , device=__a , dtype=torch.floataa).reshape(1 , 1 , 1) _UpperCamelCase = state _UpperCamelCase = torch.zeros(1 , 0 , config.act_dim , device=__a , dtype=torch.floataa) _UpperCamelCase = torch.zeros(1 , 0 , device=__a , dtype=torch.floataa) _UpperCamelCase = torch.tensor(0 , device=__a , dtype=torch.long).reshape(1 , 1) for step in range(__a): _UpperCamelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=__a)] , dim=1) _UpperCamelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=__a)] , dim=1) _UpperCamelCase = torch.ones(1 , states.shape[1]).to(dtype=torch.long , device=states.device) with torch.no_grad(): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = model( states=__a , actions=__a , rewards=__a , returns_to_go=__a , timesteps=__a , attention_mask=__a , return_dict=__a , ) self.assertEqual(action_pred.shape , actions.shape) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4)) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim).to(device=__a , dtype=torch.floataa), 1.0, False, {}, ) _UpperCamelCase = action_pred[0, -1] _UpperCamelCase = torch.cat([states, state] , dim=1) _UpperCamelCase = returns_to_go[0, -1] - reward _UpperCamelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1)] , dim=1) _UpperCamelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=__a , dtype=torch.long) * (step + 1)] , dim=1)
100
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'levit' def __init__( self , __a=2_24 , __a=3 , __a=3 , __a=2 , __a=1 , __a=16 , __a=[1_28, 2_56, 3_84] , __a=[4, 8, 12] , __a=[4, 4, 4] , __a=[16, 16, 16] , __a=0 , __a=[2, 2, 2] , __a=[2, 2, 2] , __a=0.02 , **__a , ) -> List[str]: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = kernel_size _UpperCamelCase = stride _UpperCamelCase = padding _UpperCamelCase = hidden_sizes _UpperCamelCase = num_attention_heads _UpperCamelCase = depths _UpperCamelCase = key_dim _UpperCamelCase = drop_path_rate _UpperCamelCase = patch_size _UpperCamelCase = attention_ratio _UpperCamelCase = mlp_ratio _UpperCamelCase = initializer_range _UpperCamelCase = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-4
100
1
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _lowerCamelCase): A_ : Dict = (DDPMParallelScheduler,) def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def __lowerCamelCase ( self ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , ) def __lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] __lowerCAmelCase : Dict = self.get_scheduler_config() __lowerCAmelCase : Any = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5 def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] __lowerCAmelCase : str = self.get_scheduler_config() __lowerCAmelCase : Any = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = self.dummy_model() __lowerCAmelCase : List[Any] = self.dummy_sample_deter __lowerCAmelCase : int = self.dummy_sample_deter + 0.1 __lowerCAmelCase : Tuple = self.dummy_sample_deter - 0.1 __lowerCAmelCase : Tuple = samplea.shape[0] __lowerCAmelCase : Tuple = torch.stack([samplea, samplea, samplea] , dim=0 ) __lowerCAmelCase : str = torch.arange(_SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __lowerCAmelCase : Tuple = scheduler.batch_step_no_noise(_SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) __lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : int = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.scheduler_classes[0] __lowerCAmelCase : Any = self.get_scheduler_config() __lowerCAmelCase : Optional[Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = len(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = self.dummy_model() __lowerCAmelCase : List[str] = self.dummy_sample_deter __lowerCAmelCase : str = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual __lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase : Tuple = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample __lowerCAmelCase : Any = pred_prev_sample __lowerCAmelCase : Union[str, Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : List[str] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = self.scheduler_classes[0] __lowerCAmelCase : str = self.get_scheduler_config(prediction_type='v_prediction' ) __lowerCAmelCase : Tuple = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = len(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = self.dummy_model() __lowerCAmelCase : Any = self.dummy_sample_deter __lowerCAmelCase : int = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual __lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample __lowerCAmelCase : int = pred_prev_sample __lowerCAmelCase : int = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = self.scheduler_classes[0] __lowerCAmelCase : Optional[Any] = self.get_scheduler_config() __lowerCAmelCase : Tuple = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = scheduler.timesteps for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ): if i == len(_SCREAMING_SNAKE_CASE ) - 1: __lowerCAmelCase : Optional[int] = -1 else: __lowerCAmelCase : Dict = timesteps[i + 1] __lowerCAmelCase : Optional[int] = scheduler.previous_timestep(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = prev_t.item() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.scheduler_classes[0] __lowerCAmelCase : List[Any] = self.get_scheduler_config() __lowerCAmelCase : Union[str, Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.scheduler_classes[0] __lowerCAmelCase : List[str] = self.get_scheduler_config() __lowerCAmelCase : Optional[Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = [1_00, 87, 50, 1, 0] __lowerCAmelCase : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] __lowerCAmelCase : Any = self.get_scheduler_config() __lowerCAmelCase : Optional[int] = scheduler_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
86
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case =logging.get_logger("""transformers.models.encodec""") __snake_case ={ """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __snake_case ={ """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __snake_case ={ """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __snake_case ={ """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __snake_case ={ """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case =[] __snake_case =[] def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape else: lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value elif weight_type == "running_mean": lowerCAmelCase = value elif weight_type == "running_var": lowerCAmelCase = value elif weight_type == "num_batches_tracked": lowerCAmelCase = value elif weight_type == "weight_ih_l0": lowerCAmelCase = value elif weight_type == "weight_hh_l0": lowerCAmelCase = value elif weight_type == "bias_ih_l0": lowerCAmelCase = value elif weight_type == "bias_hh_l0": lowerCAmelCase = value elif weight_type == "weight_ih_l1": lowerCAmelCase = value elif weight_type == "weight_hh_l1": lowerCAmelCase = value elif weight_type == "bias_ih_l1": lowerCAmelCase = value elif weight_type == "bias_hh_l1": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ): lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase , lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight_ih_l0" in name: lowerCAmelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCAmelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCAmelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCAmelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCAmelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCAmelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCAmelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCAmelCase = 'bias_hh_l1' elif "bias" in name: lowerCAmelCase = 'bias' elif "weight" in name: lowerCAmelCase = 'weight' elif "running_mean" in name: lowerCAmelCase = 'running_mean' elif "running_var" in name: lowerCAmelCase = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase = 'num_batches_tracked' else: lowerCAmelCase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ): if config_path is not None: lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase ) else: lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase = [8, 5, 4, 4] lowerCAmelCase = [2.2] lowerCAmelCase = 64 lowerCAmelCase = 32000 lowerCAmelCase = 2048 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False elif model_name == "encodec_48khz": lowerCAmelCase = [8, 5, 4, 2] lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase = 48000 lowerCAmelCase = 2 lowerCAmelCase = False lowerCAmelCase = 'time_group_norm' lowerCAmelCase = True lowerCAmelCase = 1.0 lowerCAmelCase = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = EncodecModel(lowerCamelCase ) lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase ) lowerCAmelCase = torch.load(lowerCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase = original_checkpoint['best_state'] recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) model.save_pretrained(lowerCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case =parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
0
from __future__ import annotations lowercase_ = 8.988E9 # units = N * m^s * C^-2 def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Any = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: __lowerCamelCase : Optional[Any] = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __lowerCamelCase : Optional[Any] = abs(SCREAMING_SNAKE_CASE__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __lowerCamelCase : List[str] = abs(SCREAMING_SNAKE_CASE__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __lowerCamelCase : str = (COULOMBS_CONSTANT * charge_product / abs(SCREAMING_SNAKE_CASE__ )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
194
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Any = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __lowerCamelCase : Dict = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __lowerCamelCase : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __lowerCamelCase : Tuple = subset[i - 1][j] if arr[i - 1] <= j: __lowerCamelCase : List[Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
194
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): def __init__( self : Any , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Tuple ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
294
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): '''simple docstring''' _a : Optional[Any] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: _a : Tuple = 1 - (matter_density + radiation_density + dark_energy) _a : int = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _a : List[str] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _snake_case = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
294
1
"""simple docstring""" from __future__ import annotations from fractions import Fraction def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : int ) -> bool: """simple docstring""" return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> list[str]: """simple docstring""" snake_case = [] snake_case = 1_1 snake_case = int('1' + '0' * digit_len ) for num in range(_UpperCamelCase , _UpperCamelCase ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(_UpperCamelCase , _UpperCamelCase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 snake_case = 1_0 return solutions def lowerCAmelCase__ ( _UpperCamelCase : int = 2 ) -> int: """simple docstring""" snake_case = 1.0 for fraction in fraction_list(_UpperCamelCase ): snake_case = Fraction(_UpperCamelCase ) result *= frac.denominator / frac.numerator return int(_UpperCamelCase ) if __name__ == "__main__": print(solution())
362
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def lowerCAmelCase__ ( _UpperCamelCase : Any ) -> int: """simple docstring""" snake_case = {} snake_case = job['started_at'] snake_case = job['completed_at'] snake_case = date_parser.parse(_UpperCamelCase ) snake_case = date_parser.parse(_UpperCamelCase ) snake_case = round((end_datetime - start_datetime).total_seconds() / 60.0 ) snake_case = start snake_case = end snake_case = duration_in_min return job_info def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Any=None ) -> Union[str, Any]: """simple docstring""" snake_case = None if token is not None: snake_case = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} snake_case = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" snake_case = requests.get(_UpperCamelCase , headers=_UpperCamelCase ).json() snake_case = {} try: job_time.update({job['name']: extract_time_from_single_job(_UpperCamelCase ) for job in result['jobs']} ) snake_case = math.ceil((result['total_count'] - 1_0_0) / 1_0_0 ) for i in range(_UpperCamelCase ): snake_case = requests.get(url + f"""&page={i + 2}""" , headers=_UpperCamelCase ).json() job_time.update({job['name']: extract_time_from_single_job(_UpperCamelCase ) for job in result['jobs']} ) return job_time except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = get_job_time(args.workflow_run_id) SCREAMING_SNAKE_CASE__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v['duration']}""")
149
0
'''simple docstring''' __lowerCAmelCase = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' __lowerCAmelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __lowerCAmelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
89
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowercase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __a ( _SCREAMING_SNAKE_CASE ) ->Any: if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): return image elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): a__: Optional[int] = [image] a__: str = [trans(img.convert('RGB' ) ) for img in image] a__: Any = torch.stack(_SCREAMING_SNAKE_CASE ) return image class __snake_case ( __lowerCAmelCase ): def __init__( self , lowercase , lowercase) -> Optional[int]: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM a__: Dict = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=lowercase , scheduler=lowercase) def lowerCamelCase_ ( self , lowercase) -> int: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}') def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> Dict: '''simple docstring''' a__: int = min(int(num_inference_steps * strength) , lowercase) a__: Any = max(num_inference_steps - init_timestep , 0) a__: Union[str, Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=None) -> List[Any]: '''simple docstring''' if not isinstance(lowercase , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase)}') a__: Tuple = image.to(device=lowercase , dtype=lowercase) if isinstance(lowercase , lowercase) and len(lowercase) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(lowercase)}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.') a__: List[str] = init_latents.shape a__: List[Any] = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase) # get latents print('add noise to latents at timestep' , lowercase) a__: int = self.scheduler.add_noise(lowercase , lowercase , lowercase) a__: Dict = init_latents return latents @torch.no_grad() def __call__( self , lowercase = None , lowercase = 0.8 , lowercase = 1 , lowercase = None , lowercase = 0.0 , lowercase = 50 , lowercase = None , lowercase = "pil" , lowercase = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowercase) # 2. Preprocess image a__: Tuple = preprocess(lowercase) # 3. set timesteps self.scheduler.set_timesteps(lowercase , device=self.device) a__ , a__: Union[str, Any] = self.get_timesteps(lowercase , lowercase , self.device) a__: Optional[int] = timesteps[:1].repeat(lowercase) # 4. Prepare latent variables a__: Union[str, Any] = self.prepare_latents(lowercase , lowercase , lowercase , self.unet.dtype , self.device , lowercase) a__: Optional[Any] = latents # 5. Denoising loop for t in self.progress_bar(lowercase): # 1. predict noise model_output a__: Dict = self.unet(lowercase , lowercase).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 a__: Optional[Any] = self.scheduler.step( lowercase , lowercase , lowercase , eta=lowercase , use_clipped_model_output=lowercase , generator=lowercase , ).prev_sample a__: Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1) a__: Optional[int] = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": a__: Dict = self.numpy_to_pil(lowercase) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowercase)
290
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCAmelCase__ : Any =None UpperCAmelCase__ : List[str] =logging.get_logger(__name__) UpperCAmelCase__ : Tuple ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase__ : Dict ={ '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase__ : Optional[int] ={ '''facebook/nllb-large-en-ro''': 10_24, '''facebook/nllb-200-distilled-600M''': 10_24, } # fmt: off UpperCAmelCase__ : Dict =['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __A ( a ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = PRETRAINED_VOCAB_FILES_MAP __A = ["""input_ids""", """attention_mask"""] __A = NllbTokenizer __A = [] __A = [] def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_="<s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="<s>" , UpperCAmelCase_="<unk>" , UpperCAmelCase_="<pad>" , UpperCAmelCase_="<mask>" , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=False , **UpperCAmelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token lowerCamelCase =legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase =vocab_file lowerCamelCase =False if not self.vocab_file else True lowerCamelCase =FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) lowerCamelCase ={ lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase =src_lang if src_lang is not None else """eng_Latn""" lowerCamelCase =self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _snake_case ( self ): return self._src_lang @src_lang.setter def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCamelCase =[self.sep_token_id] lowerCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowerCamelCase =src_lang lowerCamelCase =self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase =self.convert_tokens_to_ids(UpperCAmelCase_ ) lowerCamelCase =tgt_lang_id return inputs def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = "eng_Latn" , UpperCAmelCase_ = None , UpperCAmelCase_ = "fra_Latn" , **UpperCAmelCase_ , ): lowerCamelCase =src_lang lowerCamelCase =tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def _snake_case ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: lowerCamelCase =[] lowerCamelCase =[self.eos_token_id, self.cur_lang_code] else: lowerCamelCase =[self.cur_lang_code] lowerCamelCase =[self.eos_token_id] lowerCamelCase =self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase =self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase =processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: lowerCamelCase =[] lowerCamelCase =[self.eos_token_id, self.cur_lang_code] else: lowerCamelCase =[self.cur_lang_code] lowerCamelCase =[self.eos_token_id] lowerCamelCase =self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase =self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase =processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase =os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
262
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =(1 - _cos) / 2 lowerCamelCase =1 - _cos lowerCamelCase =1 + alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =(1 + _cos) / 2 lowerCamelCase =-1 - _cos lowerCamelCase =1 + alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =_sin / 2 lowerCamelCase =0 lowerCamelCase =-ba lowerCamelCase =1 + alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =1 - alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 + alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) , ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =10 ** (gain_db / 40) lowerCamelCase =1 + alpha * big_a lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha * big_a lowerCamelCase =1 + alpha / big_a lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha / big_a lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) , ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =10 ** (gain_db / 40) lowerCamelCase =(big_a + 1) - (big_a - 1) * _cos lowerCamelCase =(big_a + 1) + (big_a - 1) * _cos lowerCamelCase =(big_a - 1) - (big_a + 1) * _cos lowerCamelCase =(big_a - 1) + (big_a + 1) * _cos lowerCamelCase =2 * sqrt(_UpperCAmelCase ) * alpha lowerCamelCase =big_a * (pmc + aaa) lowerCamelCase =2 * big_a * mpc lowerCamelCase =big_a * (pmc - aaa) lowerCamelCase =ppmc + aaa lowerCamelCase =-2 * pmpc lowerCamelCase =ppmc - aaa lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) , ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =10 ** (gain_db / 40) lowerCamelCase =(big_a + 1) - (big_a - 1) * _cos lowerCamelCase =(big_a + 1) + (big_a - 1) * _cos lowerCamelCase =(big_a - 1) - (big_a + 1) * _cos lowerCamelCase =(big_a - 1) + (big_a + 1) * _cos lowerCamelCase =2 * sqrt(_UpperCAmelCase ) * alpha lowerCamelCase =big_a * (ppmc + aaa) lowerCamelCase =-2 * big_a * pmpc lowerCamelCase =big_a * (ppmc - aaa) lowerCamelCase =pmc + aaa lowerCamelCase =2 * mpc lowerCamelCase =pmc - aaa lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
262
1
"""simple docstring""" from bisect import bisect from itertools import accumulate def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: lowerCamelCase_ : Dict =sorted(zip(__UpperCamelCase , __UpperCamelCase ) , key=lambda lowerCamelCase__ : x[0] / x[1] , reverse=__UpperCamelCase ) lowerCamelCase_ , lowerCamelCase_ : Any =[i[0] for i in r], [i[1] for i in r] lowerCamelCase_ : Union[str, Any] =list(accumulate(__UpperCamelCase ) ) lowerCamelCase_ : Optional[Any] =bisect(__UpperCamelCase , __UpperCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
144
def __snake_case ( __UpperCamelCase : bytes ): """simple docstring""" return "".join([hex(__UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(__UpperCamelCase )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" if (len(__UpperCamelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__UpperCamelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] ,16 ) for i in range(0 ,len(__UpperCamelCase ) ,2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
from __future__ import annotations import requests def a( A : str ) -> dict: """simple docstring""" a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(A ).json() def a( A : int = 10 ) -> list[dict]: """simple docstring""" a = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" a = requests.get(A ).json()[:max_stories] return [get_hackernews_story(A ) for story_id in story_ids] def a( A : int = 10 ) -> str: """simple docstring""" a = hackernews_top_stories(A ) return "\n".join("* [{title}]({url})".format(**A ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
71
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _lowercase: Any = logging.get_logger(__name__) def a( A : bool , A : bool ) -> List[str]: """simple docstring""" def run_func(A : Union[str, Any] ): @wraps(A ) def run_in_eager_mode(*A : int , **A : List[str] ): return func(*A , **A ) @wraps(A ) @tf.function(experimental_compile=A ) def run_in_graph_mode(*A : List[str] , **A : Optional[int] ): return func(*A , **A ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def a( A : int , A : int , A : int ) -> ["tf.Tensor"]: """simple docstring""" a = random.Random() a = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(A , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = 42 __A = 42 __A = "TensorFlow" @property def UpperCamelCase_ (self ): """simple docstring""" return tf.__version__ def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) a = self._prepare_inference_func(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return self._measure_speed(_inference ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) a = self._prepare_train_func(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return self._measure_speed(_train ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase_ ) a = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) a = self._prepare_inference_func(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return self._measure_memory(_inference ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase_ ) a = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) a = self._prepare_train_func(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return self._measure_memory(_train ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) a = ( hasattr(lowerCamelCase_ , "architectures" ) and isinstance(config.architectures , lowerCamelCase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: a = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model a = __import__("transformers" , fromlist=[model_class] ) a = getattr(lowerCamelCase_ , lowerCamelCase_ ) a = model_cls(lowerCamelCase_ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: a = TF_MODEL_MAPPING[config.__class__](lowerCamelCase_ ) # encoder-decoder has vocab size saved differently a = config.vocab_size if hasattr(lowerCamelCase_ , "vocab_size" ) else config.encoder.vocab_size a = random_input_ids(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ , training=lowerCamelCase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase_ , training=lowerCamelCase_ ) a = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) a = ( hasattr(lowerCamelCase_ , "architectures" ) and isinstance(config.architectures , lowerCamelCase_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: a = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model a = __import__("transformers" , fromlist=[model_class] ) a = getattr(lowerCamelCase_ , lowerCamelCase_ ) a = model_cls(lowerCamelCase_ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: a = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase_ ) # encoder-decoder has vocab size saved differently a = config.vocab_size if hasattr(lowerCamelCase_ , "vocab_size" ) else config.encoder.vocab_size a = random_input_ids(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): a = model(lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ , labels=lowerCamelCase_ , training=lowerCamelCase_ )[0] a = tf.gradients(lowerCamelCase_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): a = model(lowerCamelCase_ , labels=lowerCamelCase_ , training=lowerCamelCase_ )[0] a = tf.gradients(lowerCamelCase_ , model.trainable_variables ) return gradients a = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(lowerCamelCase_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average a = timeit.repeat( lowerCamelCase_ , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) a = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) a = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() a = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) a = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase_ ) a = meminfo.used a = Memory(lowerCamelCase_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) a = None else: a = measure_peak_memory_cpu(lowerCamelCase_ ) a = Memory(lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else memory_bytes if self.args.trace_memory_line_by_line: a = stop_memory_tracing(lowerCamelCase_ ) if memory is None: a = summary.total else: a = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
71
1
"""simple docstring""" from math import factorial def _snake_case ( lowercase__ = 100 ): return sum(int(lowercase__ ) for x in str(factorial(lowercase__ ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
96
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
0
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __a ): """simple docstring""" lowercase = ["image_processor", "tokenizer"] lowercase = "BridgeTowerImageProcessor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : str , snake_case_ : List[str] , snake_case_ : Dict ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : List[str] , snake_case_ : Optional[Any] , snake_case_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case_ : bool = True , snake_case_ : Union[bool, str, PaddingStrategy] = False , snake_case_ : Union[bool, str, TruncationStrategy] = None , snake_case_ : Optional[int] = None , snake_case_ : int = 0 , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[bool] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = True , snake_case_ : Optional[Union[str, TensorType]] = None , **snake_case_ : List[Any] , ): snake_case__ : str = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel_values + pixel_mask snake_case__ : Dict = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , **UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def lowerCamelCase ( self : List[str] , *snake_case_ : Union[str, Any] , **snake_case_ : List[str] ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self : int , *snake_case_ : int , **snake_case_ : Tuple ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def lowerCamelCase ( self : Any ): snake_case__ : Optional[Any] = self.tokenizer.model_input_names snake_case__ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
368
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : int ): snake_case__ : List[str] = """hf-internal-testing/tiny-random-t5""" snake_case__ : Any = AutoTokenizer.from_pretrained(snake_case_ ) snake_case__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ) snake_case__ : Union[str, Any] = tokenizer("""This is me""" , return_tensors="""pt""" ) snake_case__ : str = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case__ : Optional[int] = model.generate(**snake_case_ ) snake_case__ : Any = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) snake_case__ : int = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case__ : Optional[Any] = model_reloaded.generate(**snake_case_ ) self.assertTrue(torch.allclose(snake_case_ , snake_case_ ) ) def lowerCamelCase ( self : List[Any] ): snake_case__ : Optional[Any] = """hf-internal-testing/tiny-random-t5""" snake_case__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ) snake_case__ : int = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(snake_case_ ): model.save_pretrained(snake_case_ ) snake_case__ : int = model.reverse_bettertransformer() model.save_pretrained(snake_case_ )
43
0
"""simple docstring""" from math import pi def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
64
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _snake_case = {"UserAgent": UserAgent().random} def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = script.contents[0] _A : Tuple = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase : def __init__( self , _a ) -> Union[str, Any]: _A : Optional[int] = F'''https://www.instagram.com/{username}/''' _A : Union[str, Any] = self.get_json() def a__ ( self ) -> dict: _A : Tuple = requests.get(self.url , headers=_a ).text _A : Dict = BeautifulSoup(_a , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ) -> str: return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ) -> str: return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def a__ ( self ) -> str: return self.user_data["username"] @property def a__ ( self ) -> str: return self.user_data["full_name"] @property def a__ ( self ) -> str: return self.user_data["biography"] @property def a__ ( self ) -> str: return self.user_data["business_email"] @property def a__ ( self ) -> str: return self.user_data["external_url"] @property def a__ ( self ) -> int: return self.user_data["edge_followed_by"]["count"] @property def a__ ( self ) -> int: return self.user_data["edge_follow"]["count"] @property def a__ ( self ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def a__ ( self ) -> str: return self.user_data["profile_pic_url_hd"] @property def a__ ( self ) -> bool: return self.user_data["is_verified"] @property def a__ ( self ) -> bool: return self.user_data["is_private"] def lowerCAmelCase_ ( snake_case_ = "github" ): import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions _A : Tuple = InstagramUser(snake_case_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data,snake_case_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _snake_case = InstagramUser("github") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
370
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Any = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _A : int = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : int = None if token is not None: _A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : Any = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Dict = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ ) _A : Tuple = result.headers["""Location"""] _A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ ) _A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' ) with open(snake_case_,"""wb""" ) as fp: fp.write(response.content ) def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : List[str] = [] _A : int = [] _A : Tuple = None with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(snake_case_ ) as f: for line in f: _A : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _A : Dict = line[: line.index(""": """ )] _A : Dict = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _A : List[str] = line[len("""FAILED """ ) :] failed_tests.append(snake_case_ ) elif filename == "job_name.txt": _A : Optional[int] = line if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` ''' f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' """ problem.""" ) _A : Any = None if job_name and job_links: _A : Dict = job_links.get(snake_case_,snake_case_ ) # A list with elements of the form (line of error, error, failed test) _A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )] return result def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = [] _A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) ) return errors def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = Counter() counter.update([x[1] for x in logs] ) _A : Tuple = counter.most_common() _A : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: _A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _A : Dict = test.split("""/""" )[2] else: _A : str = None return test def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : str = [(x[0], x[1], get_model(x[2] )) for x in logs] _A : Union[str, Any] = [x for x in logs if x[2] is not None] _A : Optional[Any] = {x[2] for x in logs} _A : List[Any] = {} for test in tests: _A : Any = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _A : Union[str, Any] = counter.most_common() _A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _A : str = sum(error_counts.values() ) if n_errors > 0: _A : Optional[int] = {"""count""": n_errors, """errors""": error_counts} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = """| no. | error | status |""" _A : List[Any] = """|-:|:-|:-|""" _A : List[Any] = [header, sep] for error in reduced_by_error: _A : List[str] = reduced_by_error[error]["""count"""] _A : List[Any] = f'''| {count} | {error[:100]} | |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = """| model | no. of errors | major error | count |""" _A : Optional[Any] = """|-:|-:|-:|-:|""" _A : Union[str, Any] = [header, sep] for model in reduced_by_model: _A : Dict = reduced_by_model[model]["""count"""] _A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0] _A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _snake_case = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _snake_case = get_job_links(args.workflow_run_id, token=args.token) _snake_case = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _snake_case = k.find(" / ") _snake_case = k[index + len(" / ") :] _snake_case = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _snake_case = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _snake_case = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _snake_case = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _snake_case = reduce_by_error(errors) _snake_case = reduce_by_model(errors) _snake_case = make_github_table(reduced_by_error) _snake_case = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
343
0
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __UpperCamelCase = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __UpperCamelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> List[str]: if "://" in dataset_path: SCREAMING_SNAKE_CASE = dataset_path.split('://' )[1] return dataset_path def lowercase (SCREAMING_SNAKE_CASE_ : fsspec.AbstractFileSystem ) -> Optional[Any]: if fs is not None and fs.protocol != "file": return True else: return False def lowercase (SCREAMING_SNAKE_CASE_ : fsspec.AbstractFileSystem , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = not is_remote_filesystem(SCREAMING_SNAKE_CASE_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(SCREAMING_SNAKE_CASE_ ) , fs._strip_protocol(SCREAMING_SNAKE_CASE_ ) ) else: fs.mv(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , recursive=SCREAMING_SNAKE_CASE_ ) def lowercase () -> int: if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = threading.Lock()
113
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
46
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __lowercase ( snake_case_ ): """simple docstring""" _UpperCAmelCase : Dict = '''speech_to_text''' _UpperCAmelCase : Any = ['''past_key_values'''] _UpperCAmelCase : Optional[int] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Tuple , lowerCAmelCase__ : Tuple=1_0000 , lowerCAmelCase__ : List[str]=12 , lowerCAmelCase__ : List[Any]=2048 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Dict=6 , lowerCAmelCase__ : Tuple=2048 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : str="relu" , lowerCAmelCase__ : Tuple=256 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Union[str, Any]=1 , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : List[str]=6000 , lowerCAmelCase__ : List[Any]=1024 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : Tuple=(5, 5) , lowerCAmelCase__ : Optional[Any]=1024 , lowerCAmelCase__ : Tuple=80 , lowerCAmelCase__ : Dict=1 , **lowerCAmelCase__ : Any , ): SCREAMING_SNAKE_CASE_: List[Any] = vocab_size SCREAMING_SNAKE_CASE_: Dict = d_model SCREAMING_SNAKE_CASE_: Dict = encoder_ffn_dim SCREAMING_SNAKE_CASE_: List[str] = encoder_layers SCREAMING_SNAKE_CASE_: Optional[int] = encoder_attention_heads SCREAMING_SNAKE_CASE_: Tuple = decoder_ffn_dim SCREAMING_SNAKE_CASE_: Optional[int] = decoder_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE_: List[Any] = dropout SCREAMING_SNAKE_CASE_: Tuple = attention_dropout SCREAMING_SNAKE_CASE_: str = activation_dropout SCREAMING_SNAKE_CASE_: Union[str, Any] = activation_function SCREAMING_SNAKE_CASE_: Any = init_std SCREAMING_SNAKE_CASE_: Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE_: int = decoder_layerdrop SCREAMING_SNAKE_CASE_: Union[str, Any] = use_cache SCREAMING_SNAKE_CASE_: Any = encoder_layers SCREAMING_SNAKE_CASE_: str = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_: Dict = max_source_positions SCREAMING_SNAKE_CASE_: Union[str, Any] = max_target_positions SCREAMING_SNAKE_CASE_: Optional[int] = num_conv_layers SCREAMING_SNAKE_CASE_: List[Any] = list(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = conv_channels SCREAMING_SNAKE_CASE_: Optional[Any] = input_feat_per_channel SCREAMING_SNAKE_CASE_: List[Any] = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` " F"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, " F"`config.num_conv_layers = {self.num_conv_layers}`.") super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
356
