code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def lowercase ( a__ : int , a__ : int ) -> str: if b == 0: return 1 if (b % 2) == 0: return actual_power(a__ , int(b / 2 ) ) * actual_power(a__ , int(b / 2 ) ) else: return a * actual_power(a__ , int(b / 2 ) ) * actual_power(a__ , int(b / 2 ) ) def lowercase ( a__ : int , a__ : int ) -> float: if b < 0: return 1 / actual_power(a__ , a__ ) return actual_power(a__ , a__ ) if __name__ == "__main__": print(power(-2, -3))
256
"""simple docstring""" from typing import List import numpy as np def lowercase ( a__ : dict ) -> int: _UpperCamelCase = {key: len(a__ ) for key, value in gen_kwargs.items() if isinstance(a__ , a__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) _UpperCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , a__ ) def lowercase ( a__ : int , a__ : int ) -> List[range]: _UpperCamelCase = [] for group_idx in range(a__ ): _UpperCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _UpperCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _UpperCamelCase = range(a__ , start + num_shards_to_add ) shards_indices_per_group.append(a__ ) return shards_indices_per_group def lowercase ( a__ : dict , a__ : int ) -> List[dict]: _UpperCamelCase = _number_of_shards_in_gen_kwargs(a__ ) if num_shards == 1: return [dict(a__ )] else: _UpperCamelCase = _distribute_shards(num_shards=a__ , max_num_jobs=a__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(a__ , a__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(a__ ) ) ] def lowercase ( a__ : List[dict] ) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , a__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def lowercase ( a__ : np.random.Generator , a__ : dict ) -> dict: _UpperCamelCase = {len(a__ ) for value in gen_kwargs.values() if isinstance(a__ , a__ )} _UpperCamelCase = {} for size in list_sizes: _UpperCamelCase = list(range(a__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _UpperCamelCase = dict(a__ ) for key, value in shuffled_kwargs.items(): if isinstance(a__ , a__ ): _UpperCamelCase = [value[i] for i in indices_per_size[len(a__ )]] return shuffled_kwargs
256
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class __a (__SCREAMING_SNAKE_CASE): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = "gpt_neox_japanese" def __init__( self , _a=32_000 , _a=2_560 , _a=32 , _a=32 , _a=4 , _a="gelu" , _a=1.00 , _a=10_000 , _a=2_048 , _a=0.02 , _a=1E-5 , _a=True , _a=31_996 , _a=31_999 , _a=0.1 , _a=0.0 , **_a , ) -> str: """simple docstring""" super().__init__(bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE__ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] = hidden_size SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE__ : int = intermediate_multiple_size SCREAMING_SNAKE_CASE__ : int = hidden_act SCREAMING_SNAKE_CASE__ : int = rotary_pct SCREAMING_SNAKE_CASE__ : int = rotary_emb_base SCREAMING_SNAKE_CASE__ : Tuple = initializer_range SCREAMING_SNAKE_CASE__ : Any = layer_norm_eps SCREAMING_SNAKE_CASE__ : Any = use_cache SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_dropout SCREAMING_SNAKE_CASE__ : Any = hidden_dropout
350
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> bool: if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
56
0
import math from datetime import datetime, timedelta def __a ( SCREAMING_SNAKE_CASE ) -> datetime: '''simple docstring''' __UpperCAmelCase = year % 1_9 __UpperCAmelCase = year % 4 __UpperCAmelCase = year % 7 __UpperCAmelCase = math.floor(year / 1_0_0 ) __UpperCAmelCase = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __UpperCAmelCase = leap_day_inhibits / 4 __UpperCAmelCase = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __UpperCAmelCase = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __UpperCAmelCase = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __UpperCAmelCase = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE , 4 , 1_8 ) else: return datetime(SCREAMING_SNAKE_CASE , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): A_ : Dict = 'will be' if year > datetime.now().year else 'was' print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PoolFormerFeatureExtractor'] A_ : Dict = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
333
1
'''simple docstring''' # Lint as: python3 import itertools import os import re __lowerCAmelCase = re.compile(r'([A-Z]+)([A-Z][a-z])') __lowerCAmelCase = re.compile(r'([a-z\d])([A-Z])') __lowerCAmelCase = re.compile(r'(?<!_)_(?!_)') __lowerCAmelCase = re.compile(r'(_{2,})') __lowerCAmelCase = r'^\w+(\.\w+)*$' __lowerCAmelCase = r'<>:/\|?*' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = _uppercase_uppercase_re.sub(R"""\1_\2""" , _SCREAMING_SNAKE_CASE ) _snake_case = _lowercase_uppercase_re.sub(R"""\1_\2""" , _SCREAMING_SNAKE_CASE ) return name.lower() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = _single_underscore_re.split(_SCREAMING_SNAKE_CASE ) _snake_case = [_multiple_underscores_re.split(_SCREAMING_SNAKE_CASE ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ) if n != """""" ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if os.path.basename(_SCREAMING_SNAKE_CASE ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if os.path.basename(_SCREAMING_SNAKE_CASE ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , _SCREAMING_SNAKE_CASE ): raise ValueError(f"""Split name should match '{_split_re}'' but got '{split}'.""" ) return f"""{filename_prefix_for_name(_SCREAMING_SNAKE_CASE )}-{split}""" def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): _snake_case = filename_prefix_for_split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if filetype_suffix: prefix += f""".{filetype_suffix}""" _snake_case = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return f"""{filepath}*""" def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): _snake_case = filename_prefix_for_split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if shard_lengths: _snake_case = len(_SCREAMING_SNAKE_CASE ) _snake_case = [f"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(_SCREAMING_SNAKE_CASE )] if filetype_suffix: _snake_case = [filename + f""".{filetype_suffix}""" for filename in filenames] return filenames else: _snake_case = prefix if filetype_suffix: filename += f""".{filetype_suffix}""" return [filename]
270
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = hf_hub_url(repo_id=_SCREAMING_SNAKE_CASE , path=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE ) assert url == f"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(_SCREAMING_SNAKE_CASE )}"""
270
1
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params SCREAMING_SNAKE_CASE__ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> List[str]: """simple docstring""" for pegasus_name, hf_name in PATTERNS: snake_case = k.replace(_UpperCamelCase , _UpperCamelCase ) return k def lowerCAmelCase__ ( _UpperCamelCase : dict , _UpperCamelCase : dict ) -> PegasusForConditionalGeneration: """simple docstring""" snake_case = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) snake_case = PegasusConfig(**_UpperCamelCase ) snake_case = PegasusForConditionalGeneration(_UpperCamelCase ) snake_case = torch_model.model.state_dict() snake_case = {} for k, v in tf_weights.items(): snake_case = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: snake_case = v.T snake_case = torch.tensor(_UpperCamelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) snake_case = mapping['shared.weight'] snake_case = mapping['shared.weight'] snake_case = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**_UpperCamelCase ) snake_case ,snake_case = torch_model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) snake_case = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__ ( _UpperCamelCase : List[Any]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: """simple docstring""" snake_case = tf.train.list_variables(_UpperCamelCase ) snake_case = {} snake_case = ['Adafactor', 'global_step'] for name, shape in tqdm(_UpperCamelCase , desc='converting tf checkpoint to dict' ): snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case = tf.train.load_variable(_UpperCamelCase , _UpperCamelCase ) snake_case = array return tf_weights def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : str ) -> int: """simple docstring""" snake_case = Path(_UpperCamelCase ).parent.name snake_case = task_specific_params[f"""summarization_{dataset}"""]['max_position_embeddings'] snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model snake_case = get_tf_weights_as_numpy(_UpperCamelCase ) snake_case = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": snake_case = task_specific_params snake_case = convert_pegasus(_UpperCamelCase , _UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) snake_case = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(_UpperCamelCase , Path(_UpperCamelCase ) / 'pytorch_model.bin' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") SCREAMING_SNAKE_CASE__ = parser.parse_args() if args.save_dir is None: SCREAMING_SNAKE_CASE__ = Path(args.tf_ckpt_path).parent.name SCREAMING_SNAKE_CASE__ = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
150
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] ) -> Tuple: """simple docstring""" return 1 / (1 + np.exp(-z )) def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : Optional[Any] ) -> Dict: """simple docstring""" return (-y * np.log(_UpperCamelCase ) - (1 - y) * np.log(1 - h )).mean() def lowerCAmelCase__ ( _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case = np.dot(_UpperCamelCase , _UpperCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(_UpperCamelCase ) ) ) def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Any , _UpperCamelCase : List[Any]=7_0_0_0_0 ) -> Optional[int]: """simple docstring""" snake_case = np.zeros(x.shape[1] ) for iterations in range(_UpperCamelCase ): snake_case = np.dot(_UpperCamelCase , _UpperCamelCase ) snake_case = sigmoid_function(_UpperCamelCase ) snake_case = np.dot(x.T , h - y ) / y.size snake_case = theta - alpha * gradient # updating the weights snake_case = np.dot(_UpperCamelCase , _UpperCamelCase ) snake_case = sigmoid_function(_UpperCamelCase ) snake_case = cost_function(_UpperCamelCase , _UpperCamelCase ) if iterations % 1_0_0 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = datasets.load_iris() SCREAMING_SNAKE_CASE__ = iris.data[:, :2] SCREAMING_SNAKE_CASE__ = (iris.target != 0) * 1 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = logistic_reg(alpha, x, y, max_iterations=70_000) print("theta: ", theta) # printing the theta i.e our weights vector def lowerCAmelCase__ ( _UpperCamelCase : List[str] ) -> List[Any]: """simple docstring""" return sigmoid_function( np.dot(_UpperCamelCase , _UpperCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = (x[:, 0].min(), x[:, 0].max()) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = (x[:, 1].min(), x[:, 1].max()) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) SCREAMING_SNAKE_CASE__ = np.c_[xxa.ravel(), xxa.ravel()] SCREAMING_SNAKE_CASE__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
150
1
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a =False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A_ ( unittest.TestCase ): def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Optional[int]=7 ,SCREAMING_SNAKE_CASE__ : Optional[int]=3 ,SCREAMING_SNAKE_CASE__ : List[str]=1_8 ,SCREAMING_SNAKE_CASE__ : List[str]=3_0 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=4_0_0 ,SCREAMING_SNAKE_CASE__ : Any=None ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : Tuple=True ,SCREAMING_SNAKE_CASE__ : int=None ,): __lowerCamelCase : Any = size if size is not None else {'height': 2_0, 'width': 2_0} __lowerCamelCase : str = parent __lowerCamelCase : List[str] = batch_size __lowerCamelCase : int = num_channels __lowerCamelCase : List[str] = image_size __lowerCamelCase : int = min_resolution __lowerCamelCase : Union[str, Any] = max_resolution __lowerCamelCase : List[Any] = size __lowerCamelCase : str = do_normalize __lowerCamelCase : Tuple = do_convert_rgb __lowerCamelCase : List[Any] = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] __lowerCamelCase : Tuple = patch_size if patch_size is not None else {'height': 1_6, 'width': 1_6} def lowerCAmelCase ( self : List[Any]): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Dict = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' __lowerCamelCase : Dict = Image.open(requests.get(SCREAMING_SNAKE_CASE__ ,stream=SCREAMING_SNAKE_CASE__).raw).convert('RGB') return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A_ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : str = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : List[str] = PixaStructImageProcessingTester(self) @property def lowerCAmelCase ( self : Any): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ ,'do_normalize')) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ ,'do_convert_rgb')) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() __lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict) __lowerCamelCase : Optional[int] = 2_0_4_8 __lowerCamelCase : Any = image_processor(SCREAMING_SNAKE_CASE__ ,return_tensors='pt' ,max_patches=SCREAMING_SNAKE_CASE__) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() ,torch.tensor(0.0606) ,atol=1E-3 ,rtol=1E-3)) def lowerCAmelCase ( self : Tuple): # Initialize image_processor __lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict) # create random PIL images __lowerCamelCase : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=SCREAMING_SNAKE_CASE__) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,Image.Image) # Test not batched input __lowerCamelCase : int = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase : Union[str, Any] = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=SCREAMING_SNAKE_CASE__).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched __lowerCamelCase : Optional[int] = image_processor( SCREAMING_SNAKE_CASE__ ,return_tensors='pt' ,max_patches=SCREAMING_SNAKE_CASE__).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def lowerCAmelCase ( self : Optional[int]): # Initialize image_processor __lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images __lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=SCREAMING_SNAKE_CASE__) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,Image.Image) # Test not batched input __lowerCamelCase : str = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 __lowerCamelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(SCREAMING_SNAKE_CASE__): __lowerCamelCase : Optional[Any] = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=SCREAMING_SNAKE_CASE__).flattened_patches __lowerCamelCase : Union[str, Any] = 'Hello' __lowerCamelCase : Optional[Any] = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=SCREAMING_SNAKE_CASE__ ,header_text=SCREAMING_SNAKE_CASE__).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched __lowerCamelCase : int = image_processor( SCREAMING_SNAKE_CASE__ ,return_tensors='pt' ,max_patches=SCREAMING_SNAKE_CASE__ ,header_text=SCREAMING_SNAKE_CASE__).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def lowerCAmelCase ( self : Optional[int]): # Initialize image_processor __lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __lowerCamelCase : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=SCREAMING_SNAKE_CASE__ ,numpify=SCREAMING_SNAKE_CASE__) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,np.ndarray) __lowerCamelCase : Any = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase : Tuple = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=SCREAMING_SNAKE_CASE__).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched __lowerCamelCase : str = image_processor( SCREAMING_SNAKE_CASE__ ,return_tensors='pt' ,max_patches=SCREAMING_SNAKE_CASE__).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) def lowerCAmelCase ( self : Dict): # Initialize image_processor __lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __lowerCamelCase : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=SCREAMING_SNAKE_CASE__ ,torchify=SCREAMING_SNAKE_CASE__) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,torch.Tensor) # Test not batched input __lowerCamelCase : Optional[int] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase : Union[str, Any] = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=SCREAMING_SNAKE_CASE__).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched __lowerCamelCase : str = image_processor( SCREAMING_SNAKE_CASE__ ,return_tensors='pt' ,max_patches=SCREAMING_SNAKE_CASE__).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A_ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : List[str] = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : int): __lowerCamelCase : str = PixaStructImageProcessingTester(self ,num_channels=4) __lowerCamelCase : Optional[Any] = 3 @property def lowerCAmelCase ( self : int): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ ,'do_normalize')) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ ,'do_convert_rgb')) def lowerCAmelCase ( self : Dict): # Initialize image_processor __lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images __lowerCamelCase : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=SCREAMING_SNAKE_CASE__) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,Image.Image) # Test not batched input __lowerCamelCase : int = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __lowerCamelCase : Tuple = image_processor( image_inputs[0] ,return_tensors='pt' ,max_patches=SCREAMING_SNAKE_CASE__).flattened_patches self.assertEqual( encoded_images.shape ,(1, max_patch, expected_hidden_dim) ,) # Test batched __lowerCamelCase : Optional[Any] = image_processor( SCREAMING_SNAKE_CASE__ ,return_tensors='pt' ,max_patches=SCREAMING_SNAKE_CASE__).flattened_patches self.assertEqual( encoded_images.shape ,(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) ,)
371
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline a =argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False) parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""") parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""") a =parser.parse_args() a ="""cpu""" a ="""a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings""" a ="""path-to-your-trained-model""" a =StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: a =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) a =pipe.to(device) # to channels last a =pipe.unet.to(memory_format=torch.channels_last) a =pipe.vae.to(memory_format=torch.channels_last) a =pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: a =pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex a =torch.randn(2, 4, 64, 64) a =torch.rand(1) * 999 a =torch.randn(2, 77, 768) a =(sample, timestep, encoder_hidden_status) try: a =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: a =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) a =ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) a =ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: a =ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute a =666 a =torch.Generator(device).manual_seed(seed) a ={"""generator""": generator} if args.steps is not None: a =args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): a =pipe(prompt, **generate_kwargs).images[0] # save image image.save("""generated.png""")