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __lowercase ( tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : float , lowerCAmelCase__ : Callable , lowerCAmelCase__ : int , lowerCAmelCase__ : float = 1.0 , lowerCAmelCase__ : str = None , ): super().__init__() SCREAMING_SNAKE_CASE_: str = initial_learning_rate SCREAMING_SNAKE_CASE_: Dict = warmup_steps SCREAMING_SNAKE_CASE_: Any = power SCREAMING_SNAKE_CASE_: int = decay_schedule_fn SCREAMING_SNAKE_CASE_: Union[str, Any] = name def __call__( self : Optional[Any] , lowerCAmelCase__ : Any): with tf.name_scope(self.name or "WarmUp") as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. SCREAMING_SNAKE_CASE_: Any = tf.cast(lowerCAmelCase__ , tf.floataa) SCREAMING_SNAKE_CASE_: Optional[Any] = tf.cast(self.warmup_steps , tf.floataa) SCREAMING_SNAKE_CASE_: Optional[int] = global_step_float / warmup_steps_float SCREAMING_SNAKE_CASE_: Union[str, Any] = self.initial_learning_rate * tf.math.pow(lowerCAmelCase__ , self.power) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps) , name=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 0.9 , _UpperCAmelCase = 0.9_9_9 , _UpperCAmelCase = 1e-8 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 1.0 , _UpperCAmelCase = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_UpperCAmelCase , ) if num_warmup_steps: SCREAMING_SNAKE_CASE_: Tuple = WarmUp( initial_learning_rate=_UpperCAmelCase , decay_schedule_fn=_UpperCAmelCase , warmup_steps=_UpperCAmelCase , ) if weight_decay_rate > 0.0: SCREAMING_SNAKE_CASE_: List[str] = AdamWeightDecay( learning_rate=_UpperCAmelCase , weight_decay_rate=_UpperCAmelCase , beta_a=_UpperCAmelCase , beta_a=_UpperCAmelCase , epsilon=_UpperCAmelCase , clipnorm=_UpperCAmelCase , global_clipnorm=_UpperCAmelCase , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=_UpperCAmelCase , ) else: SCREAMING_SNAKE_CASE_: int = tf.keras.optimizers.Adam( learning_rate=_UpperCAmelCase , beta_a=_UpperCAmelCase , beta_a=_UpperCAmelCase , epsilon=_UpperCAmelCase , clipnorm=_UpperCAmelCase , global_clipnorm=_UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , lowerCAmelCase__ : float = 0.9 , lowerCAmelCase__ : float = 0.999 , lowerCAmelCase__ : float = 1E-7 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : str = "AdamWeightDecay" , **lowerCAmelCase__ : int , ): super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = weight_decay_rate SCREAMING_SNAKE_CASE_: List[Any] = include_in_weight_decay SCREAMING_SNAKE_CASE_: List[Any] = exclude_from_weight_decay @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: List[str] = {"WarmUp": WarmUp} return super(lowerCAmelCase__ , cls).from_config(lowerCAmelCase__ , custom_objects=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int]): super(lowerCAmelCase__ , self)._prepare_local(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: str = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=None , **lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = list(zip(*lowerCAmelCase__)) return super(lowerCAmelCase__ , self).apply_gradients(zip(lowerCAmelCase__ , lowerCAmelCase__) , name=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple): if apply_state is None: return self._decayed_lr_t[var_dtype], {} SCREAMING_SNAKE_CASE_: Dict = apply_state or {} SCREAMING_SNAKE_CASE_: List[str] = apply_state.get((var_device, var_dtype)) if coefficients is None: SCREAMING_SNAKE_CASE_: Optional[int] = self._fallback_apply_state(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple=None): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) with tf.control_dependencies([decay]): return super(lowerCAmelCase__ , self)._resource_apply_dense(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict=None): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = self._decay_weights_op(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) with tf.control_dependencies([decay]): return super(lowerCAmelCase__ , self)._resource_apply_sparse(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[str] = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate}) return config def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCAmelCase__ , lowerCAmelCase__) is not None: return False return True class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Any = [] SCREAMING_SNAKE_CASE_: Any = None @property def _SCREAMING_SNAKE_CASE ( self : int): if self._accum_steps is None: SCREAMING_SNAKE_CASE_: Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _SCREAMING_SNAKE_CASE ( self : Tuple): if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients") return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : str , lowerCAmelCase__ : Tuple): if not self._gradients: SCREAMING_SNAKE_CASE_: Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCAmelCase__) , trainable=lowerCAmelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ]) if len(lowerCAmelCase__) != len(self._gradients): raise ValueError(F"Expected {len(self._gradients)} gradients, but got {len(lowerCAmelCase__)}") for accum_gradient, gradient in zip(self._gradients , lowerCAmelCase__): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCAmelCase__) self._accum_steps.assign_add(1) def _SCREAMING_SNAKE_CASE ( self : int): if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCAmelCase__))
127
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase: Optional[int] = logging.get_logger(__name__) _lowercase: List[Any] = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } _lowercase: Optional[int] = { "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def a( A : str ) -> str: """simple docstring""" a = EfficientNetConfig() a = CONFIG_MAP[model_name]["hidden_dim"] a = CONFIG_MAP[model_name]["width_coef"] a = CONFIG_MAP[model_name]["depth_coef"] a = CONFIG_MAP[model_name]["image_size"] a = CONFIG_MAP[model_name]["dropout_rate"] a = CONFIG_MAP[model_name]["dw_padding"] a = "huggingface/label-files" a = "imagenet-1k-id2label.json" a = 1000 a = json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) ) a = {int(A ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} return config def a( ) -> Optional[int]: """simple docstring""" a = "http://images.cocodataset.org/val2017/000000039769.jpg" a = Image.open(requests.get(A , stream=A ).raw ) return im def a( A : List[str] ) -> Dict: """simple docstring""" a = CONFIG_MAP[model_name]["image_size"] a = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=A , ) return preprocessor def a( A : Union[str, Any] ) -> int: """simple docstring""" a = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] a = sorted(set(A ) ) a = len(A ) a = {b: str(A ) for b, i in zip(A , range(A ) )} a = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: a = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) a = {} for item in rename_keys: if item[0] in original_param_names: a = "efficientnet." + item[1] a = "classifier.weight" a = "classifier.bias" return key_mapping def a( A : Union[str, Any] , A : Optional[int] , A : str ) -> List[Any]: """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue a = key_mapping[key] if "_conv" in key and "kernel" in key: a = torch.from_numpy(A ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: a = torch.from_numpy(A ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: a = torch.from_numpy(np.transpose(A ) ) else: a = torch.from_numpy(A ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(A ) @torch.no_grad() def a( A : Tuple , A : Optional[int] , A : List[Any] , A : Any ) -> Dict: """simple docstring""" a = model_classes[model_name]( include_top=A , weights="imagenet" , input_tensor=A , input_shape=A , pooling=A , classes=1000 , classifier_activation="softmax" , ) a = original_model.trainable_variables a = original_model.non_trainable_variables a = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: a = param.numpy() a = list(tf_params.keys() ) # Load HuggingFace model a = get_efficientnet_config(A ) a = EfficientNetForImageClassification(A ).eval() a = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) a = rename_keys(A ) replace_params(A , A , A ) # Initialize preprocessor and preprocess input image a = convert_image_processor(A ) a = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): a = hf_model(**A ) a = outputs.logits.detach().numpy() # Original model inference a = False a = CONFIG_MAP[model_name]["image_size"] a = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) a = image.img_to_array(A ) a = np.expand_dims(A , axis=0 ) a = original_model.predict(A ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(A , A , atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(A ): os.mkdir(A ) # Save converted model and image processor hf_model.save_pretrained(A ) preprocessor.save_pretrained(A ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) a = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(A ) hf_model.push_to_hub(A ) if __name__ == "__main__": _lowercase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") _lowercase: List[str] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
227
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def a( A : dict ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def a( A : np.ndarray , A : np.ndarray ) -> XGBClassifier: """simple docstring""" a = XGBClassifier() classifier.fit(A , A ) return classifier def a( ) -> None: """simple docstring""" a = load_iris() a , a = data_handling(A ) a , a , a , a = train_test_split( A , A , test_size=0.25 ) a = iris["target_names"] # Create an XGBoost Classifier from the training data a = xgboost(A , A ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( A , A , A , display_labels=A , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
227
1
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
270
'''simple docstring''' from math import sqrt def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = 0 for i in range(1 , int(sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) ): if n % i == 0 and i != sqrt(_SCREAMING_SNAKE_CASE ): total += i + n // i elif i == sqrt(_SCREAMING_SNAKE_CASE ): total += i return total - n def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 1_0000 ): _snake_case = sum( i for i in range(1 , _SCREAMING_SNAKE_CASE ) if sum_of_divisors(sum_of_divisors(_SCREAMING_SNAKE_CASE ) ) == i and sum_of_divisors(_SCREAMING_SNAKE_CASE ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
270
1
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Dict = BlenderbotSmallTokenizer snake_case__ : Tuple = False def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" super().setUp() _lowerCamelCase : Dict = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _lowerCamelCase : List[Any] = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : Tuple = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _lowerCamelCase : Tuple = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__lowerCAmelCase : Dict ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : List[str] = '''adapt act apte''' _lowerCamelCase : Union[str, Any] = '''adapt act apte''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : Optional[int] = '''adapt act apte''' _lowerCamelCase : Dict = ['''adapt''', '''act''', '''ap@@''', '''te'''] _lowerCamelCase : Tuple = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowerCamelCase : str = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Dict = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_3_8_4] _lowerCamelCase : Optional[int] = '''I am a small frog.''' _lowerCamelCase : Optional[int] = tok([src_text] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase )['''input_ids'''] _lowerCamelCase : str = tok.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) _lowerCamelCase : Dict = '''I am a small frog .''' _lowerCamelCase : Tuple = '''.''' _lowerCamelCase : List[str] = tok(__lowerCAmelCase )['''input_ids'''] _lowerCamelCase : Dict = tok(__lowerCAmelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
72
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = KandinskyVaaControlnetPipeline __lowerCamelCase : Optional[int] = ["image_embeds", "negative_image_embeds", "hint"] __lowerCamelCase : Dict = ["image_embeds", "negative_image_embeds", "hint"] __lowerCamelCase : List[str] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __lowerCamelCase : Dict = False @property def _lowerCAmelCase ( self ): return 32 @property def _lowerCAmelCase ( self ): return 32 @property def _lowerCAmelCase ( self ): return self.time_input_dim @property def _lowerCAmelCase ( self ): return self.time_input_dim * 4 @property def _lowerCAmelCase ( self ): return 100 @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) A : Any = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A : List[str] = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def _lowerCAmelCase ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) A : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase ( self ): A : Optional[Any] = self.dummy_unet A : Tuple = self.dummy_movq A : List[Any] = DDIMScheduler( num_train_timesteps=1000, beta_schedule="""linear""", beta_start=0.0_0085, beta_end=0.012, clip_sample=lowerCamelCase__, set_alpha_to_one=lowerCamelCase__, steps_offset=1, prediction_type="""epsilon""", thresholding=lowerCamelCase__, ) A : int = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=0 ): A : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) A : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) # create hint A : int = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith("""mps""" ): A : Optional[Any] = torch.manual_seed(lowerCamelCase__ ) else: A : str = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) A : List[str] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _lowerCAmelCase ( self ): A : Dict = """cpu""" A : List[str] = self.get_dummy_components() A : Dict = self.pipeline_class(**lowerCamelCase__ ) A : Optional[Any] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A : int = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) A : Union[str, Any] = output.images A : str = pipe( **self.get_dummy_inputs(lowerCamelCase__ ), return_dict=lowerCamelCase__, )[0] A : Optional[int] = image[0, -3:, -3:, -1] A : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A : Dict = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): A : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) A : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) A : Optional[Any] = torch.from_numpy(np.array(lowerCamelCase__ ) ).float() / 255.0 A : List[str] = hint.permute(2, 0, 1 ).unsqueeze(0 ) A : Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""", torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) A : Tuple = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""", torch_dtype=torch.floataa ) A : Union[str, Any] = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) A : Optional[Any] = """A robot, 4k photo""" A : Union[str, Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) A , A : int = pipe_prior( lowerCamelCase__, generator=lowerCamelCase__, num_inference_steps=5, negative_prompt="""""", ).to_tuple() A : Union[str, Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) A : int = pipeline( image_embeds=lowerCamelCase__, negative_image_embeds=lowerCamelCase__, hint=lowerCamelCase__, generator=lowerCamelCase__, num_inference_steps=100, output_type="""np""", ) A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCamelCase__, lowerCamelCase__ )
116
0
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowerCamelCase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = 1 @register_to_config def __init__( self ,lowerCamelCase_ = 1_0_0_0 ,lowerCamelCase_ = None ) -> Union[str, Any]: # set `betas`, `alphas`, `timesteps` self.set_timesteps(lowerCamelCase_ ) # standard deviation of the initial noise distribution A = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. A = 4 # running values A = [] def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> Optional[Any]: A = num_inference_steps A = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] A = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: A = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: A = torch.sin(steps * math.pi / 2 ) ** 2 A = (1.0 - self.betas**2) ** 0.5 A = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] A = timesteps.to(lowerCamelCase_ ) A = [] def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) A = (self.timesteps == timestep).nonzero().item() A = timestep_index + 1 A = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(lowerCamelCase_ ) if len(self.ets ) == 1: A = self.ets[-1] elif len(self.ets ) == 2: A = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: A = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: A = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) A = self._get_prev_sample(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> torch.FloatTensor: return sample def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: A = self.alphas[timestep_index] A = self.betas[timestep_index] A = self.alphas[prev_timestep_index] A = self.betas[prev_timestep_index] A = (sample - sigma * ets) / max(lowerCamelCase_ ,1E-8 ) A = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> Union[str, Any]: return self.config.num_train_timesteps
77
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase =logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Any: super().__init__(*lowerCamelCase_ ,**lowerCamelCase_ ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCamelCase__ ( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=None ) -> int: A = {} A = {} if prompt is not None: A = prompt if generate_kwargs is not None: A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self ,lowerCamelCase_ ,**lowerCamelCase_ ) -> Any: return super().__call__(lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=None ) -> Optional[Any]: A = load_image(lowerCamelCase_ ) if prompt is not None: if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ): raise ValueError( f'Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. ' """Note also that one single text can be provided for conditional image to text generation.""" ) A = self.model.config.model_type if model_type == "git": A = self.image_processor(images=lowerCamelCase_ ,return_tensors=self.framework ) A = self.tokenizer(text=lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ).input_ids A = [self.tokenizer.cls_token_id] + input_ids A = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": A = self.image_processor(images=lowerCamelCase_ ,header_text=lowerCamelCase_ ,return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation A = self.image_processor(images=lowerCamelCase_ ,return_tensors=self.framework ) A = self.tokenizer(lowerCamelCase_ ,return_tensors=self.framework ) model_inputs.update(lowerCamelCase_ ) else: raise ValueError(f'Model type {model_type} does not support conditional text generation' ) else: A = self.image_processor(images=lowerCamelCase_ ,return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: A = None return model_inputs def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=None ) -> Optional[int]: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] ,lowerCamelCase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): A = None if generate_kwargs is None: A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. A = model_inputs.pop(self.model.main_input_name ) A = self.model.generate(lowerCamelCase_ ,**lowerCamelCase_ ,**lowerCamelCase_ ) return model_outputs def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Optional[Any]: A = [] for output_ids in model_outputs: A = { """generated_text""": self.tokenizer.decode( lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ,) } records.append(lowerCamelCase_ ) return records
77
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _A : Tuple = logging.get_logger(__name__) def _a ( UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" def run_func(UpperCAmelCase ): @wraps(UpperCAmelCase ) def run_in_eager_mode(*UpperCAmelCase , **UpperCAmelCase ): return func(*UpperCAmelCase , **UpperCAmelCase ) @wraps(UpperCAmelCase ) @tf.function(experimental_compile=UpperCAmelCase ) def run_in_graph_mode(*UpperCAmelCase , **UpperCAmelCase ): return func(*UpperCAmelCase , **UpperCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> ["tf.Tensor"]: """simple docstring""" lowerCamelCase__ : Any = random.Random() lowerCamelCase__ : str = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(UpperCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : TensorFlowBenchmarkArguments _UpperCAmelCase : PretrainedConfig _UpperCAmelCase : str = "TensorFlow" @property def __lowerCamelCase ( self : int ) ->int: return tf.__version__ def __lowerCamelCase ( self : List[Any] , A : str , A : int , A : int ) ->float: # initialize GPU on separate process lowerCamelCase__ : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : int = self._prepare_inference_func(A , A , A ) return self._measure_speed(_inference ) def __lowerCamelCase ( self : Dict , A : str , A : int , A : int ) ->float: lowerCamelCase__ : Tuple = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : List[Any] = self._prepare_train_func(A , A , A ) return self._measure_speed(_train ) def __lowerCamelCase ( self : Tuple , A : str , A : int , A : int ) ->[Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A ) lowerCamelCase__ : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : Tuple = self._prepare_inference_func(A , A , A ) return self._measure_memory(_inference ) def __lowerCamelCase ( self : Tuple , A : str , A : int , A : int ) ->[Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A ) lowerCamelCase__ : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : Optional[int] = self._prepare_train_func(A , A , A ) return self._measure_memory(_train ) def __lowerCamelCase ( self : List[Any] , A : str , A : int , A : int ) ->Callable[[], None]: lowerCamelCase__ : str = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowerCamelCase__ : Optional[Any] = ( hasattr(A , '''architectures''' ) and isinstance(config.architectures , A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ : Union[str, Any] = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ : Optional[int] = __import__('''transformers''' , fromlist=[model_class] ) lowerCamelCase__ : str = getattr(A , A ) lowerCamelCase__ : int = model_cls(A ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowerCamelCase__ : List[Any] = TF_MODEL_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently lowerCamelCase__ : List[str] = config.vocab_size if hasattr(A , '''vocab_size''' ) else config.encoder.vocab_size lowerCamelCase__ : Any = random_input_ids(A , A , A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(A , decoder_input_ids=A , training=A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(A , training=A ) lowerCamelCase__ : Union[str, Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __lowerCamelCase ( self : Optional[Any] , A : str , A : int , A : int ) ->Callable[[], None]: lowerCamelCase__ : Tuple = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowerCamelCase__ : List[Any] = ( hasattr(A , '''architectures''' ) and isinstance(config.architectures , A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ : Dict = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ : Union[str, Any] = __import__('''transformers''' , fromlist=[model_class] ) lowerCamelCase__ : str = getattr(A , A ) lowerCamelCase__ : Any = model_cls(A ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowerCamelCase__ : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently lowerCamelCase__ : List[Any] = config.vocab_size if hasattr(A , '''vocab_size''' ) else config.encoder.vocab_size lowerCamelCase__ : Optional[Any] = random_input_ids(A , A , A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCamelCase__ : Tuple = model(A , decoder_input_ids=A , labels=A , training=A )[0] lowerCamelCase__ : Dict = tf.gradients(A , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCamelCase__ : str = model(A , labels=A , training=A )[0] lowerCamelCase__ : Union[str, Any] = tf.gradients(A , model.trainable_variables ) return gradients lowerCamelCase__ : str = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __lowerCamelCase ( self : Dict , A : Tuple ) ->float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(A , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCamelCase__ : List[Any] = timeit.repeat( A , repeat=self.args.repeat , number=1_0 , ) return min(A ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def __lowerCamelCase ( self : List[str] , A : Callable[[], None] ) ->[Memory, MemorySummary]: logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) lowerCamelCase__ : Tuple = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) lowerCamelCase__ : Tuple = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() lowerCamelCase__ : str = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCamelCase__ : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(A ) lowerCamelCase__ : Tuple = meminfo.used lowerCamelCase__ : Dict = Memory(A ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) lowerCamelCase__ : Optional[int] = None else: lowerCamelCase__ : Optional[int] = measure_peak_memory_cpu(A ) lowerCamelCase__ : Tuple = Memory(A ) if isinstance(A , A ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCamelCase__ : str = stop_memory_tracing(A ) if memory is None: lowerCamelCase__ : Dict = summary.total else: lowerCamelCase__ : Optional[Any] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
142
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _A : str = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def __init__( self : Dict , *A : Any , **A : List[Any] ) ->None: warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , A , ) super().__init__(*A , **A )
142
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __lowerCAmelCase = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __lowerCAmelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def snake_case_ ( snake_case ) -> Tuple: if "://" in dataset_path: lowercase__: Union[str, Any] = dataset_path.split('://' )[1] return dataset_path def snake_case_ ( snake_case ) -> Optional[Any]: if fs is not None and fs.protocol != "file": return True else: return False def snake_case_ ( snake_case , snake_case , snake_case ) -> Any: lowercase__: Any = not is_remote_filesystem(_a ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_a ) , fs._strip_protocol(_a ) ) else: fs.mv(_a , _a , recursive=_a ) def snake_case_ ( ) -> Optional[Any]: if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowercase__: Dict = None lowercase__: str = None lowercase__: Optional[Any] = threading.Lock()
364
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): __lowercase : Tuple = ['input_values', 'attention_mask'] def __init__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 16_000 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = False , lowerCAmelCase__ = 80 , lowerCAmelCase__ = 16 , lowerCAmelCase__ = 64 , lowerCAmelCase__ = "hann_window" , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = 80 , lowerCAmelCase__ = 7_600 , lowerCAmelCase__ = 1E-10 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = True , **lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Dict = do_normalize lowercase__: Optional[Any] = return_attention_mask lowercase__: str = num_mel_bins lowercase__: Dict = hop_length lowercase__: Dict = win_length lowercase__: Optional[int] = win_function lowercase__: Any = frame_signal_scale lowercase__: Tuple = fmin lowercase__: Tuple = fmax lowercase__: Dict = mel_floor lowercase__: int = reduction_factor lowercase__: List[Any] = win_length * sampling_rate // 1_000 lowercase__: Optional[Any] = hop_length * sampling_rate // 1_000 lowercase__: Optional[int] = optimal_fft_length(self.sample_size ) lowercase__: Optional[Any] = (self.n_fft // 2) + 1 lowercase__: str = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCAmelCase__ ) lowercase__: Optional[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , lowerCAmelCase__ , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , lowerCAmelCase__ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: lowercase__: List[str] = np.array(lowerCAmelCase__ , np.intaa ) lowercase__: Tuple = [] for vector, length in zip(lowerCAmelCase__ , attention_mask.sum(-1 ) ): lowercase__: int = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase__: Tuple = padding_value normed_input_values.append(lowerCAmelCase__ ) else: lowercase__: Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , ) -> np.ndarray: '''simple docstring''' lowercase__: List[str] = spectrogram( lowerCAmelCase__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: '''simple docstring''' if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: lowercase__: Dict = self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) else: lowercase__: str = None if audio_target is not None: lowercase__: List[str] = self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) if inputs is None: return inputs_target else: lowercase__: int = inputs_target['input_values'] lowercase__: List[str] = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: lowercase__: Optional[int] = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: '''simple docstring''' lowercase__: int = isinstance(lowerCAmelCase__ , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowercase__: Tuple = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__: Dict = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): lowercase__: Optional[Any] = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowercase__: Optional[Any] = speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__: Optional[int] = [speech] # needed to make pad() work on spectrogram inputs lowercase__: str = self.feature_size # convert into correct format for padding if is_target: lowercase__: int = [self._extract_mel_features(lowerCAmelCase__ ) for waveform in speech] lowercase__: Dict = BatchFeature({'input_values': features} ) lowercase__: Union[str, Any] = self.num_mel_bins else: lowercase__: Union[str, Any] = BatchFeature({'input_values': speech} ) lowercase__: Dict = self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase__: List[str] = feature_size_hack # convert input values to correct format lowercase__: Union[str, Any] = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): lowercase__: List[Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for array in input_values] elif ( not isinstance(lowerCAmelCase__ , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowercase__: Dict = [array.astype(np.floataa ) for array in input_values] elif isinstance(lowerCAmelCase__ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowercase__: Tuple = input_values.astype(np.floataa ) # convert attention_mask to correct format lowercase__: Tuple = padded_inputs.get('attention_mask' ) if attention_mask is not None: lowercase__: str = [np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowercase__: Tuple = ( attention_mask if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase__: str = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=lowerCAmelCase__ , padding_value=self.padding_value ) if return_tensors is not None: lowercase__: Union[str, Any] = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs def SCREAMING_SNAKE_CASE__ ( self ) -> Dict[str, Any]: '''simple docstring''' lowercase__: int = super().to_dict() # Don't serialize these as they are derived from the other properties. lowercase__: str = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
288
0
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowercase__ =yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) lowercase__ ={ 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } lowercase__ ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase__ ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase__ ={ 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } lowercase__ ='\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase__ =( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) lowercase__ ='\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase__ =( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) lowercase__ ='\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase__ ='The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' lowercase__ ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase__ ='The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' lowercase__ ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' lowercase__ ='The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' lowercase__ ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' lowercase__ ='The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' lowercase__ ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' lowercase__ ='The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' lowercase__ ='\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase__ ='The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' lowercase__ ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' lowercase__ ='The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' lowercase__ ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase__ ='The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' lowercase__ ='' lowercase__ ='The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' lowercase__ ='\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase__ ='The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __UpperCamelCase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] ): assert ReadMe.from_string(__lowerCAmelCase , __lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ): with pytest.raises(__lowerCAmelCase , match=re.escape(expected_error.format(path='''root''' ) ) ): __a : Union[str, Any] = ReadMe.from_string(__lowerCAmelCase , __lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCamelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple ): with pytest.raises(__lowerCAmelCase , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCamelCase ( lowerCAmelCase__ : Tuple ): ReadMe.from_string(__lowerCAmelCase , __lowerCAmelCase , suppress_parsing_errors=__lowerCAmelCase ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: __a : Dict = Path(__lowerCAmelCase ) / '''README.md''' with open(__lowerCAmelCase , '''w+''' ) as readme_file: readme_file.write(__lowerCAmelCase ) __a : Tuple = ReadMe.from_readme(__lowerCAmelCase , __lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] ): with tempfile.TemporaryDirectory() as tmp_dir: __a : Any = Path(__lowerCAmelCase ) / '''README.md''' with open(__lowerCAmelCase , '''w+''' ) as readme_file: readme_file.write(__lowerCAmelCase ) __a : Optional[Any] = expected_error.format(path=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase , match=re.escape(__lowerCAmelCase ) ): __a : Optional[Any] = ReadMe.from_readme(__lowerCAmelCase , __lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCamelCase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: __a : Any = Path(__lowerCAmelCase ) / '''README.md''' with open(__lowerCAmelCase , '''w+''' ) as readme_file: readme_file.write(__lowerCAmelCase ) __a : int = expected_error.format(path=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase , match=re.escape(__lowerCAmelCase ) ): ReadMe.from_readme(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __UpperCamelCase ( lowerCAmelCase__ : List[str] ): with tempfile.TemporaryDirectory() as tmp_dir: __a : Union[str, Any] = Path(__lowerCAmelCase ) / '''README.md''' with open(__lowerCAmelCase , '''w+''' ) as readme_file: readme_file.write(__lowerCAmelCase ) ReadMe.from_readme(__lowerCAmelCase , __lowerCAmelCase , suppress_parsing_errors=__lowerCAmelCase )
216
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = AlbertTokenizer UpperCamelCase__ = AlbertTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True def UpperCamelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 'this is a test' _UpperCAmelCase = 'this is a test' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = '<pad>' _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(UpperCAmelCase ) , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [48, 25, 21, 1289] ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode('sequence builders' ) _UpperCAmelCase = tokenizer.encode('multi-sequence build' ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
39
0
'''simple docstring''' snake_case_ : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } snake_case_ : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: _UpperCamelCase : Optional[Any] = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(UpperCAmelCase_ )}' ) raise ValueError(UpperCAmelCase_ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
236
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase__ ( lowercase ): @staticmethod @abstractmethod def UpperCamelCase_ ( lowerCamelCase__ : ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self : Any ): '''simple docstring''' raise NotImplementedError()
236
1
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _snake_case ( lowercase__ ): _lowerCamelCase : str = SwinConfig() _lowerCamelCase : str = swin_name.split('_' ) _lowerCamelCase : Union[str, Any] = name_split[1] _lowerCamelCase : str = int(name_split[4] ) _lowerCamelCase : List[Any] = int(name_split[3][-1] ) if model_size == "tiny": _lowerCamelCase : Any = 96 _lowerCamelCase : Optional[Any] = (2, 2, 6, 2) _lowerCamelCase : Dict = (3, 6, 12, 24) elif model_size == "small": _lowerCamelCase : Tuple = 96 _lowerCamelCase : Tuple = (2, 2, 18, 2) _lowerCamelCase : Tuple = (3, 6, 12, 24) elif model_size == "base": _lowerCamelCase : Tuple = 128 _lowerCamelCase : int = (2, 2, 18, 2) _lowerCamelCase : Tuple = (4, 8, 16, 32) else: _lowerCamelCase : Any = 192 _lowerCamelCase : Tuple = (2, 2, 18, 2) _lowerCamelCase : str = (6, 12, 24, 48) if "in22k" in swin_name: _lowerCamelCase : Any = 21841 else: _lowerCamelCase : str = 1000 _lowerCamelCase : List[Any] = 'huggingface/label-files' _lowerCamelCase : List[str] = 'imagenet-1k-id2label.json' _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase : int = {int(lowercase__ ): v for k, v in idalabel.items()} _lowerCamelCase : str = idalabel _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = img_size _lowerCamelCase : List[Any] = num_classes _lowerCamelCase : Any = embed_dim _lowerCamelCase : Any = depths _lowerCamelCase : Dict = num_heads _lowerCamelCase : Any = window_size return config def _snake_case ( lowercase__ ): if "patch_embed.proj" in name: _lowerCamelCase : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowerCamelCase : Union[str, Any] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _lowerCamelCase : Tuple = 'encoder.' + name if "attn.proj" in name: _lowerCamelCase : List[str] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _lowerCamelCase : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: _lowerCamelCase : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCamelCase : List[Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowerCamelCase : Optional[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCamelCase : str = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": _lowerCamelCase : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": _lowerCamelCase : Any = 'layernorm.bias' if "head" in name: _lowerCamelCase : Dict = name.replace('head' , 'classifier' ) else: _lowerCamelCase : Tuple = 'swin.' + name return name def _snake_case ( lowercase__ , lowercase__ ): for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(lowercase__ ) if "mask" in key: continue elif "qkv" in key: _lowerCamelCase : Dict = key.split('.' ) _lowerCamelCase : Optional[Any] = int(key_split[1] ) _lowerCamelCase : Any = int(key_split[3] ) _lowerCamelCase : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase : Union[str, Any] = val[:dim, :] _lowerCamelCase : int = val[ dim : dim * 2, : ] _lowerCamelCase : int = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[ :dim ] _lowerCamelCase : Dict = val[ dim : dim * 2 ] _lowerCamelCase : Optional[Any] = val[ -dim: ] else: _lowerCamelCase : str = val return orig_state_dict def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : List[str] = timm.create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() _lowerCamelCase : Tuple = get_swin_config(lowercase__ ) _lowerCamelCase : Optional[int] = SwinForImageClassification(lowercase__ ) model.eval() _lowerCamelCase : int = convert_state_dict(timm_model.state_dict() , lowercase__ ) model.load_state_dict(lowercase__ ) _lowerCamelCase : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase : List[str] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) _lowerCamelCase : Optional[int] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) _lowerCamelCase : Dict = image_processor(images=lowercase__ , return_tensors='pt' ) _lowerCamelCase : Tuple = timm_model(inputs['pixel_values'] ) _lowerCamelCase : List[Any] = model(**lowercase__ ).logits assert torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print(f'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase__ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
96
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase__ = logging.getLogger() def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = {} _lowerCamelCase : List[Any] = os.path.join(lowercase__ , 'all_results.json' ) if os.path.exists(lowercase__ ): with open(lowercase__ , 'r' ) as f: _lowerCamelCase : List[Any] = json.load(lowercase__ ) else: raise ValueError(f'''can\'t find {path}''' ) return results lowercase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def A_ ( self ): import xla_spawn _lowerCamelCase : List[Any] = self.get_auto_remove_tmp_dir() _lowerCamelCase : List[Any] = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowercase , 'argv' , lowercase ): _lowerCamelCase : Dict = time() xla_spawn.main() _lowerCamelCase : Any = time() _lowerCamelCase : Optional[int] = get_results(lowercase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def A_ ( self ): import xla_spawn _lowerCamelCase : Tuple = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(lowercase , 'argv' , lowercase ): xla_spawn.main()
96
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , ) -> int: A_ = parent A_ = batch_size A_ = image_size A_ = num_channels A_ = embeddings_size A_ = hidden_sizes A_ = depths A_ = is_training A_ = use_labels A_ = hidden_act A_ = num_labels A_ = scope A_ = len(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Any: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: A_ = TFResNetModel(config=_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: A_ = self.num_labels A_ = TFResNetForImageClassification(_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ) -> Optional[int]: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __lowercase : List[str] = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) __lowercase : str = False __lowercase : Union[str, Any] = False __lowercase : str = False __lowercase : Optional[int] = False __lowercase : Any = False def __A ( self ) -> List[Any]: A_ = TFResNetModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def __A ( self ) -> Optional[Any]: pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def __A ( self ) -> List[Any]: pass def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> List[str]: def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ = self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ = layer_type A_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def __A ( self ) -> Union[str, Any]: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFResNetModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Union[str, Any]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __A ( self ) -> Optional[Any]: A_ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass A_ = model(**_SCREAMING_SNAKE_CASE ) # verify the logits A_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
18
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: with open(_UpperCamelCase, '''rb''' ) as f: A_ = Image.open(_UpperCamelCase ) return im.convert('''RGB''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the training data.'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __lowercase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCamelCase )} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : str = field(default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __lowercase : bool = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowercase : bool = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> Dict: A_ = torch.stack([example['''pixel_values'''] for example in examples] ) A_ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''', _UpperCamelCase, _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task='''image-classification''', use_auth_token=True if model_args.use_auth_token else None, ) else: A_ = {} if data_args.train_dir is not None: A_ = os.path.join(data_args.train_dir, '''**''' ) if data_args.validation_dir is not None: A_ = os.path.join(data_args.validation_dir, '''**''' ) A_ = load_dataset( '''imagefolder''', data_files=_UpperCamelCase, cache_dir=model_args.cache_dir, task='''image-classification''', ) # If we don't have a validation split, split off a percentage of train as validation. A_ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCamelCase ) and data_args.train_val_split > 0.0: A_ = dataset['''train'''].train_test_split(data_args.train_val_split ) A_ = split['''train'''] A_ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ = dataset['''train'''].features['''labels'''].names A_ ,A_ = {}, {} for i, label in enumerate(_UpperCamelCase ): A_ = str(_UpperCamelCase ) A_ = label # Load the accuracy metric from the datasets package A_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCamelCase ), labelaid=_UpperCamelCase, idalabel=_UpperCamelCase, finetuning_task='''image-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A_ = image_processor.size['''shortest_edge'''] else: A_ = (image_processor.size['''height'''], image_processor.size['''width''']) A_ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A_ = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A_ = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : Dict ): A_ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_UpperCamelCase : Any ): A_ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A_ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A_ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer A_ = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, train_dataset=dataset['''train'''] if training_args.do_train else None, eval_dataset=dataset['''validation'''] if training_args.do_eval else None, compute_metrics=_UpperCamelCase, tokenizer=_UpperCamelCase, data_collator=_UpperCamelCase, ) # Training if training_args.do_train: A_ = None if training_args.resume_from_checkpoint is not None: A_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ = last_checkpoint A_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ = trainer.evaluate() trainer.log_metrics('''eval''', _UpperCamelCase ) trainer.save_metrics('''eval''', _UpperCamelCase ) # Write model card and (optionally) push to hub A_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
18
1
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() a : Optional[int] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCAmelCase : int = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: UpperCAmelCase : List[str] = 1_2_8 elif "12-12" in model_name: UpperCAmelCase : str = 1_2 UpperCAmelCase : List[Any] = 1_2 elif "14-14" in model_name: UpperCAmelCase : int = 1_4 UpperCAmelCase : Union[str, Any] = 1_4 elif "16-16" in model_name: UpperCAmelCase : Any = 1_6 UpperCAmelCase : Tuple = 1_6 else: raise ValueError("""Model not supported""" ) UpperCAmelCase : str = """huggingface/label-files""" if "speech-commands" in model_name: UpperCAmelCase : Dict = 3_5 UpperCAmelCase : Any = """speech-commands-v2-id2label.json""" else: UpperCAmelCase : str = 5_2_7 UpperCAmelCase : Optional[int] = """audioset-id2label.json""" UpperCAmelCase : List[str] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Any = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Any = idalabel UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} return config def __lowerCamelCase ( _lowercase ) -> Optional[Any]: if "module.v" in name: UpperCAmelCase : Optional[int] = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: UpperCAmelCase : Any = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: UpperCAmelCase : List[str] = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: UpperCAmelCase : int = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: UpperCAmelCase : List[str] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: UpperCAmelCase : Optional[Any] = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: UpperCAmelCase : List[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCAmelCase : List[str] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCAmelCase : List[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCAmelCase : List[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCAmelCase : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCAmelCase : List[str] = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: UpperCAmelCase : str = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: UpperCAmelCase : Union[str, Any] = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: UpperCAmelCase : Optional[int] = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def __lowerCamelCase ( _lowercase , _lowercase ) -> int: for key in orig_state_dict.copy().keys(): UpperCAmelCase : List[str] = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCAmelCase : Dict = key.split(""".""" ) UpperCAmelCase : Tuple = int(key_split[3] ) UpperCAmelCase : List[str] = config.hidden_size if "weight" in key: UpperCAmelCase : Tuple = val[:dim, :] UpperCAmelCase : Dict = val[dim : dim * 2, :] UpperCAmelCase : Optional[int] = val[-dim:, :] else: UpperCAmelCase : Optional[int] = val[:dim] UpperCAmelCase : Union[str, Any] = val[dim : dim * 2] UpperCAmelCase : Tuple = val[-dim:] else: UpperCAmelCase : int = val return orig_state_dict def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : Union[str, Any] = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False ) -> List[Any]: UpperCAmelCase : Optional[Any] = get_audio_spectrogram_transformer_config(_lowercase ) UpperCAmelCase : Optional[int] = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict UpperCAmelCase : List[Any] = model_name_to_url[model_name] UpperCAmelCase : Optional[Any] = torch.hub.load_state_dict_from_url(_lowercase , map_location="""cpu""" ) # remove some keys remove_keys(_lowercase ) # rename some keys UpperCAmelCase : Dict = convert_state_dict(_lowercase , _lowercase ) # load 🤗 model UpperCAmelCase : Optional[int] = ASTForAudioClassification(_lowercase ) model.eval() model.load_state_dict(_lowercase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 UpperCAmelCase : int = -4.267_7393 if """speech-commands""" not in model_name else -6.84_5978 UpperCAmelCase : Optional[Any] = 4.568_9974 if """speech-commands""" not in model_name else 5.565_4526 UpperCAmelCase : str = 1_0_2_4 if """speech-commands""" not in model_name else 1_2_8 UpperCAmelCase : List[str] = ASTFeatureExtractor(mean=_lowercase , std=_lowercase , max_length=_lowercase ) if "speech-commands" in model_name: UpperCAmelCase : Any = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) UpperCAmelCase : List[str] = dataset[0]["""audio"""]["""array"""] else: UpperCAmelCase : Optional[int] = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = torchaudio.load(_lowercase ) UpperCAmelCase : Union[str, Any] = waveform.squeeze().numpy() UpperCAmelCase : Tuple = feature_extractor(_lowercase , sampling_rate=1_6_0_0_0 , return_tensors="""pt""" ) # forward pass UpperCAmelCase : Union[str, Any] = model(**_lowercase ) UpperCAmelCase : List[str] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": UpperCAmelCase : Optional[Any] = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": UpperCAmelCase : Tuple = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": UpperCAmelCase : Tuple = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": UpperCAmelCase : Union[str, Any] = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": UpperCAmelCase : Any = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": UpperCAmelCase : Any = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": UpperCAmelCase : List[Any] = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": UpperCAmelCase : Union[str, Any] = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(_lowercase ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a : List[str] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
265
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging a : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A , A , A , A , ) -> Optional[Any]: super().__init__() self.register_modules( vae=A , text_encoder=A , tokenizer=A , unet=A , scheduler=A , safety_checker=A , feature_extractor=A , ) def _lowercase( self , A = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def _lowercase( self ) -> Dict: self.enable_attention_slicing(A ) @torch.no_grad() def __call__( self , A , A = 512 , A = 512 , A = 50 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , A = None , **A , ) -> List[Any]: if isinstance(A , A ): UpperCAmelCase : List[str] = 1 elif isinstance(A , A ): UpperCAmelCase : Dict = len(A ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(A )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(A )}.''' ) # get prompt text embeddings UpperCAmelCase : List[str] = self.tokenizer( A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCAmelCase : List[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase : int = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = text_embeddings.shape UpperCAmelCase : List[str] = text_embeddings.repeat(1 , A , 1 ) UpperCAmelCase : List[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase : List[str] if negative_prompt is None: UpperCAmelCase : Any = [""""""] elif type(A ) is not type(A ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(A )} !=''' f''' {type(A )}.''' ) elif isinstance(A , A ): UpperCAmelCase : Optional[int] = [negative_prompt] elif batch_size != len(A ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(A )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: UpperCAmelCase : Any = negative_prompt UpperCAmelCase : Dict = text_input_ids.shape[-1] UpperCAmelCase : List[Any] = self.tokenizer( A , padding="""max_length""" , max_length=A , truncation=A , return_tensors="""pt""" , ) UpperCAmelCase : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : int = uncond_embeddings.shape[1] UpperCAmelCase : List[Any] = uncond_embeddings.repeat(A , A , 1 ) UpperCAmelCase : List[str] = uncond_embeddings.view(batch_size * num_images_per_prompt , A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase : Optional[int] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCAmelCase : str = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase : Dict = torch.randn( A , generator=A , device="""cpu""" , dtype=A ).to(self.device ) UpperCAmelCase : int = torch.randn(A , generator=A , device="""cpu""" , dtype=A ).to( self.device ) else: UpperCAmelCase : int = torch.randn( A , generator=A , device=self.device , dtype=A ) UpperCAmelCase : int = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCAmelCase : Optional[Any] = latents_reference.to(self.device ) UpperCAmelCase : Tuple = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCAmelCase : int = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCAmelCase : List[str] = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCAmelCase : Union[str, Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCAmelCase : Union[str, Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCAmelCase : Optional[int] = 0 if dx < 0 else dx UpperCAmelCase : List[str] = 0 if dy < 0 else dy UpperCAmelCase : Union[str, Any] = max(-dx , 0 ) UpperCAmelCase : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCAmelCase : str = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase : int = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase : Optional[Any] = {} if accepts_eta: UpperCAmelCase : List[str] = eta for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : str = self.scheduler.scale_model_input(A , A ) # predict the noise residual UpperCAmelCase : Any = self.unet(A , A , encoder_hidden_states=A ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : Any = noise_pred.chunk(2 ) UpperCAmelCase : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Dict = self.scheduler.step(A , A , A , **A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A , A ) UpperCAmelCase : Union[str, Any] = 1 / 0.1_8_2_1_5 * latents UpperCAmelCase : Tuple = self.vae.decode(A ).sample UpperCAmelCase : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCAmelCase : int = self.feature_extractor(self.numpy_to_pil(A ) , return_tensors="""pt""" ).to( self.device ) UpperCAmelCase , UpperCAmelCase : int = self.safety_checker( images=A , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCAmelCase : Any = None if output_type == "pil": UpperCAmelCase : int = self.numpy_to_pil(A ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
265
1
def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = len(_a ) while cur > 1: # Find the maximum number in arr UpperCAmelCase_ : Tuple = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi UpperCAmelCase_ : Optional[Any] = arr[mi::-1] + arr[mi + 1 : len(_a )] # Reverse whole list UpperCAmelCase_ : Union[str, Any] = arr[cur - 1 :: -1] + arr[cur : len(_a )] cur -= 1 return arr if __name__ == "__main__": UpperCamelCase_ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase_ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
368
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[int] = "roformer" def __init__( self: Optional[int] ,lowerCamelCase_: Tuple=50000 ,lowerCamelCase_: Optional[int]=None ,lowerCamelCase_: List[Any]=768 ,lowerCamelCase_: List[Any]=12 ,lowerCamelCase_: Optional[int]=12 ,lowerCamelCase_: Optional[Any]=3072 ,lowerCamelCase_: int="gelu" ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: Any=1536 ,lowerCamelCase_: str=2 ,lowerCamelCase_: Optional[int]=0.0_2 ,lowerCamelCase_: int=1e-12 ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: Any=False ,lowerCamelCase_: Union[str, Any]=True ,**lowerCamelCase_: List[str] ,) -> Tuple: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Optional[int] = hidden_size if embedding_size is None else embedding_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Optional[Any] = type_vocab_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Optional[Any] = rotary_value UpperCAmelCase_ : str = use_cache class _snake_case ( __snake_case ): '''simple docstring''' @property def A__ ( self: Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase_ : Optional[Any] = {0: """batch""", 1: """sequence"""} UpperCAmelCase_ : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
59
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Dict = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : List[Any] = """mobilenet_v2""" def __init__( self : str , snake_case_ : List[str]=3 , snake_case_ : Any=2_2_4 , snake_case_ : Union[str, Any]=1.0 , snake_case_ : int=8 , snake_case_ : List[str]=8 , snake_case_ : Dict=6 , snake_case_ : Union[str, Any]=3_2 , snake_case_ : Optional[int]=True , snake_case_ : Optional[Any]=True , snake_case_ : Optional[Any]="relu6" , snake_case_ : int=True , snake_case_ : Any=0.8 , snake_case_ : List[str]=0.0_2 , snake_case_ : Optional[int]=0.0_0_1 , snake_case_ : Dict=2_5_5 , **snake_case_ : Dict , ): super().__init__(**snake_case_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = depth_multiplier _UpperCAmelCase = depth_divisible_by _UpperCAmelCase = min_depth _UpperCAmelCase = expand_ratio _UpperCAmelCase = output_stride _UpperCAmelCase = first_layer_is_expansion _UpperCAmelCase = finegrained_output _UpperCAmelCase = hidden_act _UpperCAmelCase = tf_padding _UpperCAmelCase = classifier_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = semantic_loss_ignore_index class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[int] = version.parse("""1.11""" ) @property def lowercase ( self : Optional[int] ): return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase ( self : Union[str, Any] ): if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase ( self : List[Any] ): return 1e-4
22
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # We need to create solution object to save path. snake_case_ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] snake_case_ = run_maze(SCREAMING_SNAKE_CASE__ , 0 , 0 , SCREAMING_SNAKE_CASE__ ) if solved: print('''\n'''.join(str(SCREAMING_SNAKE_CASE__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # Final check point. if i == j == (size - 1): snake_case_ = 1 return True snake_case_ = (not i < 0) and (not j < 0) # Check lower bounds snake_case_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case_ = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE__ , i + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j + 1 , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - 1 , SCREAMING_SNAKE_CASE__ ) ): return True snake_case_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> float: UpperCAmelCase__ : Tuple = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: UpperCAmelCase__ : List[str] = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase__ : List[str] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase__ : Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCamelCase__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
299
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCamelCase_ : def __init__( self : List[Any] , _A : int | None = None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = root def __str__( self : Union[str, Any] ): '''simple docstring''' return str(self.root ) def lowercase_ ( self : str , _A : Node , _A : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children UpperCAmelCase__ : str = new_children else: UpperCAmelCase__ : Optional[int] = new_children else: UpperCAmelCase__ : Union[str, Any] = new_children def lowercase_ ( self : Union[str, Any] , _A : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowercase_ ( self : int ): '''simple docstring''' return self.root is None def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = Node(_A ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Optional[Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : Any = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : str = new_node break else: UpperCAmelCase__ : List[str] = parent_node.right UpperCAmelCase__ : Tuple = parent_node def lowercase_ ( self : Optional[Any] , *_A : Tuple ): '''simple docstring''' for value in values: self.__insert(_A ) def lowercase_ ( self : Union[str, Any] , _A : int ): '''simple docstring''' if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase__ : List[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : str = node.left if value < node.value else node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : int = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Tuple = node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : Optional[int] = self.root while node.left is not None: UpperCAmelCase__ : Tuple = node.left return node def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: UpperCAmelCase__ : Union[str, Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase_ ( self : List[str] , _A : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase_ ( self : str , _A : Any=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase_ ( self : Dict , _A : list , _A : Node | None ): '''simple docstring''' if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def lowercase_ ( self : Optional[Any] , _A : int , _A : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def a__ ( lowerCAmelCase__ ) -> list[Node]: UpperCAmelCase__ : Union[str, Any] = [] if curr_node is not None: UpperCAmelCase__ : str = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def a__ ( ) -> None: UpperCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(lowerCAmelCase__ ) # Prints all the elements of the list in order traversal print(lowerCAmelCase__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
299
1
import math def A_ ( snake_case : Any ) -> int: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A_ ( snake_case : List[str] = 0.1 ) -> Tuple: '''simple docstring''' __UpperCamelCase = 3 __UpperCamelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
328
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A__ = TypeVar("""T""") A__ = TypeVar("""U""") class __lowerCAmelCase ( Generic[T, U] ): def __init__( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = key _lowerCAmelCase = val _lowerCAmelCase = None _lowerCAmelCase = None def __repr__( self ): """simple docstring""" return ( F'Node: key: {self.key}, val: {self.val}, ' F'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __lowerCAmelCase ( Generic[T, U] ): def __init__( self ): """simple docstring""" _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) _lowerCAmelCase , _lowerCAmelCase = self.rear, self.head def __repr__( self ): """simple docstring""" _lowerCAmelCase = ["""DoubleLinkedList"""] _lowerCAmelCase = self.head while node.next is not None: rep.append(str(_snake_case ) ) _lowerCAmelCase = node.next rep.append(str(self.rear ) ) return ",\n ".join(_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _lowerCAmelCase = node _lowerCAmelCase = previous _lowerCAmelCase = node _lowerCAmelCase = self.rear def snake_case ( self , _snake_case ): """simple docstring""" if node.prev is None or node.next is None: return None _lowerCAmelCase = node.next _lowerCAmelCase = node.prev _lowerCAmelCase = None _lowerCAmelCase = None return node class __lowerCAmelCase ( Generic[T, U] ): __lowerCamelCase = {} def __init__( self , _snake_case ): """simple docstring""" _lowerCAmelCase = DoubleLinkedList() _lowerCAmelCase = capacity _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = {} def __repr__( self ): """simple docstring""" return ( F'CacheInfo(hits={self.hits}, misses={self.miss}, ' F'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self , _snake_case ): """simple docstring""" return key in self.cache def snake_case ( self , _snake_case ): """simple docstring""" if key in self.cache: self.hits += 1 _lowerCAmelCase = self.cache[key] _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_snake_case ) return node.val self.miss += 1 return None def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _lowerCAmelCase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_snake_case ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _lowerCAmelCase = value self.list.add(_snake_case ) @classmethod def snake_case ( cls , _snake_case = 128 ): """simple docstring""" def cache_decorator_inner(_snake_case ) -> Callable[..., U]: def cache_decorator_wrapper(*_snake_case ) -> U: if func not in cls.decorator_function_to_instance_map: _lowerCAmelCase = LRUCache(_snake_case ) _lowerCAmelCase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _lowerCAmelCase = func(*_snake_case ) cls.decorator_function_to_instance_map[func].put(args[0] , _snake_case ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_snake_case , """cache_info""" , _snake_case ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
82
0
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __snake_case :Any = False class _A ( unittest.TestCase ): pass @slow @require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''') pipe.to(__SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''') __a = torch.manual_seed(0) __a = pipe( image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images __a = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __a = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
131
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __snake_case ( _UpperCAmelCase ): if isinstance(_UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class _A : def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' pass def _lowerCamelCase ( self : Any): '''simple docstring''' pass def _lowerCamelCase ( self : Dict): '''simple docstring''' pass def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim)) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int]=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {'''vision_model''': vision_model, '''text_model''': text_model} __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = after_output[0].numpy() __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float): '''simple docstring''' __a = np.abs((a - b)).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , F'Difference between torch and flax is {diff} (>= {tol}).') def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_save_load(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a , __a = self.get_pretrained_model_and_inputs() __a = model_a(**__SCREAMING_SNAKE_CASE) __a = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model_a(**__SCREAMING_SNAKE_CASE) __a = after_outputs[0].numpy() __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = TFViTModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFBertModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFViTModelTester(self) __a = TFBertModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = TFDeiTModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFRobertaModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = TFDeiTModelTester(self) __a = TFRobertaModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = TFCLIPVisionModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFBertModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = TFCLIPVisionModelTester(self) __a = TFBertModelTester(self) __a = clip_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self : str): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=__SCREAMING_SNAKE_CASE) __a = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''') __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') __a = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='''np''') __a = model(**__SCREAMING_SNAKE_CASE) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __a = np.array([[1.2_28_47_27, 0.3_10_41_22]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __SCREAMING_SNAKE_CASE , atol=1E-3))
131
1
"""simple docstring""" import math import tensorflow as tf from packaging import version def a_ ( _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = tf.convert_to_tensor(_lowerCAmelCase ) lowercase__ : List[str] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def a_ ( _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = tf.convert_to_tensor(_lowerCAmelCase ) lowercase__ : str = tf.cast(math.pi , x.dtype ) lowercase__ : str = tf.cast(0.0_4_4_7_1_5 , x.dtype ) lowercase__ : Union[str, Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(_lowerCAmelCase , 3 )) )) return x * cdf def a_ ( _lowerCAmelCase : Any ): '''simple docstring''' lowercase__ : int = tf.convert_to_tensor(_lowerCAmelCase ) return x * tf.tanh(tf.math.softplus(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : Optional[Any] = tf.convert_to_tensor(_lowerCAmelCase ) lowercase__ : List[Any] = tf.cast(0.0_4_4_7_1_5 , x.dtype ) lowercase__ : str = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Optional[int] = tf.convert_to_tensor(_lowerCAmelCase ) lowercase__ : Any = tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' return tf.clip_by_value(_gelu(_lowerCAmelCase ) , -10 , 10 ) def a_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=-1 ): '''simple docstring''' lowercase__ , lowercase__ : Union[str, Any] = tf.split(_lowerCAmelCase , 2 , axis=_lowerCAmelCase ) return a * tf.math.sigmoid(_lowerCAmelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def a_ ( _lowerCAmelCase : List[str] ): '''simple docstring''' return tf.keras.activations.gelu(_lowerCAmelCase , approximate=_lowerCAmelCase ) _UpperCamelCase : Union[str, Any] = tf.keras.activations.gelu _UpperCamelCase : int = approximate_gelu_wrap else: _UpperCamelCase : Union[str, Any] = _gelu _UpperCamelCase : Optional[Any] = _gelu_new _UpperCamelCase : Union[str, Any] = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
77
"""simple docstring""" _UpperCamelCase : Union[str, Any] = 8.3_1_4_4_5_9_8 def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): '''simple docstring''' if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _UpperCamelCase : List[Any] = 3_00 _UpperCamelCase : Tuple = 28 _UpperCamelCase : Any = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
77
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any=8 ) -> Optional[Any]: _snake_case = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _snake_case = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( A_ ): def __init__( self : List[str] , _lowerCamelCase : UNetaDConditionModel , _lowerCamelCase : DDPMScheduler , _lowerCamelCase : VQModel , ): super().__init__() self.register_modules( unet=_lowerCamelCase , scheduler=_lowerCamelCase , movq=_lowerCamelCase , ) _snake_case = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowercase ( self : Tuple , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] ): if latents is None: _snake_case = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _snake_case = latents.to(_lowerCamelCase ) _snake_case = latents * scheduler.init_noise_sigma return latents def lowercase ( self : List[Any] , _lowerCamelCase : Optional[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _snake_case = torch.device(f'''cuda:{gpu_id}''' ) _snake_case = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : List[str] , _lowerCamelCase : List[str]=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _snake_case = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _snake_case = None for cpu_offloaded_model in [self.unet, self.movq]: _snake_case , _snake_case = cpu_offload_with_hook(_lowerCamelCase , _lowerCamelCase , prev_module_hook=_lowerCamelCase ) # We'll offload the last model manually. _snake_case = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase ( self : List[str] ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowerCamelCase ) def __call__( self : Any , _lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowerCamelCase : int = 512 , _lowerCamelCase : int = 512 , _lowerCamelCase : int = 100 , _lowerCamelCase : float = 4.0 , _lowerCamelCase : int = 1 , _lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCamelCase : Optional[torch.FloatTensor] = None , _lowerCamelCase : Optional[str] = "pil" , _lowerCamelCase : bool = True , ): _snake_case = self._execution_device _snake_case = guidance_scale > 1.0 if isinstance(_lowerCamelCase , _lowerCamelCase ): _snake_case = torch.cat(_lowerCamelCase , dim=0 ) _snake_case = image_embeds.shape[0] * num_images_per_prompt if isinstance(_lowerCamelCase , _lowerCamelCase ): _snake_case = torch.cat(_lowerCamelCase , dim=0 ) if do_classifier_free_guidance: _snake_case = image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) _snake_case = negative_image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) _snake_case = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCamelCase ) self.scheduler.set_timesteps(_lowerCamelCase , device=_lowerCamelCase ) _snake_case = self.scheduler.timesteps _snake_case = self.unet.config.in_channels _snake_case , _snake_case = downscale_height_and_width(_lowerCamelCase , _lowerCamelCase , self.movq_scale_factor ) # create initial latent _snake_case = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance _snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _snake_case = {'''image_embeds''': image_embeds} _snake_case = self.unet( sample=_lowerCamelCase , timestep=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , added_cond_kwargs=_lowerCamelCase , return_dict=_lowerCamelCase , )[0] if do_classifier_free_guidance: _snake_case , _snake_case = noise_pred.split(latents.shape[1] , dim=1 ) _snake_case , _snake_case = noise_pred.chunk(2 ) _snake_case , _snake_case = variance_pred.chunk(2 ) _snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _snake_case = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _snake_case , _snake_case = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase , )[0] # post-processing _snake_case = self.movq.decode(_lowerCamelCase , force_not_quantize=_lowerCamelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _snake_case = image * 0.5 + 0.5 _snake_case = image.clamp(0 , 1 ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _snake_case = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
40
"""simple docstring""" from timeit import timeit UpperCAmelCase__ = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _UpperCAmelCase ( __lowerCamelCase : str ) -> bool: _snake_case = 0 _snake_case = len(__lowerCamelCase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _UpperCAmelCase ( __lowerCamelCase : str ) -> bool: _snake_case = len(__lowerCamelCase ) // 2 _snake_case = len(__lowerCamelCase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(__lowerCamelCase ) ) def _UpperCAmelCase ( __lowerCamelCase : str ) -> bool: if len(__lowerCamelCase ) <= 2: return True if s[0] == s[len(__lowerCamelCase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _UpperCAmelCase ( __lowerCamelCase : str ) -> bool: return s == s[::-1] def _UpperCAmelCase ( __lowerCamelCase : str ) -> None: _snake_case = f'''all({name}(key) is value for key, value in test_data.items())''' _snake_case = f'''from __main__ import test_data, {name}''' _snake_case = 50_00_00 _snake_case = timeit(stmt=__lowerCamelCase , setup=__lowerCamelCase , number=__lowerCamelCase ) print(f'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"{key:21} {value}") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
40
1