113
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __lowercase : def __init__(self , A , A=1_3 , A=7 , A=True , A=True , A=False , A=True , A=9_9 , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ): lowerCamelCase_ : Any = parent lowerCamelCase_ : int = batch_size lowerCamelCase_ : List[str] = seq_length lowerCamelCase_ : List[str] = is_training lowerCamelCase_ : Union[str, Any] = use_input_mask lowerCamelCase_ : int = use_token_type_ids lowerCamelCase_ : Any = use_labels lowerCamelCase_ : Optional[int] = vocab_size lowerCamelCase_ : Union[str, Any] = hidden_size lowerCamelCase_ : Union[str, Any] = num_hidden_layers lowerCamelCase_ : int = num_attention_heads lowerCamelCase_ : Optional[Any] = intermediate_size lowerCamelCase_ : Dict = hidden_act lowerCamelCase_ : int = hidden_dropout_prob lowerCamelCase_ : str = attention_probs_dropout_prob lowerCamelCase_ : List[str] = max_position_embeddings lowerCamelCase_ : str = type_vocab_size lowerCamelCase_ : Optional[Any] = type_sequence_label_size lowerCamelCase_ : Optional[Any] = initializer_range lowerCamelCase_ : str = num_labels lowerCamelCase_ : Tuple = num_choices lowerCamelCase_ : Optional[Any] = scope def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : int = None if self.use_input_mask: lowerCamelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : Union[str, Any] = None if self.use_token_type_ids: lowerCamelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ : Tuple = None lowerCamelCase_ : Optional[Any] = None lowerCamelCase_ : Dict = None if self.use_labels: lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ (self ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : str = LlamaModel(config=A ) model.to(A ) model.eval() lowerCamelCase_ : int = model(A , attention_mask=A ) lowerCamelCase_ : List[Any] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A , A , A , ): lowerCamelCase_ : List[Any] = True lowerCamelCase_ : Optional[Any] = LlamaModel(A ) model.to(A ) model.eval() lowerCamelCase_ : Tuple = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) lowerCamelCase_ : Optional[int] = model( A , attention_mask=A , encoder_hidden_states=A , ) lowerCamelCase_ : str = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A , A , A , ): lowerCamelCase_ : Union[str, Any] = LlamaForCausalLM(config=A ) model.to(A ) model.eval() lowerCamelCase_ : Dict = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A , A , A , ): lowerCamelCase_ : str = True lowerCamelCase_ : List[str] = True lowerCamelCase_ : Tuple = LlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass lowerCamelCase_ : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) lowerCamelCase_ : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase_ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase_ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase_ : int = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] lowerCamelCase_ : Tuple = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice lowerCamelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase_ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) : Any = config_and_inputs lowerCamelCase_ : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase : List[str] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowerCamelCase : str = (LlamaForCausalLM,) if is_torch_available() else () lowerCamelCase : Optional[int] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : int = False lowerCamelCase : Dict = False def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = LlamaModelTester(self ) lowerCamelCase_ : str = ConfigTester(self , config_class=A , hidden_size=3_7 ) def UpperCAmelCase__ (self ): self.config_tester.run_common_tests() def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ : Optional[Any] = type self.model_tester.create_and_check_model(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : List[str] = 3 lowerCamelCase_ : Optional[int] = input_dict['''input_ids'''] lowerCamelCase_ : List[str] = input_ids.ne(1 ).to(A ) lowerCamelCase_ : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase_ : Union[str, Any] = LlamaForSequenceClassification(A ) model.to(A ) model.eval() lowerCamelCase_ : str = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : List[str] = 3 lowerCamelCase_ : List[str] = '''single_label_classification''' lowerCamelCase_ : Dict = input_dict['''input_ids'''] lowerCamelCase_ : Any = input_ids.ne(1 ).to(A ) lowerCamelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase_ : int = LlamaForSequenceClassification(A ) model.to(A ) model.eval() lowerCamelCase_ : Union[str, Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : List[Any] = 3 lowerCamelCase_ : Any = '''multi_label_classification''' lowerCamelCase_ : Tuple = input_dict['''input_ids'''] lowerCamelCase_ : Union[str, Any] = input_ids.ne(1 ).to(A ) lowerCamelCase_ : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase_ : Dict = LlamaForSequenceClassification(A ) model.to(A ) model.eval() lowerCamelCase_ : Optional[int] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def UpperCAmelCase__ (self ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def UpperCAmelCase__ (self , A ): lowerCamelCase_, lowerCamelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : List[Any] = ids_tensor([1, 1_0] , config.vocab_size ) lowerCamelCase_ : Dict = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase_ : Dict = LlamaModel(A ) original_model.to(A ) original_model.eval() lowerCamelCase_ : Optional[int] = original_model(A ).last_hidden_state lowerCamelCase_ : Dict = original_model(A ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase_ : Tuple = {'''type''': scaling_type, '''factor''': 10.0} lowerCamelCase_ : Optional[int] = LlamaModel(A ) scaled_model.to(A ) scaled_model.eval() lowerCamelCase_ : int = scaled_model(A ).last_hidden_state lowerCamelCase_ : List[Any] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) @require_torch class __lowercase ( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCamelCase_ : Optional[int] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) lowerCamelCase_ : Optional[Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCamelCase_ : List[str] = torch.tensor([[-6.65_50, -4.12_27, -4.98_59, -3.24_06, 0.82_62, -3.00_33, 1.29_64, -3.36_99]] ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCamelCase_ : int = torch.tensor([-12.82_81, -7.44_53, -0.46_39, -8.06_25, -7.25_00, -8.00_00, -6.48_83, -7.76_95, -7.84_38, -7.03_12, -6.21_88, -7.13_28, -1.84_96, 1.99_61, -8.62_50, -6.72_27, -12.82_81, -6.94_92, -7.07_42, -7.78_52, -7.58_20, -7.90_62, -6.93_75, -7.98_05, -8.34_38, -8.15_62, -8.04_69, -7.62_50, -7.74_22, -7.33_98,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , A , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : str = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCamelCase_ : Optional[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) lowerCamelCase_ : Dict = model(torch.tensor(A ) ) # Expected mean on dim = -1 lowerCamelCase_ : List[Any] = torch.tensor([[-2.06_22, -1.27_94, -1.16_38, -0.97_88, -1.46_03, -1.02_38, -1.78_93, -1.44_11]] ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCamelCase_ : Any = torch.tensor([-8.14_06, -8.05_47, 2.74_61, -1.23_44, -0.14_48, -1.82_62, -1.00_20, -1.81_54, -1.68_95, -1.85_16, -2.35_74, -0.92_77, 3.75_98, 6.57_42, -1.29_98, -0.11_77, -8.14_06, -2.96_88, -2.91_99, -3.16_99, -3.52_54, -2.35_55, -2.79_88, -3.41_41, -2.82_62, -4.51_95, -3.33_79, -3.31_64, -2.78_32, -3.02_73] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , A , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : str = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCamelCase_ : Optional[int] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) lowerCamelCase_ : Optional[Any] = model(torch.tensor(A ) ) # Expected mean on dim = -1 lowerCamelCase_ : int = torch.tensor([[-0.85_62, -1.85_20, -0.75_51, -0.41_62, -1.51_61, -1.20_38, -2.48_23, -2.32_54]] ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCamelCase_ : Optional[Any] = torch.tensor([-2.22_27, 4.88_28, 0.90_23, -0.45_78, -0.78_71, -0.10_33, -0.62_21, -0.57_86, -0.78_03, -1.06_74, -1.29_20, -0.15_70, 0.80_08, 2.07_23, -0.94_97, 0.27_71, -2.22_27, -0.76_12, -1.43_46, -1.20_61, -1.64_26, -0.30_00, -0.71_39, -1.19_34, -1.86_91, -1.69_73, -1.59_47, -1.27_05, -0.35_23, -0.55_13] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , A , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCamelCase_ : Optional[int] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) lowerCamelCase_ : Tuple = model(torch.tensor(A ) ) lowerCamelCase_ : List[str] = torch.tensor( [[-4.23_27, -3.33_60, -4.66_65, -4.76_31, -1.81_80, -3.41_70, -1.42_11, -3.18_10]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , A , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCamelCase_ : Any = torch.tensor([-9.49_22, -3.95_51, 1.79_98, -5.67_58, -5.10_55, -5.89_84, -4.83_20, -6.80_86, -6.53_91, -5.61_72, -5.58_20, -5.53_52, 1.78_81, 3.62_89, -6.51_17, -3.47_85, -9.50_00, -6.03_52, -6.81_25, -6.01_95, -6.68_36, -5.47_27, -6.28_12, -6.03_91, -7.33_98, -7.42_97, -7.48_44, -6.58_20, -5.87_89, -5.53_12] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , A , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' lowerCamelCase_ : str = '''Simply put, the theory of relativity states that ''' lowerCamelCase_ : Optional[Any] = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) lowerCamelCase_ : List[str] = tokenizer.encode(A , return_tensors='''pt''' ) lowerCamelCase_ : List[str] = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=A ) # greedy generation outputs lowerCamelCase_ : List[str] = model.generate(A , max_new_tokens=6_4 , top_p=A , temperature=1 , do_sample=A ) lowerCamelCase_ : List[str] = tokenizer.decode(generated_ids[0] , skip_special_tokens=A ) self.assertEqual(A , A )
318
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase ( tf.keras.layers.Layer ): def __init__(self , A , A , A = None , A = None ): super().__init__() lowerCamelCase_ : List[Any] = pad_token_id lowerCamelCase_ : Union[str, Any] = max_length lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : Optional[int] = merges lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ : Dict = tokenizer.get_vocab() return cls(A , A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A ) return cls.from_tokenizer(A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A ): return cls(**A ) def UpperCAmelCase__ (self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : str = self.tf_tokenizer(A ) lowerCamelCase_ : Any = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs( A , max_seq_length=A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
1
import math def UpperCAmelCase ( _lowerCamelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( _lowerCamelCase = 1_0001 ): try: A : Union[str, Any] = int(_lowerCamelCase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) A : list[int] = [] A : str = 2 while len(_lowerCamelCase ) < nth: if is_prime(_lowerCamelCase ): primes.append(_lowerCamelCase ) num += 1 else: num += 1 return primes[len(_lowerCamelCase ) - 1] if __name__ == "__main__": print(F"""{solution() = }""")
256
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
256
1
from __future__ import annotations from decimal import Decimal from numpy import array def lowerCAmelCase_ ( __UpperCAmelCase: list[list[float]] ) -> list[list[float]]: UpperCamelCase__ : Any = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(__UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCamelCase__ : int = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements UpperCamelCase__ : Union[str, Any] = [[0.0, 0.0], [0.0, 0.0]] UpperCamelCase__ ,UpperCamelCase__ : List[str] = matrix[1][1], matrix[0][0] UpperCamelCase__ ,UpperCamelCase__ : Dict = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(__UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(__UpperCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCamelCase__ : List[Any] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix UpperCamelCase__ : str = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCamelCase__ : str = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCamelCase__ : List[str] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCamelCase__ : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCamelCase__ : Optional[int] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCamelCase__ : str = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCamelCase__ : str = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCamelCase__ : Optional[int] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCamelCase__ : Dict = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCamelCase__ : Dict = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCamelCase__ : Optional[int] = array(__UpperCAmelCase ) for i in range(3 ): for j in range(3 ): UpperCamelCase__ : List[Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCamelCase__ : Any = array(__UpperCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(__UpperCAmelCase ) # Calculate the inverse of the matrix return [[float(d(__UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
201
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def UpperCamelCase__ ( self, __magic_name__ ) -> Union[str, Any]: """simple docstring""" with open(__magic_name__, encoding='''utf-8''' ) as input_file: UpperCamelCase__ : Tuple = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase__ : str = input_file.read() UpperCamelCase__ : List[Any] = regexp.search(__magic_name__ ) return match def UpperCamelCase__ ( self, __magic_name__ ) -> Any: """simple docstring""" with open(__magic_name__, encoding='''utf-8''' ) as input_file: UpperCamelCase__ : Dict = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''', re.DOTALL ) UpperCamelCase__ : Any = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase__ : Tuple = regexp.finditer(__magic_name__ ) UpperCamelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : int = Path('''./datasets''' ) UpperCamelCase__ : Any = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__magic_name__ ) ): raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}" ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Optional[int] = Path('''./datasets''' ) UpperCamelCase__ : Optional[Any] = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__magic_name__ ) ): raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead." )
201
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class __a( __lowerCamelCase ): """simple docstring""" lowerCAmelCase = 'efficientformer' def __init__( self ,_SCREAMING_SNAKE_CASE = [3, 2, 6, 4] ,_SCREAMING_SNAKE_CASE = [48, 96, 224, 448] ,_SCREAMING_SNAKE_CASE = [True, True, True, True] ,_SCREAMING_SNAKE_CASE = 448 ,_SCREAMING_SNAKE_CASE = 32 ,_SCREAMING_SNAKE_CASE = 4 ,_SCREAMING_SNAKE_CASE = 7 ,_SCREAMING_SNAKE_CASE = 5 ,_SCREAMING_SNAKE_CASE = 8 ,_SCREAMING_SNAKE_CASE = 4 ,_SCREAMING_SNAKE_CASE = 0.0 ,_SCREAMING_SNAKE_CASE = 16 ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = 2 ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = 0.0 ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = 1e-5 ,_SCREAMING_SNAKE_CASE = "gelu" ,_SCREAMING_SNAKE_CASE = 0.02 ,_SCREAMING_SNAKE_CASE = 1e-12 ,_SCREAMING_SNAKE_CASE = 224 ,_SCREAMING_SNAKE_CASE = 1e-05 ,**_SCREAMING_SNAKE_CASE ,) -> Any: super().__init__(**UpperCamelCase_ ) UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = hidden_sizes UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : str = layer_norm_eps UpperCAmelCase_ : Optional[int] = patch_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Union[str, Any] = depths UpperCAmelCase_ : Tuple = mlp_expansion_ratio UpperCAmelCase_ : List[str] = downsamples UpperCAmelCase_ : Tuple = dim UpperCAmelCase_ : str = key_dim UpperCAmelCase_ : int = attention_ratio UpperCAmelCase_ : Optional[int] = resolution UpperCAmelCase_ : Dict = pool_size UpperCAmelCase_ : Any = downsample_patch_size UpperCAmelCase_ : Optional[Any] = downsample_stride UpperCAmelCase_ : str = downsample_pad UpperCAmelCase_ : Dict = drop_path_rate UpperCAmelCase_ : int = num_metaad_blocks UpperCAmelCase_ : Union[str, Any] = distillation UpperCAmelCase_ : int = use_layer_scale UpperCAmelCase_ : Any = layer_scale_init_value UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Any = batch_norm_eps
357
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowerCamelCase__ ( _lowercase , _lowercase=0 ): '''simple docstring''' return sorted(_lowercase , key=lambda _lowercase : x[column] ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase=float('''inf''' ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , _lowercase ): UpperCAmelCase_ : Optional[int] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase_ : Optional[Any] = current_dis return min_dis def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase=float('''inf''' ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , _lowercase ): for j in range(max(0 , i - 6 ) , _lowercase ): UpperCAmelCase_ : List[str] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase_ : Optional[int] = current_dis return min_dis def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(_lowercase , _lowercase ) # recursion UpperCAmelCase_ : Optional[int] = points_counts // 2 UpperCAmelCase_ : List[Any] = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[:mid] , _lowercase ) UpperCAmelCase_ : Dict = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[mid:] , points_counts - mid ) UpperCAmelCase_ : Union[str, Any] = min(_lowercase , _lowercase ) UpperCAmelCase_ : str = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowercase ) UpperCAmelCase_ : Optional[Any] = dis_between_closest_in_strip( _lowercase , len(_lowercase ) , _lowercase ) return min(_lowercase , _lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = column_based_sort(_lowercase , column=0 ) UpperCAmelCase_ : List[Any] = column_based_sort(_lowercase , column=1 ) return ( closest_pair_of_points_sqr( _lowercase , _lowercase , _lowercase ) ) ** 0.5 if __name__ == "__main__": __a = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
235
0
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ,a_=None ,a_=None ,a_=None ,**a_ ) -> Dict: if tokenize_kwargs is None: _UpperCAmelCase : Union[str, Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) _UpperCAmelCase : List[Any] = truncation _UpperCAmelCase : List[str] = tokenize_kwargs _UpperCAmelCase : Any = {} if return_tensors is not None: _UpperCAmelCase : Optional[Any] = return_tensors return preprocess_params, {}, postprocess_params def _snake_case ( self ,a_ ,**a_ ) -> Dict[str, GenericTensor]: _UpperCAmelCase : Dict = self.framework _UpperCAmelCase : Any = self.tokenizer(a_ ,return_tensors=a_ ,**a_ ) return model_inputs def _snake_case ( self ,a_ ) -> int: _UpperCAmelCase : Optional[Any] = self.model(**a_ ) return model_outputs def _snake_case ( self ,a_ ,a_=False ) -> Dict: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self ,*a_ ,**a_ ) -> List[Any]: return super().__call__(*a_ ,**a_ )