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Dict = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] __UpperCamelCase : Tuple = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def __A ( __lowerCamelCase , __lowerCamelCase ) -> Any: a = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks a = int(re.match(R""".*layer_(\d*).*""" , __lowerCamelCase )[1] ) layer_number -= 3 return f'h.{layer_number}.' + key def __A ( __lowerCamelCase ) -> Any: if dtype == torch.bool: return 1 / 8 a = re.search(R"""[^\d](\d+)$""" , str(__lowerCamelCase ) ) if bit_search is None: raise ValueError(f'`dtype` is not a valid dtype: {dtype}.' ) a = int(bit_search.groups()[0] ) return bit_size // 8 def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # Construct model if bloom_config_file == "": a = BloomConfig() else: a = BloomConfig.from_json_file(__lowerCamelCase ) if shard_model: a = os.listdir(__lowerCamelCase ) a = sorted(filter(lambda __lowerCamelCase : s.startswith("""layer""" ) and "model_00" in s , __lowerCamelCase ) ) a = {"""weight_map""": {}, """metadata""": {}} a = 0 a = None a = BloomConfig() for j, file in enumerate(__lowerCamelCase ): print("""Processing file: {}""".format(__lowerCamelCase ) ) a = None for i in range(__lowerCamelCase ): # load all TP files a = file.replace("""model_00""" , f'model_0{i}' ) a = torch.load(os.path.join(__lowerCamelCase , __lowerCamelCase ) , map_location="""cpu""" ) # Rename keys in the transformers names a = list(temp.keys() ) for key in keys: a = temp.pop(__lowerCamelCase ) if tensors is None: a = temp else: for key in tensors.keys(): if any(key.endswith(__lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel a = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks a = torch.cat([tensors[key], temp[key]] , dim=__lowerCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): a = tensors[key] / pretraining_tp torch.save( __lowerCamelCase , os.path.join( __lowerCamelCase , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(__lowerCamelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): a = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: a = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) , str(len(__lowerCamelCase ) ).zfill(5 ) ) a = BloomConfig() a = pytorch_dump_folder_path + """/""" + CONFIG_NAME a = total_size with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(__lowerCamelCase , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f: a = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + """\n""" f.write(__lowerCamelCase ) else: a = BloomModel(__lowerCamelCase ) a = os.listdir(__lowerCamelCase ) a = sorted(filter(lambda __lowerCamelCase : s.startswith("""layer""" ) and "model_00" in s , __lowerCamelCase ) ) a = None for i, file in enumerate(__lowerCamelCase ): a = None for i in range(__lowerCamelCase ): # load all TP files a = file.replace("""model_00""" , f'model_0{i}' ) a = torch.load(os.path.join(__lowerCamelCase , __lowerCamelCase ) , map_location="""cpu""" ) # Rename keys in the transformers names a = list(temp.keys() ) for key in keys: a = temp.pop(__lowerCamelCase ) if tensors is None: a = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(__lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel a = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks a = torch.cat([tensors[key], temp[key]] , dim=__lowerCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): a = tensors[key] / pretraining_tp a = model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) assert not other_keys.unexpected_keys, f'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: a = set(other_keys.missing_keys ) else: a = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) a = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME a = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: a = model.to(config.torch_dtype ) torch.save(model.state_dict() , __lowerCamelCase ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
228
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = CLIPTokenizer UpperCamelCase__ = CLIPTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = {} UpperCamelCase__ = False def lowerCamelCase__ ( self :str ): '''simple docstring''' super().setUp() # fmt: off a = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on a = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) a = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] a = {"""unk_token""": """<unk>"""} a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__magic_name__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__magic_name__ ) ) def lowerCamelCase__ ( self :Optional[Any] , **__magic_name__ :Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def lowerCamelCase__ ( self :int , **__magic_name__ :Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__magic_name__ ) def lowerCamelCase__ ( self :int , __magic_name__ :List[str] ): '''simple docstring''' a = """lower newer""" a = """lower newer""" return input_text, output_text def lowerCamelCase__ ( self :int ): '''simple docstring''' a = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a = """lower newer""" a = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] a = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) a = tokens + [tokenizer.unk_token] a = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) @require_ftfy def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): a = self.tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) a = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) a = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" a = tokenizer_s.tokenize(__magic_name__ ) a = tokenizer_r.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways a = """xa\u0303y""" + """ """ + """x\xe3y""" a = tokenizer_s.tokenize(__magic_name__ ) a = tokenizer_r.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) # Test that the tokenization is identical on unicode of space type a = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: a = tokenizer_s.tokenize(__magic_name__ ) a = tokenizer_r.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) # Test that the tokenization is identical on unicode of line break type a = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: a = tokenizer_s.tokenize(__magic_name__ ) a = tokenizer_r.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase__ ( self :int ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): a = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` a = F'{text_of_1_token} {text_of_1_token}' a = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , ) a = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__magic_name__ ) + 1, len(__magic_name__ ) + 1 + len(__magic_name__ )) , ) a = F' {text}' a = self.rust_tokenizer_class.from_pretrained( __magic_name__ , use_fast=__magic_name__ , ) a = tokenizer_r(__magic_name__ , return_offsets_mapping=__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__magic_name__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__magic_name__ ) + 1, 1 + len(__magic_name__ ) + 1 + len(__magic_name__ )) , ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' with self.assertRaises(__magic_name__ ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' super().test_tokenization_python_rust_equals() def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' pass
228
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = XGLMConfig lowercase_ = {} lowercase_ = "gelu" def __init__(self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=14 , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=99 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Dict=37 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : int=0.02 , ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Tuple =seq_length lowerCamelCase__: List[Any] =is_training lowerCamelCase__: List[str] =use_input_mask lowerCamelCase__: Optional[int] =use_labels lowerCamelCase__: int =vocab_size lowerCamelCase__: str =d_model lowerCamelCase__: List[str] =num_hidden_layers lowerCamelCase__: List[str] =num_attention_heads lowerCamelCase__: Optional[int] =ffn_dim lowerCamelCase__: str =activation_function lowerCamelCase__: Dict =activation_dropout lowerCamelCase__: Tuple =attention_dropout lowerCamelCase__: str =max_position_embeddings lowerCamelCase__: Any =initializer_range lowerCamelCase__: str =None lowerCamelCase__: Dict =0 lowerCamelCase__: Dict =2 lowerCamelCase__: List[str] =1 def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' return XGLMConfig.from_pretrained("facebook/xglm-564M") def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: Tuple =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) , clip_value_min=0 , clip_value_max=3) lowerCamelCase__: List[Any] =None if self.use_input_mask: lowerCamelCase__: Dict =random_attention_mask([self.batch_size, self.seq_length]) lowerCamelCase__: Any =self.get_config() lowerCamelCase__: Tuple =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, ) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: List[Any] =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ): str =config_and_inputs lowerCamelCase__: str ={ "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowercase_ = (TFXGLMForCausalLM,) if is_tf_available() else () lowercase_ = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict: '''simple docstring''' lowerCamelCase__: str =TFXGLMModelTester(self) lowerCamelCase__: List[str] =ConfigTester(self , config_class=UpperCAmelCase_ , n_embd=37) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' self.config_tester.run_common_tests() @slow def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: str =TFXGLMModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.") def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[int]: '''simple docstring''' super().test_resize_token_embeddings() @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int=True) ->Tuple: '''simple docstring''' lowerCamelCase__: Any =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") lowerCamelCase__: str =tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowerCamelCase__: Union[str, Any] =[2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on lowerCamelCase__: int =model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ , num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =XGLMTokenizer.from_pretrained("facebook/xglm-564M") lowerCamelCase__: str =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") tf.random.set_seed(0) lowerCamelCase__: Dict =tokenizer("Today is a nice day and" , return_tensors="tf") lowerCamelCase__: List[str] =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0"): lowerCamelCase__: Any =model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ , seed=[7, 0]) lowerCamelCase__: Dict =tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") lowerCamelCase__: Dict =XGLMTokenizer.from_pretrained("facebook/xglm-564M") lowerCamelCase__: Union[str, Any] ="left" # use different length sentences to test batching lowerCamelCase__: int =[ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] lowerCamelCase__: str =tokenizer(UpperCAmelCase_ , return_tensors="tf" , padding=UpperCAmelCase_) lowerCamelCase__: Any =inputs["input_ids"] lowerCamelCase__: Union[str, Any] =model.generate(input_ids=UpperCAmelCase_ , attention_mask=inputs["attention_mask"] , max_new_tokens=12) lowerCamelCase__: Dict =tokenizer(sentences[0] , return_tensors="tf").input_ids lowerCamelCase__: str =model.generate(input_ids=UpperCAmelCase_ , max_new_tokens=12) lowerCamelCase__: Tuple =tokenizer(sentences[1] , return_tensors="tf").input_ids lowerCamelCase__: List[str] =model.generate(input_ids=UpperCAmelCase_ , max_new_tokens=12) lowerCamelCase__: Optional[int] =tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_) lowerCamelCase__: int =tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase_) lowerCamelCase__: int =tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase_) lowerCamelCase__: List[Any] =[ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , [non_padded_sentence, padded_sentence])
273
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["torch", "torchsde"] def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' requires_backends(self , ["torch", "torchsde"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[int]) ->List[Any]: '''simple docstring''' requires_backends(cls , ["torch", "torchsde"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Tuple , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' requires_backends(cls , ["torch", "torchsde"])
273
1
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''') __lowerCAmelCase = str(bin(a__))[2:] # remove the leading "0b" __lowerCAmelCase = str(bin(a__))[2:] # remove the leading "0b" __lowerCAmelCase = max(len(a__), len(a__)) return "0b" + "".join( str(int(char_a != char_b)) for char_a, char_b in zip(a_binary.zfill(a__), b_binary.zfill(a__))) if __name__ == "__main__": import doctest doctest.testmod()
174
# flake8: noqa # Lint as: python3 A : Optional[Any] = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
6
0
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--original_config_file", type=str, required=True, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--image_size", default=512, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F'''could not parse string as bool {string}''' ) parser.add_argument( "--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool ) parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int) __UpperCamelCase = parser.parse_args() __UpperCamelCase = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
361
'''simple docstring''' import os import numpy import onnx def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = a.name __snake_case : Dict = b.name __snake_case : Optional[int] = """""" __snake_case : int = """""" __snake_case : Any = a == b __snake_case : List[Any] = name_a __snake_case : List[str] = name_b return res def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase , _lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Dict = list(model.graph.initializer ) __snake_case : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case : Tuple = inits[i].name __snake_case : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = os.path.dirname(_lowerCamelCase ) __snake_case : Dict = os.path.basename(_lowerCamelCase ) __snake_case : Union[str, Any] = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : Dict = list(model.graph.initializer ) __snake_case : Optional[int] = set() __snake_case : Optional[Any] = {} __snake_case : Tuple = [] __snake_case : List[Any] = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) __snake_case : List[Any] = inits[j].data_type __snake_case : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCamelCase ) total_reduced_size += mem_size __snake_case : Any = inits[i].name __snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: __snake_case : Dict = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __snake_case : int = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = """optimized_""" + model_file_name __snake_case : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) onnx.save(_lowerCamelCase , _lowerCamelCase ) return new_model
13
0
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = { '''image_size''': '''sample_size''', '''num_res_blocks''': '''layers_per_block''', '''block_channels''': '''block_out_channels''', '''down_blocks''': '''down_block_types''', '''up_blocks''': '''up_block_types''', '''downscale_freq_shift''': '''freq_shift''', '''resnet_num_groups''': '''norm_num_groups''', '''resnet_act_fn''': '''act_fn''', '''resnet_eps''': '''norm_eps''', '''num_head_channels''': '''attention_head_dim''', } _SCREAMING_SNAKE_CASE = { '''time_steps''': '''time_proj''', '''mid''': '''mid_block''', '''downsample_blocks''': '''down_blocks''', '''upsample_blocks''': '''up_blocks''', } _SCREAMING_SNAKE_CASE = '''''' if has_file(args.repo_path, "config.json") else '''unet''' with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: _SCREAMING_SNAKE_CASE = reader.read() _SCREAMING_SNAKE_CASE = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): _SCREAMING_SNAKE_CASE = UNetaDModel(**config) else: _SCREAMING_SNAKE_CASE = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel _SCREAMING_SNAKE_CASE = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) _SCREAMING_SNAKE_CASE = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: _SCREAMING_SNAKE_CASE = config[key] del config[key] _SCREAMING_SNAKE_CASE = [k.replace("UNetRes", "") for k in config['''down_block_types''']] _SCREAMING_SNAKE_CASE = [k.replace("UNetRes", "") for k in config['''up_block_types''']] if do_only_weights: _SCREAMING_SNAKE_CASE = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) _SCREAMING_SNAKE_CASE = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue _SCREAMING_SNAKE_CASE = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: _SCREAMING_SNAKE_CASE = param_value _SCREAMING_SNAKE_CASE = True if not has_changed: _SCREAMING_SNAKE_CASE = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
158
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["speech"] def __init__( self : Tuple ,*lowercase_ : Tuple ,**lowercase_ : List[str] ): requires_backends(self ,['''speech'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["speech"] def __init__( self : Union[str, Any] ,*lowercase_ : List[str] ,**lowercase_ : Any ): requires_backends(self ,['''speech'''] )
106
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase_ : int = BlipImageProcessor() lowerCAmelCase_ : List[str] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' ) lowerCAmelCase_ : Tuple = BlipProcessor(_A , _A ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).tokenizer def SCREAMING_SNAKE_CASE__ ( self : Any , **SCREAMING_SNAKE_CASE_ : List[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).image_processor def SCREAMING_SNAKE_CASE__ ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCAmelCase_ : str = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : List[str] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ : str = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase_ : Optional[Any] = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) lowerCAmelCase_ : int = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Optional[Any] = self.get_image_processor() lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = BlipProcessor(tokenizer=_A , image_processor=_A ) lowerCAmelCase_ : Tuple = self.prepare_image_inputs() lowerCAmelCase_ : Dict = image_processor(_A , return_tensors='np' ) lowerCAmelCase_ : str = processor(images=_A , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : Union[str, Any] = self.get_image_processor() lowerCAmelCase_ : Union[str, Any] = self.get_tokenizer() lowerCAmelCase_ : int = BlipProcessor(tokenizer=_A , image_processor=_A ) lowerCAmelCase_ : int = 'lower newer' lowerCAmelCase_ : List[Any] = processor(text=_A ) lowerCAmelCase_ : Optional[int] = tokenizer(_A , return_token_type_ids=_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Dict = self.get_image_processor() lowerCAmelCase_ : List[Any] = self.get_tokenizer() lowerCAmelCase_ : str = BlipProcessor(tokenizer=_A , image_processor=_A ) lowerCAmelCase_ : List[str] = 'lower newer' lowerCAmelCase_ : Any = self.prepare_image_inputs() lowerCAmelCase_ : Any = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : Optional[Any] = self.get_image_processor() lowerCAmelCase_ : int = self.get_tokenizer() lowerCAmelCase_ : Union[str, Any] = BlipProcessor(tokenizer=_A , image_processor=_A ) lowerCAmelCase_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ : int = processor.batch_decode(_A ) lowerCAmelCase_ : List[Any] = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : str = self.get_image_processor() lowerCAmelCase_ : List[str] = self.get_tokenizer() lowerCAmelCase_ : Optional[Any] = BlipProcessor(tokenizer=_A , image_processor=_A ) lowerCAmelCase_ : Optional[int] = 'lower newer' lowerCAmelCase_ : Union[str, Any] = self.prepare_image_inputs() lowerCAmelCase_ : int = processor(text=_A , images=_A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
357
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ : Optional[int] = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase_, lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """maskformer-swin""" _SCREAMING_SNAKE_CASE = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_2_4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE_ : int=3 , SCREAMING_SNAKE_CASE_ : Dict=9_6 , SCREAMING_SNAKE_CASE_ : Optional[int]=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE_ : List[Any]=[3, 6, 1_2, 2_4] , SCREAMING_SNAKE_CASE_ : List[str]=7 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-5 , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , **SCREAMING_SNAKE_CASE_ : str , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = image_size lowerCAmelCase_ : Optional[Any] = patch_size lowerCAmelCase_ : Optional[int] = num_channels lowerCAmelCase_ : List[str] = embed_dim lowerCAmelCase_ : Dict = depths lowerCAmelCase_ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = num_heads lowerCAmelCase_ : List[str] = window_size lowerCAmelCase_ : Any = mlp_ratio lowerCAmelCase_ : Any = qkv_bias lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : List[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Tuple = drop_path_rate lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : Any = use_absolute_embeddings lowerCAmelCase_ : Optional[Any] = layer_norm_eps lowerCAmelCase_ : str = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE_ ) - 1) ) lowerCAmelCase_ : List[Any] = ['stem'] + [F"stage{idx}" for idx in range(1 , len(SCREAMING_SNAKE_CASE_ ) + 1 )] lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , stage_names=self.stage_names )
289
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _UpperCamelCase: List[str] = logging.get_logger(__name__) class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 'upernet' def __init__( self : Union[str, Any], lowerCAmelCase : List[Any]=None, lowerCAmelCase : str=512, lowerCAmelCase : List[Any]=0.02, lowerCAmelCase : Optional[int]=[1, 2, 3, 6], lowerCAmelCase : Dict=True, lowerCAmelCase : Optional[Any]=0.4, lowerCAmelCase : Union[str, Any]=384, lowerCAmelCase : Optional[Any]=256, lowerCAmelCase : List[str]=1, lowerCAmelCase : Union[str, Any]=False, lowerCAmelCase : List[Any]=255, **lowerCAmelCase : List[Any], ) -> List[Any]: super().__init__(**lowerCAmelCase ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase : Tuple = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(lowerCAmelCase, lowerCAmelCase ): lowercase : Union[str, Any] = backbone_config.get('model_type' ) lowercase : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase : Dict = config_class.from_dict(lowerCAmelCase ) lowercase : str = backbone_config lowercase : Union[str, Any] = hidden_size lowercase : str = initializer_range lowercase : Optional[Any] = pool_scales lowercase : str = use_auxiliary_head lowercase : Dict = auxiliary_loss_weight lowercase : str = auxiliary_in_channels lowercase : Any = auxiliary_channels lowercase : Tuple = auxiliary_num_convs lowercase : List[str] = auxiliary_concat_input lowercase : Dict = loss_ignore_index def lowercase ( self : Tuple ) -> Tuple: lowercase : int = copy.deepcopy(self.__dict__ ) lowercase : int = self.backbone_config.to_dict() lowercase : str = self.__class__.model_type return output
255
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): @slow def lowercase ( self : List[Any] ) -> List[Any]: lowercase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) lowercase : Dict = AutoTokenizer.from_pretrained('google/mt5-small' ) lowercase : List[Any] = tokenizer('Hello there', return_tensors='tf' ).input_ids lowercase : Any = tokenizer('Hi I am', return_tensors='tf' ).input_ids lowercase : Dict = model(lowerCAmelCase, labels=lowerCAmelCase ).loss lowercase : Optional[int] = -tf.math.reduce_mean(lowerCAmelCase ).numpy() lowercase : Tuple = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
255
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
351
"""simple docstring""" from collections.abc import Generator from math import sin def UpperCAmelCase__ (snake_case__ : bytes ): """simple docstring""" if len(snake_case__ ) != 32: raise ValueError("""Input must be of length 32""" ) _snake_case : Optional[int] = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) _snake_case : Optional[Any] = format(snake_case__ , """08x""" )[-8:] _snake_case : Optional[Any] = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def UpperCAmelCase__ (snake_case__ : bytes ): """simple docstring""" _snake_case : Union[str, Any] = B"""""" for char in message: bit_string += format(snake_case__ , """08b""" ).encode("""utf-8""" ) _snake_case : List[Any] = format(len(snake_case__ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(snake_case__ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ (snake_case__ : bytes ): """simple docstring""" if len(snake_case__ ) % 5_12 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(snake_case__ ) , 5_12 ): _snake_case : List[str] = bit_string[pos : pos + 5_12] _snake_case : List[str] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) _snake_case : Optional[int] = format(snake_case__ , """032b""" ) _snake_case : str = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(snake_case__ , 2 ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" return (a + b) % 2**32 def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ (snake_case__ : bytes ): """simple docstring""" _snake_case : Any = preprocess(snake_case__ ) _snake_case : Optional[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _snake_case : Union[str, Any] = 0x6745_2301 _snake_case : List[Any] = 0xEFCD_AB89 _snake_case : Optional[Any] = 0x98BA_DCFE _snake_case : Optional[int] = 0x1032_5476 _snake_case : Tuple = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(snake_case__ ): _snake_case : Tuple = aa _snake_case : str = ba _snake_case : int = ca _snake_case : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _snake_case : int = d ^ (b & (c ^ d)) _snake_case : Dict = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _snake_case : Tuple = c ^ (d & (b ^ c)) _snake_case : int = (5 * i + 1) % 16 elif i <= 47: _snake_case : List[Any] = b ^ c ^ d _snake_case : Union[str, Any] = (3 * i + 5) % 16 else: _snake_case : Tuple = c ^ (b | not_aa(snake_case__ )) _snake_case : Optional[int] = (7 * i) % 16 _snake_case : Dict = (f + a + added_consts[i] + block_words[g]) % 2**32 _snake_case : List[str] = d _snake_case : List[Any] = c _snake_case : str = b _snake_case : List[str] = sum_aa(snake_case__ , left_rotate_aa(snake_case__ , shift_amounts[i] ) ) # Add hashed chunk to running total _snake_case : Union[str, Any] = sum_aa(snake_case__ , snake_case__ ) _snake_case : str = sum_aa(snake_case__ , snake_case__ ) _snake_case : Any = sum_aa(snake_case__ , snake_case__ ) _snake_case : List[str] = sum_aa(snake_case__ , snake_case__ ) _snake_case : Any = reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
132
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _lowercase: Dict = pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"] ) def a( A : str , A : Tuple ) -> List[Any]: """simple docstring""" inspect_dataset(A , A ) a = path + ".py" assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" , ["accuracy"] ) def a( A : List[Any] , A : Optional[int] ) -> Optional[Any]: """simple docstring""" inspect_metric(A , A ) a = path + ".py" assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def a( A : Optional[Any] , A : Optional[int] , A : Any ) -> List[Any]: """simple docstring""" a = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def a( A : Dict , A : Tuple , A : int ) -> Tuple: """simple docstring""" with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def a( A : List[str] , A : Any ) -> Optional[int]: """simple docstring""" a = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def a( A : Tuple , A : Any , A : Optional[int] ) -> Dict: """simple docstring""" a = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs a = expected_configs[0] assert expected_config in infos a = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def a( A : List[Any] , A : Dict , A : Tuple ) -> Any: """simple docstring""" a = get_dataset_infos(A ) assert expected_config in infos a = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def a( A : List[str] , A : str , A : Tuple ) -> Dict: """simple docstring""" with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
227
_lowercase: Dict = [ (1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def a( A : str ) -> int: """simple docstring""" a = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} a = 0 a = 0 while place < len(A ): if (place + 1 < len(A )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def a( A : int ) -> str: """simple docstring""" a = [] for arabic, roman in ROMAN: ((a) , (a)) = divmod(A , A ) result.append(roman * factor ) if number == 0: break return "".join(A ) if __name__ == "__main__": import doctest doctest.testmod()
227
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __a :Any = None __a :int = logging.get_logger(__name__) __a :Dict = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __a :Dict = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } __a :Any = { 'facebook/nllb-large-en-ro': 1024, 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off __a :Optional[Any] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Dict = ['input_ids', 'attention_mask'] _lowerCamelCase : Any = NllbTokenizer _lowerCamelCase : List[int] = [] _lowerCamelCase : List[int] = [] def __init__( self : Tuple , UpperCAmelCase : Any=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : List[str]="</s>" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Tuple="<unk>" , UpperCAmelCase : Any="<pad>" , UpperCAmelCase : Dict="<mask>" , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[str]=False , **UpperCAmelCase : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it A_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token A_ = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) A_ = vocab_file A_ = False if not self.vocab_file else True A_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) A_ = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } A_ = src_lang if src_lang is not None else "eng_Latn" A_ = self.convert_tokens_to_ids(self._src_lang ) A_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __A ( self : int ): return self._src_lang @src_lang.setter def __A ( self : Tuple , UpperCAmelCase : str ): A_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __A ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[Any] ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) A_ = src_lang A_ = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) A_ = self.convert_tokens_to_ids(UpperCAmelCase ) A_ = tgt_lang_id return inputs def __A ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Optional[int] , ): A_ = src_lang A_ = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def __A ( self : Tuple ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __A ( self : str , UpperCAmelCase : str ): A_ = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: A_ = [] A_ = [self.eos_token_id, self.cur_lang_code] else: A_ = [self.cur_lang_code] A_ = [self.eos_token_id] A_ = self.convert_ids_to_tokens(self.prefix_tokens ) A_ = self.convert_ids_to_tokens(self.suffix_tokens ) A_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __A ( self : Optional[Any] , UpperCAmelCase : str ): A_ = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: A_ = [] A_ = [self.eos_token_id, self.cur_lang_code] else: A_ = [self.cur_lang_code] A_ = [self.eos_token_id] A_ = self.convert_ids_to_tokens(self.prefix_tokens ) A_ = self.convert_ids_to_tokens(self.suffix_tokens ) A_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return A_ = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
329
from __future__ import annotations def __snake_case ( __UpperCamelCase : int = 4 ): """simple docstring""" A_ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = matrix[::-1] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [x[::-1] for x in matrix] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
329
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger() @dataclass class SCREAMING_SNAKE_CASE : __lowerCamelCase : nn.Module __lowerCamelCase : List[nn.Module] =field(default_factory=lowercase__ ) __lowerCamelCase : list =field(default_factory=lowercase__ ) def UpperCamelCase_ ( self : Tuple , __lowercase : List[str] , __lowercase : Tensor , __lowercase : Tensor ): '''simple docstring''' __a = len(list(m.modules() ) ) == 1 or isinstance(__lowercase , nn.Convad ) or isinstance(__lowercase , nn.BatchNormad ) if has_not_submodules: self.traced.append(__lowercase ) def __call__( self : Dict , __lowercase : Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__lowercase ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self : str ): '''simple docstring''' # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __lowercase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class SCREAMING_SNAKE_CASE : __lowerCamelCase : nn.Module __lowerCamelCase : nn.Module __lowerCamelCase : int =1 __lowerCamelCase : List =field(default_factory=lowercase__ ) __lowerCamelCase : List =field(default_factory=lowercase__ ) __lowerCamelCase : bool =True def __call__( self : Any , __lowercase : Tensor ): '''simple docstring''' __a = Tracker(self.dest )(__lowercase ).parametrized __a = Tracker(self.src )(__lowercase ).parametrized __a = list(filter(lambda __lowercase : type(__lowercase ) not in self.src_skip , __lowercase ) ) __a = list(filter(lambda __lowercase : type(__lowercase ) not in self.dest_skip , __lowercase ) ) if len(__lowercase ) != len(__lowercase ) and self.raise_if_mismatch: raise Exception( F"Numbers of operations are different. Source module has {len(__lowercase )} operations while" F" destination module has {len(__lowercase )}." ) for dest_m, src_m in zip(__lowercase , __lowercase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"Transfered from={src_m} to={dest_m}" ) class SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Any , __lowercase : nn.Module ): '''simple docstring''' super().__init__() __a = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), F"Unexpected layer name {k}" __a = len(__lowercase ) + 1 feature_blocks.append((F"res{block_index}", v) ) __a = nn.ModuleDict(__lowercase ) def UpperCamelCase_ ( self : Tuple , __lowercase : Tensor ): '''simple docstring''' return get_trunk_forward_outputs( __lowercase , out_feat_keys=__lowercase , feature_blocks=self._feature_blocks , ) class SCREAMING_SNAKE_CASE ( lowercase__ ): def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ): '''simple docstring''' __a = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Dict , __lowercase : str ): '''simple docstring''' # default to timm! if x not in self: __a = self.convert_name_to_timm(__lowercase ) __a = partial(lambda: (timm.create_model(__lowercase , pretrained=__lowercase ).eval(), None) ) else: __a = super().__getitem__(__lowercase ) return val class SCREAMING_SNAKE_CASE ( lowercase__ ): def __getitem__( self : str , __lowercase : str ): '''simple docstring''' if "seer" in x and "in1k" not in x: __a = RegNetModel else: __a = RegNetForImageClassification return val def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Tuple[str, str]] ): """simple docstring""" for from_key, to_key in keys: __a = from_state_dict[from_key].clone() print(f"Copied key={from_key} to={to_key}" ) return to_state_dict def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Callable[[], nn.Module] , _SCREAMING_SNAKE_CASE : Callable[[], nn.Module] , _SCREAMING_SNAKE_CASE : RegNetConfig , _SCREAMING_SNAKE_CASE : Path , _SCREAMING_SNAKE_CASE : bool = True , ): """simple docstring""" print(f"Converting {name}..." ) with torch.no_grad(): __a = from_model_func() __a = our_model_func(__lowerCamelCase ).eval() __a = ModuleTransfer(src=__lowerCamelCase , dest=__lowerCamelCase , raise_if_mismatch=__lowerCamelCase ) __a = torch.randn((1, 3, 224, 224) ) module_transfer(__lowerCamelCase ) if from_state_dict is not None: __a = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __a = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] __a = manually_copy_vissl_head(__lowerCamelCase , our_model.state_dict() , __lowerCamelCase ) our_model.load_state_dict(__lowerCamelCase ) __a = our_model(__lowerCamelCase , output_hidden_states=__lowerCamelCase ) __a = ( our_outputs.logits if isinstance(__lowerCamelCase , __lowerCamelCase ) else our_outputs.last_hidden_state ) __a = from_model(__lowerCamelCase ) __a = from_output[-1] if type(__lowerCamelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __a = our_outputs.hidden_states[-1] assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=__lowerCamelCase , ) __a = 224 if """seer""" not in name else 384 # we can use the convnext one __a = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=__lowerCamelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=__lowerCamelCase , ) print(f"Pushed {name}" ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Path , _SCREAMING_SNAKE_CASE : str = None , _SCREAMING_SNAKE_CASE : bool = True ): """simple docstring""" __a = """imagenet-1k-id2label.json""" __a = 1000 __a = (1, num_labels) __a = """huggingface/label-files""" __a = num_labels __a = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) __a = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) __a = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } __a = NameToOurModelFuncMap() __a = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __a = torch.hub.load_state_dict_from_url(__lowerCamelCase , model_dir=str(__lowerCamelCase ) , map_location="""cpu""" ) __a = model_func() # check if we have a head, if yes add it __a = files["""classy_state_dict"""]["""base_model"""]["""model"""] __a = model_state_dict["""trunk"""] model.load_state_dict(__lowerCamelCase ) return model.eval(), model_state_dict["heads"] # pretrained __a = partial( __lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( __lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( __lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __a = partial( __lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __a = partial( __lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( __lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( __lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __a = partial( __lowerCamelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( __lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) return config, expected_shape if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
302
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a : Dict = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a : Any = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCamelCase__ ( __lowerCamelCase : Vector , __lowerCamelCase : Vector ): return np.sqrt(np.sum((np.asarray(__lowerCamelCase ) - np.asarray(__lowerCamelCase )) ** 2 ) ) def lowerCamelCase__ ( __lowerCamelCase : Vector , __lowerCamelCase : Vector ): return sum((va - va) ** 2 for va, va in zip(__lowerCamelCase , __lowerCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def lowerCamelCase__ ( ): from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) benchmark()
114
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _UpperCAmelCase ( A_ , A_ , A_ , unittest.TestCase): _lowerCAmelCase : Optional[int] = StableDiffusionControlNetImgaImgPipeline _lowerCAmelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} _lowerCAmelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCAmelCase : int = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""}) _lowerCAmelCase : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self : Tuple ): torch.manual_seed(0 ) snake_case_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) snake_case_ : Dict = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) snake_case_ : Tuple = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) snake_case_ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case_ : Tuple = CLIPTextModel(_lowerCamelCase ) snake_case_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case_ : Dict = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self : Tuple , lowercase_ : Any , lowercase_ : Union[str, Any]=0 ): if str(_lowerCamelCase ).startswith('''mps''' ): snake_case_ : int = torch.manual_seed(_lowerCamelCase ) else: snake_case_ : str = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) snake_case_ : int = 2 snake_case_ : Optional[int] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_lowerCamelCase , device=torch.device(_lowerCamelCase ) , ) snake_case_ : Dict = floats_tensor(control_image.shape , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) snake_case_ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ : int = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) snake_case_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def _snake_case ( self : Tuple ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self : List[str] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _snake_case ( self : Any ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class _UpperCAmelCase ( A_ , A_ , unittest.TestCase): _lowerCAmelCase : str = StableDiffusionControlNetImgaImgPipeline _lowerCAmelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} _lowerCAmelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCAmelCase : Any = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _snake_case ( self : Optional[Any] ): torch.manual_seed(0 ) snake_case_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowercase_ : List[str] ): if isinstance(_lowerCamelCase , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) snake_case_ : int = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_lowerCamelCase ) torch.manual_seed(0 ) snake_case_ : Tuple = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_lowerCamelCase ) torch.manual_seed(0 ) snake_case_ : List[str] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) snake_case_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) snake_case_ : Optional[Any] = CLIPTextModel(_lowerCamelCase ) snake_case_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case_ : Optional[int] = MultiControlNetModel([controlneta, controlneta] ) snake_case_ : Any = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self : Any , lowercase_ : Dict , lowercase_ : Tuple=0 ): if str(_lowerCamelCase ).startswith('''mps''' ): snake_case_ : List[str] = torch.manual_seed(_lowerCamelCase ) else: snake_case_ : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) snake_case_ : List[Any] = 2 snake_case_ : Optional[Any] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_lowerCamelCase , device=torch.device(_lowerCamelCase ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_lowerCamelCase , device=torch.device(_lowerCamelCase ) , ), ] snake_case_ : Optional[Any] = floats_tensor(control_image[0].shape , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) snake_case_ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ : Union[str, Any] = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) snake_case_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def _snake_case ( self : Optional[int] ): snake_case_ : Optional[Any] = self.get_dummy_components() snake_case_ : Union[str, Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) snake_case_ : List[str] = 10.0 snake_case_ : Any = 4 snake_case_ : int = self.get_dummy_inputs(_lowerCamelCase ) snake_case_ : Optional[Any] = steps snake_case_ : List[Any] = scale snake_case_ : Any = pipe(**_lowerCamelCase )[0] snake_case_ : List[Any] = self.get_dummy_inputs(_lowerCamelCase ) snake_case_ : Any = steps snake_case_ : Optional[int] = scale snake_case_ : Optional[Any] = pipe(**_lowerCamelCase , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] snake_case_ : Dict = self.get_dummy_inputs(_lowerCamelCase ) snake_case_ : Tuple = steps snake_case_ : List[str] = scale snake_case_ : Optional[Any] = pipe(**_lowerCamelCase , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] snake_case_ : Optional[int] = self.get_dummy_inputs(_lowerCamelCase ) snake_case_ : Optional[int] = steps snake_case_ : List[Any] = scale snake_case_ : str = pipe(**_lowerCamelCase , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def _snake_case ( self : List[str] ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self : List[str] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _snake_case ( self : Union[str, Any] ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def _snake_case ( self : List[str] ): snake_case_ : Any = self.get_dummy_components() snake_case_ : List[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_lowerCamelCase ) except NotImplementedError: pass @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Union[str, Any] ): snake_case_ : int = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) snake_case_ : Optional[int] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=_lowerCamelCase , controlnet=_lowerCamelCase ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_lowerCamelCase ) snake_case_ : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case_ : Tuple = '''evil space-punk bird''' snake_case_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) snake_case_ : List[Any] = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) snake_case_ : List[str] = pipe( _lowerCamelCase , _lowerCamelCase , control_image=_lowerCamelCase , generator=_lowerCamelCase , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) snake_case_ : Dict = output.images[0] assert image.shape == (512, 512, 3) snake_case_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
368
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _UpperCAmelCase ( unittest.TestCase): _lowerCAmelCase : Optional[int] = MODEL_FOR_CAUSAL_LM_MAPPING _lowerCAmelCase : Union[str, Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _snake_case ( self : Any ): snake_case_ : Dict = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output snake_case_ : List[str] = text_generator('''This is a test''' , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) snake_case_ : Tuple = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( lowercase_ , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) snake_case_ : int = text_generator('''This is a test''' , do_sample=lowercase_ , num_return_sequences=2 , return_tensors=lowercase_ ) self.assertEqual( lowercase_ , [ {'''generated_token_ids''': ANY(lowercase_ )}, {'''generated_token_ids''': ANY(lowercase_ )}, ] , ) snake_case_ : Tuple = text_generator.model.config.eos_token_id snake_case_ : Any = '''<pad>''' snake_case_ : Optional[Any] = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=lowercase_ , num_return_sequences=2 , batch_size=2 , return_tensors=lowercase_ , ) self.assertEqual( lowercase_ , [ [ {'''generated_token_ids''': ANY(lowercase_ )}, {'''generated_token_ids''': ANY(lowercase_ )}, ], [ {'''generated_token_ids''': ANY(lowercase_ )}, {'''generated_token_ids''': ANY(lowercase_ )}, ], ] , ) @require_tf def _snake_case ( self : Any ): snake_case_ : List[str] = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output snake_case_ : List[Any] = text_generator('''This is a test''' , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) snake_case_ : Tuple = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def _snake_case ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : int ): snake_case_ : str = TextGenerationPipeline(model=lowercase_ , tokenizer=lowercase_ ) return text_generator, ["This is a test", "Another test"] def _snake_case ( self : Any ): snake_case_ : int = '''Hello I believe in''' snake_case_ : Dict = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ : Optional[Any] = text_generator(lowercase_ ) self.assertEqual( lowercase_ , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) snake_case_ : Any = text_generator(lowercase_ , stop_sequence=''' fe''' ) self.assertEqual(lowercase_ , [{'''generated_text''': '''Hello I believe in fe'''}] ) def _snake_case ( self : Optional[int] , lowercase_ : str , lowercase_ : List[Any] ): snake_case_ : Any = text_generator.model snake_case_ : str = text_generator.tokenizer snake_case_ : Tuple = text_generator('''This is a test''' ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) snake_case_ : Any = text_generator('''This is a test''' , return_full_text=lowercase_ ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) snake_case_ : Optional[Any] = pipeline(task='''text-generation''' , model=lowercase_ , tokenizer=lowercase_ , return_full_text=lowercase_ ) snake_case_ : str = text_generator('''This is a test''' ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) snake_case_ : List[str] = text_generator('''This is a test''' , return_full_text=lowercase_ ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) snake_case_ : List[Any] = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: snake_case_ : List[Any] = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], ] , ) with self.assertRaises(lowercase_ ): snake_case_ : int = text_generator('''test''' , return_full_text=lowercase_ , return_text=lowercase_ ) with self.assertRaises(lowercase_ ): snake_case_ : Dict = text_generator('''test''' , return_full_text=lowercase_ , return_tensors=lowercase_ ) with self.assertRaises(lowercase_ ): snake_case_ : Dict = text_generator('''test''' , return_text=lowercase_ , return_tensors=lowercase_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): snake_case_ : str = text_generator('''''' ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): snake_case_ : List[str] = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. snake_case_ : List[Any] = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) snake_case_ : Tuple = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(lowercase_ ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _snake_case ( self : Optional[int] ): import torch # Classic `model_kwargs` snake_case_ : List[str] = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case_ : Tuple = pipe('''This is a test''' ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) snake_case_ : Optional[Any] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case_ : Optional[Any] = pipe('''This is a test''' ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 snake_case_ : Tuple = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) snake_case_ : int = pipe('''This is a test''' ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def _snake_case ( self : List[str] ): import torch snake_case_ : Any = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def _snake_case ( self : Dict ): import torch snake_case_ : int = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=lowercase_ , top_p=0.5 ) def _snake_case ( self : int ): snake_case_ : int = '''Hello world''' snake_case_ : List[Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": snake_case_ : Optional[Any] = logging.get_logger('''transformers.generation.tf_utils''' ) else: snake_case_ : Dict = logging.get_logger('''transformers.generation.utils''' ) snake_case_ : Tuple = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(lowercase_ ) as cl: snake_case_ : List[Any] = text_generator(lowercase_ , max_length=10 , max_new_tokens=1 ) self.assertIn(lowercase_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(lowercase_ ) as cl: snake_case_ : int = text_generator(lowercase_ , max_new_tokens=1 ) self.assertNotIn(lowercase_ , cl.out ) with CaptureLogger(lowercase_ ) as cl: snake_case_ : Optional[Any] = text_generator(lowercase_ , max_length=10 ) self.assertNotIn(lowercase_ , cl.out )
155
0
def UpperCamelCase ( __lowerCamelCase : int ): snake_case : Tuple = [] if len(_lowerCAmelCase ) == 1: return [nums.copy()] for _ in range(len(_lowerCAmelCase ) ): snake_case : int = nums.pop(0 ) snake_case : List[str] = permute(_lowerCAmelCase ) for perm in permutations: perm.append(_lowerCAmelCase ) result.extend(_lowerCAmelCase ) nums.append(_lowerCAmelCase ) return result def UpperCamelCase ( __lowerCamelCase : Optional[int] ): def backtrack(__lowerCamelCase : List[Any] ): if start == len(_lowerCAmelCase ) - 1: output.append(nums[:] ) else: for i in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): snake_case : str = nums[i], nums[start] backtrack(start + 1 ) snake_case : Union[str, Any] = nums[i], nums[start] # backtrack snake_case : int = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __lowerCamelCase = permutea([1, 2, 3]) print(res) doctest.testmod()
59
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=0.0, lowerCamelCase__ = None, lowerCamelCase__ = "geglu", lowerCamelCase__ = None, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = True, lowerCamelCase__ = "layer_norm", lowerCamelCase__ = False, ): super().__init__() A : Dict = only_cross_attention A : Tuple = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" A : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A : Dict = AdaLayerNorm(lowerCamelCase__, lowerCamelCase__ ) elif self.use_ada_layer_norm_zero: A : List[str] = AdaLayerNormZero(lowerCamelCase__, lowerCamelCase__ ) else: A : Tuple = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) A : Any = Attention( query_dim=lowerCamelCase__, heads=lowerCamelCase__, dim_head=lowerCamelCase__, dropout=lowerCamelCase__, bias=lowerCamelCase__, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=lowerCamelCase__, ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A : int = ( AdaLayerNorm(lowerCamelCase__, lowerCamelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) ) A : Dict = Attention( query_dim=lowerCamelCase__, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=lowerCamelCase__, dim_head=lowerCamelCase__, dropout=lowerCamelCase__, bias=lowerCamelCase__, upcast_attention=lowerCamelCase__, ) # is self-attn if encoder_hidden_states is none else: A : Dict = None A : Dict = None # 3. Feed-forward A : Optional[Any] = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) A : int = FeedForward(lowerCamelCase__, dropout=lowerCamelCase__, activation_fn=lowerCamelCase__, final_dropout=lowerCamelCase__ ) # let chunk size default to None A : Optional[Any] = None A : int = 0 def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): # Sets chunk feed-forward A : List[str] = chunk_size A : int = dim def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A : Optional[int] = self.norma(lowerCamelCase__, lowerCamelCase__ ) elif self.use_ada_layer_norm_zero: A , A , A , A , A : Tuple = self.norma( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, hidden_dtype=hidden_states.dtype ) else: A : Tuple = self.norma(lowerCamelCase__ ) A : Dict = cross_attention_kwargs if cross_attention_kwargs is not None else {} A : str = self.attna( lowerCamelCase__, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=lowerCamelCase__, **lowerCamelCase__, ) if self.use_ada_layer_norm_zero: A : List[Any] = gate_msa.unsqueeze(1 ) * attn_output A : str = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A : Optional[int] = ( self.norma(lowerCamelCase__, lowerCamelCase__ ) if self.use_ada_layer_norm else self.norma(lowerCamelCase__ ) ) A : Optional[Any] = self.attna( lowerCamelCase__, encoder_hidden_states=lowerCamelCase__, attention_mask=lowerCamelCase__, **lowerCamelCase__, ) A : Dict = attn_output + hidden_states # 3. Feed-forward A : str = self.norma(lowerCamelCase__ ) if self.use_ada_layer_norm_zero: A : Tuple = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) A : Any = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A : Optional[Any] = torch.cat( [self.ff(lowerCamelCase__ ) for hid_slice in norm_hidden_states.chunk(lowerCamelCase__, dim=self._chunk_dim )], dim=self._chunk_dim, ) else: A : Dict = self.ff(lowerCamelCase__ ) if self.use_ada_layer_norm_zero: A : Optional[Any] = gate_mlp.unsqueeze(1 ) * ff_output A : Optional[int] = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = 4, lowerCamelCase__ = 0.0, lowerCamelCase__ = "geglu", lowerCamelCase__ = False, ): super().__init__() A : str = int(dim * mult ) A : Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": A : Dict = GELU(lowerCamelCase__, lowerCamelCase__ ) if activation_fn == "gelu-approximate": A : Optional[int] = GELU(lowerCamelCase__, lowerCamelCase__, approximate="""tanh""" ) elif activation_fn == "geglu": A : Any = GEGLU(lowerCamelCase__, lowerCamelCase__ ) elif activation_fn == "geglu-approximate": A : Optional[Any] = ApproximateGELU(lowerCamelCase__, lowerCamelCase__ ) A : Dict = nn.ModuleList([] ) # project in self.net.append(lowerCamelCase__ ) # project dropout self.net.append(nn.Dropout(lowerCamelCase__ ) ) # project out self.net.append(nn.Linear(lowerCamelCase__, lowerCamelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(lowerCamelCase__ ) ) def _lowerCAmelCase ( self, lowerCamelCase__ ): for module in self.net: A : int = module(lowerCamelCase__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = "none" ): super().__init__() A : Optional[int] = nn.Linear(lowerCamelCase__, lowerCamelCase__ ) A : int = approximate def _lowerCAmelCase ( self, lowerCamelCase__ ): if gate.device.type != "mps": return F.gelu(lowerCamelCase__, approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ), approximate=self.approximate ).to(dtype=gate.dtype ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[Any] = self.proj(lowerCamelCase__ ) A : Union[str, Any] = self.gelu(lowerCamelCase__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Union[str, Any] = nn.Linear(lowerCamelCase__, dim_out * 2 ) def _lowerCAmelCase ( self, lowerCamelCase__ ): if gate.device.type != "mps": return F.gelu(lowerCamelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A , A : Any = self.proj(lowerCamelCase__ ).chunk(2, dim=-1 ) return hidden_states * self.gelu(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Union[str, Any] = nn.Linear(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[Any] = self.proj(lowerCamelCase__ ) return x * torch.sigmoid(1.702 * x ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Dict = nn.Embedding(lowerCamelCase__, lowerCamelCase__ ) A : Tuple = nn.SiLU() A : Tuple = nn.Linear(lowerCamelCase__, embedding_dim * 2 ) A : List[str] = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): A : int = self.linear(self.silu(self.emb(lowerCamelCase__ ) ) ) A , A : Optional[int] = torch.chunk(lowerCamelCase__, 2 ) A : Tuple = self.norm(lowerCamelCase__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Union[str, Any] = CombinedTimestepLabelEmbeddings(lowerCamelCase__, lowerCamelCase__ ) A : List[Any] = nn.SiLU() A : str = nn.Linear(lowerCamelCase__, 6 * embedding_dim, bias=lowerCamelCase__ ) A : List[Any] = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__, eps=1e-6 ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ): A : Tuple = self.linear(self.silu(self.emb(lowerCamelCase__, lowerCamelCase__, hidden_dtype=lowerCamelCase__ ) ) ) A , A , A , A , A , A : Optional[Any] = emb.chunk(6, dim=1 ) A : List[str] = self.norm(lowerCamelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = 1e-5 ): super().__init__() A : int = num_groups A : Dict = eps if act_fn is None: A : Union[str, Any] = None else: A : Optional[int] = get_activation(lowerCamelCase__ ) A : Dict = nn.Linear(lowerCamelCase__, out_dim * 2 ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): if self.act: A : Dict = self.act(lowerCamelCase__ ) A : Optional[int] = self.linear(lowerCamelCase__ ) A : int = emb[:, :, None, None] A , A : Tuple = emb.chunk(2, dim=1 ) A : Any = F.group_norm(lowerCamelCase__, self.num_groups, eps=self.eps ) A : List[str] = x * (1 + scale) + shift return x
116
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
361
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
35
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ): if isinstance(UpperCAmelCase_ , torch.Tensor ): return image elif isinstance(UpperCAmelCase_ , PIL.Image.Image ): lowerCamelCase_ = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCamelCase_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] lowerCamelCase_ = np.concatenate(UpperCAmelCase_ , axis=0 ) lowerCamelCase_ = np.array(UpperCAmelCase_ ).astype(np.floataa ) / 255.0 lowerCamelCase_ = image.transpose(0 , 3 , 1 , 2 ) lowerCamelCase_ = 2.0 * image - 1.0 lowerCamelCase_ = torch.from_numpy(UpperCAmelCase_ ) elif isinstance(image[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(UpperCAmelCase_ , dim=0 ) return image def __snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any=0.9995 ): if not isinstance(UpperCAmelCase_ , np.ndarray ): lowerCamelCase_ = True lowerCamelCase_ = va.device lowerCamelCase_ = va.cpu().numpy() lowerCamelCase_ = va.cpu().numpy() lowerCamelCase_ = np.sum(va * va / (np.linalg.norm(UpperCAmelCase_ ) * np.linalg.norm(UpperCAmelCase_ )) ) if np.abs(UpperCAmelCase_ ) > DOT_THRESHOLD: lowerCamelCase_ = (1 - t) * va + t * va else: lowerCamelCase_ = np.arccos(UpperCAmelCase_ ) lowerCamelCase_ = np.sin(UpperCAmelCase_ ) lowerCamelCase_ = theta_a * t lowerCamelCase_ = np.sin(UpperCAmelCase_ ) lowerCamelCase_ = np.sin(theta_a - theta_t ) / sin_theta_a lowerCamelCase_ = sin_theta_t / sin_theta_a lowerCamelCase_ = sa * va + sa * va if inputs_are_torch: lowerCamelCase_ = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) return va def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): lowerCamelCase_ = F.normalize(UpperCAmelCase_ , dim=-1 ) lowerCamelCase_ = F.normalize(UpperCAmelCase_ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ): for param in model.parameters(): lowerCamelCase_ = value class snake_case ( lowercase ): """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , ): """simple docstring""" super().__init__() self.register_modules( vae=UpperCamelCase , text_encoder=UpperCamelCase , clip_model=UpperCamelCase , tokenizer=UpperCamelCase , unet=UpperCamelCase , scheduler=UpperCamelCase , feature_extractor=UpperCamelCase , coca_model=UpperCamelCase , coca_tokenizer=UpperCamelCase , coca_transform=UpperCamelCase , ) lowerCamelCase_ = ( feature_extractor.size if isinstance(feature_extractor.size , UpperCamelCase ) else feature_extractor.size["shortest_edge"] ) lowerCamelCase_ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , UpperCamelCase ) set_requires_grad(self.clip_model , UpperCamelCase ) def snake_case ( self , UpperCamelCase = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase ) def snake_case ( self ): """simple docstring""" self.enable_attention_slicing(UpperCamelCase ) def snake_case ( self ): """simple docstring""" set_requires_grad(self.vae , UpperCamelCase ) def snake_case ( self ): """simple docstring""" set_requires_grad(self.vae , UpperCamelCase ) def snake_case ( self ): """simple docstring""" set_requires_grad(self.unet , UpperCamelCase ) def snake_case ( self ): """simple docstring""" set_requires_grad(self.unet , UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" # get the original timestep using init_timestep lowerCamelCase_ = min(int(num_inference_steps * strength ) , UpperCamelCase ) lowerCamelCase_ = max(num_inference_steps - init_timestep , 0 ) lowerCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None ): """simple docstring""" if not isinstance(UpperCamelCase , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(UpperCamelCase )}''' ) lowerCamelCase_ = image.to(device=UpperCamelCase , dtype=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCamelCase ) ] lowerCamelCase_ = torch.cat(UpperCamelCase , dim=0 ) else: lowerCamelCase_ = self.vae.encode(UpperCamelCase ).latent_dist.sample(UpperCamelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ = 0.18_215 * init_latents lowerCamelCase_ = init_latents.repeat_interleave(UpperCamelCase , dim=0 ) lowerCamelCase_ = randn_tensor(init_latents.shape , generator=UpperCamelCase , device=UpperCamelCase , dtype=UpperCamelCase ) # get latents lowerCamelCase_ = self.scheduler.add_noise(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = init_latents return latents def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.coca_transform(UpperCamelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowerCamelCase_ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowerCamelCase_ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.feature_extractor.preprocess(UpperCamelCase ) lowerCamelCase_ = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() lowerCamelCase_ = self.clip_model.get_image_features(UpperCamelCase ) lowerCamelCase_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCamelCase ) lowerCamelCase_ = image_embeddings_clip.repeat_interleave(UpperCamelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = latents.detach().requires_grad_() lowerCamelCase_ = self.scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) # predict the noise residual lowerCamelCase_ = self.unet(UpperCamelCase , UpperCamelCase , encoder_hidden_states=UpperCamelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowerCamelCase_ = self.scheduler.alphas_cumprod[timestep] lowerCamelCase_ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowerCamelCase_ = torch.sqrt(UpperCamelCase ) lowerCamelCase_ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , UpperCamelCase ): lowerCamelCase_ = self.scheduler.sigmas[index] lowerCamelCase_ = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ = 1 / 0.18_215 * sample lowerCamelCase_ = self.vae.decode(UpperCamelCase ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = transforms.Resize(self.feature_extractor_size )(UpperCamelCase ) lowerCamelCase_ = self.normalize(UpperCamelCase ).to(latents.dtype ) lowerCamelCase_ = self.clip_model.get_image_features(UpperCamelCase ) lowerCamelCase_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCamelCase ) lowerCamelCase_ = spherical_dist_loss(UpperCamelCase , UpperCamelCase ).mean() * clip_guidance_scale lowerCamelCase_ = -torch.autograd.grad(UpperCamelCase , UpperCamelCase )[0] if isinstance(self.scheduler , UpperCamelCase ): lowerCamelCase_ = latents.detach() + grads * (sigma**2) lowerCamelCase_ = noise_pred_original else: lowerCamelCase_ = noise_pred_original - torch.sqrt(UpperCamelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = 512 , UpperCamelCase = 512 , UpperCamelCase = 0.6 , UpperCamelCase = 50 , UpperCamelCase = 7.5 , UpperCamelCase = 1 , UpperCamelCase = 0.0 , UpperCamelCase = 100 , UpperCamelCase = None , UpperCamelCase = "pil" , UpperCamelCase = True , UpperCamelCase = 0.8 , UpperCamelCase = 0.1 , UpperCamelCase = 0.1 , ): """simple docstring""" if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(UpperCamelCase )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(UpperCamelCase , torch.Generator ) and batch_size > 1: lowerCamelCase_ = [generator] + [None] * (batch_size - 1) lowerCamelCase_ = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] lowerCamelCase_ = [x[0] for x in coca_is_none if x[1]] lowerCamelCase_ = ", ".join(UpperCamelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCamelCase ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowerCamelCase_ = self.get_image_description(UpperCamelCase ) if style_prompt is None: if len(UpperCamelCase ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowerCamelCase_ = self.get_image_description(UpperCamelCase ) # get prompt text embeddings for content and style lowerCamelCase_ = self.tokenizer( UpperCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=UpperCamelCase , return_tensors="pt" , ) lowerCamelCase_ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowerCamelCase_ = self.tokenizer( UpperCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=UpperCamelCase , return_tensors="pt" , ) lowerCamelCase_ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowerCamelCase_ = slerp(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # duplicate text embeddings for each generation per prompt lowerCamelCase_ = text_embeddings.repeat_interleave(UpperCamelCase , dim=0 ) # set timesteps lowerCamelCase_ = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowerCamelCase_ = {} if accepts_offset: lowerCamelCase_ = 1 self.scheduler.set_timesteps(UpperCamelCase , **UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowerCamelCase_ ,lowerCamelCase_ = self.get_timesteps(UpperCamelCase , UpperCamelCase , self.device ) lowerCamelCase_ = timesteps[:1].repeat(UpperCamelCase ) # Preprocess image lowerCamelCase_ = preprocess(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = self.prepare_latents( UpperCamelCase , UpperCamelCase , UpperCamelCase , text_embeddings.dtype , self.device , UpperCamelCase ) lowerCamelCase_ = preprocess(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = self.prepare_latents( UpperCamelCase , UpperCamelCase , UpperCamelCase , text_embeddings.dtype , self.device , UpperCamelCase ) lowerCamelCase_ = slerp(UpperCamelCase , UpperCamelCase , UpperCamelCase ) if clip_guidance_scale > 0: lowerCamelCase_ = self.get_clip_image_embeddings(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = self.get_clip_image_embeddings(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = slerp( UpperCamelCase , UpperCamelCase , UpperCamelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ = content_text_input.input_ids.shape[-1] lowerCamelCase_ = self.tokenizer([""] , padding="max_length" , max_length=UpperCamelCase , return_tensors="pt" ) lowerCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowerCamelCase_ = uncond_embeddings.repeat_interleave(UpperCamelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowerCamelCase_ = torch.randn(UpperCamelCase , generator=UpperCamelCase , device="cpu" , dtype=UpperCamelCase ).to( self.device ) else: lowerCamelCase_ = torch.randn(UpperCamelCase , generator=UpperCamelCase , device=self.device , dtype=UpperCamelCase ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ = {} if accepts_eta: lowerCamelCase_ = eta # check if the scheduler accepts generator lowerCamelCase_ = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowerCamelCase_ = generator with self.progress_bar(total=UpperCamelCase ): for i, t in enumerate(UpperCamelCase ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) # predict the noise residual lowerCamelCase_ = self.unet(UpperCamelCase , UpperCamelCase , encoder_hidden_states=UpperCamelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ ,lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowerCamelCase_ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowerCamelCase_ ,lowerCamelCase_ = self.cond_fn( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ = 1 / 0.18_215 * latents lowerCamelCase_ = self.vae.decode(UpperCamelCase ).sample lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCamelCase , nsfw_content_detected=UpperCamelCase )
55
'''simple docstring''' import math def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): return math.pow(UpperCAmelCase_ , 2 ) - a def __snake_case ( UpperCAmelCase_ : float ): return 2 * x def __snake_case ( UpperCAmelCase_ : float ): lowerCamelCase_ = 2.0 while start <= a: lowerCamelCase_ = math.pow(UpperCAmelCase_ , 2 ) return start def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : int = 9999 , UpperCAmelCase_ : float = 0.00_0000_0000_0001 ): if a < 0: raise ValueError("math domain error" ) lowerCamelCase_ = get_initial_point(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ): lowerCamelCase_ = value lowerCamelCase_ = value - fx(UpperCAmelCase_ , UpperCAmelCase_ ) / fx_derivative(UpperCAmelCase_ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
55
1
def _lowerCamelCase( lowercase__ , lowercase__ ) -> str: '''simple docstring''' __lowercase= 0 __lowercase= len(lowercase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowercase= left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase__ ): return None __lowercase= sorted_collection[point] if current_item == item: return point else: if point < left: __lowercase= left __lowercase= point elif point > right: __lowercase= right __lowercase= point else: if item < current_item: __lowercase= point - 1 else: __lowercase= point + 1 return None def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Dict: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowercase= left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) elif point > right: return interpolation_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowercase__ , lowercase__ , lowercase__ , point - 1 ) else: return interpolation_search_by_recursion( lowercase__ , lowercase__ , point + 1 , lowercase__ ) def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' if collection != sorted(lowercase__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys lowerCAmelCase = 0 if debug == 1: lowerCAmelCase = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') lowerCAmelCase = 6_7 lowerCAmelCase = interpolation_search(collection, target) if result is not None: print(F'{target} found at positions: {result}') else: print('''Not found''')
304
def _lowerCamelCase( lowercase__ = 1_0_0_0 ) -> int: '''simple docstring''' __lowercase= 2**power __lowercase= str(lowercase__ ) __lowercase= list(lowercase__ ) __lowercase= 0 for i in list_num: sum_of_num += int(lowercase__ ) return sum_of_num if __name__ == "__main__": lowerCAmelCase = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) lowerCAmelCase = solution(power) print('''Sum of the digits is: ''', result)
304
1
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _a = HUGGINGFACE_HUB_CACHE _a = 'config.json' _a = 'diffusion_pytorch_model.bin' _a = 'diffusion_flax_model.msgpack' _a = 'model.onnx' _a = 'diffusion_pytorch_model.safetensors' _a = 'weights.pb' _a = 'https://huggingface.co' _a = default_cache_path _a = 'diffusers_modules' _a = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _a = ['fp16', 'non-ema'] _a = '.self_attn'
61
"""simple docstring""" def _snake_case ( lowerCamelCase__ : str ) -> str: if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) lowerCamelCase_ : Optional[Any] ="" while len(lowerCamelCase__ ) % 3 != 0: lowerCamelCase_ : Any ="0" + bin_string lowerCamelCase_ : int =[ bin_string[index : index + 3] for index in range(len(lowerCamelCase__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowerCamelCase_ : int =0 for index, val in enumerate(lowerCamelCase__ ): oct_val += int(2 ** (2 - index) * int(lowerCamelCase__ ) ) oct_string += str(lowerCamelCase__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
144
0
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): _UpperCAmelCase : Optional[Any] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowerCamelCase_ (): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' a__ =TransfoXLTokenizer a__ =False a__ =False def __lowerCAmelCase ( self ) -> List[str]: super().setUp() _UpperCAmelCase : Dict = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] _UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , **A ) -> Dict: _UpperCAmelCase : Union[str, Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **A ) def __lowerCAmelCase ( self , A ) -> str: _UpperCAmelCase : str = '''<unk> UNwanted , running''' _UpperCAmelCase : Union[str, Any] = '''<unk> unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Any = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=A ) _UpperCAmelCase : Union[str, Any] = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(A , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [0, 4, 8, 7] ) def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : str = TransfoXLTokenizer(lower_case=A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = TransfoXLTokenizer(lower_case=A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : Tuple = TransfoXLTokenizer(lower_case=A ) _UpperCAmelCase : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' _UpperCAmelCase : Optional[Any] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(A ) , A ) self.assertEqual(tokenizer.convert_tokens_to_string(A ) , A ) def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : List[Any] = len(A ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(A ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
68
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class _a ( metaclass=__snake_case ): __a : Tuple = ["flax"] def __init__( self : str , *lowercase : int , **lowercase : List[str] ): '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : Optional[Any] , *lowercase : Dict , **lowercase : List[str] ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : Optional[int] , *lowercase : Optional[int] , **lowercase : int ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _a ( metaclass=__snake_case ): __a : Any = ["flax"] def __init__( self : int , *lowercase : List[Any] , **lowercase : Tuple ): '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : Optional[int] , *lowercase : Optional[int] , **lowercase : List[str] ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : Tuple , *lowercase : Tuple , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _a ( metaclass=__snake_case ): __a : Dict = ["flax"] def __init__( self : Dict , *lowercase : Optional[int] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : Tuple , *lowercase : Optional[Any] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : int , *lowercase : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _a ( metaclass=__snake_case ): __a : List[str] = ["flax"] def __init__( self : str , *lowercase : List[str] , **lowercase : Optional[int] ): '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Any , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : Dict , *lowercase : int , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _a ( metaclass=__snake_case ): __a : int = ["flax"] def __init__( self : Dict , *lowercase : Tuple , **lowercase : List[str] ): '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : Optional[Any] , *lowercase : List[Any] , **lowercase : str ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Dict , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _a ( metaclass=__snake_case ): __a : Optional[int] = ["flax"] def __init__( self : str , *lowercase : Dict , **lowercase : Optional[int] ): '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : int , *lowercase : int , **lowercase : Tuple ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : str , *lowercase : Union[str, Any] , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _a ( metaclass=__snake_case ): __a : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase : Tuple , **lowercase : int ): '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : Tuple , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : Dict , *lowercase : List[Any] , **lowercase : str ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _a ( metaclass=__snake_case ): __a : Tuple = ["flax"] def __init__( self : str , *lowercase : Any , **lowercase : int ): '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : Dict , *lowercase : Optional[int] , **lowercase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : str , *lowercase : Union[str, Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _a ( metaclass=__snake_case ): __a : str = ["flax"] def __init__( self : Optional[Any] , *lowercase : str , **lowercase : List[str] ): '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : List[str] , *lowercase : Dict , **lowercase : int ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : str , *lowercase : Optional[Any] , **lowercase : int ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _a ( metaclass=__snake_case ): __a : Union[str, Any] = ["flax"] def __init__( self : Any , *lowercase : Tuple , **lowercase : Optional[int] ): '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : Optional[int] , *lowercase : List[Any] , **lowercase : str ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : List[Any] , *lowercase : Any , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _a ( metaclass=__snake_case ): __a : Tuple = ["flax"] def __init__( self : Any , *lowercase : Optional[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : Tuple , *lowercase : Union[str, Any] , **lowercase : List[str] ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : List[Any] , *lowercase : str , **lowercase : str ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _a ( metaclass=__snake_case ): __a : Optional[Any] = ["flax"] def __init__( self : Dict , *lowercase : int , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : int , *lowercase : int , **lowercase : Tuple ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : Optional[Any] , *lowercase : List[Any] , **lowercase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _a ( metaclass=__snake_case ): __a : Optional[int] = ["flax"] def __init__( self : List[str] , *lowercase : Dict , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def A ( cls : Dict , *lowercase : List[Any] , **lowercase : Dict ): '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def A ( cls : int , *lowercase : Any , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax'''] )
34