215
'''simple docstring''' from torch import nn class lowercase ( nn.Module ): """simple docstring""" def __init__( self ,a_ ,a_ ) -> List[Any]: super().__init__() _UpperCAmelCase : Dict = class_size _UpperCAmelCase : Union[str, Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _UpperCAmelCase : List[Any] = nn.Linear(a_ ,a_ ) def _snake_case ( self ,a_ ) -> Tuple: # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) _UpperCAmelCase : Optional[int] = self.mlp(a_ ) return logits
215
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __A = random.Random() def __a ( lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : Tuple=1.0 ,lowerCAmelCase_ : Optional[int]=None ,lowerCAmelCase_ : List[Any]=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: UpperCAmelCase_= global_rng UpperCAmelCase_= [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowercase ( unittest.TestCase): """simple docstring""" def __init__( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : int=7 , __UpperCAmelCase : Union[str, Any]=400 , __UpperCAmelCase : Optional[int]=2_000 , __UpperCAmelCase : List[str]=1 , __UpperCAmelCase : Union[str, Any]=0.0 , __UpperCAmelCase : Optional[Any]=16_000 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Dict=80 , __UpperCAmelCase : Union[str, Any]=16 , __UpperCAmelCase : Tuple=64 , __UpperCAmelCase : Any="hann_window" , __UpperCAmelCase : int=80 , __UpperCAmelCase : List[str]=7_600 , __UpperCAmelCase : Optional[Any]=1E-10 , __UpperCAmelCase : List[Any]=True , ) -> Union[str, Any]: UpperCAmelCase_= parent UpperCAmelCase_= batch_size UpperCAmelCase_= min_seq_length UpperCAmelCase_= max_seq_length UpperCAmelCase_= (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase_= feature_size UpperCAmelCase_= padding_value UpperCAmelCase_= sampling_rate UpperCAmelCase_= do_normalize UpperCAmelCase_= num_mel_bins UpperCAmelCase_= hop_length UpperCAmelCase_= win_length UpperCAmelCase_= win_function UpperCAmelCase_= fmin UpperCAmelCase_= fmax UpperCAmelCase_= mel_floor UpperCAmelCase_= return_attention_mask def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Dict=False ) -> str: def _flatten(__UpperCAmelCase : Optional[int] ): return list(itertools.chain(*__UpperCAmelCase ) ) if equal_length: UpperCAmelCase_= floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase_= [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase_= [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : int=False ) -> Optional[Any]: if equal_length: UpperCAmelCase_= [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase_= [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase_= [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowercase ( snake_case__ , unittest.TestCase): """simple docstring""" a__ : int = SpeechTaFeatureExtractor def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: UpperCAmelCase_= SpeechTaFeatureExtractionTester(self ) def _SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: self.assertTrue(np.all(np.mean(__UpperCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase_= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase_= [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase_= [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase_= feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values UpperCAmelCase_= feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test batched UpperCAmelCase_= feat_extract(__UpperCAmelCase , return_tensors="""np""" ).input_values UpperCAmelCase_= feat_extract(__UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: UpperCAmelCase_= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_= [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase_= ["""longest""", """max_length""", """do_not_pad"""] UpperCAmelCase_= [None, 1_600, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_= feat_extract(__UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors="""np""" ) UpperCAmelCase_= processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: UpperCAmelCase_= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_= range(800 , 1_400 , 200 ) UpperCAmelCase_= [floats_list((1, x) )[0] for x in lengths] UpperCAmelCase_= ["""longest""", """max_length""", """do_not_pad"""] UpperCAmelCase_= [None, 1_600, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_= feat_extract(__UpperCAmelCase , max_length=__UpperCAmelCase , padding=__UpperCAmelCase ) UpperCAmelCase_= processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: UpperCAmelCase_= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_= [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase_= feat_extract( __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=1_000 , padding="""max_length""" , return_tensors="""np""" ) UpperCAmelCase_= processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: UpperCAmelCase_= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_= [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase_= feat_extract( __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=1_000 , padding="""longest""" , return_tensors="""np""" ) UpperCAmelCase_= processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) UpperCAmelCase_= [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase_= feat_extract( __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=2_000 , padding="""longest""" , return_tensors="""np""" ) UpperCAmelCase_= processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: UpperCAmelCase_= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_= np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase_= np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase_= feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase_= feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _SCREAMING_SNAKE_CASE ( self : str ) -> str: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase_= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase_= [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase_= [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size UpperCAmelCase_= feature_extractor(audio_target=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="""np""" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input UpperCAmelCase_= feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_values UpperCAmelCase_= feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test batched UpperCAmelCase_= feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_values UpperCAmelCase_= feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase_= [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase_= np.asarray(__UpperCAmelCase ) UpperCAmelCase_= feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_values UpperCAmelCase_= feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: UpperCAmelCase_= self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase_= self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_= feat_extract.model_input_names[0] UpperCAmelCase_= BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) for x, y in zip(__UpperCAmelCase , processed_features[input_name] ) ) ) UpperCAmelCase_= self.feat_extract_tester.prepare_inputs_for_target(equal_length=__UpperCAmelCase ) UpperCAmelCase_= BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) UpperCAmelCase_= processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase_= batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_= self.feat_extract_tester.prepare_inputs_for_target(equal_length=__UpperCAmelCase ) UpperCAmelCase_= self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_= feat_extract.model_input_names[0] UpperCAmelCase_= BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) UpperCAmelCase_= processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase_= batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: UpperCAmelCase_= self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_= self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase_= feat_extract.model_input_names[0] UpperCAmelCase_= BatchFeature({input_name: speech_inputs} ) UpperCAmelCase_= feat_extract.num_mel_bins # hack! UpperCAmelCase_= feat_extract.pad(__UpperCAmelCase , padding="""longest""" , return_tensors="""np""" )[input_name] UpperCAmelCase_= feat_extract.pad(__UpperCAmelCase , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase_= self.feat_extract_dict UpperCAmelCase_= True UpperCAmelCase_= self.feature_extraction_class(**__UpperCAmelCase ) UpperCAmelCase_= self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase_= [len(__UpperCAmelCase ) for x in speech_inputs] UpperCAmelCase_= feat_extract.model_input_names[0] UpperCAmelCase_= BatchFeature({input_name: speech_inputs} ) UpperCAmelCase_= feat_extract.num_mel_bins # hack! UpperCAmelCase_= feat_extract.pad(__UpperCAmelCase , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , __UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: UpperCAmelCase_= self.feat_extract_dict UpperCAmelCase_= True UpperCAmelCase_= self.feature_extraction_class(**__UpperCAmelCase ) UpperCAmelCase_= self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase_= [len(__UpperCAmelCase ) for x in speech_inputs] UpperCAmelCase_= feat_extract.model_input_names[0] UpperCAmelCase_= BatchFeature({input_name: speech_inputs} ) UpperCAmelCase_= min(__UpperCAmelCase ) UpperCAmelCase_= feat_extract.num_mel_bins # hack! UpperCAmelCase_= feat_extract.pad( __UpperCAmelCase , padding="""max_length""" , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="""np""" ) self.assertIn("""attention_mask""" , __UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : Union[str, Any] ) -> List[str]: from datasets import load_dataset UpperCAmelCase_= load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech UpperCAmelCase_= ds.sort("""id""" ).select(range(__UpperCAmelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: # fmt: off UpperCAmelCase_= torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on UpperCAmelCase_= self._load_datasamples(1 ) UpperCAmelCase_= SpeechTaFeatureExtractor() UpperCAmelCase_= feature_extractor(__UpperCAmelCase , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , __UpperCAmelCase , atol=1E-6 ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: # fmt: off UpperCAmelCase_= torch.tensor( [-2.6_870, -3.0_104, -3.1_356, -3.5_352, -3.0_044, -3.0_353, -3.4_719, -3.6_777, -3.1_520, -2.9_435, -2.6_553, -2.8_795, -2.9_944, -2.5_921, -3.0_279, -3.0_386, -3.0_864, -3.1_291, -3.2_353, -2.7_444, -2.6_831, -2.7_287, -3.1_761, -3.1_571, -3.2_726, -3.0_582, -3.1_007, -3.4_533, -3.4_695, -3.0_998] ) # fmt: on UpperCAmelCase_= self._load_datasamples(1 ) UpperCAmelCase_= SpeechTaFeatureExtractor() UpperCAmelCase_= feature_extractor(audio_target=__UpperCAmelCase , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , __UpperCAmelCase , atol=1E-4 ) )
368
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = '''https://openaipublic.azureedge.net/jukebox/models/''' __A = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def __a ( lowerCAmelCase_ : List[Any] ) -> Tuple: '''simple docstring''' if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: UpperCAmelCase_= key.replace(""".model.1.bias""" ,""".conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: UpperCAmelCase_= key.replace(""".model.1.weight""" ,""".conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: UpperCAmelCase_= key.replace(""".model.3.bias""" ,""".conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: UpperCAmelCase_= key.replace(""".model.3.weight""" ,""".conv1d_2.weight""" ) if "conditioner_blocks.0." in key: UpperCAmelCase_= key.replace("""conditioner_blocks.0""" ,"""conditioner_blocks""" ) if "prime_prior" in key: UpperCAmelCase_= key.replace("""prime_prior""" ,"""encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCAmelCase_= key.replace(""".emb.""" ,""".""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" ,""".codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" ,"""metadata_embedding.""" ) if "x_emb.emb." in key: UpperCAmelCase_= key.replace("""0.x_emb.emb""" ,"""embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" ,"""encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" ,""".layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" ,"""_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" ,"""encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" ,"""encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" ,"""fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" ,"""embed_tokens""" ) return key def __a ( lowerCAmelCase_ : int ,lowerCAmelCase_ : List[str] ,lowerCAmelCase_ : str ,lowerCAmelCase_ : Any ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_= {} import re UpperCAmelCase_= re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) UpperCAmelCase_= re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) UpperCAmelCase_= re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) UpperCAmelCase_= re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) UpperCAmelCase_= re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) UpperCAmelCase_= re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) UpperCAmelCase_= re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) UpperCAmelCase_= re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) UpperCAmelCase_= re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_encoder_block_conv_in.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= int(groups[2] ) * 2 + int(groups[3] ) UpperCAmelCase_= F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" UpperCAmelCase_= re_encoder_block_conv_in.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) elif re_encoder_block_resnet.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_encoder_block_resnet.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= int(groups[2] ) * 2 + int(groups[3] ) UpperCAmelCase_= {"""1""": 1, """3""": 2}[groups[-2]] UpperCAmelCase_= F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" UpperCAmelCase_= F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCAmelCase_= prefix + resnet_block UpperCAmelCase_= re_encoder_block_resnet.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) elif re_encoder_block_proj_out.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_encoder_block_proj_out.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= F"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" UpperCAmelCase_= re_encoder_block_proj_out.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_decoder_block_conv_out.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCAmelCase_= F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" UpperCAmelCase_= re_decoder_block_conv_out.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) elif re_decoder_block_resnet.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_decoder_block_resnet.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCAmelCase_= {"""1""": 1, """3""": 2}[groups[-2]] UpperCAmelCase_= F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" UpperCAmelCase_= F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCAmelCase_= prefix + resnet_block UpperCAmelCase_= re_decoder_block_resnet.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) elif re_decoder_block_proj_in.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_decoder_block_proj_in.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= F"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" UpperCAmelCase_= re_decoder_block_proj_in.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_prior_cond_conv_out.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCAmelCase_= F"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" UpperCAmelCase_= re_prior_cond_conv_out.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) elif re_prior_cond_resnet.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_prior_cond_resnet.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCAmelCase_= {"""1""": 1, """3""": 2}[groups[-2]] UpperCAmelCase_= F"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" UpperCAmelCase_= F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCAmelCase_= prefix + resnet_block UpperCAmelCase_= re_prior_cond_resnet.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) elif re_prior_cond_proj_in.fullmatch(lowerCAmelCase_ ): UpperCAmelCase_= re_prior_cond_proj_in.match(lowerCAmelCase_ ) UpperCAmelCase_= regex_match.groups() UpperCAmelCase_= F"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" UpperCAmelCase_= re_prior_cond_proj_in.sub(lowerCAmelCase_ ,lowerCAmelCase_ ) # keep original key else: UpperCAmelCase_= original_key UpperCAmelCase_= replace_key(lowerCAmelCase_ ) if F"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(F"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[F"""{key_prefix}.{key}"""].shape: UpperCAmelCase_= model_state_dict[F"""{key_prefix}.{key}"""] print(F"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) UpperCAmelCase_= original_key UpperCAmelCase_= original_key UpperCAmelCase_= value return new_dict @torch.no_grad() def __a ( lowerCAmelCase_ : List[Any]=None ,lowerCAmelCase_ : str=None ) -> List[str]: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): UpperCAmelCase_= requests.get(F"""{PREFIX}{file}""" ,allow_redirects=lowerCAmelCase_ ) os.makedirs(F"""{pytorch_dump_folder_path}/""" ,exist_ok=lowerCAmelCase_ ) open(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ,"""wb""" ).write(r.content ) UpperCAmelCase_= MODEL_MAPPING[model_name.split("""/""" )[-1]] UpperCAmelCase_= JukeboxConfig.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_= JukeboxModel(lowerCAmelCase_ ) UpperCAmelCase_= [] UpperCAmelCase_= {} for i, dict_name in enumerate(lowerCAmelCase_ ): UpperCAmelCase_= torch.load(F"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""] UpperCAmelCase_= {} for k in old_dic.keys(): if k.endswith(""".b""" ): UpperCAmelCase_= old_dic[k] elif k.endswith(""".w""" ): UpperCAmelCase_= old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCAmelCase_= old_dic[k] else: UpperCAmelCase_= old_dic[k] UpperCAmelCase_= """vqvae""" if i == 0 else F"""priors.{3 - i}""" UpperCAmelCase_= fix_jukebox_keys(lowerCAmelCase_ ,model.state_dict() ,lowerCAmelCase_ ,lowerCAmelCase_ ) weight_dict.append(lowerCAmelCase_ ) UpperCAmelCase_= weight_dict.pop(0 ) model.vqvae.load_state_dict(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) with open(F"""{pytorch_dump_folder_path}/mapping.json""" ,"""w""" ) as txtfile: json.dump(lowerCAmelCase_ ,lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) return weight_dict if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) __A = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
277
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase : @staticmethod def lowercase__ ( *__snake_case : int , **__snake_case : str ) -> Dict: pass def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. A__ : str =( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): _lowercase: Optional[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def lowercase__ ( self : Dict , __snake_case : Optional[int] , __snake_case : int , __snake_case : Union[str, Any] ) -> List[Any]: _lowerCAmelCase = pipeline( """document-question-answering""" , model=__snake_case , tokenizer=__snake_case , image_processor=__snake_case ) _lowerCAmelCase = INVOICE_URL _lowerCAmelCase = list(zip(*apply_tesseract(load_image(__snake_case ) , __snake_case , """""" ) ) ) _lowerCAmelCase = """What is the placebo?""" _lowerCAmelCase = [ { """image""": load_image(__snake_case ), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def lowercase__ ( self : str , __snake_case : Dict , __snake_case : Any ) -> Dict: _lowerCAmelCase = dqa_pipeline(__snake_case , top_k=2 ) self.assertEqual( __snake_case , [ [ {"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case ), """start""": ANY(__snake_case ), """end""": ANY(__snake_case )}, {"""score""": ANY(__snake_case ), """answer""": ANY(__snake_case ), """start""": ANY(__snake_case ), """end""": ANY(__snake_case )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def lowercase__ ( self : Optional[Any] ) -> Tuple: _lowerCAmelCase = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" ) _lowerCAmelCase = INVOICE_URL _lowerCAmelCase = """How many cats are there?""" _lowerCAmelCase = [ {"""score""": 0.00_01, """answer""": """oy 2312/2019""", """start""": 38, """end""": 39}, {"""score""": 0.00_01, """answer""": """oy 2312/2019 DUE""", """start""": 38, """end""": 40}, ] _lowerCAmelCase = dqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual(nested_simplify(__snake_case , decimals=4 ) , __snake_case ) _lowerCAmelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual(nested_simplify(__snake_case , decimals=4 ) , __snake_case ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably _lowerCAmelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _lowerCAmelCase = dqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual(__snake_case , [] ) # We can optionnally pass directly the words and bounding boxes _lowerCAmelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = dqa_pipeline(image=__snake_case , question=__snake_case , words=__snake_case , boxes=__snake_case , top_k=2 ) self.assertEqual(__snake_case , [] ) @slow @require_torch @require_detectrona @require_pytesseract def lowercase__ ( self : Dict ) -> Union[str, Any]: _lowerCAmelCase = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) _lowerCAmelCase = INVOICE_URL _lowerCAmelCase = """What is the invoice number?""" _lowerCAmelCase = dqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {"""score""": 0.99_44, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.00_09, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) _lowerCAmelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {"""score""": 0.99_44, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.00_09, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) _lowerCAmelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {"""score""": 0.99_44, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.00_09, """answer""": """us-001""", """start""": 16, """end""": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def lowercase__ ( self : List[str] ) -> List[Any]: _lowerCAmelCase = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=50 , ) _lowerCAmelCase = INVOICE_URL _lowerCAmelCase = """What is the invoice number?""" _lowerCAmelCase = dqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {"""score""": 0.99_74, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.99_48, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) _lowerCAmelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {"""score""": 0.99_74, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.99_48, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) _lowerCAmelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {"""score""": 0.99_74, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.99_48, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def lowercase__ ( self : Tuple ) -> Union[str, Any]: _lowerCAmelCase = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=__snake_case ) _lowerCAmelCase = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=__snake_case , revision="""3dc6de3""" , ) _lowerCAmelCase = INVOICE_URL _lowerCAmelCase = """What is the invoice number?""" _lowerCAmelCase = dqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {"""score""": 0.42_51, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.08_19, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) _lowerCAmelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {"""score""": 0.42_51, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.08_19, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) _lowerCAmelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {"""score""": 0.42_51, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.08_19, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] ] * 2 , ) _lowerCAmelCase = list(zip(*apply_tesseract(load_image(__snake_case ) , __snake_case , """""" ) ) ) # This model should also work if `image` is set to None _lowerCAmelCase = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {"""score""": 0.42_51, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.08_19, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: _lowerCAmelCase = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=__snake_case ) _lowerCAmelCase = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=__snake_case , revision="""3dc6de3""" , max_seq_len=50 , ) _lowerCAmelCase = INVOICE_URL _lowerCAmelCase = """What is the invoice number?""" _lowerCAmelCase = dqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {"""score""": 0.99_99, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.99_98, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) _lowerCAmelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {"""score""": 0.99_99, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.99_98, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) _lowerCAmelCase = list(zip(*apply_tesseract(load_image(__snake_case ) , __snake_case , """""" ) ) ) # This model should also work if `image` is set to None _lowerCAmelCase = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {"""score""": 0.99_99, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.99_98, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) @slow @require_torch def lowercase__ ( self : Dict ) -> Optional[int]: _lowerCAmelCase = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) _lowerCAmelCase = INVOICE_URL _lowerCAmelCase = """What is the invoice number?""" _lowerCAmelCase = dqa_pipeline(image=__snake_case , question=__snake_case , top_k=2 ) self.assertEqual(nested_simplify(__snake_case , decimals=4 ) , [{"""answer""": """us-001"""}] ) @require_tf @unittest.skip("""Document question answering not implemented in TF""" ) def lowercase__ ( self : str ) -> Optional[Any]: pass
70
'''simple docstring''' import argparse import json from tqdm import tqdm def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=lowerCAmelCase , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=lowerCAmelCase , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=lowerCAmelCase , help="""where to store parsed gold_data_path file""" , ) _lowerCAmelCase = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: _lowerCAmelCase = json.load(lowerCAmelCase ) for dpr_record in tqdm(lowerCAmelCase ): _lowerCAmelCase = dpr_record["""question"""] _lowerCAmelCase = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(lowerCAmelCase ) + """\n""" ) if __name__ == "__main__": main()
70
1
def lowerCAmelCase_ ( _snake_case : int ) -> int: '''simple docstring''' if not isinstance(_snake_case , _snake_case ): __magic_name__ : List[str] = F'''Input value of [number={number}] must be an integer''' raise TypeError(_snake_case ) if number < 1: __magic_name__ : Tuple = F'''Input value of [number={number}] must be > 0''' raise ValueError(_snake_case ) __magic_name__ : str = 1 for i in range(1 , _snake_case ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
41
from typing import Any class _snake_case : def __init__( self , _a ): __magic_name__ : Union[str, Any] = data __magic_name__ : str = None class _snake_case : def __init__( self ): __magic_name__ : List[str] = None def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = self.head while temp is not None: print(temp.data , end=" " ) __magic_name__ : Optional[int] = temp.next print() def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Union[str, Any] = Node(_a ) __magic_name__ : List[str] = self.head __magic_name__ : Union[str, Any] = new_node def SCREAMING_SNAKE_CASE ( self , _a , _a ): if node_data_a == node_data_a: return else: __magic_name__ : Optional[Any] = self.head while node_a is not None and node_a.data != node_data_a: __magic_name__ : Tuple = node_a.next __magic_name__ : Dict = self.head while node_a is not None and node_a.data != node_data_a: __magic_name__ : List[Any] = node_a.next if node_a is None or node_a is None: return __magic_name__ , __magic_name__ : Optional[int] = node_a.data, node_a.data if __name__ == "__main__": snake_case : Optional[int] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
41
1
def _a ( SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') _a = int(input('''Enter number: ''').strip()) print(f"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
322
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCamelCase : Any = TypeVar('T') class a ( Generic[T] ): def __init__( self , _lowerCamelCase ): lowercase = data lowercase = None def __str__( self ): return F'{self.data}' class a ( Generic[T] ): def __init__( self ): lowercase = None def __iter__( self ): lowercase = self.top while node: yield node.data lowercase = node.next def __str__( self ): return "->".join([str(_lowerCamelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def UpperCamelCase_ ( self ): return self.top is None def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = Node(_lowerCamelCase ) if not self.is_empty(): lowercase = self.top lowercase = node def UpperCamelCase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _lowerCamelCase ) lowercase = self.top lowercase = self.top.next return pop_node.data def UpperCamelCase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def UpperCamelCase_ ( self ): lowercase = None if __name__ == "__main__": from doctest import testmod testmod()
220
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
295
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__( self , lowerCAmelCase_ = 128 , lowerCAmelCase_ = 256 , lowerCAmelCase_ = 20_00.0 , lowerCAmelCase_ = 768 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2048 , lowerCAmelCase_ = 0.1 , ) -> Union[str, Any]: super().__init__() _snake_case = nn.Sequential( nn.Linear(lowerCAmelCase_ , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , ) _snake_case = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = False _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Dropout(p=lowerCAmelCase_ ) _snake_case = nn.ModuleList() for lyr_num in range(lowerCAmelCase_ ): # FiLM conditional T5 decoder _snake_case = DecoderLayer(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) self.decoders.append(lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ ) _snake_case = nn.Dropout(p=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _snake_case = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case , _snake_case , _snake_case = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _snake_case = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _snake_case = self.conditioning_emb(lowerCAmelCase_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _snake_case = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _snake_case = torch.broadcast_to( torch.arange(lowerCAmelCase_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _snake_case = self.position_encoding(lowerCAmelCase_ ) _snake_case = self.continuous_inputs_projection(lowerCAmelCase_ ) inputs += position_encodings _snake_case = self.dropout(lowerCAmelCase_ ) # decoder: No padding present. _snake_case = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _snake_case = [(x, self.encoder_decoder_mask(lowerCAmelCase_ , lowerCAmelCase_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings _snake_case = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _snake_case = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _snake_case = lyr( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , )[0] _snake_case = self.decoder_norm(lowerCAmelCase_ ) _snake_case = self.post_dropout(lowerCAmelCase_ ) _snake_case = self.spec_out(lowerCAmelCase_ ) return spec_out class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1E-6 ) -> Tuple: super().__init__() _snake_case = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ ) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> Tuple: _snake_case = self.layer[0]( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) if encoder_hidden_states is not None: _snake_case = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _snake_case = self.layer[1]( lowerCAmelCase_ , key_value_states=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) # Apply Film Conditional Feed Forward layer _snake_case = self.layer[-1](lowerCAmelCase_ , lowerCAmelCase_ ) return (hidden_states,) class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: super().__init__() _snake_case = TaLayerNorm(lowerCAmelCase_ ) _snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) _snake_case = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> str: # pre_self_attention_layer_norm _snake_case = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: _snake_case = self.FiLMLayer(lowerCAmelCase_ , lowerCAmelCase_ ) # Self-attention block _snake_case = self.attention(lowerCAmelCase_ ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: super().__init__() _snake_case = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> Dict: _snake_case = self.layer_norm(lowerCAmelCase_ ) _snake_case = self.attention( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , attention_mask=attention_mask.squeeze(1 ) , ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return layer_output class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: super().__init__() _snake_case = TaDenseGatedActDense(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) _snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Union[str, Any]: _snake_case = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: _snake_case = self.film(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.DenseReluDense(lowerCAmelCase_ ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: super().__init__() _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) _snake_case = NewGELUActivation() def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Any: _snake_case = self.act(self.wi_a(lowerCAmelCase_ ) ) _snake_case = self.wi_a(lowerCAmelCase_ ) _snake_case = hidden_gelu * hidden_linear _snake_case = self.dropout(lowerCAmelCase_ ) _snake_case = self.wo(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=1E-6 ) -> str: super().__init__() _snake_case = nn.Parameter(torch.ones(lowerCAmelCase_ ) ) _snake_case = eps def lowerCAmelCase ( self , lowerCAmelCase_ ) -> int: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _snake_case = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCAmelCase_ ) _snake_case = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _snake_case = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCamelCase_ ( nn.Module ): def lowerCAmelCase ( self , lowerCAmelCase_ ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(lowerCAmelCase_ , 3.0 )) )) class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: super().__init__() _snake_case = nn.Linear(lowerCAmelCase_ , out_features * 2 , bias=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = self.scale_bias(lowerCAmelCase_ ) _snake_case , _snake_case = torch.chunk(lowerCAmelCase_ , 2 , -1 ) _snake_case = x * (1 + scale) + shift return x
295
1
from __future__ import annotations import collections import pprint from pathlib import Path def A ( _lowerCamelCase ): '''simple docstring''' return "".join(sorted(SCREAMING_SNAKE_CASE_ ) ) def A ( _lowerCamelCase ): '''simple docstring''' return word_by_signature[signature(SCREAMING_SNAKE_CASE_ )] _snake_case = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") _snake_case = sorted({word.strip().lower() for word in data.splitlines()}) _snake_case = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _snake_case = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
36
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def __A ( self ) -> List[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = ort.SessionOptions() SCREAMING_SNAKE_CASE = False return options def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'A red cat sitting on a park bench' SCREAMING_SNAKE_CASE = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=lowerCAmelCase__ , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
113