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : int = resnets UpperCAmelCase_ : Tuple = attentions if self.add_downsample: UpperCAmelCase_ : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int=True ) -> int: UpperCAmelCase_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): UpperCAmelCase_ : str = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[Any] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> int: UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : Dict = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnets if self.add_downsample: UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any]=True ) -> Any: UpperCAmelCase_ : Union[str, Any] = () for resnet in self.resnets: UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[str] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: str ) -> Any: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : int = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = resnets UpperCAmelCase_ : Dict = attentions if self.add_upsample: UpperCAmelCase_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: List[str]=True ) -> List[str]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1] UpperCAmelCase_ : Union[str, Any] = res_hidden_states_tuple[:-1] UpperCAmelCase_ : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Dict = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> Dict: UpperCAmelCase_ : Any = [] for i in range(self.num_layers ): UpperCAmelCase_ : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : str = resnets if self.add_upsample: UpperCAmelCase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=True ) -> List[str]: for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ : Dict = res_hidden_states_tuple[-1] UpperCAmelCase_ : str = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : List[str] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Optional[Any] = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: # there is always at least one resnet UpperCAmelCase_ : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] UpperCAmelCase_ : Any = [] for _ in range(self.num_layers ): UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Dict = resnets UpperCAmelCase_ : Any = attentions def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any]=True ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.resnets[0](lowerCamelCase_ ,lowerCamelCase_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): UpperCAmelCase_ : Optional[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) return hidden_states
345
0
'''simple docstring''' from random import randint, random def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : int , lowercase : bool = False , lowercase : bool = False , lowercase : int = 5 , ) -> list: _a = [[-1] * number_of_cells] # Create a highway without any car _a = 0 _a = max(lowercase , 0 ) while i < number_of_cells: _a = ( randint(0 , lowercase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _lowerCamelCase ( lowercase : list , lowercase : int ) -> int: _a = 0 _a = highway_now[car_index + 1 :] for cell in range(len(lowercase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowercase , -1 ) def _lowerCamelCase ( lowercase : list , lowercase : float , lowercase : int ) -> list: _a = len(lowercase ) # Beforce calculations, the highway is empty _a = [-1] * number_of_cells for car_index in range(lowercase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _a = min(highway_now[car_index] + 1 , lowercase ) # Number of empty cell before the next car _a = get_distance(lowercase , lowercase ) - 1 # We can't have the car causing an accident _a = min(next_highway[car_index] , lowercase ) if random() < probability: # Randomly, a driver will slow down _a = max(next_highway[car_index] - 1 , 0 ) return next_highway def _lowerCamelCase ( lowercase : list , lowercase : int , lowercase : float , lowercase : int ) -> list: _a = len(highway[0] ) for i in range(lowercase ): _a = update(highway[i] , lowercase , lowercase ) _a = [-1] * number_of_cells for car_index in range(lowercase ): _a = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _a = (car_index + speed) % number_of_cells # Commit the change of position _a = speed highway.append(lowercase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
346
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) lowerCAmelCase_ : List[Any] = logging.getLogger(__name__) lowerCAmelCase_ : List[Any] = {'facebook/bart-base': BartForConditionalGeneration} lowerCAmelCase_ : int = {'facebook/bart-base': BartTokenizer} def _lowerCamelCase ( ) -> Union[str, Any]: _a = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=lowercase , default=lowercase , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=lowercase , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=lowercase , default=lowercase , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=lowercase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowercase , ) parser.add_argument( "--config_name" , type=lowercase , default=lowercase , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=lowercase , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=lowercase , default=lowercase , help="Where to store the final ONNX file." ) _a = parser.parse_args() return args def _lowerCamelCase ( lowercase : Any , lowercase : Tuple="cpu" ) -> Optional[Any]: _a = model_dict[model_name].from_pretrained(lowercase ).to(lowercase ) _a = tokenizer_dict[model_name].from_pretrained(lowercase ) if model_name in ["facebook/bart-base"]: _a = 0 _a = None _a = 0 return huggingface_model, tokenizer def _lowerCamelCase ( lowercase : List[str] , lowercase : Tuple , lowercase : int , lowercase : Any , lowercase : Dict ) -> Any: model.eval() _a = None _a = torch.jit.script(BARTBeamSearchGenerator(lowercase ) ) with torch.no_grad(): _a = "My friends are cool but they eat too many carbs." _a = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device ) _a = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=lowercase , max_length=lowercase , early_stopping=lowercase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( lowercase , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , lowercase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=lowercase , ) logger.info("Model exported to {}".format(lowercase ) ) _a = remove_dup_initializers(os.path.abspath(lowercase ) ) logger.info("Deduplicated and optimized model written to {}".format(lowercase ) ) _a = onnxruntime.InferenceSession(lowercase ) _a = ort_sess.run( lowercase , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(lowercase ), "max_length": np.array(lowercase ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def _lowerCamelCase ( ) -> Any: _a = parse_args() _a = 5 _a = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _a = torch.device(args.device ) _a , _a = load_model_tokenizer(args.model_name_or_path , lowercase ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(lowercase ) if args.max_length: _a = args.max_length if args.num_beams: _a = args.num_beams if args.output_file_path: _a = args.output_file_path else: _a = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(lowercase , lowercase , lowercase , lowercase , lowercase ) if __name__ == "__main__": main()
346
1
'''simple docstring''' import random from typing import Any def a__ ( a__ ): """simple docstring""" for _ in range(len(a__ ) ): __SCREAMING_SNAKE_CASE = random.randint(0 , len(a__ ) - 1 ) __SCREAMING_SNAKE_CASE = random.randint(0 , len(a__ ) - 1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase : List[Any] = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase : str = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
267
'''simple docstring''' from itertools import count def a__ ( a__ = 50 ): """simple docstring""" __SCREAMING_SNAKE_CASE = [1] * min_block_length for n in count(a__ ): fill_count_functions.append(1 ) for block_length in range(a__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(f"""{solution() = }""")
267
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __lowercase: List[Any] = logging.get_logger(__name__) __lowercase: str = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class UpperCAmelCase ( a_): _lowerCamelCase : Any = 'dpt' def __init__( self : List[Any], a_ : List[Any]=768, a_ : int=12, a_ : List[Any]=12, a_ : int=3072, a_ : List[Any]="gelu", a_ : Any=0.0, a_ : Union[str, Any]=0.0, a_ : Union[str, Any]=0.02, a_ : int=1e-1_2, a_ : Optional[int]=384, a_ : Dict=16, a_ : Union[str, Any]=3, a_ : Dict=False, a_ : int=True, a_ : Dict=[2, 5, 8, 11], a_ : Dict="project", a_ : List[Any]=[4, 2, 1, 0.5], a_ : str=[96, 192, 384, 768], a_ : int=256, a_ : Union[str, Any]=-1, a_ : Optional[Any]=False, a_ : Optional[Any]=True, a_ : str=0.4, a_ : List[str]=255, a_ : List[str]=0.1, a_ : int=[1, 1024, 24, 24], a_ : List[Any]=[0, 1], a_ : List[Any]=None, **a_ : Union[str, Any], ): """simple docstring""" super().__init__(**lowercase_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) UpperCamelCase__ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } UpperCamelCase__ = BitConfig(**lowercase_ ) elif isinstance(lowercase_, lowercase_ ): logger.info("Initializing the config with a `BiT` backbone." ) UpperCamelCase__ = BitConfig(**lowercase_ ) elif isinstance(lowercase_, lowercase_ ): UpperCamelCase__ = backbone_config else: raise ValueError( f'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) UpperCamelCase__ = backbone_featmap_shape UpperCamelCase__ = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be \'project\' when using `DPT-hybrid` mode." ) else: UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = [] UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of [\'ignore\', \'add\', \'project\']" ) UpperCamelCase__ = readout_type UpperCamelCase__ = reassemble_factors UpperCamelCase__ = neck_hidden_sizes UpperCamelCase__ = fusion_hidden_size UpperCamelCase__ = head_in_index UpperCamelCase__ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) UpperCamelCase__ = use_auxiliary_head UpperCamelCase__ = auxiliary_loss_weight UpperCamelCase__ = semantic_loss_ignore_index UpperCamelCase__ = semantic_classifier_dropout def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCamelCase__ = self.backbone_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
357
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = CLIPTokenizer _lowerCamelCase : Dict = CLIPTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = False def lowercase_ ( self : Tuple ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowercase_ ( self : Optional[Any], **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : List[Any], a_ : Dict ): """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) @require_ftfy def lowercase_ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )), ) UpperCamelCase__ = f' {text}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )), ) def lowercase_ ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().test_tokenization_python_rust_equals() def lowercase_ ( self : List[str] ): """simple docstring""" pass
31
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase ( a_ , a_=0.999 , a_="cosine" , ) -> Any: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(a_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a_ ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) A_ : Optional[int] = [] for i in range(UpperCAmelCase__ ): A_ : Optional[Any] = i / num_diffusion_timesteps A_ : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase__ ) / alpha_bar_fn(UpperCAmelCase__ ) , UpperCAmelCase__ ) ) return torch.tensor(UpperCAmelCase__ , dtype=torch.floataa ) class _lowerCAmelCase ( _snake_case, _snake_case ): """simple docstring""" lowerCamelCase = [e.name for e in KarrasDiffusionSchedulers] lowerCamelCase = 2 @register_to_config def __init__( self , _lowerCamelCase = 1000 , _lowerCamelCase = 0.0_0085 , _lowerCamelCase = 0.012 , _lowerCamelCase = "linear" , _lowerCamelCase = None , _lowerCamelCase = "epsilon" , _lowerCamelCase = "linspace" , _lowerCamelCase = 0 , ) -> Tuple: if trained_betas is not None: A_ : str = torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": A_ : str = torch.linspace(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A_ : str = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A_ : Any = betas_for_alpha_bar(UpperCamelCase__ ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) A_ : Any = 1.0 - self.betas A_ : List[str] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None ) -> List[str]: if schedule_timesteps is None: A_ : Optional[Any] = self.timesteps A_ : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: A_ : Optional[Any] = 1 if len(UpperCamelCase__ ) > 1 else 0 else: A_ : Tuple = timestep.cpu().item() if torch.is_tensor(UpperCamelCase__ ) else timestep A_ : Optional[int] = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , ) -> torch.FloatTensor: A_ : str = self.index_for_timestep(UpperCamelCase__ ) if self.state_in_first_order: A_ : str = self.sigmas[step_index] else: A_ : Any = self.sigmas_interpol[step_index] A_ : int = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , ) -> List[str]: A_ : Tuple = num_inference_steps A_ : str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": A_ : int = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase__ , dtype=UpperCamelCase__ )[::-1].copy() elif self.config.timestep_spacing == "leading": A_ : Optional[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A_ : Union[str, Any] = (np.arange(0 , UpperCamelCase__ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": A_ : int = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A_ : Tuple = (np.arange(UpperCamelCase__ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase__ ) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'." ) A_ : Any = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) A_ : int = torch.from_numpy(np.log(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A_ : List[str] = np.interp(UpperCamelCase__ , np.arange(0 , len(UpperCamelCase__ ) ) , UpperCamelCase__ ) A_ : Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) A_ : int = torch.from_numpy(UpperCamelCase__ ).to(device=UpperCamelCase__ ) # interpolate sigmas A_ : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() A_ : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) A_ : Optional[Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCamelCase__ ).startswith("""mps""" ): # mps does not support float64 A_ : Union[str, Any] = torch.from_numpy(UpperCamelCase__ ).to(UpperCamelCase__ , dtype=torch.floataa ) else: A_ : Union[str, Any] = torch.from_numpy(UpperCamelCase__ ).to(UpperCamelCase__ ) # interpolate timesteps A_ : Optional[Any] = self.sigma_to_t(UpperCamelCase__ ).to(UpperCamelCase__ , dtype=timesteps.dtype ) A_ : Optional[Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() A_ : List[Any] = torch.cat([timesteps[:1], interleaved_timesteps] ) A_ : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter A_ : Dict = defaultdict(UpperCamelCase__ ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Dict: A_ : str = sigma.log() # get distribution A_ : List[str] = log_sigma - self.log_sigmas[:, None] # get sigmas range A_ : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) A_ : Dict = low_idx + 1 A_ : Optional[int] = self.log_sigmas[low_idx] A_ : Optional[Any] = self.log_sigmas[high_idx] # interpolate sigmas A_ : List[Any] = (low - log_sigma) / (low - high) A_ : int = w.clamp(0 , 1 ) # transform interpolation to time range A_ : Optional[Any] = (1 - w) * low_idx + w * high_idx A_ : List[Any] = t.view(sigma.shape ) return t @property def UpperCAmelCase_ ( self ) -> int: return self.sample is None def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ) -> Union[SchedulerOutput, Tuple]: A_ : int = self.index_for_timestep(UpperCamelCase__ ) # advance index counter by 1 A_ : Optional[int] = timestep.cpu().item() if torch.is_tensor(UpperCamelCase__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: A_ : List[str] = self.sigmas[step_index] A_ : Tuple = self.sigmas_interpol[step_index + 1] A_ : Dict = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method A_ : Tuple = self.sigmas[step_index - 1] A_ : int = self.sigmas_interpol[step_index] A_ : Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API A_ : Optional[Any] = 0 A_ : List[str] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": A_ : Dict = sigma_hat if self.state_in_first_order else sigma_interpol A_ : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": A_ : str = sigma_hat if self.state_in_first_order else sigma_interpol A_ : Union[str, Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order A_ : Union[str, Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep A_ : str = sigma_interpol - sigma_hat # store for 2nd order step A_ : Optional[int] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order A_ : Tuple = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep A_ : List[Any] = sigma_next - sigma_hat A_ : Dict = self.sample A_ : Optional[Any] = None A_ : Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase__ ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> torch.FloatTensor: A_ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase__ ): # mps does not support float64 A_ : Union[str, Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) A_ : str = timesteps.to(original_samples.device , dtype=torch.floataa ) else: A_ : List[str] = self.timesteps.to(original_samples.device ) A_ : Tuple = timesteps.to(original_samples.device ) A_ : int = [self.index_for_timestep(UpperCamelCase__ , UpperCamelCase__ ) for t in timesteps] A_ : Any = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): A_ : Dict = sigma.unsqueeze(-1 ) A_ : List[Any] = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Dict: return self.config.num_train_timesteps
344
'''simple docstring''' from functools import lru_cache def UpperCAmelCase__ ( UpperCAmelCase__ ) -> set: A_ = 2 A_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCAmelCase__ ) if n > 1: factors.add(UpperCAmelCase__ ) return factors @lru_cache def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return len(unique_prime_factors(UpperCAmelCase__ ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return len(set(UpperCAmelCase__ ) ) in (0, 1) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list: A_ = 2 while True: # Increment each value of a generated range A_ = [base + i for i in range(UpperCAmelCase__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. A_ = [upf_len(UpperCAmelCase__ ) for x in group] checker.append(UpperCAmelCase__ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCAmelCase__ ): return group # Increment our base variable by 1 base += 1 def UpperCAmelCase__ ( UpperCAmelCase__ = 4 ) -> int: A_ = run(UpperCAmelCase__ ) return results[0] if len(UpperCAmelCase__ ) else None if __name__ == "__main__": print(solution())
162
0
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowerCamelCase ( __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Union[str, Any] ): # Construct model if openai_config_file == "": a__: Optional[Any] =OpenAIGPTConfig() else: a__: Dict =OpenAIGPTConfig.from_json_file(__magic_name__ ) a__: List[str] =OpenAIGPTModel(__magic_name__ ) # Load weights from numpy load_tf_weights_in_openai_gpt(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model a__: int =pytorch_dump_folder_path + "/" + WEIGHTS_NAME a__: Optional[int] =pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , __magic_name__ ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--openai_checkpoint_folder_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--openai_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) __UpperCAmelCase = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
42
def __lowerCamelCase ( __magic_name__ : int ): if not isinstance(__magic_name__ , __magic_name__ ): a__: List[str] =F"Input value of [number={number}] must be an integer" raise TypeError(__magic_name__ ) if number < 1: a__: Union[str, Any] =F"Input value of [number={number}] must be > 0" raise ValueError(__magic_name__ ) a__: List[Any] =1 for i in range(1 , __magic_name__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
42
1
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Tuple ,_a : NestedDataStructureLike[PathLike] ,_a : Optional[NamedSplit] = None ,_a : Optional[Features] = None ,_a : str = None ,_a : bool = False ,_a : bool = False ,_a : Optional[str] = None ,_a : Optional[int] = None ,**_a : Union[str, Any] ,): '''simple docstring''' super().__init__( _a ,split=_a ,features=_a ,cache_dir=_a ,keep_in_memory=_a ,streaming=_a ,num_proc=_a ,**_a ,) _a : List[Any] = field _a : List[Any] = path_or_paths if isinstance(_a ,_a ) else {self.split: path_or_paths} _a : int = Json( cache_dir=_a ,data_files=_a ,features=_a ,field=_a ,**_a ,) def __lowercase ( self : str ): '''simple docstring''' if self.streaming: _a : Tuple = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _a : Any = None _a : Optional[Any] = None _a : Dict = None _a : Dict = None self.builder.download_and_prepare( download_config=_a ,download_mode=_a ,verification_mode=_a ,base_path=_a ,num_proc=self.num_proc ,) _a : List[Any] = self.builder.as_dataset( split=self.split ,verification_mode=_a ,in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase__ : """simple docstring""" def __init__( self : Any ,_a : Dataset ,_a : Union[PathLike, BinaryIO] ,_a : Optional[int] = None ,_a : Optional[int] = None ,**_a : Any ,): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) _a : Union[str, Any] = dataset _a : Optional[Any] = path_or_buf _a : Optional[int] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _a : Any = num_proc _a : Optional[Any] = 'utf-8' _a : Any = to_json_kwargs def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : List[str] = self.to_json_kwargs.pop('path_or_buf' ,_a ) _a : List[str] = self.to_json_kwargs.pop('orient' ,'records' ) _a : Dict = self.to_json_kwargs.pop('lines' ,True if orient == 'records' else False ) _a : Optional[Any] = self.to_json_kwargs.pop('index' ,False if orient in ['split', 'table'] else True ) _a : Union[str, Any] = self.to_json_kwargs.pop('compression' ,_a ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf ,'wb' ,compression=_a ) as buffer: _a : str = self._write(file_obj=_a ,orient=_a ,lines=_a ,index=_a ,**self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" ' was passed. Please provide a local path instead.' ) _a : List[Any] = self._write( file_obj=self.path_or_buf ,orient=_a ,lines=_a ,index=_a ,**self.to_json_kwargs ) return written def __lowercase ( self : Dict ,_a : Optional[Any] ): '''simple docstring''' _a, _a, _a, _a, _a : Optional[Any] = args _a : Any = query_table( table=self.dataset.data ,key=slice(_a ,offset + self.batch_size ) ,indices=self.dataset._indices ,) _a : List[Any] = batch.to_pandas().to_json( path_or_buf=_a ,orient=_a ,lines=_a ,index=_a ,**_a ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def __lowercase ( self : Any ,_a : BinaryIO ,_a : Optional[int] ,_a : Any ,_a : Union[str, Any] ,**_a : str ,): '''simple docstring''' _a : Dict = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 ,len(self.dataset ) ,self.batch_size ) ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating json from Arrow format' ,): _a : Any = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(_a ) else: _a, _a : Optional[int] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json ,[(offset, orient, lines, index, to_json_kwargs) for offset in range(0 ,_a ,_a )] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating json from Arrow format' ,): written += file_obj.write(_a ) return written
271
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __lowerCAmelCase = HUGGINGFACE_HUB_CACHE __lowerCAmelCase = """config.json""" __lowerCAmelCase = """diffusion_pytorch_model.bin""" __lowerCAmelCase = """diffusion_flax_model.msgpack""" __lowerCAmelCase = """model.onnx""" __lowerCAmelCase = """diffusion_pytorch_model.safetensors""" __lowerCAmelCase = """weights.pb""" __lowerCAmelCase = """https://huggingface.co""" __lowerCAmelCase = default_cache_path __lowerCAmelCase = """diffusers_modules""" __lowerCAmelCase = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) __lowerCAmelCase = ["""fp16""", """non-ema"""] __lowerCAmelCase = """.self_attn"""
271
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase :Dict = logging.get_logger(__name__) lowerCAmelCase :str = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Optional[int] = """sew-d""" def __init__( self : Dict , _A : str=32 , _A : Optional[int]=768 , _A : int=12 , _A : List[Any]=12 , _A : Optional[int]=3072 , _A : Tuple=2 , _A : Optional[int]=512 , _A : str=256 , _A : int=True , _A : Optional[int]=True , _A : Optional[Any]=("p2c", "c2p") , _A : Optional[Any]="layer_norm" , _A : Tuple="gelu_python" , _A : Optional[Any]=0.1 , _A : List[str]=0.1 , _A : int=0.1 , _A : List[Any]=0.0 , _A : List[str]=0.1 , _A : Any=0.02 , _A : List[Any]=1E-7 , _A : Tuple=1E-5 , _A : Optional[Any]="group" , _A : Optional[int]="gelu" , _A : Union[str, Any]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _A : Tuple=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _A : Tuple=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _A : Optional[Any]=False , _A : Optional[Any]=128 , _A : Tuple=16 , _A : Dict=True , _A : str=0.05 , _A : int=10 , _A : Optional[Any]=2 , _A : Union[str, Any]=0.0 , _A : str=10 , _A : int=0 , _A : Any="mean" , _A : Any=False , _A : Optional[int]=False , _A : Any=256 , _A : Optional[int]=0 , _A : Any=1 , _A : Any=2 , **_A : List[Any] , ) -> List[Any]: super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) __magic_name__ : Dict = hidden_size __magic_name__ : int = feat_extract_norm __magic_name__ : List[str] = feat_extract_activation __magic_name__ : Tuple = list(_A ) __magic_name__ : int = list(_A ) __magic_name__ : str = list(_A ) __magic_name__ : Union[str, Any] = conv_bias __magic_name__ : Union[str, Any] = num_conv_pos_embeddings __magic_name__ : Any = num_conv_pos_embedding_groups __magic_name__ : str = len(self.conv_dim ) __magic_name__ : str = num_hidden_layers __magic_name__ : Dict = intermediate_size __magic_name__ : Optional[int] = squeeze_factor __magic_name__ : Dict = max_position_embeddings __magic_name__ : List[str] = position_buckets __magic_name__ : Optional[int] = share_att_key __magic_name__ : Optional[Any] = relative_attention __magic_name__ : int = norm_rel_ebd __magic_name__ : Dict = list(_A ) __magic_name__ : Tuple = hidden_act __magic_name__ : Dict = num_attention_heads __magic_name__ : Tuple = hidden_dropout __magic_name__ : Optional[Any] = attention_dropout __magic_name__ : List[Any] = activation_dropout __magic_name__ : Optional[int] = feat_proj_dropout __magic_name__ : Dict = final_dropout __magic_name__ : int = layer_norm_eps __magic_name__ : Any = feature_layer_norm_eps __magic_name__ : str = initializer_range __magic_name__ : Optional[int] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __magic_name__ : int = apply_spec_augment __magic_name__ : List[str] = mask_time_prob __magic_name__ : Dict = mask_time_length __magic_name__ : Union[str, Any] = mask_time_min_masks __magic_name__ : int = mask_feature_prob __magic_name__ : Tuple = mask_feature_length __magic_name__ : Any = mask_feature_min_masks # ctc loss __magic_name__ : Any = ctc_loss_reduction __magic_name__ : Union[str, Any] = ctc_zero_infinity # sequence classification __magic_name__ : str = use_weighted_layer_sum __magic_name__ : Dict = classifier_proj_size @property def __lowerCAmelCase ( self : List[Any] ) -> str: return functools.reduce(operator.mul , self.conv_stride , 1 )
275
'''simple docstring''' lowerCAmelCase :Union[str, Any] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase :Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase :Tuple = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
275
1
"""simple docstring""" import argparse import os import re import packaging.version __A : List[str] = '''examples/''' __A : int = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __A : Dict = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __A : Optional[int] = '''README.md''' def lowercase ( __snake_case : int , __snake_case : Any , __snake_case : int ): with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase_ : int = f.read() lowercase_ , lowercase_ : List[str] = REPLACE_PATTERNS[pattern] lowercase_ : Union[str, Any] = replace.replace('''VERSION''' , __snake_case ) lowercase_ : Optional[Any] = re_pattern.sub(__snake_case , __snake_case ) with open(__snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(__snake_case ) def lowercase ( __snake_case : int ): for folder, directories, fnames in os.walk(__snake_case ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__snake_case , __snake_case ) , __snake_case , pattern='''examples''' ) def lowercase ( __snake_case : Optional[Any] , __snake_case : Optional[Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__snake_case , __snake_case , __snake_case ) if not patch: update_version_in_examples(__snake_case ) def lowercase ( ): lowercase_ : Union[str, Any] = '''🤗 Transformers currently provides the following architectures''' lowercase_ : Union[str, Any] = '''1. Want to contribute a new model?''' with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase_ : List[str] = f.readlines() # Find the start of the list. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowercase_ : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): lowercase_ : str = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(__snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__snake_case ) def lowercase ( ): with open(REPLACE_FILES['''init'''] , '''r''' ) as f: lowercase_ : List[Any] = f.read() lowercase_ : List[str] = REPLACE_PATTERNS['''init'''][0].search(__snake_case ).groups()[0] return packaging.version.parse(__snake_case ) def lowercase ( __snake_case : Optional[Any]=False ): lowercase_ : str = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: lowercase_ : Optional[Any] = default_version.base_version elif patch: lowercase_ : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowercase_ : Optional[int] = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowercase_ : int = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__snake_case ) == 0: lowercase_ : Dict = default_version print(F'''Updating version to {version}.''' ) global_version_update(__snake_case , patch=__snake_case ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowercase ( ): lowercase_ : List[Any] = get_version() lowercase_ : List[str] = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowercase_ : Any = current_version.base_version # Check with the user we got that right. lowercase_ : Tuple = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__snake_case ) == 0: lowercase_ : str = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__snake_case ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __A : int = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __A : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
303
0
import pickle import numpy as np from matplotlib import pyplot as plt class _snake_case : '''simple docstring''' def __init__( self: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any]=0.2 ,lowerCamelCase_: Tuple=0.2 ) -> str: UpperCAmelCase_ : str = bp_numa UpperCAmelCase_ : str = bp_numa UpperCAmelCase_ : Tuple = bp_numa UpperCAmelCase_ : List[Any] = conva_get[:2] UpperCAmelCase_ : List[Any] = conva_get[2] UpperCAmelCase_ : Optional[int] = size_pa UpperCAmelCase_ : List[str] = rate_w UpperCAmelCase_ : Union[str, Any] = rate_t UpperCAmelCase_ : Optional[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCAmelCase_ : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 UpperCAmelCase_ : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 UpperCAmelCase_ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 def A__ ( self: str ,lowerCamelCase_: Dict ) -> Optional[int]: # save model dict with pickle UpperCAmelCase_ : Tuple = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(lowerCamelCase_ ,"""wb""" ) as f: pickle.dump(lowerCamelCase_ ,lowerCamelCase_ ) print(F'''Model saved: {save_path}''' ) @classmethod def A__ ( cls: Dict ,lowerCamelCase_: Any ) -> Dict: # read saved model with open(lowerCamelCase_ ,"""rb""" ) as f: UpperCAmelCase_ : str = pickle.load(lowerCamelCase_ ) # noqa: S301 UpperCAmelCase_ : Tuple = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) UpperCAmelCase_ : Dict = model_dic.get("""size_pooling1""" ) UpperCAmelCase_ : str = model_dic.get("""num_bp1""" ) UpperCAmelCase_ : Optional[Any] = model_dic.get("""num_bp2""" ) UpperCAmelCase_ : Any = model_dic.get("""num_bp3""" ) UpperCAmelCase_ : int = model_dic.get("""rate_weight""" ) UpperCAmelCase_ : Union[str, Any] = model_dic.get("""rate_thre""" ) # create model instance UpperCAmelCase_ : List[str] = CNN(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # modify model parameter UpperCAmelCase_ : Dict = model_dic.get("""w_conv1""" ) UpperCAmelCase_ : str = model_dic.get("""wkj""" ) UpperCAmelCase_ : List[Any] = model_dic.get("""vji""" ) UpperCAmelCase_ : List[str] = model_dic.get("""thre_conv1""" ) UpperCAmelCase_ : List[Any] = model_dic.get("""thre_bp2""" ) UpperCAmelCase_ : Optional[int] = model_dic.get("""thre_bp3""" ) return conv_ins def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Any: return 1 / (1 + np.exp(-1 * x )) def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[Any] ) -> Optional[Any]: return round(lowerCamelCase_ ,3 ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ) -> List[str]: # convolution process UpperCAmelCase_ : int = convs[0] UpperCAmelCase_ : Optional[int] = convs[1] UpperCAmelCase_ : List[str] = np.shape(lowerCamelCase_ )[0] # get the data slice of original image data, data_focus UpperCAmelCase_ : int = [] for i_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): for j_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): UpperCAmelCase_ : Dict = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowerCamelCase_ ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Any = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = [] for i_focus in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Dict = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowerCamelCase_ ) ) UpperCAmelCase_ : Tuple = np.asmatrix(lowerCamelCase_ ).reshape( lowerCamelCase_ ,lowerCamelCase_ ) data_featuremap.append(lowerCamelCase_ ) # expanding the data slice to One dimenssion UpperCAmelCase_ : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowerCamelCase_ ) ) UpperCAmelCase_ : Tuple = np.asarray(lowerCamelCase_ ) return focus_list, data_featuremap def A__ ( self: List[str] ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple="average_pool" ) -> List[Any]: # pooling process UpperCAmelCase_ : Union[str, Any] = len(featuremaps[0] ) UpperCAmelCase_ : List[Any] = int(size_map / size_pooling ) UpperCAmelCase_ : Optional[Any] = [] for i_map in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Any = featuremaps[i_map] UpperCAmelCase_ : Optional[Any] = [] for i_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowerCamelCase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[int] = np.asmatrix(lowerCamelCase_ ).reshape(lowerCamelCase_ ,lowerCamelCase_ ) featuremap_pooled.append(lowerCamelCase_ ) return featuremap_pooled def A__ ( self: Optional[int] ,lowerCamelCase_: Any ) -> List[str]: # expanding three dimension data to one dimension list UpperCAmelCase_ : str = [] for i in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : List[str] = np.shape(data[i] ) UpperCAmelCase_ : int = data[i].reshape(1 ,shapes[0] * shapes[1] ) UpperCAmelCase_ : Optional[int] = data_listed.getA().tolist()[0] data_expanded.extend(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = np.asarray(lowerCamelCase_ ) return data_expanded def A__ ( self: Any ,lowerCamelCase_: Tuple ) -> Dict: # expanding matrix to one dimension list UpperCAmelCase_ : str = np.asarray(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def A__ ( self: int ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ) -> Any: UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = 0 for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : str = np.ones((size_map, size_map) ) for i in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : int = pd_pool[ i_pool ] UpperCAmelCase_ : str = i_pool + 1 UpperCAmelCase_ : Union[str, Any] = np.multiply( lowerCamelCase_ ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(lowerCamelCase_ ) return pd_all def A__ ( self: Any ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any]=bool ) -> List[str]: # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(lowerCamelCase_ )) ) print((""" - - Shape: Teach_Data """, np.shape(lowerCamelCase_ )) ) UpperCAmelCase_ : int = 0 UpperCAmelCase_ : str = [] UpperCAmelCase_ : List[Any] = 10000 while rp < n_repeat and mse >= error_accuracy: UpperCAmelCase_ : Union[str, Any] = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(lowerCamelCase_ ) ): # print('------------Learning Image: %d--------------'%p) UpperCAmelCase_ : List[Any] = np.asmatrix(datas_train[p] ) UpperCAmelCase_ : Any = np.asarray(datas_teach[p] ) UpperCAmelCase_ , UpperCAmelCase_ : str = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : List[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : Tuple = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : int = data_bp_input UpperCAmelCase_ : str = np.dot(lowerCamelCase_ ,self.vji.T ) - self.thre_bpa UpperCAmelCase_ : Dict = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Dict = np.dot(lowerCamelCase_ ,self.wkj.T ) - self.thre_bpa UpperCAmelCase_ : Optional[int] = self.sig(lowerCamelCase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCAmelCase_ : List[Any] = np.multiply( (data_teach - bp_outa) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : Optional[int] = np.multiply( np.dot(lowerCamelCase_ ,self.wkj ) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : List[str] = np.dot(lowerCamelCase_ ,self.vji ) UpperCAmelCase_ : Optional[Any] = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCAmelCase_ : str = pd_conva_pooled.T.getA().tolist() UpperCAmelCase_ : Dict = self._calculate_gradient_from_pool( lowerCamelCase_ ,lowerCamelCase_ ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCAmelCase_ : Tuple = self._expand_mat(pd_conva_all[k_conv] ) UpperCAmelCase_ : Tuple = self.rate_weight * np.dot(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Dict = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCAmelCase_ : Optional[int] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCAmelCase_ : List[Any] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : str = self.thre_bpa - pd_k_all * self.rate_thre UpperCAmelCase_ : List[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCAmelCase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCAmelCase_ : List[Any] = rp + 1 UpperCAmelCase_ : str = error_count / patterns all_mse.append(lowerCamelCase_ ) def draw_error(): UpperCAmelCase_ : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowerCamelCase_ ,"""+-""" ) plt.plot(lowerCamelCase_ ,"""r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(lowerCamelCase_ ,alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def A__ ( self: List[str] ,lowerCamelCase_: Dict ) -> List[str]: # model predict UpperCAmelCase_ : Optional[Any] = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(lowerCamelCase_ )) ) for p in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Optional[Any] = np.asmatrix(datas_test[p] ) UpperCAmelCase_ , UpperCAmelCase_ : int = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : List[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : Tuple = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : int = data_bp_input UpperCAmelCase_ : List[str] = bp_outa * self.vji.T - self.thre_bpa UpperCAmelCase_ : Optional[int] = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Any = bp_outa * self.wkj.T - self.thre_bpa UpperCAmelCase_ : List[Any] = self.sig(lowerCamelCase_ ) produce_out.extend(bp_outa.getA().tolist() ) UpperCAmelCase_ : int = [list(map(self.do_round ,lowerCamelCase_ ) ) for each in produce_out] return np.asarray(lowerCamelCase_ ) def A__ ( self: List[str] ,lowerCamelCase_: Tuple ) -> Optional[int]: # return the data of image after convoluting process so we can check it out UpperCAmelCase_ : Union[str, Any] = np.asmatrix(lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : int = self.pooling(lowerCamelCase_ ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