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A = '''pt''' elif is_tf_available(): __A = '''tf''' else: __A = '''jax''' class _snake_case ( a__ , unittest.TestCase ): snake_case__ = PerceiverTokenizer snake_case__ = False def lowerCamelCase__ ( self : List[Any] ): super().setUp() __lowerCamelCase : Tuple = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ ( self : str ): return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def lowerCamelCase__ ( self : Optional[Any] , **UpperCAmelCase : Any ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple=False , UpperCAmelCase : Tuple=20 , UpperCAmelCase : List[str]=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __lowerCamelCase : Optional[int] = [] for i in range(len(UpperCAmelCase ) ): try: __lowerCamelCase : Dict = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowerCamelCase : List[Any] = list(filter(lambda UpperCAmelCase : re.match(r"^[ a-zA-Z]+$" , t[1] ) , UpperCAmelCase ) ) __lowerCamelCase : Tuple = list(filter(lambda UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCAmelCase ) , UpperCAmelCase ) ) if max_length is not None and len(UpperCAmelCase ) > max_length: __lowerCamelCase : Tuple = toks[:max_length] if min_length is not None and len(UpperCAmelCase ) < min_length and len(UpperCAmelCase ) > 0: while len(UpperCAmelCase ) < min_length: __lowerCamelCase : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __lowerCamelCase : Dict = [t[0] for t in toks] # Ensure consistency __lowerCamelCase : Optional[int] = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) if " " not in output_txt and len(UpperCAmelCase ) > 1: __lowerCamelCase : str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCAmelCase ) ) if with_prefix_space: __lowerCamelCase : List[Any] = " " + output_txt __lowerCamelCase : Union[str, Any] = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) return output_txt, output_ids def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : Optional[Any] = self.perceiver_tokenizer __lowerCamelCase : Optional[Any] = "Unicode €." __lowerCamelCase : int = tokenizer(UpperCAmelCase ) __lowerCamelCase : List[str] = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , UpperCAmelCase ) # decoding __lowerCamelCase : List[str] = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , "[CLS]Unicode €.[SEP]" ) __lowerCamelCase : Any = tokenizer("e è é ê ë" ) __lowerCamelCase : Union[str, Any] = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , UpperCAmelCase ) # decoding __lowerCamelCase : Dict = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : int = self.perceiver_tokenizer __lowerCamelCase : str = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off __lowerCamelCase : int = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __lowerCamelCase : Dict = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) if FRAMEWORK != "jax": __lowerCamelCase : Any = list(batch.input_ids.numpy()[0] ) else: __lowerCamelCase : Union[str, Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Dict = self.perceiver_tokenizer __lowerCamelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] __lowerCamelCase : Dict = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , UpperCAmelCase ) self.assertIn("attention_mask" , UpperCAmelCase ) self.assertNotIn("decoder_input_ids" , UpperCAmelCase ) self.assertNotIn("decoder_attention_mask" , UpperCAmelCase ) def lowerCamelCase__ ( self : str ): __lowerCamelCase : List[Any] = self.perceiver_tokenizer __lowerCamelCase : Optional[Any] = [ "Summary of the text.", "Another summary.", ] __lowerCamelCase : Dict = tokenizer( text_target=UpperCAmelCase , max_length=32 , padding="max_length" , truncation=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCamelCase__ ( self : List[str] ): # safety check on max_len default value so we are sure the test works __lowerCamelCase : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowerCamelCase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCamelCase : int = tempfile.mkdtemp() __lowerCamelCase : Dict = " He is very happy, UNwant\u00E9d,running" __lowerCamelCase : Any = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = tokenizer.__class__.from_pretrained(UpperCAmelCase ) __lowerCamelCase : str = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) shutil.rmtree(UpperCAmelCase ) __lowerCamelCase : Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCamelCase : Tuple = tempfile.mkdtemp() __lowerCamelCase : Any = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) __lowerCamelCase : Union[str, Any] = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __lowerCamelCase : Union[str, Any] = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) __lowerCamelCase : List[Any] = tokenizer.__class__.from_pretrained(UpperCAmelCase ) __lowerCamelCase : Optional[int] = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowerCamelCase : Optional[Any] = tokenizer.__class__.from_pretrained(UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : Dict = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __lowerCamelCase : int = json.load(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __lowerCamelCase : Union[str, Any] = json.load(UpperCAmelCase ) __lowerCamelCase : Any = [F"""<extra_id_{i}>""" for i in range(125 )] __lowerCamelCase : Any = added_tokens_extra_ids + [ "an_additional_special_token" ] __lowerCamelCase : Union[str, Any] = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(UpperCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowerCamelCase : Dict = tokenizer_class.from_pretrained( UpperCAmelCase , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowerCamelCase : Optional[int] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=UpperCAmelCase )] __lowerCamelCase : int = tokenizer_class.from_pretrained( UpperCAmelCase , additional_special_tokens=UpperCAmelCase , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def lowerCamelCase__ ( self : Dict ): pass def lowerCamelCase__ ( self : Optional[int] ): pass def lowerCamelCase__ ( self : Optional[int] ): pass def lowerCamelCase__ ( self : int ): pass def lowerCamelCase__ ( self : Union[str, Any] ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __lowerCamelCase : Dict = self.get_tokenizers(fast=UpperCAmelCase , do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCamelCase : str = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] __lowerCamelCase : Dict = tokenizer.convert_tokens_to_string(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
370
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __A = logging.get_logger(__name__) __A = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) __A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowercase_ ( _lowerCamelCase: str ) -> int: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __lowerCamelCase : int = model_type_to_module_name(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = importlib.import_module(F""".{module_name}""" , "transformers.models" ) try: return getattr(_lowerCamelCase , _lowerCamelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_lowerCamelCase , "__name__" , _lowerCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __lowerCamelCase : int = importlib.import_module("transformers" ) if hasattr(_lowerCamelCase , _lowerCamelCase ): return getattr(_lowerCamelCase , _lowerCamelCase ) return None def lowercase_ ( _lowerCamelCase: Union[str, os.PathLike] , _lowerCamelCase: Optional[Union[str, os.PathLike]] = None , _lowerCamelCase: bool = False , _lowerCamelCase: bool = False , _lowerCamelCase: Optional[Dict[str, str]] = None , _lowerCamelCase: Optional[Union[bool, str]] = None , _lowerCamelCase: Optional[str] = None , _lowerCamelCase: bool = False , **_lowerCamelCase: Tuple , ) -> List[str]: '''simple docstring''' __lowerCamelCase : List[str] = get_file_from_repo( _lowerCamelCase , _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , resume_download=_lowerCamelCase , proxies=_lowerCamelCase , use_auth_token=_lowerCamelCase , revision=_lowerCamelCase , local_files_only=_lowerCamelCase , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(_lowerCamelCase , encoding="utf-8" ) as reader: return json.load(_lowerCamelCase ) class _snake_case : def __init__( self : Tuple ): raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(UpperCAmelCase ) def lowerCamelCase__ ( cls : Dict , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ): __lowerCamelCase : int = kwargs.pop("config" , UpperCAmelCase ) __lowerCamelCase : Dict = kwargs.pop("trust_remote_code" , UpperCAmelCase ) __lowerCamelCase : Any = True __lowerCamelCase , __lowerCamelCase : str = ImageProcessingMixin.get_image_processor_dict(UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : Optional[int] = config_dict.get("image_processor_type" , UpperCAmelCase ) __lowerCamelCase : List[Any] = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): __lowerCamelCase : List[str] = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __lowerCamelCase : Dict = config_dict.pop("feature_extractor_type" , UpperCAmelCase ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) __lowerCamelCase : Tuple = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): __lowerCamelCase : Any = config_dict["auto_map"]["AutoFeatureExtractor"] __lowerCamelCase : Optional[int] = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : int = AutoConfig.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) # It could be in `config.image_processor_type`` __lowerCamelCase : int = getattr(UpperCAmelCase , "image_processor_type" , UpperCAmelCase ) if hasattr(UpperCAmelCase , "auto_map" ) and "AutoImageProcessor" in config.auto_map: __lowerCamelCase : Optional[int] = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: __lowerCamelCase : Any = image_processor_class_from_name(UpperCAmelCase ) __lowerCamelCase : str = image_processor_auto_map is not None __lowerCamelCase : Optional[Any] = image_processor_class is not None or type(UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING __lowerCamelCase : Dict = resolve_trust_remote_code( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if has_remote_code and trust_remote_code: __lowerCamelCase : Optional[Any] = get_class_from_dynamic_module( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : List[Any] = kwargs.pop("code_revision" , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(UpperCAmelCase , **UpperCAmelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(UpperCAmelCase , **UpperCAmelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING: __lowerCamelCase : Tuple = IMAGE_PROCESSOR_MAPPING[type(UpperCAmelCase )] return image_processor_class.from_dict(UpperCAmelCase , **UpperCAmelCase ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def lowerCamelCase__ ( UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] ): IMAGE_PROCESSOR_MAPPING.register(UpperCAmelCase , UpperCAmelCase )
64
0
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict=1e-1_2 ): """simple docstring""" _a = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(__lowerCAmelCase, axis=1 ), a_min=__lowerCAmelCase ) ).T _a = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(__lowerCAmelCase, axis=1 ), a_min=__lowerCAmelCase ) ).T return jnp.matmul(__lowerCAmelCase, norm_emb_a.T ) class __lowerCamelCase ( nn.Module ): '''simple docstring''' A_ : CLIPConfig A_ : jnp.dtype = jnp.floataa def _UpperCAmelCase ( self ) -> List[str]: _a = FlaxCLIPVisionModule(self.config.vision_config ) _a = nn.Dense(self.config.projection_dim , use_bias=SCREAMING_SNAKE_CASE__ , dtype=self.dtype ) _a = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) _a = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) _a = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) _a = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self , __UpperCAmelCase ) -> Tuple: _a = self.vision_model(SCREAMING_SNAKE_CASE__ )[1] _a = self.visual_projection(SCREAMING_SNAKE_CASE__ ) _a = jax_cosine_distance(SCREAMING_SNAKE_CASE__ , self.special_care_embeds ) _a = jax_cosine_distance(SCREAMING_SNAKE_CASE__ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs _a = 0.0 _a = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment _a = jnp.round(SCREAMING_SNAKE_CASE__ , 3 ) _a = jnp.any(special_scores > 0 , axis=1 , keepdims=SCREAMING_SNAKE_CASE__ ) # Use a lower threshold if an image has any special care concept _a = is_special_care * 0.01 _a = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment _a = jnp.round(SCREAMING_SNAKE_CASE__ , 3 ) _a = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class __lowerCamelCase ( __lowercase ): '''simple docstring''' A_ : List[str] = CLIPConfig A_ : List[Any] = """clip_input""" A_ : Union[str, Any] = FlaxStableDiffusionSafetyCheckerModule def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = jnp.floataa , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> Optional[Any]: if input_shape is None: _a = (1, 224, 224, 3) _a = self.module_class(config=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , input_shape=SCREAMING_SNAKE_CASE__ , seed=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , _do_init=_do_init ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ) -> FrozenDict: # init input tensor _a = jax.random.normal(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _a , _a = jax.random.split(SCREAMING_SNAKE_CASE__ ) _a = {'''params''': params_rng, '''dropout''': dropout_rng} _a = self.module.init(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )['''params'''] return random_params def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , ) -> Optional[int]: _a = jnp.transpose(SCREAMING_SNAKE_CASE__ , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) , rngs={} , )
320
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCAmelCase__ ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : NestedDataStructureLike[PathLike] , SCREAMING_SNAKE_CASE__ : Optional[NamedSplit] = None , SCREAMING_SNAKE_CASE__ : Optional[Features] = None , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : str , ) -> Union[str, Any]: super().__init__( SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ , streaming=SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = path_or_paths if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else {self.split: path_or_paths} __lowerCamelCase = Text( cache_dir=SCREAMING_SNAKE_CASE__ , data_files=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __A ( self : int ) -> Dict: # Build iterable dataset if self.streaming: __lowerCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE__ , download_mode=SCREAMING_SNAKE_CASE__ , verification_mode=SCREAMING_SNAKE_CASE__ , base_path=SCREAMING_SNAKE_CASE__ , num_proc=self.num_proc , ) __lowerCamelCase = self.builder.as_dataset( split=self.split , verification_mode=SCREAMING_SNAKE_CASE__ , in_memory=self.keep_in_memory ) return dataset
270
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __UpperCAmelCase ( ): _UpperCAmelCase : str = HfArgumentParser(a_ ) _UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase : List[str] = TensorFlowBenchmark(args=a_ ) try: _UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: _UpperCAmelCase : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." _UpperCAmelCase : str = " ".join(str(a_ ).split(" " )[:-1] ) _UpperCAmelCase : Any = "" _UpperCAmelCase : Tuple = eval(str(a_ ).split(" " )[-1] ) _UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(a_ ) if len(a_ ) > 0: _UpperCAmelCase : Optional[int] = full_error_msg + begin_error_msg + str(a_ ) raise ValueError(a_ ) benchmark.run() if __name__ == "__main__": main()
360
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar __lowerCamelCase = TypeVar("T") __lowerCamelCase = TypeVar("U") class UpperCamelCase__( Generic[T, U] ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: A__ = key A__ = val A__ = None A__ = None def __repr__( self ) -> str: return ( f'''Node: key: {self.key}, val: {self.val}, ''' f'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class UpperCamelCase__( Generic[T, U] ): def __init__( self ) -> None: A__ = DoubleLinkedListNode(__UpperCAmelCase ,__UpperCAmelCase ) A__ = DoubleLinkedListNode(__UpperCAmelCase ,__UpperCAmelCase ) A__ , A__ = self.rear, self.head def __repr__( self ) -> str: A__ = ['DoubleLinkedList'] A__ = self.head while node.next is not None: rep.append(str(__UpperCAmelCase ) ) A__ = node.next rep.append(str(self.rear ) ) return ",\n ".join(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> None: A__ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None A__ = node A__ = previous A__ = node A__ = self.rear def snake_case__ ( self ,__UpperCAmelCase ) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None A__ = node.next A__ = node.prev A__ = None A__ = None return node class UpperCamelCase__( Generic[T, U] ): lowerCAmelCase__ : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self ,__UpperCAmelCase ) -> Dict: A__ = DoubleLinkedList() A__ = capacity A__ = 0 A__ = 0 A__ = 0 A__ = {} def __repr__( self ) -> str: return ( f'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' f'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self ,__UpperCAmelCase ) -> bool: return key in self.cache def snake_case__ ( self ,__UpperCAmelCase ) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 A__ = self.cache[key] A__ = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(__UpperCAmelCase ) return node.val self.miss += 1 return None def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity A__ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(__UpperCAmelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 A__ = DoubleLinkedListNode(__UpperCAmelCase ,__UpperCAmelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value A__ = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list A__ = value self.list.add(__UpperCAmelCase ) @classmethod def snake_case__ ( cls ,__UpperCAmelCase = 1_28 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(__UpperCAmelCase ) -> Callable[..., U]: def cache_decorator_wrapper(*__UpperCAmelCase ) -> U: if func not in cls.decorator_function_to_instance_map: A__ = LRUCache(__UpperCAmelCase ) A__ = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: A__ = func(*__UpperCAmelCase ) cls.decorator_function_to_instance_map[func].put(args[0] ,__UpperCAmelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(__UpperCAmelCase ,'cache_info' ,__UpperCAmelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
221
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=13 ,__UpperCAmelCase=7 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=99 ,__UpperCAmelCase=32 ,__UpperCAmelCase=2 ,__UpperCAmelCase=4 ,__UpperCAmelCase=37 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=5_12 ,__UpperCAmelCase=16 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=None ,__UpperCAmelCase=0 ,) -> Dict: A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope A__ = projection_dim def snake_case__ ( self ) -> Optional[Any]: A__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A__ = ids_tensor([self.batch_size] ,self.num_choices ) A__ = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__UpperCAmelCase ,initializer_range=self.initializer_range ,) A__ = DPRConfig(projection_dim=self.projection_dim ,**config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: A__ = TFDPRContextEncoder(config=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: A__ = TFDPRQuestionEncoder(config=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: A__ = TFDPRReader(config=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape ,(self.batch_size,) ) def snake_case__ ( self ) -> int: A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'input_ids': input_ids} return config, inputs_dict @require_tf class UpperCamelCase__( __A , __A , unittest.TestCase ): lowerCAmelCase__ : Optional[int] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCAmelCase__ : List[str] = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : str = False def snake_case__ ( self ) -> str: A__ = TFDPRModelTester(self ) A__ = ConfigTester(self ,config_class=__UpperCAmelCase ,hidden_size=37 ) def snake_case__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def snake_case__ ( self ) -> int: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__UpperCAmelCase ) def snake_case__ ( self ) -> Optional[Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__UpperCAmelCase ) def snake_case__ ( self ) -> List[str]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__UpperCAmelCase ) @slow def snake_case__ ( self ) -> int: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRContextEncoder.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRContextEncoder.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRQuestionEncoder.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRReader.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class UpperCamelCase__( unittest.TestCase ): @slow def snake_case__ ( self ) -> Optional[Any]: A__ = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) A__ = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] A__ = model(__UpperCAmelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. A__ = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