59
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase_ = '''true''' def lowerCamelCase_ ( _a : List[Any] , _a : List[str]=82 , _a : Tuple=16 ): '''simple docstring''' set_seed(42 ) UpperCAmelCase_ : int = RegressionModel() UpperCAmelCase_ : List[Any] = deepcopy(_a ) UpperCAmelCase_ : Tuple = RegressionDataset(length=_a ) UpperCAmelCase_ : int = DataLoader(_a , batch_size=_a ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(_a , _a ) return model, ddp_model, dataloader def lowerCamelCase_ ( _a : Accelerator , _a : Optional[int]=False ): '''simple docstring''' UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) UpperCAmelCase_ : int = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(_a : str ): UpperCAmelCase_ : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_a , max_length=_a ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( _a , batched=_a , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) UpperCAmelCase_ : Tuple = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_a : List[str] ): if use_longest: return tokenizer.pad(_a , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(_a , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(_a , shuffle=_a , collate_fn=_a , batch_size=16 ) def lowerCamelCase_ ( _a : Any , _a : int ): '''simple docstring''' UpperCAmelCase_ : int = Accelerator(dispatch_batches=_a , split_batches=_a ) UpperCAmelCase_ : Dict = get_dataloader(_a , not dispatch_batches ) UpperCAmelCase_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=_a ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare(_a , _a ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase_ ( _a : Optional[int] , _a : Optional[Any] , _a : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = batch.values() with torch.no_grad(): UpperCAmelCase_ : str = model(_a ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = [], [] for logit, targ in logits_and_targets: logits.append(_a ) targs.append(_a ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = torch.cat(_a ), torch.cat(_a ) return logits, targs def lowerCamelCase_ ( _a : Accelerator , _a : str=82 , _a : str=False , _a : Dict=False , _a : Dict=16 ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_basic_setup(_a , _a , _a ) UpperCAmelCase_ , UpperCAmelCase_ : Any = generate_predictions(_a , _a , _a ) assert ( len(_a ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_a )}''' def lowerCamelCase_ ( _a : bool = False , _a : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = evaluate.load("""glue""" , """mrpc""" ) UpperCAmelCase_ , UpperCAmelCase_ : str = get_mrpc_setup(_a , _a ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = setup["""no"""] model.to(_a ) model.eval() for batch in dataloader: batch.to(_a ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**_a ) UpperCAmelCase_ : Any = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_a , references=batch["""labels"""] ) UpperCAmelCase_ : str = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : List[str] = model(**_a ) UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Union[str, Any] = batch["""labels"""] UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_a , references=_a ) UpperCAmelCase_ : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : Any = Accelerator(split_batches=_a , dispatch_batches=_a ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(_a , _a ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[int] = Accelerator(split_batches=_a , dispatch_batches=_a ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(_a , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) UpperCAmelCase_ : str = Accelerator() test_torch_metrics(_a , 512 ) accelerator.state._reset_state() def lowerCamelCase_ ( _a : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
59
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCamelCase ( unittest.TestCase ): @property def snake_case_ (self ) -> Any: torch.manual_seed(0 ) UpperCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def snake_case_ (self ) -> List[Any]: UpperCamelCase = self.dummy_uncond_unet UpperCamelCase = KarrasVeScheduler() UpperCamelCase = KarrasVePipeline(unet=__a , scheduler=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pipe(num_inference_steps=2 , generator=__a , output_type="numpy" ).images UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pipe(num_inference_steps=2 , generator=__a , output_type="numpy" , return_dict=__a )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self ) -> Tuple: UpperCamelCase = "google/ncsnpp-celebahq-256" UpperCamelCase = UNetaDModel.from_pretrained(__a ) UpperCamelCase = KarrasVeScheduler() UpperCamelCase = KarrasVePipeline(unet=__a , scheduler=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pipe(num_inference_steps=20 , generator=__a , output_type="numpy" ).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCamelCase = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
153
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def a__ ( _SCREAMING_SNAKE_CASE ): # picklable for multiprocessing """simple docstring""" return x.sum() def a__ ( _SCREAMING_SNAKE_CASE ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class _lowerCamelCase : UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 class _lowerCamelCase ( _lowercase ): def snake_case_ (self ) -> Optional[int]: UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 1 UpperCamelCase = [1, 2] UpperCamelCase = {"a": 1, "b": 2} UpperCamelCase = {"a": [1, 2], "b": [3, 4]} UpperCamelCase = {"a": {"1": 1}, "b": 2} UpperCamelCase = {"a": 1, "b": 2, "c": 3, "d": 4} UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 2 UpperCamelCase = [2, 3] UpperCamelCase = {"a": 2, "b": 3} UpperCamelCase = {"a": [2, 3], "b": [4, 5]} UpperCamelCase = {"a": {"1": 2}, "b": 3} UpperCamelCase = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) UpperCamelCase = 2 self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) UpperCamelCase = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} UpperCamelCase = {"a": 2, "b": 0, "c": 2} UpperCamelCase = { "a": np.eye(2 ).astype(__a ), "b": np.zeros(3 ).astype(__a ), "c": np.ones(2 ).astype(__a ), } self.assertEqual(map_nested(__a , __a , map_numpy=__a ) , __a ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__a , __a , map_numpy=__a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(__a , __a , map_numpy=__a , num_proc=__a ) , __a ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__a , __a , map_numpy=__a , num_proc=__a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(__a ): # can't pickle a local lambda map_nested(lambda __a : x + 1 , __a , num_proc=__a ) def snake_case_ (self ) -> Tuple: UpperCamelCase = {"a": 1, "b": 2} UpperCamelCase = {"a": 3, "b": 4} UpperCamelCase = {"a": 5, "b": 6} UpperCamelCase = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__a , __a , __a ) ) , __a ) def snake_case_ (self ) -> Dict: class _lowerCamelCase : UpperCAmelCase_ = "bar" UpperCamelCase = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(__a , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: UpperCamelCase = {F"{i}": i for i in range(_SCREAMING_SNAKE_CASE )} UpperCamelCase = map_nested(lambda _SCREAMING_SNAKE_CASE : x + 10 , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _lowerCamelCase ( _lowercase ): @require_tf def snake_case_ (self ) -> str: import tensorflow as tf from tensorflow.keras import layers UpperCamelCase = layers.Dense(2 ) def gen_random_output(): UpperCamelCase = tf.random.uniform((1, 3) ) return model(__a ).numpy() with temp_seed(42 , set_tensorflow=__a ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_tensorflow=__a ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(__a , __a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def snake_case_ (self ) -> Tuple: import torch def gen_random_output(): UpperCamelCase = torch.nn.Linear(3 , 2 ) UpperCamelCase = torch.rand(1 , 3 ) return model(__a ).detach().numpy() with temp_seed(42 , set_pytorch=__a ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_pytorch=__a ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(__a , __a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def snake_case_ (self ) -> Tuple: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): UpperCamelCase = gen_random_output() with temp_seed(42 ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(__a , __a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = NestedDataStructure(_SCREAMING_SNAKE_CASE ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = NestedDataStructure(_SCREAMING_SNAKE_CASE ).flatten() assert output == expected_output def a__ ( ): """simple docstring""" UpperCamelCase = A(x=1 , y="foobar" ) UpperCamelCase = {"x": 1, "y": "foobar"} assert asdict(_SCREAMING_SNAKE_CASE ) == expected_output UpperCamelCase = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} UpperCamelCase = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(_SCREAMING_SNAKE_CASE ) == expected_output with pytest.raises(_SCREAMING_SNAKE_CASE ): asdict([1, A(x=10 , y="foo" )] ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return text.split() def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def a__ ( ): """simple docstring""" with Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(_SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_SCREAMING_SNAKE_CASE ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(_SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_SCREAMING_SNAKE_CASE ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCamelCase = [] for yield_time, content in iflatmap_unordered( _SCREAMING_SNAKE_CASE , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(_SCREAMING_SNAKE_CASE ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(_SCREAMING_SNAKE_CASE ) == 4
153
1
"""simple docstring""" import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class SCREAMING_SNAKE_CASE_ ( __a , __a ): """simple docstring""" __lowercase : Tuple = 1 @register_to_config def __init__( self , lowerCAmelCase__=2_0_0_0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=2_0 , lowerCAmelCase__=1E-3): __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): __SCREAMING_SNAKE_CASE = torch.linspace(1 , self.config.sampling_eps , lowerCAmelCase__ , device=lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None): if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""") # TODO(Patrick) better comments + non-PyTorch # postprocess model score __SCREAMING_SNAKE_CASE = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __SCREAMING_SNAKE_CASE = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff)) __SCREAMING_SNAKE_CASE = std.flatten() while len(std.shape) < len(score.shape): __SCREAMING_SNAKE_CASE = std.unsqueeze(-1) __SCREAMING_SNAKE_CASE = -score / std # compute __SCREAMING_SNAKE_CASE = -1.0 / len(self.timesteps) __SCREAMING_SNAKE_CASE = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __SCREAMING_SNAKE_CASE = beta_t.flatten() while len(beta_t.shape) < len(x.shape): __SCREAMING_SNAKE_CASE = beta_t.unsqueeze(-1) __SCREAMING_SNAKE_CASE = -0.5 * beta_t * x __SCREAMING_SNAKE_CASE = torch.sqrt(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = drift - diffusion**2 * score __SCREAMING_SNAKE_CASE = x + drift * dt # add noise __SCREAMING_SNAKE_CASE = randn_tensor(x.shape , layout=x.layout , generator=lowerCAmelCase__ , device=x.device , dtype=x.dtype) __SCREAMING_SNAKE_CASE = x_mean + diffusion * math.sqrt(-dt) * noise return x, x_mean def __len__( self): return self.config.num_train_timesteps
359
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Union[str, Any] = XGLMTokenizer __lowercase : int = XGLMTokenizerFast __lowercase : Optional[Any] = True __lowercase : str = True def snake_case_ ( self): super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """<pad>""" __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(len(lowerCAmelCase__) , 1_0_0_8) def snake_case_ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""This is a test""") self.assertListEqual(lowerCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def snake_case_ ( self): return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""") def snake_case_ ( self): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) __SCREAMING_SNAKE_CASE = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def snake_case_ ( self): if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """Hello World!""" __SCREAMING_SNAKE_CASE = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off __SCREAMING_SNAKE_CASE = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def snake_case_ ( self): # fmt: off __SCREAMING_SNAKE_CASE = { """input_ids""": [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="""facebook/xglm-564M""" , padding=lowerCAmelCase__ , )
255
0
'''simple docstring''' from __future__ import annotations class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : str ,lowercase__ : str ): __lowercase , __lowercase = text, pattern __lowercase , __lowercase = len(lowercase__ ), len(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : str ): for i in range(self.patLen - 1 ,-1 ,-1 ): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): for i in range(self.patLen - 1 ,-1 ,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE ( self : int ): # searches pattern in text and returns index positions __lowercase = [] for i in range(self.textLen - self.patLen + 1 ): __lowercase = self.mismatch_in_text(lowercase__ ) if mismatch_index == -1: positions.append(lowercase__ ) else: __lowercase = self.match_in_pattern(self.text[mismatch_index] ) __lowercase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowerCAmelCase__ = '''ABAABA''' lowerCAmelCase__ = '''AB''' lowerCAmelCase__ = BoyerMooreSearch(text, pattern) lowerCAmelCase__ = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
104
'''simple docstring''' SCREAMING_SNAKE_CASE__ = 8.31_44_62 # Unit - J mol-1 K-1 def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
321
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : torch.FloatTensor class a (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase : Any=3 , lowerCamelCase : List[str]=3 , lowerCamelCase : List[str]=("DownEncoderBlock2D",) , lowerCamelCase : List[str]=(64,) , lowerCamelCase : int=2 , lowerCamelCase : Tuple=32 , lowerCamelCase : Union[str, Any]="silu" , lowerCamelCase : int=True , ) -> int: super().__init__() __snake_case : Dict = layers_per_block __snake_case : Optional[int] = torch.nn.Convad( lowerCamelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) __snake_case : str = None __snake_case : Any = nn.ModuleList([] ) # down __snake_case : Optional[int] = block_out_channels[0] for i, down_block_type in enumerate(lowerCamelCase ): __snake_case : int = output_channel __snake_case : List[Any] = block_out_channels[i] __snake_case : Any = i == len(lowerCamelCase ) - 1 __snake_case : Any = get_down_block( lowerCamelCase , num_layers=self.layers_per_block , in_channels=lowerCamelCase , out_channels=lowerCamelCase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase , resnet_groups=lowerCamelCase , attention_head_dim=lowerCamelCase , temb_channels=lowerCamelCase , ) self.down_blocks.append(lowerCamelCase ) # mid __snake_case : Optional[int] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCamelCase , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase , temb_channels=lowerCamelCase , ) # out __snake_case : Union[str, Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase , eps=1E-6 ) __snake_case : str = nn.SiLU() __snake_case : List[Any] = 2 * out_channels if double_z else out_channels __snake_case : int = nn.Convad(block_out_channels[-1] , lowerCamelCase , 3 , padding=1 ) __snake_case : Tuple = False def __snake_case ( self : Tuple , lowerCamelCase : str ) -> Optional[Any]: __snake_case : int = x __snake_case : Optional[Any] = self.conv_in(lowerCamelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase : Any ): def custom_forward(*lowerCamelCase : List[str] ): return module(*lowerCamelCase ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: __snake_case : str = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase ) , lowerCamelCase , use_reentrant=lowerCamelCase ) # middle __snake_case : Optional[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase , use_reentrant=lowerCamelCase ) else: for down_block in self.down_blocks: __snake_case : int = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase ) , lowerCamelCase ) # middle __snake_case : Optional[Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase ) else: # down for down_block in self.down_blocks: __snake_case : Union[str, Any] = down_block(lowerCamelCase ) # middle __snake_case : List[Any] = self.mid_block(lowerCamelCase ) # post-process __snake_case : Any = self.conv_norm_out(lowerCamelCase ) __snake_case : Union[str, Any] = self.conv_act(lowerCamelCase ) __snake_case : int = self.conv_out(lowerCamelCase ) return sample class a (nn.Module ): """simple docstring""" def __init__( self : Any , lowerCamelCase : Tuple=3 , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : Any=("UpDecoderBlock2D",) , lowerCamelCase : int=(64,) , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : List[Any]=32 , lowerCamelCase : Any="silu" , lowerCamelCase : str="group" , ) -> Union[str, Any]: super().__init__() __snake_case : Optional[int] = layers_per_block __snake_case : int = nn.Convad( lowerCamelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) __snake_case : List[Any] = None __snake_case : List[str] = nn.ModuleList([] ) __snake_case : Any = in_channels if norm_type == "spatial" else None # mid __snake_case : Dict = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowerCamelCase , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase , temb_channels=lowerCamelCase , ) # up __snake_case : List[str] = list(reversed(lowerCamelCase ) ) __snake_case : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase ): __snake_case : str = output_channel __snake_case : int = reversed_block_out_channels[i] __snake_case : List[str] = i == len(lowerCamelCase ) - 1 __snake_case : Optional[Any] = get_up_block( lowerCamelCase , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase , out_channels=lowerCamelCase , prev_output_channel=lowerCamelCase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowerCamelCase , resnet_groups=lowerCamelCase , attention_head_dim=lowerCamelCase , temb_channels=lowerCamelCase , resnet_time_scale_shift=lowerCamelCase , ) self.up_blocks.append(lowerCamelCase ) __snake_case : Optional[Any] = output_channel # out if norm_type == "spatial": __snake_case : Optional[Any] = SpatialNorm(block_out_channels[0] , lowerCamelCase ) else: __snake_case : List[str] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase , eps=1E-6 ) __snake_case : Dict = nn.SiLU() __snake_case : Any = nn.Convad(block_out_channels[0] , lowerCamelCase , 3 , padding=1 ) __snake_case : str = False def __snake_case ( self : Tuple , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any]=None ) -> Optional[Any]: __snake_case : str = z __snake_case : Tuple = self.conv_in(lowerCamelCase ) __snake_case : int = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase : str ): def custom_forward(*lowerCamelCase : Optional[Any] ): return module(*lowerCamelCase ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle __snake_case : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase , lowerCamelCase , use_reentrant=lowerCamelCase ) __snake_case : str = sample.to(lowerCamelCase ) # up for up_block in self.up_blocks: __snake_case : str = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase ) , lowerCamelCase , lowerCamelCase , use_reentrant=lowerCamelCase ) else: # middle __snake_case : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase , lowerCamelCase ) __snake_case : Dict = sample.to(lowerCamelCase ) # up for up_block in self.up_blocks: __snake_case : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase ) , lowerCamelCase , lowerCamelCase ) else: # middle __snake_case : List[Any] = self.mid_block(lowerCamelCase , lowerCamelCase ) __snake_case : Union[str, Any] = sample.to(lowerCamelCase ) # up for up_block in self.up_blocks: __snake_case : Any = up_block(lowerCamelCase , lowerCamelCase ) # post-process if latent_embeds is None: __snake_case : str = self.conv_norm_out(lowerCamelCase ) else: __snake_case : List[Any] = self.conv_norm_out(lowerCamelCase , lowerCamelCase ) __snake_case : int = self.conv_act(lowerCamelCase ) __snake_case : str = self.conv_out(lowerCamelCase ) return sample class a (nn.Module ): """simple docstring""" def __init__( self : Dict , lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any]=None , lowerCamelCase : int="random" , lowerCamelCase : int=False , lowerCamelCase : Optional[int]=True ) -> Dict: super().__init__() __snake_case : List[str] = n_e __snake_case : str = vq_embed_dim __snake_case : Optional[int] = beta __snake_case : List[str] = legacy __snake_case : str = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) __snake_case : Any = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) __snake_case : int = self.used.shape[0] __snake_case : int = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __snake_case : Tuple = self.re_embed __snake_case : Any = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: __snake_case : List[Any] = n_e __snake_case : Tuple = sane_index_shape def __snake_case ( self : Dict , lowerCamelCase : Optional[int] ) -> Optional[int]: __snake_case : List[Any] = inds.shape assert len(lowerCamelCase ) > 1 __snake_case : Union[str, Any] = inds.reshape(ishape[0] , -1 ) __snake_case : Optional[Any] = self.used.to(lowerCamelCase ) __snake_case : Tuple = (inds[:, :, None] == used[None, None, ...]).long() __snake_case : Optional[Any] = match.argmax(-1 ) __snake_case : Dict = match.sum(2 ) < 1 if self.unknown_index == "random": __snake_case : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: __snake_case : int = self.unknown_index return new.reshape(lowerCamelCase ) def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[str] ) -> Any: __snake_case : int = inds.shape assert len(lowerCamelCase ) > 1 __snake_case : str = inds.reshape(ishape[0] , -1 ) __snake_case : Any = self.used.to(lowerCamelCase ) if self.re_embed > self.used.shape[0]: # extra token __snake_case : Optional[Any] = 0 # simply set to zero __snake_case : List[str] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase ) return back.reshape(lowerCamelCase ) def __snake_case ( self : int , lowerCamelCase : int ) -> List[str]: # reshape z -> (batch, height, width, channel) and flatten __snake_case : Dict = z.permute(0 , 2 , 3 , 1 ).contiguous() __snake_case : Tuple = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __snake_case : List[Any] = torch.argmin(torch.cdist(lowerCamelCase , self.embedding.weight ) , dim=1 ) __snake_case : Dict = self.embedding(lowerCamelCase ).view(z.shape ) __snake_case : Dict = None __snake_case : str = None # compute loss for embedding if not self.legacy: __snake_case : Tuple = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __snake_case : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __snake_case : Union[str, Any] = z + (z_q - z).detach() # reshape back to match original input shape __snake_case : List[str] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: __snake_case : Dict = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis __snake_case : Optional[int] = self.remap_to_used(lowerCamelCase ) __snake_case : Any = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: __snake_case : Optional[Any] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __snake_case ( self : str , lowerCamelCase : str , lowerCamelCase : Dict ) -> int: # shape specifying (batch, height, width, channel) if self.remap is not None: __snake_case : Optional[int] = indices.reshape(shape[0] , -1 ) # add batch axis __snake_case : Optional[int] = self.unmap_to_all(lowerCamelCase ) __snake_case : int = indices.reshape(-1 ) # flatten again # get quantized latent vectors __snake_case : int = self.embedding(lowerCamelCase ) if shape is not None: __snake_case : Any = z_q.view(lowerCamelCase ) # reshape back to match original input shape __snake_case : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : str , lowerCamelCase : int , lowerCamelCase : str=False ) -> Tuple: __snake_case : str = parameters __snake_case , __snake_case : int = torch.chunk(lowerCamelCase , 2 , dim=1 ) __snake_case : Union[str, Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) __snake_case : Dict = deterministic __snake_case : Any = torch.exp(0.5 * self.logvar ) __snake_case : Tuple = torch.exp(self.logvar ) if self.deterministic: __snake_case : Union[str, Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __snake_case ( self : Dict , lowerCamelCase : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype __snake_case : str = randn_tensor( self.mean.shape , generator=lowerCamelCase , device=self.parameters.device , dtype=self.parameters.dtype ) __snake_case : Dict = self.mean + self.std * sample return x def __snake_case ( self : str , lowerCamelCase : Optional[Any]=None ) -> Optional[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __snake_case ( self : int , lowerCamelCase : Any , lowerCamelCase : List[Any]=[1, 2, 3] ) -> str: if self.deterministic: return torch.Tensor([0.0] ) __snake_case : int = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase ) def __snake_case ( self : Tuple ) -> List[str]: return self.mean
134
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = ["image_processor", "tokenizer"] __UpperCAmelCase : str = "OwlViTImageProcessor" __UpperCAmelCase : Dict = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : str , lowerCamelCase : Any=None , lowerCamelCase : Any=None , **lowerCamelCase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self : Union[str, Any] , lowerCamelCase : Tuple=None , lowerCamelCase : int=None , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : List[str]="max_length" , lowerCamelCase : Dict="np" , **lowerCamelCase : str ) -> List[Any]: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(lowerCamelCase , lowerCamelCase ) or (isinstance(lowerCamelCase , lowerCamelCase ) and not isinstance(text[0] , lowerCamelCase )): __snake_case : Union[str, Any] = [self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase )] elif isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(text[0] , lowerCamelCase ): __snake_case : Tuple = [] # Maximum number of queries across batch __snake_case : str = max([len(lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase ) != max_num_queries: __snake_case : Dict = t + [" "] * (max_num_queries - len(lowerCamelCase )) __snake_case : int = self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) encodings.append(lowerCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": __snake_case : Any = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Tuple = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __snake_case : List[Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Any = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __snake_case : int = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) __snake_case : int = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __snake_case : int = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) __snake_case : Dict = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) __snake_case : Any = BatchEncoding() __snake_case : Tuple = input_ids __snake_case : int = attention_mask if query_images is not None: __snake_case : List[Any] = BatchEncoding() __snake_case : Union[str, Any] = self.image_processor( lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ).pixel_values __snake_case : str = query_pixel_values if images is not None: __snake_case : Optional[int] = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __snake_case : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase ) , tensor_type=lowerCamelCase ) def __snake_case ( self : Dict , *lowerCamelCase : List[Any] , **lowerCamelCase : Union[str, Any] ) -> str: return self.image_processor.post_process(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Union[str, Any] , *lowerCamelCase : str , **lowerCamelCase : List[str] ) -> Tuple: return self.image_processor.post_process_object_detection(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Optional[Any] , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Optional[Any] ) -> Any: return self.image_processor.post_process_image_guided_detection(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : List[Any] , *lowerCamelCase : Tuple , **lowerCamelCase : Optional[int] ) -> str: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Union[str, Any] , *lowerCamelCase : Tuple , **lowerCamelCase : List[Any] ) -> Tuple: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Any ) -> Dict: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase , ) return self.image_processor_class @property def __snake_case ( self : List[str] ) -> Union[str, Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase , ) return self.image_processor
134
1
from math import factorial def __snake_case ( _lowerCAmelCase : int = 100 ) -> int: return sum(int(_lowerCAmelCase ) for x in str(factorial(_lowerCAmelCase ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
300
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : float | Decimal , _lowerCAmelCase : float = 10**-10 ) -> float: A_ : Dict = a while True: A_ : Union[str, Any] = Decimal(_lowerCAmelCase ) - ( Decimal(eval(_lowerCAmelCase ) ) / Decimal(eval(str(diff(_lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCAmelCase ) ) < precision: # noqa: S307 return float(_lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
300
1
# using dfs for finding eulerian path traversal def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Any: lowerCAmelCase__ : int = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = True, True lowerCAmelCase__ : List[Any] = dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return path def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : str = -1 for i in range(SCREAMING_SNAKE_CASE_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowerCAmelCase__ : List[str] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: lowerCAmelCase__ : Optional[int] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowerCAmelCase__ , lowerCAmelCase__ : Dict = check_circuit_or_path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return lowerCAmelCase__ : str = 1 if check == 2: lowerCAmelCase__ : Any = odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) lowerCAmelCase__ : List[Any] = dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( ) -> List[Any]: lowerCAmelCase__ : Optional[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowerCAmelCase__ : str = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowerCAmelCase__ : Union[str, Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowerCAmelCase__ : Tuple = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowerCAmelCase__ : Optional[Any] = { 1: [], 2: [] # all degree is zero } lowerCAmelCase__ : Optional[int] = 10 check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
307
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = DanceDiffusionPipeline lowercase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } lowercase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase = False lowercase = False def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=a , use_timestep_embedding=a , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase__ : Tuple = IPNDMScheduler() lowerCAmelCase__ : str = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , a : Dict , a : List[str]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) else: lowerCAmelCase__ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Optional[Any] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : List[str] = DanceDiffusionPipeline(**a ) lowerCAmelCase__ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a ) lowerCAmelCase__ : List[Any] = pipe(**a ) lowerCAmelCase__ : List[str] = output.audios lowerCAmelCase__ : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase__ : List[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device lowerCAmelCase__ : List[str] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase__ : List[str] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : int = output.audios lowerCAmelCase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : Dict = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = torch_device lowerCAmelCase__ : List[Any] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Optional[int] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : str = output.audios lowerCAmelCase__ : Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : int = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
307
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : float ) -> float: '''simple docstring''' return 10 - x * x def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float ) -> float: '''simple docstring''' if equation(snake_case_ ) * equation(snake_case_ ) >= 0: raise ValueError("Wrong space!" ) UpperCAmelCase_ = a while (b - a) >= 0.01: # Find middle point UpperCAmelCase_ = (a + b) / 2 # Check if middle point is root if equation(snake_case_ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case_ ) * equation(snake_case_ ) < 0: UpperCAmelCase_ = c else: UpperCAmelCase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : List[Any] ) -> List[Any]: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : str=True ) -> Optional[Any]: '''simple docstring''' model.train() UpperCAmelCase_ = model(snake_case_ ) UpperCAmelCase_ = F.mse_loss(snake_case_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Any=False ) -> Dict: '''simple docstring''' set_seed(42 ) UpperCAmelCase_ = RegressionModel() UpperCAmelCase_ = deepcopy(snake_case_ ) UpperCAmelCase_ = RegressionDataset(length=80 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase_ = AdamW(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) UpperCAmelCase_ = LambdaLR(snake_case_ , lr_lambda=lambda snake_case_ : epoch**0.65 ) UpperCAmelCase_ = LambdaLR(snake_case_ , lr_lambda=lambda snake_case_ : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCAmelCase_ ( snake_case_ : Any ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCAmelCase_ ( snake_case_ : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) # Use a single batch UpperCAmelCase_ , UpperCAmelCase_ = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCAmelCase_ ( snake_case_ : Optional[int]=False , snake_case_ : str=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ ) for iteration, batch in enumerate(snake_case_ ): UpperCAmelCase_ , UpperCAmelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) UpperCAmelCase_ = ddp_input[torch.randperm(len(snake_case_ ) )] GradientState._reset_state() def lowerCAmelCase_ ( snake_case_ : Optional[Any]=False , snake_case_ : Tuple=False ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_training_setup(snake_case_ , snake_case_ ) for iteration, batch in enumerate(snake_case_ ): UpperCAmelCase_ , UpperCAmelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase_ , UpperCAmelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" UpperCAmelCase_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case_ )) if accelerator.num_processes > 1: check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = RegressionDataset(length=80 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) UpperCAmelCase_ = RegressionDataset(length=96 ) UpperCAmelCase_ = DataLoader(snake_case_ , batch_size=16 ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(snake_case_ , snake_case_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if iteration < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if batch_num < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(snake_case_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(snake_case_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(snake_case_ , snake_case_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Dict ) -> int: '''simple docstring''' main() if __name__ == "__main__": main()
1
1
import datasets from .evaluate import evaluate UpperCamelCase = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' UpperCamelCase = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' UpperCamelCase = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def a ( self : Optional[Any] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: lowerCAmelCase__ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} lowerCAmelCase__ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] lowerCAmelCase__ = evaluate(dataset=SCREAMING_SNAKE_CASE__ , predictions=SCREAMING_SNAKE_CASE__ ) return score
221
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : Any , SCREAMING_SNAKE_CASE__ : Any ) -> int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): lowerCAmelCase__ = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] ) -> Any: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ) -> Optional[Any]: lowerCAmelCase__ = "sgugger/tiny-distilbert-classification" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , only_pretrain_model=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Optional[Any] ) -> int: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , torchscript=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def a ( self : Dict ) -> Optional[Any]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , fpaa=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ) -> Tuple: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) # set architectures equal to `None` lowerCAmelCase__ = None lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Any ) -> Optional[Any]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def a ( self : int ) -> Dict: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=SCREAMING_SNAKE_CASE__ , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Optional[Any] ) -> Optional[Any]: lowerCAmelCase__ = "sshleifer/tinier_bart" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ) -> Dict: lowerCAmelCase__ = "sshleifer/tiny-gpt2" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[int] ) -> Optional[int]: lowerCAmelCase__ = "sshleifer/tinier_bart" lowerCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ , configs=[config] ) lowerCAmelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : List[Any] ) -> Optional[int]: lowerCAmelCase__ = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , save_to_csv=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "inf_time.csv" ) , train_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "inf_mem.csv" ) , train_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "train_time.csv" ) , env_info_csv_file=os.path.join(SCREAMING_SNAKE_CASE__ , "env.csv" ) , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) benchmark.run() self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "env.csv" ) ).exists() ) def a ( self : Optional[Any] ) -> Any: lowerCAmelCase__ = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(SCREAMING_SNAKE_CASE__ : List[Any] ): self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "sequential" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "cumulative" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "current" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=SCREAMING_SNAKE_CASE__ , inference=SCREAMING_SNAKE_CASE__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(SCREAMING_SNAKE_CASE__ , "log.txt" ) , log_print=SCREAMING_SNAKE_CASE__ , trace_memory_line_by_line=SCREAMING_SNAKE_CASE__ , multi_process=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = PyTorchBenchmark(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE__ , "log.txt" ) ).exists() )