221
1
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _lowerCAmelCase : Tuple = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase : Union[str, Any] = logging.getLogger() def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase__ : str = parser.parse_args() return args.f def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Union[str, Any]="eval" )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : str = os.path.join(snake_case , f'{split}_results.json' ) if os.path.exists(snake_case ): with open(snake_case , "r" ) as f: return json.load(snake_case ) raise ValueError(f'can\'t find {path}' ) _lowerCAmelCase : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase__ ( __magic_name__ ): def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : Tuple = f'\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(snake_case__ , "argv" , snake_case__ ): run_flax_glue.main() UpperCAmelCase__ : List[Any] = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : Union[str, Any] = f'\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(snake_case__ , "argv" , snake_case__ ): run_clm_flax.main() UpperCAmelCase__ : Dict = get_results(snake_case__ ) self.assertLess(result["eval_perplexity"] , 1_0_0 ) @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : int = f'\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '.split() with patch.object(snake_case__ , "argv" , snake_case__ ): run_summarization_flax.main() UpperCAmelCase__ : str = get_results(snake_case__ , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 1_0 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : int = f'\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '.split() with patch.object(snake_case__ , "argv" , snake_case__ ): run_mlm_flax.main() UpperCAmelCase__ : List[str] = get_results(snake_case__ ) self.assertLess(result["eval_perplexity"] , 4_2 ) @slow def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : str = f'\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(snake_case__ , "argv" , snake_case__ ): run_ta_mlm_flax.main() UpperCAmelCase__ : int = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase__ : Any = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : Tuple = f'\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '.split() with patch.object(snake_case__ , "argv" , snake_case__ ): run_flax_ner.main() UpperCAmelCase__ : int = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : Dict = f'\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '.split() with patch.object(snake_case__ , "argv" , snake_case__ ): run_qa.main() UpperCAmelCase__ : int = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_f1"] , 3_0 ) self.assertGreaterEqual(result["eval_exact"] , 3_0 )
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
298
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ :str = logging.get_logger(__name__) # TODO Update this lowercase__ :List[str] = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Union[str, Any] ='''esm''' def __init__( self ,A__=None ,A__=None ,A__=None ,A__=7_6_8 ,A__=1_2 ,A__=1_2 ,A__=3_0_7_2 ,A__=0.1 ,A__=0.1 ,A__=1_0_2_6 ,A__=0.02 ,A__=1E-12 ,A__="absolute" ,A__=True ,A__=None ,A__=False ,A__=False ,A__=None ,A__=None ,**A__ ,): super().__init__(pad_token_id=A__ ,mask_token_id=A__ ,**A__) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = use_cache lowercase = emb_layer_norm_before lowercase = token_dropout lowercase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''') lowercase = EsmFoldConfig() elif isinstance(A__ ,A__): lowercase = EsmFoldConfig(**A__) lowercase = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''') lowercase = get_default_vocab_list() else: lowercase = vocab_list else: lowercase = None lowercase = None if self.esmfold_config is not None and getattr(self.esmfold_config ,'''use_esm_attn_map''' ,A__): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''') def A__ ( self): lowercase = super().to_dict() if isinstance(self.esmfold_config ,A__): lowercase = self.esmfold_config.to_dict() return output @dataclass class lowercase : lowercase_ : str =None lowercase_ : bool =True lowercase_ : bool =False lowercase_ : bool =False lowercase_ : bool =False lowercase_ : float =0 lowercase_ : bool =True lowercase_ : bool =False lowercase_ : int =128 lowercase_ : "TrunkConfig" =None def A__ ( self): if self.trunk is None: lowercase = TrunkConfig() elif isinstance(self.trunk ,A__): lowercase = TrunkConfig(**self.trunk) def A__ ( self): lowercase = asdict(self) lowercase = self.trunk.to_dict() return output @dataclass class lowercase : lowercase_ : int =48 lowercase_ : int =1024 lowercase_ : int =128 lowercase_ : int =32 lowercase_ : int =32 lowercase_ : int =32 lowercase_ : float =0 lowercase_ : float =0 lowercase_ : bool =False lowercase_ : int =4 lowercase_ : Optional[int] =128 lowercase_ : "StructureModuleConfig" =None def A__ ( self): if self.structure_module is None: lowercase = StructureModuleConfig() elif isinstance(self.structure_module ,A__): lowercase = StructureModuleConfig(**self.structure_module) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.') if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f' {self.sequence_state_dim} and {self.sequence_state_dim}.') if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.') lowercase = self.sequence_state_dim // self.sequence_head_width lowercase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.') if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.') if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.') if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.') def A__ ( self): lowercase = asdict(self) lowercase = self.structure_module.to_dict() return output @dataclass class lowercase : lowercase_ : int =384 lowercase_ : int =128 lowercase_ : int =16 lowercase_ : int =128 lowercase_ : int =12 lowercase_ : int =4 lowercase_ : int =8 lowercase_ : float =0.1 lowercase_ : int =8 lowercase_ : int =1 lowercase_ : int =2 lowercase_ : int =7 lowercase_ : int =10 lowercase_ : float =1e-8 lowercase_ : float =1e5 def A__ ( self): return asdict(self) def UpperCamelCase ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
101
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __lowercase : List[Any] = 'bart' __lowercase : Union[str, Any] = True @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): if LOAD_DENSE_INDEX: __a : List[Any] = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) __a : Dict = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) __a : Optional[int] = qar_model.eval() else: __a , __a : str = (None, None) if MODEL_TYPE == "bart": __a : Union[str, Any] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) __a : int = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) __a : Optional[Any] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) __a : str = sas_model.eval() else: __a , __a : Tuple = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): if LOAD_DENSE_INDEX: __a : Optional[Any] = faiss.StandardGpuResources() __a : Dict = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] __a : int = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) __a : int = faiss.IndexFlatIP(128 ) __a : Any = faiss.index_cpu_to_gpu(_SCREAMING_SNAKE_CASE , 1 , _SCREAMING_SNAKE_CASE ) wikiaab_gpu_index_flat.add(_SCREAMING_SNAKE_CASE ) # TODO fix for larger GPU else: __a , __a : str = (None, None) __a : Optional[int] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): __a : Dict = datasets.load_dataset('eli5' , name='LFQA_reddit' ) __a : Dict = elia['train_eli5'] __a : Optional[int] = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) __a : str = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_SCREAMING_SNAKE_CASE ) return (elia_train, eli5_train_q_index) __lowercase , __lowercase , __lowercase : Any = load_indexes() __lowercase , __lowercase , __lowercase , __lowercase : Dict = load_models() __lowercase , __lowercase : int = load_train_data() def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str]=10 ): __a : Optional[int] = embed_questions_for_retrieval([question] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a , __a : Union[str, Any] = eli5_train_q_index.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Any = [elia_train[int(_SCREAMING_SNAKE_CASE )] for i in I[0]] return nn_examples def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str="wiki40b" , _SCREAMING_SNAKE_CASE : List[str]="dense" , _SCREAMING_SNAKE_CASE : Any=10 ): if source == "none": __a , __a : Any = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": __a , __a : str = query_qa_dense_index( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __a , __a : Union[str, Any] = query_es_index( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index_name='english_wiki40b_snippets_100w' , n_results=_SCREAMING_SNAKE_CASE , ) __a : Dict = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] __a : Any = 'question: {} context: {}'.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _SCREAMING_SNAKE_CASE : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _SCREAMING_SNAKE_CASE : None), } ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict=64 , _SCREAMING_SNAKE_CASE : Dict=256 , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Tuple=2 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.9_5 , _SCREAMING_SNAKE_CASE : str=0.8 ): with torch.no_grad(): __a : Union[str, Any] = qa_sas_generate( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_answers=1 , num_beams=_SCREAMING_SNAKE_CASE , min_len=_SCREAMING_SNAKE_CASE , max_len=_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , temp=_SCREAMING_SNAKE_CASE , top_p=_SCREAMING_SNAKE_CASE , top_k=_SCREAMING_SNAKE_CASE , max_input_length=1_024 , device='cuda:0' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar __lowercase : Optional[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' __lowercase : str = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __lowercase : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) __lowercase : Dict = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] __lowercase : Union[str, Any] = st.sidebar.checkbox('Demo options') if demo_options: __lowercase : Any = st.sidebar.selectbox( '', action_list, index=3, ) __lowercase : Tuple = action_list.index(action_st) __lowercase : Tuple = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) __lowercase : List[Any] = show_type == 'Show full text of passages' else: __lowercase : int = 3 __lowercase : str = True __lowercase : Tuple = st.sidebar.checkbox('Retrieval options') if retrieval_options: __lowercase : List[Any] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) __lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) __lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: __lowercase : str = 'wiki40b' __lowercase : List[Any] = 'dense' __lowercase : Dict = 'beam' __lowercase : Optional[int] = 2 __lowercase : List[str] = 64 __lowercase : Tuple = 2_56 __lowercase : List[str] = None __lowercase : Tuple = None __lowercase : List[Any] = st.sidebar.checkbox('Generation options') if generate_options: __lowercase : Optional[Any] = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) __lowercase : List[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) __lowercase : Tuple = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) __lowercase : int = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": __lowercase : Any = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __lowercase : Dict = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __lowercase : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __lowercase : List[str] = None # start main text __lowercase : int = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] __lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": __lowercase : Any = st.text_input('Enter your question here:', '') else: __lowercase : Any = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": __lowercase , __lowercase : Optional[int] = make_support(question, source=wiki_source, method='dense', n_results=10) __lowercase , __lowercase : List[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) __lowercase : Optional[int] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __lowercase : str = support_list[:10] __lowercase : Optional[int] = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: __lowercase , __lowercase : Optional[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __lowercase , __lowercase : int = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): __lowercase : str = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) __lowercase : Any = res[1].strip() if sec_titles == "": __lowercase : List[str] = '[{}]({})'.format(res[0], wiki_url) else: __lowercase : Union[str, Any] = sec_titles.split(' & ') __lowercase : str = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: __lowercase : str = find_nearest_training(question) __lowercase : Optional[int] = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) __lowercase : Any = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) __lowercase : List[Any] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
27
0
from __future__ import annotations from dataclasses import dataclass @dataclass class lowerCamelCase_ : '''simple docstring''' a__ = 42 a__ = None a__ = None def UpperCAmelCase ( _lowerCamelCase ): # Validation def is_valid_tree(_lowerCamelCase ) -> bool: if node is None: return True if not isinstance(_lowerCamelCase , _lowerCamelCase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_lowerCamelCase ): raise ValueError( "Each node should be type of TreeNode and data should be float." ) def is_binary_search_tree_recursive_check( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _lowerCamelCase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _lowerCamelCase ) ) return is_binary_search_tree_recursive_check(_lowerCamelCase , -float("inf" ) , float("inf" ) ) if __name__ == "__main__": import doctest doctest.testmod()
256
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def UpperCAmelCase ( _lowerCamelCase ): A : List[Any] = R"\w+[.]\d+" A : Optional[Any] = re.findall(_lowerCamelCase , _lowerCamelCase ) for pat in pats: A : int = key.replace(_lowerCamelCase , "_".join(pat.split("." ) ) ) return key def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : Union[str, Any] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A : List[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A : int = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A : List[Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer A : Optional[int] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A : Union[str, Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A : List[Any] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": A : int = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A : List[str] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A : Optional[Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=42 ): # Step 1: Convert pytorch tensor to numpy A : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A : Dict = flax_model.init_weights(PRNGKey(_lowerCamelCase ) ) A : Dict = flatten_dict(_lowerCamelCase ) A : Dict = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : Tuple = rename_key(_lowerCamelCase ) A : List[str] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters A , A : str = rename_key_and_reshape_tensor(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown A : Union[str, Any] = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase )
256
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ : List[Any] = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = ['''MaskFormerFeatureExtractor'''] lowercase__ : List[str] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] lowercase__ : Dict = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowercase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
190
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __a = logging.get_logger(__name__) __a = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __a = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __a = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = RoFormerTokenizer def __init__( self : List[Any] , snake_case_ : List[str]=None , snake_case_ : Dict=None , snake_case_ : Any=True , snake_case_ : str="[UNK]" , snake_case_ : List[str]="[SEP]" , snake_case_ : Optional[Any]="[PAD]" , snake_case_ : Union[str, Any]="[CLS]" , snake_case_ : Union[str, Any]="[MASK]" , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]=None , **snake_case_ : Tuple , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) snake_case__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , snake_case_ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , snake_case_ ) != strip_accents ): snake_case__ : str = getattr(snake_case_ , pre_tok_state.pop("""type""" ) ) snake_case__ : Optional[int] = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : Union[str, Any] = pre_tok_class(**snake_case_ ) snake_case__ : str = do_lower_case def __getstate__( self : int ): snake_case__ : List[Any] = self.__dict__.copy() snake_case__ : str = BertPreTokenizer() return state def __setstate__( self : Dict , snake_case_ : Dict ): snake_case__ : List[Any] = d snake_case__ : Union[str, Any] = self.__dict__["""_tokenizer"""].get_vocab() snake_case__ : List[Any] = PreTokenizer.custom(JiebaPreTokenizer(snake_case_ ) ) def lowerCamelCase ( self : str , snake_case_ : Optional[Any] , snake_case_ : List[str]=None ): snake_case__ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): snake_case__ : int = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self : Dict , snake_case_ : str , snake_case_ : Optional[str] = None ): snake_case__ : Union[str, Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCamelCase ( self : Dict , snake_case_ : List[str] , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=False , **snake_case_ : Tuple , ): snake_case__ : Optional[Any] = BertPreTokenizer() return super().save_pretrained(snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ )
35
0
from __future__ import annotations def UpperCamelCase( lowercase_ , lowercase_ ) -> list[tuple[int, int]]: '''simple docstring''' snake_case_ = position snake_case_ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] snake_case_ = [] for position in positions: snake_case_ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(lowerCamelCase_ ) return permissible_positions def UpperCamelCase( lowercase_ ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> bool: '''simple docstring''' if is_complete(lowerCamelCase_ ): return True for position in get_valid_pos(lowerCamelCase_ , len(lowerCamelCase_ ) ): snake_case_ = position if board[y][x] == 0: snake_case_ = curr + 1 if open_knight_tour_helper(lowerCamelCase_ , lowerCamelCase_ , curr + 1 ): return True snake_case_ = 0 return False def UpperCamelCase( lowercase_ ) -> list[list[int]]: '''simple docstring''' snake_case_ = [[0 for i in range(lowerCamelCase_ )] for j in range(lowerCamelCase_ )] for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): snake_case_ = 1 if open_knight_tour_helper(lowerCamelCase_ , (i, j) , 1 ): return board snake_case_ = 0 snake_case_ = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
367
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def UpperCamelCase( lowercase_ ) -> tuple: '''simple docstring''' return (data["data"], data["target"]) def UpperCamelCase( lowercase_ , lowercase_ ) -> XGBClassifier: '''simple docstring''' snake_case_ = XGBClassifier() classifier.fit(lowercase_ , lowercase_ ) return classifier def UpperCamelCase( ) -> None: '''simple docstring''' snake_case_ = load_iris() snake_case_ , snake_case_ = data_handling(lowercase_ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = train_test_split( lowercase_ , lowercase_ , test_size=0.25 ) snake_case_ = iris["""target_names"""] # Create an XGBoost Classifier from the training data snake_case_ = xgboost(lowercase_ , lowercase_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase_ , lowercase_ , lowercase_ , display_labels=lowercase_ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
34
0
from __future__ import annotations def _lowerCamelCase( lowercase__ ) -> list[int]: '''simple docstring''' __lowercase= [True] * limit __lowercase= False __lowercase= False __lowercase= True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __lowercase= i * 2 while index < limit: __lowercase= False __lowercase= index + i __lowercase= [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def _lowerCamelCase( lowercase__ = 1_0_0_0_0_0_0 ) -> int: '''simple docstring''' __lowercase= prime_sieve(lowercase__ ) __lowercase= 0 __lowercase= 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): __lowercase= sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __lowercase= j - i __lowercase= sol return largest if __name__ == "__main__": print(F'{solution() = }')
295
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class A ( A_ ): UpperCamelCase_ : torch.FloatTensor class A ( A_ , A_ ): @register_to_config def __init__(self , lowerCAmelCase = 3 , lowerCAmelCase = 3 , lowerCAmelCase = ("DownEncoderBlock2D",) , lowerCAmelCase = ("UpDecoderBlock2D",) , lowerCAmelCase = (6_4,) , lowerCAmelCase = 1 , lowerCAmelCase = "silu" , lowerCAmelCase = 3 , lowerCAmelCase = 3_2 , lowerCAmelCase = 2_5_6 , lowerCAmelCase = 3_2 , lowerCAmelCase = None , lowerCAmelCase = 0.1_82_15 , lowerCAmelCase = "group" , ): super().__init__() # pass init params to Encoder __lowercase= Encoder( in_channels=lowerCAmelCase , out_channels=lowerCAmelCase , down_block_types=lowerCAmelCase , block_out_channels=lowerCAmelCase , layers_per_block=lowerCAmelCase , act_fn=lowerCAmelCase , norm_num_groups=lowerCAmelCase , double_z=lowerCAmelCase , ) __lowercase= vq_embed_dim if vq_embed_dim is not None else latent_channels __lowercase= nn.Convad(lowerCAmelCase , lowerCAmelCase , 1 ) __lowercase= VectorQuantizer(lowerCAmelCase , lowerCAmelCase , beta=0.25 , remap=lowerCAmelCase , sane_index_shape=lowerCAmelCase ) __lowercase= nn.Convad(lowerCAmelCase , lowerCAmelCase , 1 ) # pass init params to Decoder __lowercase= Decoder( in_channels=lowerCAmelCase , out_channels=lowerCAmelCase , up_block_types=lowerCAmelCase , block_out_channels=lowerCAmelCase , layers_per_block=lowerCAmelCase , act_fn=lowerCAmelCase , norm_num_groups=lowerCAmelCase , norm_type=lowerCAmelCase , ) @apply_forward_hook def _A (self , lowerCAmelCase , lowerCAmelCase = True ): __lowercase= self.encoder(lowerCAmelCase ) __lowercase= self.quant_conv(lowerCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase ) @apply_forward_hook def _A (self , lowerCAmelCase , lowerCAmelCase = False , lowerCAmelCase = True ): # also go through quantization layer if not force_not_quantize: __lowercase, __lowercase, __lowercase= self.quantize(lowerCAmelCase ) else: __lowercase= h __lowercase= self.post_quant_conv(lowerCAmelCase ) __lowercase= self.decoder(lowerCAmelCase , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = True ): __lowercase= sample __lowercase= self.encode(lowerCAmelCase ).latents __lowercase= self.decode(lowerCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase )
295
1
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" if index == number_of_items: return 0 _UpperCamelCase : List[str] = 0 _UpperCamelCase : Tuple = 0 _UpperCamelCase : str = knapsack(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,index + 1 ) if weights[index] <= max_weight: _UpperCamelCase : str = values[index] + knapsack( lowercase_ ,lowercase_ ,lowercase_ ,max_weight - weights[index] ,index + 1 ) return max(lowercase_ ,lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
310
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCamelCase__ = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCamelCase__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if "://" in dataset_path: _UpperCamelCase : List[Any] = dataset_path.split("://" )[1] return dataset_path def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = not is_remote_filesystem(lowercase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase_ ) ,fs._strip_protocol(lowercase_ ) ) else: fs.mv(lowercase_ ,lowercase_ ,recursive=lowercase_ ) def lowercase__ ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn ,"reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _UpperCamelCase : Dict = None _UpperCamelCase : str = None _UpperCamelCase : str = threading.Lock()
310
1
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> list: if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] __lowerCamelCase : str = [] def generate(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase : List[Any] = [0] * n res.append(tuple(lowerCamelCase__ ) ) __lowerCamelCase : Optional[int] = 0 while i < n: if c[i] < i: if i % 2 == 0: __lowerCamelCase , __lowerCamelCase : str = arr[i], arr[0] else: __lowerCamelCase , __lowerCamelCase : Dict = arr[i], arr[c[i]] res.append(tuple(lowerCamelCase__ ) ) c[i] += 1 __lowerCamelCase : Any = 0 else: __lowerCamelCase : Tuple = 0 i += 1 generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": a =input("""Enter numbers separated by a comma:\n""").strip() a =[int(item) for item in user_input.split(""",""")] print(heaps(arr))
73
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ = logging.get_logger(__name__) class _snake_case ( _a ): _A : Optional[int] = ['''pixel_values'''] def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : int = 0.9 ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 255 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,**SCREAMING_SNAKE_CASE__ : str ,): super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = size if size is not None else {"shortest_edge": 224} SCREAMING_SNAKE_CASE:Dict = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE:List[str] = get_size_dict(SCREAMING_SNAKE_CASE__ ,param_name="crop_size" ) SCREAMING_SNAKE_CASE:Optional[Any] = do_resize SCREAMING_SNAKE_CASE:List[Any] = size SCREAMING_SNAKE_CASE:Tuple = crop_pct SCREAMING_SNAKE_CASE:Tuple = resample SCREAMING_SNAKE_CASE:List[str] = do_center_crop SCREAMING_SNAKE_CASE:Union[str, Any] = crop_size SCREAMING_SNAKE_CASE:Dict = do_rescale SCREAMING_SNAKE_CASE:int = rescale_factor SCREAMING_SNAKE_CASE:Union[str, Any] = do_normalize SCREAMING_SNAKE_CASE:Any = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE:Tuple = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : Optional[float] = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : List[str] ,): SCREAMING_SNAKE_CASE:Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: SCREAMING_SNAKE_CASE:Any = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: SCREAMING_SNAKE_CASE:List[str] = int(size["height"] / crop_pct ) else: SCREAMING_SNAKE_CASE:int = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE:Tuple = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) else: if "shortest_edge" in size: SCREAMING_SNAKE_CASE:Optional[Any] = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ ,size=size["shortest_edge"] ,default_to_square=SCREAMING_SNAKE_CASE__ ) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE:str = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(SCREAMING_SNAKE_CASE__ ) ) return resize(SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : int ,): SCREAMING_SNAKE_CASE:Any = get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(F'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE__ ,size=(size["height"], size["width"]) ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[int, float] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): return rescale(SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : List[Any] ,): return normalize(SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : ImageInput ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : int = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,SCREAMING_SNAKE_CASE__ : ChannelDimension = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE__ : List[Any] ,): SCREAMING_SNAKE_CASE:Optional[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE:List[Any] = crop_pct if crop_pct is not None else self.crop_pct SCREAMING_SNAKE_CASE:Union[str, Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE:Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE:str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE:List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE:int = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE:Dict = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE:Dict = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE:Optional[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE:Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE:Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,param_name="crop_size" ) SCREAMING_SNAKE_CASE:List[str] = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE:Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE:Optional[int] = [self.resize(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,crop_pct=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE:Any = [self.center_crop(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE:List[str] = [self.rescale(image=SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE:List[str] = [self.normalize(image=SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE:int = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE:Union[str, Any] = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ ,tensor_type=SCREAMING_SNAKE_CASE__ )
139
0
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if not numbers: return 0 if not isinstance(__snake_case , (list, tuple) ) or not all( isinstance(__snake_case , __snake_case ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) __SCREAMING_SNAKE_CASE = numbers[0] for i in range(1 , len(__snake_case ) ): # update the maximum and minimum subarray products __SCREAMING_SNAKE_CASE = numbers[i] if number < 0: __SCREAMING_SNAKE_CASE = min_till_now, max_till_now __SCREAMING_SNAKE_CASE = max(__snake_case , max_till_now * number ) __SCREAMING_SNAKE_CASE = min(__snake_case , min_till_now * number ) # update the maximum product found till now __SCREAMING_SNAKE_CASE = max(__snake_case , __snake_case ) return max_prod
364
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : int = CLIPConfig snake_case__ : str = ["CLIPEncoderLayer"] def __init__( self : Optional[int] , UpperCAmelCase__ : CLIPConfig ) -> Dict: super().__init__(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = CLIPVisionModelWithProjection(config.vision_config ) __SCREAMING_SNAKE_CASE = nn.Linear(config.vision_config.projection_dim , 1 ) __SCREAMING_SNAKE_CASE = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : int=0.5 , UpperCAmelCase__ : Optional[int]=0.5 ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.vision_model(UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = self.p_head(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = nsfw_detected.flatten() __SCREAMING_SNAKE_CASE = nsfw_detected > p_threshold __SCREAMING_SNAKE_CASE = nsfw_detected.tolist() if any(UpperCAmelCase__ ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(UpperCAmelCase__ ): if nsfw_detected_: __SCREAMING_SNAKE_CASE = np.zeros(images[idx].shape ) __SCREAMING_SNAKE_CASE = self.w_head(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = watermark_detected.flatten() __SCREAMING_SNAKE_CASE = watermark_detected > w_threshold __SCREAMING_SNAKE_CASE = watermark_detected.tolist() if any(UpperCAmelCase__ ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(UpperCAmelCase__ ): if watermark_detected_: __SCREAMING_SNAKE_CASE = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
195
0
"""simple docstring""" __lowerCamelCase = 8.3_1_4_4_5_9_8 def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example __lowerCamelCase = 3_00 __lowerCamelCase = 28 __lowerCamelCase = rms_speed_of_molecule(temperature, molar_mass) print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
221
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = "ssube/stable-diffusion-x4-upscaler-onnx" def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : List[str]=0 ): __lowercase = floats_tensor((1, 3, 1_2_8, 1_2_8), rng=random.Random(UpperCAmelCase__ ) ) __lowercase = torch.manual_seed(UpperCAmelCase__ ) __lowercase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _lowercase ( self : Optional[Any] ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : int ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : str ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowercase ( self : Any ): __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**UpperCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : Dict ): __lowercase = ort.SessionOptions() __lowercase = False return options def _lowercase ( self : Dict ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=1_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowercase ( self : str ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase = init_image.resize((1_2_8, 1_2_8) ) __lowercase = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" ) __lowercase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx", scheduler=UpperCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowercase = "A fantasy landscape, trending on artstation" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=UpperCAmelCase__, image=UpperCAmelCase__, guidance_scale=7.5, num_inference_steps=2_0, generator=UpperCAmelCase__, output_type="np", ) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
17
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __lowerCamelCase : Dict = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(__UpperCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__UpperCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__UpperCamelCase ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class __snake_case ( __a ): lowerCAmelCase_ = ["""pixel_values"""] def __init__( self : Any , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : Any , ): """simple docstring""" super().__init__(**a__ ) SCREAMING_SNAKE_CASE__ = size if size is not None else {"""shortest_edge""": 2_56} SCREAMING_SNAKE_CASE__ = get_size_dict(a__ , default_to_square=a__ ) SCREAMING_SNAKE_CASE__ = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} SCREAMING_SNAKE_CASE__ = get_size_dict(a__ , param_name="""crop_size""" ) SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_center_crop SCREAMING_SNAKE_CASE__ = crop_size SCREAMING_SNAKE_CASE__ = resample SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = offset SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : int , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" in size: SCREAMING_SNAKE_CASE__ = get_resize_output_image_size(a__ , size["""shortest_edge"""] , default_to_square=a__ ) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE__ = (size["""height"""], size["""width"""]) else: raise ValueError(f"""Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}""" ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __a ( self : Tuple , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Dict , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have \'height\' and \'width\' as keys. Got {size.keys()}""" ) return center_crop(a__ , size=(size["""height"""], size["""width"""]) , data_format=a__ , **a__ ) def __a ( self : str , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : bool = True , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = image.astype(np.floataa ) if offset: SCREAMING_SNAKE_CASE__ = image - (scale / 2) return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[Any] , ): """simple docstring""" return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __a ( self : List[Any] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , ): """simple docstring""" if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ = to_numpy_array(a__ ) if do_resize: SCREAMING_SNAKE_CASE__ = self.resize(image=a__ , size=a__ , resample=a__ ) if do_center_crop: SCREAMING_SNAKE_CASE__ = self.center_crop(a__ , size=a__ ) if do_rescale: SCREAMING_SNAKE_CASE__ = self.rescale(image=a__ , scale=a__ , offset=a__ ) if do_normalize: SCREAMING_SNAKE_CASE__ = self.normalize(image=a__ , mean=a__ , std=a__ ) SCREAMING_SNAKE_CASE__ = to_channel_dimension_format(a__ , a__ ) return image def __a ( self : Optional[Any] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : str , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ = offset if offset is not None else self.offset SCREAMING_SNAKE_CASE__ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ = size if size is not None else self.size SCREAMING_SNAKE_CASE__ = get_size_dict(a__ , default_to_square=a__ ) SCREAMING_SNAKE_CASE__ = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ = get_size_dict(a__ , param_name="""crop_size""" ) if not valid_images(a__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) SCREAMING_SNAKE_CASE__ = make_batched(a__ ) SCREAMING_SNAKE_CASE__ = [ [ self._preprocess_image( image=a__ , do_resize=a__ , size=a__ , resample=a__ , do_center_crop=a__ , crop_size=a__ , do_rescale=a__ , rescale_factor=a__ , offset=a__ , do_normalize=a__ , image_mean=a__ , image_std=a__ , data_format=a__ , ) for img in video ] for video in videos ] SCREAMING_SNAKE_CASE__ = {"""pixel_values""": videos} return BatchFeature(data=a__ , tensor_type=a__ )
360