221
1
from typing import List from .keymap import KEYMAP, get_character def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: def decorator(SCREAMING_SNAKE_CASE__ : Optional[int] ): _snake_case : List[Any] = getattr(snake_case__ , """handle_key""" , [] ) handle += [key] setattr(snake_case__ , """handle_key""" , snake_case__ ) return func return decorator def lowercase ( *SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: def decorator(SCREAMING_SNAKE_CASE__ : List[Any] ): _snake_case : Optional[Any] = getattr(snake_case__ , """handle_key""" , [] ) handle += keys setattr(snake_case__ , """handle_key""" , snake_case__ ) return func return decorator class snake_case ( __a ): '''simple docstring''' def __new__( cls : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" _snake_case : Optional[int] = super().__new__(cls , a_ , a_ , a_) if not hasattr(a_ , """key_handler"""): setattr(a_ , """key_handler""" , {}) setattr(a_ , """handle_input""" , KeyHandler.handle_input) for value in attrs.values(): _snake_case : List[Any] = getattr(a_ , """handle_key""" , []) for key in handled_keys: _snake_case : Dict = value return new_cls @staticmethod def UpperCamelCase_ ( cls : str) -> Any: """simple docstring""" _snake_case : List[Any] = get_character() if char != KEYMAP["undefined"]: _snake_case : Union[str, Any] = ord(a_) _snake_case : Optional[int] = cls.key_handler.get(a_) if handler: _snake_case : Optional[int] = char return handler(cls) else: return None def lowercase ( cls : Union[str, Any] ) -> int: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
317
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Any=7 ): """simple docstring""" _snake_case : Any = None if token is not None: _snake_case : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} # The id of a workflow (not of a workflow run) _snake_case : List[str] = """636036""" _snake_case : Union[str, Any] = F"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" _snake_case : str = requests.get(snake_case__ , headers=snake_case__ ).json() return result["workflow_runs"] def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : str = get_daily_ci_runs(snake_case__ ) _snake_case : str = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _snake_case : List[str] = workflow_run["""id"""] break return workflow_run_id def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): """simple docstring""" _snake_case : Optional[Any] = get_last_daily_ci_runs(snake_case__ ) if workflow_run_id is not None: _snake_case : Optional[Any] = get_artifacts_links(worflow_run_id=snake_case__ , token=snake_case__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _snake_case : Optional[int] = artifacts_links[artifact_name] download_artifact( artifact_name=snake_case__ , artifact_url=snake_case__ , output_dir=snake_case__ , token=snake_case__ ) def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int ): """simple docstring""" get_last_daily_ci_artifacts(snake_case__ , snake_case__ , snake_case__ ) _snake_case : int = {} for artifact_name in artifact_names: _snake_case : int = os.path.join(snake_case__ , F"{artifact_name}.zip" ) if os.path.isfile(snake_case__ ): _snake_case : Tuple = {} with zipfile.ZipFile(snake_case__ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case__ ): # read the file with z.open(snake_case__ ) as f: _snake_case : Any = f.read().decode("""UTF-8""" ) return results
64
0
'''simple docstring''' from math import factorial def SCREAMING_SNAKE_CASE__ ( __A = 100 ) -> Optional[int]: return sum(int(__A ) for x in str(factorial(__A ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
359
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __UpperCAmelCase : @staticmethod def lowerCamelCase ( *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( __A ) -> str: _snake_case = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def SCREAMING_SNAKE_CASE__ ( __A ) -> Dict: _snake_case = np.array(__A ) _snake_case = npimg.shape return {"hash": hashimage(__A ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __UpperCAmelCase ( unittest.TestCase ): __lowercase = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __lowercase = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = MaskGenerationPipeline(model=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def lowerCamelCase ( self ): """simple docstring""" pass @slow @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) _snake_case = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=2_56 ) # Shortening by hashing _snake_case = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCAmelCase_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_80, 6_40)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (4_80, 6_40)}, 'scores': 1.021}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_80, 6_40)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_80, 6_40)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (4_80, 6_40)}, 'scores': 1.0053}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (4_80, 6_40)}, 'scores': 0.9967}, {'mask': {'hash': '453c7844bd', 'shape': (4_80, 6_40)}, 'scores': 0.993}, {'mask': {'hash': '3d44f2926d', 'shape': (4_80, 6_40)}, 'scores': 0.9909}, {'mask': {'hash': '64033ddc3f', 'shape': (4_80, 6_40)}, 'scores': 0.9879}, {'mask': {'hash': '801064ff79', 'shape': (4_80, 6_40)}, 'scores': 0.9834}, {'mask': {'hash': '6172f276ef', 'shape': (4_80, 6_40)}, 'scores': 0.9716}, {'mask': {'hash': 'b49e60e084', 'shape': (4_80, 6_40)}, 'scores': 0.9612}, {'mask': {'hash': 'a811e775fd', 'shape': (4_80, 6_40)}, 'scores': 0.9599}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (4_80, 6_40)}, 'scores': 0.9552}, {'mask': {'hash': '9d8257e080', 'shape': (4_80, 6_40)}, 'scores': 0.9532}, {'mask': {'hash': '32de6454a8', 'shape': (4_80, 6_40)}, 'scores': 0.9516}, {'mask': {'hash': 'af3d4af2c8', 'shape': (4_80, 6_40)}, 'scores': 0.9499}, {'mask': {'hash': '3c6db475fb', 'shape': (4_80, 6_40)}, 'scores': 0.9483}, {'mask': {'hash': 'c290813fb9', 'shape': (4_80, 6_40)}, 'scores': 0.9464}, {'mask': {'hash': 'b6f0b8f606', 'shape': (4_80, 6_40)}, 'scores': 0.943}, {'mask': {'hash': '92ce16bfdf', 'shape': (4_80, 6_40)}, 'scores': 0.943}, {'mask': {'hash': 'c749b25868', 'shape': (4_80, 6_40)}, 'scores': 0.9408}, {'mask': {'hash': 'efb6cab859', 'shape': (4_80, 6_40)}, 'scores': 0.9335}, {'mask': {'hash': '1ff2eafb30', 'shape': (4_80, 6_40)}, 'scores': 0.9326}, {'mask': {'hash': '788b798e24', 'shape': (4_80, 6_40)}, 'scores': 0.9262}, {'mask': {'hash': 'abea804f0e', 'shape': (4_80, 6_40)}, 'scores': 0.8999}, {'mask': {'hash': '7b9e8ddb73', 'shape': (4_80, 6_40)}, 'scores': 0.8986}, {'mask': {'hash': 'cd24047c8a', 'shape': (4_80, 6_40)}, 'scores': 0.8984}, {'mask': {'hash': '6943e6bcbd', 'shape': (4_80, 6_40)}, 'scores': 0.8873}, {'mask': {'hash': 'b5f47c9191', 'shape': (4_80, 6_40)}, 'scores': 0.8871} ] , ) # fmt: on @require_torch @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'facebook/sam-vit-huge' _snake_case = pipeline('mask-generation' , model=lowerCAmelCase_ ) _snake_case = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing _snake_case = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCAmelCase_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_80, 6_40)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (4_80, 6_40)}, 'scores': 1.0210}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_80, 6_40)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_80, 6_40)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (4_80, 6_40)}, 'scores': 1.0053}, ] , )
160
0
"""simple docstring""" import datasets _lowercase = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' _lowercase = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' _lowercase = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def _snake_case ( snake_case__ : Dict , snake_case__ : List[str] ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) ,codebase_urls=[] ,reference_urls=[] ,format='numpy' ,) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Union[str, Any] ) -> Optional[Any]: return {"accuracy": simple_accuracy(A_ ,A_ )}
74
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __UpperCAmelCase = None __UpperCAmelCase = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __UpperCAmelCase = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : bool = True UpperCAmelCase__ : Optional[str] = None # Automatically constructed UpperCAmelCase__ : ClassVar[str] = "PIL.Image.Image" UpperCAmelCase__ : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCAmelCase__ : str = field(default="Image" , init=a__ , repr=a__ ) def __call__( self ) -> Any: return self.pa_type def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = np.array(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): return {"path": value, "bytes": None} elif isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): return {"path": None, "bytes": value} elif isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(SCREAMING_SNAKE_CASE_ ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: UpperCamelCase : Any = {} UpperCamelCase , UpperCamelCase : Union[str, Any] = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = PIL.Image.open(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : int = path.split('::' )[-1] try: UpperCamelCase : Optional[Any] = string_to_dict(SCREAMING_SNAKE_CASE_, config.HUB_DATASETS_URL )['repo_id'] UpperCamelCase : str = token_per_repo_id.get(SCREAMING_SNAKE_CASE_ ) except ValueError: UpperCamelCase : Tuple = None with xopen(SCREAMING_SNAKE_CASE_, 'rb', use_auth_token=SCREAMING_SNAKE_CASE_ ) as f: UpperCamelCase : Optional[int] = BytesIO(f.read() ) UpperCamelCase : int = PIL.Image.open(bytes_ ) else: UpperCamelCase : Optional[int] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def snake_case_ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> pa.StructArray: if pa.types.is_string(storage.type ): UpperCamelCase : List[str] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ), type=pa.binary() ) UpperCamelCase : Dict = pa.StructArray.from_arrays([bytes_array, storage], ['bytes', 'path'], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase : Optional[int] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ), type=pa.string() ) UpperCamelCase : Union[str, Any] = pa.StructArray.from_arrays([storage, path_array], ['bytes', 'path'], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: UpperCamelCase : List[str] = storage.field('bytes' ) else: UpperCamelCase : List[str] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ), type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: UpperCamelCase : List[str] = storage.field('path' ) else: UpperCamelCase : Optional[Any] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ), type=pa.string() ) UpperCamelCase : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array], ['bytes', 'path'], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase : Optional[Any] = pa.array( [encode_np_array(np.array(SCREAMING_SNAKE_CASE_ ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) UpperCamelCase : List[str] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ), type=pa.string() ) UpperCamelCase : int = pa.StructArray.from_arrays( [bytes_array, path_array], ['bytes', 'path'], mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_, self.pa_type ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(SCREAMING_SNAKE_CASE_ ): with xopen(SCREAMING_SNAKE_CASE_, 'rb' ) as f: UpperCamelCase : Optional[int] = f.read() return bytes_ UpperCamelCase : Union[str, Any] = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) UpperCamelCase : Any = pa.array( [os.path.basename(SCREAMING_SNAKE_CASE_ ) if path is not None else None for path in storage.field('path' ).to_pylist()], type=pa.string(), ) UpperCamelCase : int = pa.StructArray.from_arrays([bytes_array, path_array], ['bytes', 'path'], mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_, self.pa_type ) def UpperCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase : Dict = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def UpperCamelCase ( snake_case__ : "PIL.Image.Image" ) -> bytes: UpperCamelCase : Any = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase : Tuple = image.format else: UpperCamelCase : List[str] = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(snake_case__ , format=snake_case__ ) return buffer.getvalue() def UpperCamelCase ( snake_case__ : "PIL.Image.Image" ) -> dict: if hasattr(snake_case__ , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(snake_case__ )} def UpperCamelCase ( snake_case__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) UpperCamelCase : Union[str, Any] = array.dtype UpperCamelCase : List[Any] = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER UpperCamelCase : Optional[Any] = dtype.kind UpperCamelCase : Any = dtype.itemsize UpperCamelCase : int = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase : Optional[Any] = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase : List[Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase : Dict = dtype_byteorder + dtype_kind + str(snake_case__ ) UpperCamelCase : str = np.dtype(snake_case__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) UpperCamelCase : Union[str, Any] = PIL.Image.fromarray(array.astype(snake_case__ ) ) return {"path": None, "bytes": image_to_bytes(snake_case__ )} def UpperCamelCase ( snake_case__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: UpperCamelCase , UpperCamelCase : Union[str, Any] = first_non_null_value(snake_case__ ) if isinstance(snake_case__ , snake_case__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(snake_case__ , np.ndarray ): UpperCamelCase : List[Any] = no_op_if_value_is_null(snake_case__ ) return [obj_to_image_dict_func(snake_case__ ) for obj in objs] elif isinstance(snake_case__ , PIL.Image.Image ): UpperCamelCase : Optional[int] = no_op_if_value_is_null(snake_case__ ) return [obj_to_image_dict_func(snake_case__ ) for obj in objs] else: return objs else: return objs
119
0
def UpperCamelCase ( _A ): """simple docstring""" return "".join([hex(_A )[2:].zfill(2 ).upper() for byte in list(_A )] ) def UpperCamelCase ( _A ): """simple docstring""" if (len(_A ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_A ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1], 16 ) for i in range(0, len(_A ), 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
138
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __magic_name__: str = logging.getLogger(__name__) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : int = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""", type=_A, default="""data/dump.txt""", help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""", type=_A, default="""bert""", choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""", type=_A, default="""bert-base-uncased""", help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""", type=_A, default="""data/dump""", help="""The dump file prefix.""" ) __magic_name__ : Dict = parser.parse_args() logger.info(f'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": __magic_name__ : Tuple = BertTokenizer.from_pretrained(args.tokenizer_name ) __magic_name__ : List[Any] = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` __magic_name__ : Optional[int] = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": __magic_name__ : Optional[int] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __magic_name__ : List[Any] = tokenizer.special_tokens_map["""cls_token"""] # `<s>` __magic_name__ : Any = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": __magic_name__ : Any = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __magic_name__ : int = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` __magic_name__ : Optional[int] = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(f'Loading text from {args.file_path}' ) with open(args.file_path, """r""", encoding="""utf8""" ) as fp: __magic_name__ : Tuple = fp.readlines() logger.info("""Start encoding""" ) logger.info(f'{len(_A )} examples to process.' ) __magic_name__ : List[Any] = [] __magic_name__ : str = 0 __magic_name__ : str = 10000 __magic_name__ : Dict = time.time() for text in data: __magic_name__ : Tuple = f'{bos} {text.strip()} {sep}' __magic_name__ : Optional[int] = tokenizer.encode(_A, add_special_tokens=_A ) rslt.append(_A ) iter += 1 if iter % interval == 0: __magic_name__ : Union[str, Any] = time.time() logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) __magic_name__ : Any = time.time() logger.info("""Finished binarization""" ) logger.info(f'{len(_A )} examples processed.' ) __magic_name__ : Tuple = f'{args.dump_file}.{args.tokenizer_name}.pickle' __magic_name__ : Tuple = tokenizer.vocab_size if vocab_size < (1 << 16): __magic_name__ : Optional[int] = [np.uintaa(_A ) for d in rslt] else: __magic_name__ : str = [np.intaa(_A ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'Dump to {dp_file}' ) with open(_A, """wb""" ) as handle: pickle.dump(rslt_, _A, protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
138
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ : int = 1_6 UpperCAmelCase__ : int = 3_2 def lowercase_ ( _snake_case ,_snake_case = 16 ): SCREAMING_SNAKE_CASE__ : Dict = AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE__ : Tuple = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(_snake_case ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=_snake_case ,max_length=_snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ : List[str] = datasets.map( _snake_case ,batched=_snake_case ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ : Any = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(_snake_case ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ : Any = 8 else: SCREAMING_SNAKE_CASE__ : Optional[Any] = None return tokenizer.pad( _snake_case ,padding="""longest""" ,max_length=_snake_case ,pad_to_multiple_of=_snake_case ,return_tensors="""pt""" ,) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] ,shuffle=_snake_case ,collate_fn=_snake_case ,batch_size=_snake_case ) SCREAMING_SNAKE_CASE__ : int = DataLoader( tokenized_datasets["""validation"""] ,shuffle=_snake_case ,collate_fn=_snake_case ,batch_size=_snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowercase_ ( _snake_case ,_snake_case ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,_snake_case ) == "1": SCREAMING_SNAKE_CASE__ : Optional[int] = 2 # Initialize accelerator SCREAMING_SNAKE_CASE__ : int = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ : List[str] = config["""lr"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE__ : List[str] = int(config["""seed"""] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = int(config["""batch_size"""] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = evaluate.load("""glue""" ,"""mrpc""" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE__ : Dict = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE__ : Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE__ : Any = MAX_GPU_BATCH_SIZE set_seed(_snake_case ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = get_dataloaders(_snake_case ,_snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ : List[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=_snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ : Dict = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ : Dict = AdamW(params=model.parameters() ,lr=_snake_case ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ : Dict = get_linear_schedule_with_warmup( optimizer=_snake_case ,num_warmup_steps=100 ,num_training_steps=(len(_snake_case ) * num_epochs) // gradient_accumulation_steps ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = accelerator.prepare( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) # Now we train the model for epoch in range(_snake_case ): model.train() for step, batch in enumerate(_snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE__ : List[str] = model(**_snake_case ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.loss SCREAMING_SNAKE_CASE__ : List[Any] = loss / gradient_accumulation_steps accelerator.backward(_snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = 0 for step, batch in enumerate(_snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[str] = model(**_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[int] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(_snake_case ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples SCREAMING_SNAKE_CASE__ : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE__ : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_snake_case ,references=_snake_case ,) SCREAMING_SNAKE_CASE__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' ,_snake_case ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=_snake_case ,default=_snake_case ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args() SCREAMING_SNAKE_CASE__ : List[str] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_snake_case ,_snake_case ) if __name__ == "__main__": main()
25
"""simple docstring""" def lowercase_ ( _snake_case ): if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_snake_case ,_snake_case ): raise TypeError("""Input value must be a 'int' type""" ) return bin(_snake_case ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
25
1
def _lowerCAmelCase ( __lowerCAmelCase ) -> Dict: """simple docstring""" if not numbers: return 0 if not isinstance(UpperCamelCase__ , (list, tuple) ) or not all( isinstance(UpperCamelCase__ , UpperCamelCase__ ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) snake_case__ : Union[str, Any] = numbers[0] for i in range(1 , len(UpperCamelCase__ ) ): # update the maximum and minimum subarray products snake_case__ : Tuple = numbers[i] if number < 0: snake_case__ : Tuple = min_till_now, max_till_now snake_case__ : Union[str, Any] = max(UpperCamelCase__ , max_till_now * number ) snake_case__ : Dict = min(UpperCamelCase__ , min_till_now * number ) # update the maximum product found till now snake_case__ : Any = max(UpperCamelCase__ , UpperCamelCase__ ) return max_prod
351
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
44
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""PoolFormerFeatureExtractor"""] a_ = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
179
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = jnp.floataa _lowerCamelCase = True def UpperCamelCase__( self ): '''simple docstring''' super().setup() __A : List[Any] = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *__lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' __A : Tuple = super().__call__(*__lowerCamelCase , **__lowerCamelCase ) __A : Optional[int] = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = FlaxBigBirdForNaturalQuestionsModule def __lowercase ( snake_case_ : Tuple ,snake_case_ : Optional[int] ,snake_case_ : int ,snake_case_ : Tuple ,snake_case_ : Any ,snake_case_ : Any ) ->List[Any]: '''simple docstring''' def cross_entropy(snake_case_ : str ,snake_case_ : Optional[Any] ,snake_case_ : Tuple=None ): __A : Dict = logits.shape[-1] __A : Dict = (labels[..., None] == jnp.arange(snake_case_ )[None]).astype('''f4''' ) __A : int = jax.nn.log_softmax(snake_case_ ,axis=-1 ) __A : Optional[int] = -jnp.sum(labels * logits ,axis=-1 ) if reduction is not None: __A : Optional[int] = reduction(snake_case_ ) return loss __A : str = partial(snake_case_ ,reduction=jnp.mean ) __A : Dict = cross_entropy(snake_case_ ,snake_case_ ) __A : List[str] = cross_entropy(snake_case_ ,snake_case_ ) __A : str = cross_entropy(snake_case_ ,snake_case_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __snake_case : """simple docstring""" _lowerCamelCase = "google/bigbird-roberta-base" _lowerCamelCase = 30_00 _lowerCamelCase = 1_05_00 _lowerCamelCase = 1_28 _lowerCamelCase = 3 _lowerCamelCase = 1 _lowerCamelCase = 5 # tx_args _lowerCamelCase = 3e-5 _lowerCamelCase = 0.0 _lowerCamelCase = 2_00_00 _lowerCamelCase = 0.0_0_9_5 _lowerCamelCase = "bigbird-roberta-natural-questions" _lowerCamelCase = "training-expt" _lowerCamelCase = "data/nq-training.jsonl" _lowerCamelCase = "data/nq-validation.jsonl" def UpperCamelCase__( self ): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=__lowerCamelCase ) __A : Dict = os.path.join(self.base_dir , self.save_dir ) __A : Dict = self.batch_size_per_device * jax.device_count() @dataclass class __snake_case : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 40_96 # no dynamic padding on TPUs def __call__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = self.collate_fn(__lowerCamelCase ) __A : Tuple = jax.tree_util.tree_map(__lowerCamelCase , __lowerCamelCase ) return batch def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A , __A : List[Any] = self.fetch_inputs(features['''input_ids'''] ) __A : Union[str, Any] = { '''input_ids''': jnp.array(__lowerCamelCase , dtype=jnp.intaa ), '''attention_mask''': jnp.array(__lowerCamelCase , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Any = [self._fetch_inputs(__lowerCamelCase ) for ids in input_ids] return zip(*__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Any = [1 for _ in range(len(__lowerCamelCase ) )] while len(__lowerCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __lowercase ( snake_case_ : List[Any] ,snake_case_ : Optional[Any] ,snake_case_ : List[str]=None ) ->Optional[int]: '''simple docstring''' if seed is not None: __A : List[Any] = dataset.shuffle(seed=snake_case_ ) for i in range(len(snake_case_ ) // batch_size ): __A : Tuple = dataset[i * batch_size : (i + 1) * batch_size] yield dict(snake_case_ ) @partial(jax.pmap ,axis_name='''batch''' ) def __lowercase ( snake_case_ : str ,snake_case_ : Union[str, Any] ,**snake_case_ : List[str] ) ->Tuple: '''simple docstring''' def loss_fn(snake_case_ : List[str] ): __A : str = model_inputs.pop('''start_labels''' ) __A : str = model_inputs.pop('''end_labels''' ) __A : int = model_inputs.pop('''pooled_labels''' ) __A : Dict = state.apply_fn(**snake_case_ ,params=snake_case_ ,dropout_rng=snake_case_ ,train=snake_case_ ) __A , __A , __A : Union[str, Any] = outputs return state.loss_fn( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,) __A , __A : int = jax.random.split(snake_case_ ) __A : str = jax.value_and_grad(snake_case_ ) __A , __A : Optional[int] = grad_fn(state.params ) __A : List[str] = jax.lax.pmean({'''loss''': loss} ,axis_name='''batch''' ) __A : List[str] = jax.lax.pmean(snake_case_ ,'''batch''' ) __A : str = state.apply_gradients(grads=snake_case_ ) return state, metrics, new_drp_rng @partial(jax.pmap ,axis_name='''batch''' ) def __lowercase ( snake_case_ : int ,**snake_case_ : Union[str, Any] ) ->List[str]: '''simple docstring''' __A : Tuple = model_inputs.pop('''start_labels''' ) __A : Dict = model_inputs.pop('''end_labels''' ) __A : int = model_inputs.pop('''pooled_labels''' ) __A : List[str] = state.apply_fn(**snake_case_ ,params=state.params ,train=snake_case_ ) __A , __A , __A : Dict = outputs __A : Optional[int] = state.loss_fn(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) __A : List[str] = jax.lax.pmean({'''loss''': loss} ,axis_name='''batch''' ) return metrics class __snake_case ( train_state.TrainState ): """simple docstring""" _lowerCamelCase = struct.field(pytree_node=SCREAMING_SNAKE_CASE__ ) @dataclass class __snake_case : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = None def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ): '''simple docstring''' __A : Tuple = model.params __A : Union[str, Any] = TrainState.create( apply_fn=model.__call__ , params=__lowerCamelCase , tx=__lowerCamelCase , loss_fn=__lowerCamelCase , ) if ckpt_dir is not None: __A , __A , __A , __A , __A : Optional[Any] = restore_checkpoint(__lowerCamelCase , __lowerCamelCase ) __A : List[Any] = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } __A , __A : List[str] = build_tx(**__lowerCamelCase ) __A : int = train_state.TrainState( step=__lowerCamelCase , apply_fn=model.__call__ , params=__lowerCamelCase , tx=__lowerCamelCase , opt_state=__lowerCamelCase , ) __A : int = args __A : Optional[Any] = data_collator __A : Tuple = lr __A : List[Any] = params __A : Dict = jax_utils.replicate(__lowerCamelCase ) return state def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : List[Any] = self.args __A : Dict = len(__lowerCamelCase ) // args.batch_size __A : List[Any] = jax.random.PRNGKey(0 ) __A : Optional[Any] = jax.random.split(__lowerCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): __A : Tuple = jnp.array(0 , dtype=jnp.floataa ) __A : Optional[Any] = get_batched_dataset(__lowerCamelCase , args.batch_size , seed=__lowerCamelCase ) __A : Union[str, Any] = 0 for batch in tqdm(__lowerCamelCase , total=__lowerCamelCase , desc=F"""Running EPOCH-{epoch}""" ): __A : Optional[Any] = self.data_collator(__lowerCamelCase ) __A , __A , __A : Union[str, Any] = self.train_step_fn(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: __A : Union[str, Any] = jax_utils.unreplicate(state.step ) __A : Optional[int] = running_loss.item() / i __A : List[Any] = self.scheduler_fn(state_step - 1 ) __A : Union[str, Any] = self.evaluate(__lowerCamelCase , __lowerCamelCase ) __A : Optional[Any] = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(__lowerCamelCase ) ) self.logger.log(__lowerCamelCase , commit=__lowerCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = get_batched_dataset(__lowerCamelCase , self.args.batch_size ) __A : int = len(__lowerCamelCase ) // self.args.batch_size __A : Optional[Any] = jnp.array(0 , dtype=jnp.floataa ) __A : Dict = 0 for batch in tqdm(__lowerCamelCase , total=__lowerCamelCase , desc='''Evaluating ... ''' ): __A : List[str] = self.data_collator(__lowerCamelCase ) __A : Union[str, Any] = self.val_step_fn(__lowerCamelCase , **__lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Dict = jax_utils.unreplicate(__lowerCamelCase ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=''' ... ''' ) self.model_save_fn(__lowerCamelCase , params=state.params ) with open(os.path.join(__lowerCamelCase , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__lowerCamelCase , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(__lowerCamelCase , '''data_collator.joblib''' ) ) with open(os.path.join(__lowerCamelCase , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , __lowerCamelCase ) print('''DONE''' ) def __lowercase ( snake_case_ : int ,snake_case_ : Dict ) ->Optional[int]: '''simple docstring''' print(F"""RESTORING CHECKPOINT FROM {save_dir}""" ,end=''' ... ''' ) with open(os.path.join(snake_case_ ,'''flax_model.msgpack''' ) ,'''rb''' ) as f: __A : List[Any] = from_bytes(state.params ,f.read() ) with open(os.path.join(snake_case_ ,'''opt_state.msgpack''' ) ,'''rb''' ) as f: __A : Optional[int] = from_bytes(state.opt_state ,f.read() ) __A : Tuple = joblib.load(os.path.join(snake_case_ ,'''args.joblib''' ) ) __A : List[str] = joblib.load(os.path.join(snake_case_ ,'''data_collator.joblib''' ) ) with open(os.path.join(snake_case_ ,'''training_state.json''' ) ,'''r''' ) as f: __A : Dict = json.load(snake_case_ ) __A : int = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def __lowercase ( snake_case_ : List[str] ,snake_case_ : Any ,snake_case_ : Dict ,snake_case_ : str ) ->List[str]: '''simple docstring''' __A : str = num_train_steps - warmup_steps __A : Union[str, Any] = optax.linear_schedule(init_value=snake_case_ ,end_value=snake_case_ ,transition_steps=snake_case_ ) __A : Optional[Any] = optax.linear_schedule(init_value=snake_case_ ,end_value=1e-7 ,transition_steps=snake_case_ ) __A : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] ,boundaries=[warmup_steps] ) return lr def __lowercase ( snake_case_ : List[str] ,snake_case_ : List[Any] ,snake_case_ : Union[str, Any] ,snake_case_ : List[Any] ,snake_case_ : str ) ->List[str]: '''simple docstring''' def weight_decay_mask(snake_case_ : List[Any] ): __A : List[Any] = traverse_util.flatten_dict(snake_case_ ) __A : int = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(snake_case_ ) __A : List[Any] = scheduler_fn(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) __A : List[str] = optax.adamw(learning_rate=snake_case_ ,weight_decay=snake_case_ ,mask=snake_case_ ) return tx, lr
179
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["ViTFeatureExtractor"] _SCREAMING_SNAKE_CASE = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
217
0
"""simple docstring""" import string def lowercase ( lowerCAmelCase__ : List[str] ) -> int: for key in range(len(string.ascii_uppercase ) ): __a = "" for symbol in message: if symbol in string.ascii_uppercase: __a = string.ascii_uppercase.find(lowerCAmelCase__ ) __a = num - key if num < 0: __a = num + len(string.ascii_uppercase ) __a = translated + string.ascii_uppercase[num] else: __a = translated + symbol print(f'''Decryption using Key #{key}: {translated}''' ) def lowercase ( ) -> List[str]: __a = input('''Encrypted message: ''' ) __a = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
'''simple docstring''' def lowercase ( __magic_name__ ): '''simple docstring''' if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
311
0
"""simple docstring""" import os import pytest from attr import dataclass _lowercase : int = 'us-east-1' # defaults region @dataclass class _UpperCAmelCase : a__ : str a__ : Optional[Any] = "arn:aws:iam::558105141721:role/sagemaker_execution_role" a__ : Tuple = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5_500, } a__ : Optional[int] = {**hyperparameters, "max_steps": 1_000} @property def a ( self : Any ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def a ( self : Optional[Any] ): return F'''{self.framework}-transfromers-test''' @property def a ( self : Dict ): return F'''./tests/sagemaker/scripts/{self.framework}''' @property def a ( self : Dict ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='''class''' ) def lowercase__ ( snake_case_ :Tuple ): __UpperCAmelCase = SageMakerTestEnvironment(framework=request.cls.framework )
86
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _UpperCAmelCase : def __init__( self : Dict , _lowercase : int , _lowercase : List[str]=13 , _lowercase : Dict=32 , _lowercase : Any=2 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=16 , _lowercase : Optional[int]=[1, 2, 1] , _lowercase : int=[2, 2, 4] , _lowercase : Optional[Any]=2 , _lowercase : Union[str, Any]=2.0 , _lowercase : Any=True , _lowercase : Optional[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : Dict=0.1 , _lowercase : str="gelu" , _lowercase : List[Any]=False , _lowercase : List[Any]=True , _lowercase : Optional[Any]=0.02 , _lowercase : str=1E-5 , _lowercase : str=True , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Any=10 , _lowercase : int=8 , _lowercase : Optional[Any]=["stage1", "stage2", "stage3"] , _lowercase : Optional[Any]=[1, 2, 3] , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = patch_norm __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = is_training __UpperCAmelCase = scope __UpperCAmelCase = use_labels __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = encoder_stride __UpperCAmelCase = out_features __UpperCAmelCase = out_indices def a ( self : int ): __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def a ( self : Dict ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : int ): __UpperCAmelCase = MaskFormerSwinModel(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase ) __UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a ( self : int , _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Dict ): __UpperCAmelCase = MaskFormerSwinBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowercase ): __UpperCAmelCase = ['''stem'''] __UpperCAmelCase = MaskFormerSwinBackbone(config=_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) a__ : Optional[int] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} a__ : List[str] = False a__ : int = False a__ : str = False a__ : str = False a__ : Any = False def a ( self : Optional[Any] ): __UpperCAmelCase = MaskFormerSwinModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=_lowercase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def a ( self : int ): pass def a ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : str ): return def a ( self : Optional[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowercase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def a ( self : List[Any] ): pass @unittest.skip('''Swin does not support feedforward chunking''' ) def a ( self : str ): pass def a ( self : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def a ( self : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def a ( self : Optional[Any] ): pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def a ( self : Optional[Any] ): pass def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : Dict , _lowercase : Tuple ): __UpperCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) # Swin has a different seq_length __UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a ( self : str ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = 3 __UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def a ( self : Any ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a ( self : str ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a ( self : Tuple ): pass def a ( self : Tuple ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowercase : List[str] ): __UpperCAmelCase = 0 return t def check_equivalence(_lowercase : List[Any] , _lowercase : Any , _lowercase : str , _lowercase : List[str]={} ): with torch.no_grad(): __UpperCAmelCase = model(**_lowercase , return_dict=_lowercase , **_lowercase ) __UpperCAmelCase = model(**_lowercase , return_dict=_lowercase , **_lowercase ).to_tuple() def recursive_check(_lowercase : Dict , _lowercase : Optional[Any] ): if isinstance(_lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowercase , _lowercase ): recursive_check(_lowercase , _lowercase ) elif isinstance(_lowercase , _lowercase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowercase , _lowercase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowercase ) , set_nan_tensor_to_zero(_lowercase ) , atol=1E-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}. Dict has''' F''' `nan`: {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}.''' ) , ) recursive_check(_lowercase , _lowercase ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True} ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True} ) @require_torch class _UpperCAmelCase ( unittest.TestCase , _lowerCAmelCase ): a__ : Optional[Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () a__ : List[str] = MaskFormerSwinConfig def a ( self : List[str] ): __UpperCAmelCase = MaskFormerSwinModelTester(self ) def a ( self : List[Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: __UpperCAmelCase = backbone_class(_lowercase ) backbone.to(_lowercase ) backbone.eval() __UpperCAmelCase = backbone(**_lowercase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowercase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __UpperCAmelCase = backbone(**_lowercase , output_hidden_states=_lowercase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __UpperCAmelCase = backbone(**_lowercase , output_attentions=_lowercase ) self.assertIsNotNone(outputs.attentions )
86
1