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __lowerCamelCase : List[Any] = get_tests_dir('''fixtures''') __lowerCamelCase : Optional[int] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') __lowerCamelCase : Any = get_tests_dir('''fixtures/dummy-config.json''') class __snake_case ( unittest.TestCase ): def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 0 def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ).to_dict() config_dict.pop("""feature_extractor_type""" ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor(**_lowercase ) # save in new folder model_config.save_pretrained(_lowercase ) config.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( _lowercase , """bert-base is not a local folder and is not a valid model identifier""" ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( _lowercase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase , revision="""aaaaaa""" ) def __a ( self : List[Any] ): """simple docstring""" with self.assertRaisesRegex( _lowercase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self : str ): """simple docstring""" with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowercase ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowercase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase , trust_remote_code=_lowercase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self : Union[str, Any] ): """simple docstring""" try: AutoConfig.register("""custom""" , _lowercase ) AutoFeatureExtractor.register(_lowercase , _lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoFeatureExtractor.register(_lowercase , _lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE__ = CustomFeatureExtractor.from_pretrained(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self : Any ): """simple docstring""" class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = True try: AutoConfig.register("""custom""" , _lowercase ) AutoFeatureExtractor.register(_lowercase , _lowercase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowercase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowercase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(_lowercase , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
204
0
from math import log from scipy.constants import Boltzmann, physical_constants a_ : Any = 3_00 # TEMPERATURE (unit = K) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
137
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowerCamelCase__ (_UpperCAmelCase=None): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser('env') else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser('Accelerate env command') parser.add_argument( '--config_file' , default=_UpperCAmelCase , help='The config file to use for the default values in the launching script.') if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase) return parser def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = torch.__version__ SCREAMING_SNAKE_CASE = torch.cuda.is_available() SCREAMING_SNAKE_CASE = is_xpu_available() SCREAMING_SNAKE_CASE = is_npu_available() SCREAMING_SNAKE_CASE = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCAmelCase): SCREAMING_SNAKE_CASE = load_config_from_file(args.config_file).to_dict() SCREAMING_SNAKE_CASE = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F'''{pt_version} ({pt_cuda_available})''', 'PyTorch XPU available': str(_UpperCAmelCase), 'PyTorch NPU available': str(_UpperCAmelCase), 'System RAM': F'''{psutil.virtual_memory().total / 1024 ** 3:.2f} GB''', } if pt_cuda_available: SCREAMING_SNAKE_CASE = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n') print('\n'.join([F'''- {prop}: {val}''' for prop, val in info.items()])) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:') SCREAMING_SNAKE_CASE = ( '\n'.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()]) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else F'''\t{accelerate_config}''' ) print(_UpperCAmelCase) SCREAMING_SNAKE_CASE = accelerate_config return info def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = env_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() env_command(_UpperCAmelCase) return 0 if __name__ == "__main__": raise SystemExit(main())
137
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int ) ->int: '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def _SCREAMING_SNAKE_CASE ( ) ->None: '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
351
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
79
0
"""simple docstring""" import os import string import sys snake_case__ : Optional[int] = 1 << 8 snake_case__ : Union[str, Any] = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } snake_case__ : Optional[int] = KEYMAP['''up'''] snake_case__ : Tuple = KEYMAP['''left'''] if sys.platform == "win32": snake_case__ : Dict = [] snake_case__ : List[Any] = { B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): snake_case__ : Dict = ord(str(i)) def _snake_case ( ): if os.name == "nt": import msvcrt lowerCAmelCase : Optional[int] = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_snake_case ) == 0: # Read the keystroke lowerCAmelCase : List[str] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Optional[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : List[str] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(_snake_case ) if ord(_snake_case ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase : str = chr(KEYMAP['''esc'''] ) except KeyError: lowerCAmelCase : List[str] = cha[1] else: lowerCAmelCase : Optional[Any] = ch.decode(_snake_case ) else: lowerCAmelCase : str = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : Any = sys.stdin.fileno() lowerCAmelCase : List[str] = termios.tcgetattr(_snake_case ) try: tty.setraw(_snake_case ) lowerCAmelCase : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(_snake_case , termios.TCSADRAIN , _snake_case ) return ch def _snake_case ( ): lowerCAmelCase : Dict = get_raw_chars() if ord(_snake_case ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_snake_case ) == KEYMAP["esc"]: lowerCAmelCase : Union[str, Any] = get_raw_chars() if ord(_snake_case ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(_snake_case ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_snake_case ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_snake_case ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
60
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer snake_case__ : List[Any] = '''bart''' snake_case__ : Union[str, Any] = True @st.cache(allow_output_mutation=_snake_case ) def _snake_case ( ): if LOAD_DENSE_INDEX: lowerCAmelCase : Dict = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) lowerCAmelCase : List[str] = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) lowerCAmelCase : Optional[int] = qar_model.eval() else: lowerCAmelCase, lowerCAmelCase : int = (None, None) if MODEL_TYPE == "bart": lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) lowerCAmelCase : Tuple = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) lowerCAmelCase : Optional[Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) lowerCAmelCase : Any = sas_model.eval() else: lowerCAmelCase, lowerCAmelCase : Any = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_snake_case ) def _snake_case ( ): if LOAD_DENSE_INDEX: lowerCAmelCase : List[str] = faiss.StandardGpuResources() lowerCAmelCase : Optional[Any] = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] lowerCAmelCase : List[Any] = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) lowerCAmelCase : Union[str, Any] = faiss.IndexFlatIP(128 ) lowerCAmelCase : int = faiss.index_cpu_to_gpu(_snake_case , 1 , _snake_case ) wikiaab_gpu_index_flat.add(_snake_case ) # TODO fix for larger GPU else: lowerCAmelCase, lowerCAmelCase : List[str] = (None, None) lowerCAmelCase : int = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_snake_case ) def _snake_case ( ): lowerCAmelCase : List[str] = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) lowerCAmelCase : Any = elia['''train_eli5'''] lowerCAmelCase : int = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) lowerCAmelCase : Tuple = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_snake_case ) return (elia_train, eli5_train_q_index) snake_case__ , snake_case__ , snake_case__ : Optional[Any] = load_indexes() snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = load_models() snake_case__ , snake_case__ : Union[str, Any] = load_train_data() def _snake_case ( _snake_case : int , _snake_case : Dict=10 ): lowerCAmelCase : Tuple = embed_questions_for_retrieval([question] , _snake_case , _snake_case ) lowerCAmelCase, lowerCAmelCase : Any = eli5_train_q_index.search(_snake_case , _snake_case ) lowerCAmelCase : str = [elia_train[int(_snake_case )] for i in I[0]] return nn_examples def _snake_case ( _snake_case : List[Any] , _snake_case : str="wiki40b" , _snake_case : List[str]="dense" , _snake_case : Union[str, Any]=10 ): if source == "none": lowerCAmelCase, lowerCAmelCase : List[str] = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": lowerCAmelCase, lowerCAmelCase : Tuple = query_qa_dense_index( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: lowerCAmelCase, lowerCAmelCase : List[str] = query_es_index( _snake_case , _snake_case , index_name='''english_wiki40b_snippets_100w''' , n_results=_snake_case , ) lowerCAmelCase : int = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] lowerCAmelCase : Any = '''question: {} context: {}'''.format(_snake_case , _snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _snake_case : None), } ) def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : Dict , _snake_case : List[Any]=64 , _snake_case : int=256 , _snake_case : List[str]=False , _snake_case : Any=2 , _snake_case : List[Any]=0.95 , _snake_case : Tuple=0.8 ): with torch.no_grad(): lowerCAmelCase : Union[str, Any] = qa_sas_generate( _snake_case , _snake_case , _snake_case , num_answers=1 , num_beams=_snake_case , min_len=_snake_case , max_len=_snake_case , do_sample=_snake_case , temp=_snake_case , top_p=_snake_case , top_k=_snake_case , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar snake_case__ : Dict = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' snake_case__ : Tuple = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia snake_case__ : List[Any] = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) snake_case__ : str = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] snake_case__ : List[Any] = st.sidebar.checkbox('''Demo options''') if demo_options: snake_case__ : Tuple = st.sidebar.selectbox( '''''', action_list, index=3, ) snake_case__ : List[Any] = action_list.index(action_st) snake_case__ : List[str] = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) snake_case__ : List[Any] = show_type == '''Show full text of passages''' else: snake_case__ : Tuple = 3 snake_case__ : List[Any] = True snake_case__ : List[str] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: snake_case__ : str = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) snake_case__ : Union[str, Any] = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) snake_case__ : Union[str, Any] = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: snake_case__ : List[Any] = '''wiki40b''' snake_case__ : Union[str, Any] = '''dense''' snake_case__ : int = '''beam''' snake_case__ : str = 2 snake_case__ : Dict = 64 snake_case__ : List[str] = 256 snake_case__ : Dict = None snake_case__ : List[str] = None snake_case__ : List[str] = st.sidebar.checkbox('''Generation options''') if generate_options: snake_case__ : List[Any] = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) snake_case__ : List[str] = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) snake_case__ : List[str] = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) snake_case__ : Optional[Any] = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": snake_case__ : Dict = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: snake_case__ : int = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) snake_case__ : int = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) snake_case__ : List[str] = None # start main text snake_case__ : str = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] snake_case__ : Union[str, Any] = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": snake_case__ : Optional[Any] = st.text_input('''Enter your question here:''', '''''') else: snake_case__ : int = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": snake_case__ , snake_case__ : str = make_support(question, source=wiki_source, method='''dense''', n_results=10) snake_case__ , snake_case__ : Tuple = make_support(question, source=wiki_source, method='''sparse''', n_results=10) snake_case__ : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] snake_case__ : List[str] = support_list[:10] snake_case__ : int = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: snake_case__ , snake_case__ : Union[str, Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: snake_case__ , snake_case__ : List[str] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): snake_case__ : int = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) snake_case__ : List[Any] = res[1].strip() if sec_titles == "": snake_case__ : Tuple = '''[{}]({})'''.format(res[0], wiki_url) else: snake_case__ : Optional[int] = sec_titles.split(''' & ''') snake_case__ : Optional[Any] = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: snake_case__ : int = find_nearest_training(question) snake_case__ : List[Any] = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) snake_case__ : Dict = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) snake_case__ : Any = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
60
1
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _a : Any = open # noqa: we just need to have a builtin inside this module to test it properly
46
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : Optional[int] = """▁""" _a : Any = {"""vocab_file""": """sentencepiece.bpe.model"""} _a : List[Any] = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } _a : Tuple = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[Any] =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[Any] =["""input_ids""", """attention_mask"""] def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE="<mask>",__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = AddedToken(__SCREAMING_SNAKE_CASE,lstrip=__SCREAMING_SNAKE_CASE,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE,eos_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,sep_token=__SCREAMING_SNAKE_CASE,cls_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,mask_token=__SCREAMING_SNAKE_CASE,sp_model_kwargs=self.sp_model_kwargs,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCAmelCase = 1 __lowerCAmelCase = len(self.sp_model ) + self.fairseq_offset __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None __lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = d # for backward compatibility if not hasattr(self,"""sp_model_kwargs""" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE,token_ids_a=__SCREAMING_SNAKE_CASE,already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.encode(__SCREAMING_SNAKE_CASE,out_type=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """""".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE,""" """ ).strip() return out_string def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
46
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase : List[Any] = logging.get_logger(__name__) _UpperCamelCase : Optional[Any] = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCAmelCase_ ( _a): lowerCamelCase__ : List[str] = "levit" def __init__( self , a=2_2_4 , a=3 , a=3 , a=2 , a=1 , a=1_6 , a=[1_2_8, 2_5_6, 3_8_4] , a=[4, 8, 1_2] , a=[4, 4, 4] , a=[1_6, 1_6, 1_6] , a=0 , a=[2, 2, 2] , a=[2, 2, 2] , a=0.02 , **a , ) -> Tuple: super().__init__(**a ) lowercase__ : List[Any] = image_size lowercase__ : Optional[int] = num_channels lowercase__ : Tuple = kernel_size lowercase__ : Any = stride lowercase__ : str = padding lowercase__ : Tuple = hidden_sizes lowercase__ : List[Any] = num_attention_heads lowercase__ : Dict = depths lowercase__ : List[str] = key_dim lowercase__ : Any = drop_path_rate lowercase__ : Optional[int] = patch_size lowercase__ : Dict = attention_ratio lowercase__ : Optional[int] = mlp_ratio lowercase__ : Any = initializer_range lowercase__ : Union[str, Any] = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCAmelCase_ ( _a): lowerCamelCase__ : int = version.parse("1.11") @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4
77
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __a = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['DeiTFeatureExtractor'] __a = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = old_name if "patch_embed" in old_name: UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : str = old_name.split('''.''' ) if layer == "0": UpperCAmelCase_ : Optional[Any] = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": UpperCAmelCase_ : int = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": UpperCAmelCase_ : int = old_name.replace('''3''' , '''convolution2''' ) else: UpperCAmelCase_ : Union[str, Any] = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(r'''\d\.\d''' , _lowercase ): UpperCAmelCase_ : List[Any] = r'''\b\d{2}\b''' if bool(re.search(_lowercase , _lowercase ) ): UpperCAmelCase_ : Optional[int] = re.search(r'''\d\.\d\d.''' , _lowercase ).group() else: UpperCAmelCase_ : Tuple = re.search(r'''\d\.\d.''' , _lowercase ).group() if int(match[0] ) < 6: UpperCAmelCase_ : Union[str, Any] = old_name.replace(_lowercase , '''''' ) UpperCAmelCase_ : Union[str, Any] = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) UpperCAmelCase_ : Dict = '''intermediate_stages.''' + trimmed_name else: UpperCAmelCase_ : Optional[int] = old_name.replace(_lowercase , '''''' ) if int(match[2] ) < num_meta4D_last_stage: UpperCAmelCase_ : Union[str, Any] = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: UpperCAmelCase_ : Optional[int] = str(int(match[2] ) - num_meta4D_last_stage ) UpperCAmelCase_ : Dict = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: UpperCAmelCase_ : int = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: UpperCAmelCase_ : Optional[Any] = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: UpperCAmelCase_ : int = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: UpperCAmelCase_ : List[Any] = trimmed_name.replace('''fc2''' , '''linear_out''' ) UpperCAmelCase_ : str = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''' , _lowercase ): UpperCAmelCase_ : Tuple = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: UpperCAmelCase_ : Any = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): UpperCAmelCase_ : Any = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): UpperCAmelCase_ : List[Any] = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: UpperCAmelCase_ : Tuple = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: UpperCAmelCase_ : List[Any] = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: UpperCAmelCase_ : Optional[Any] = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: UpperCAmelCase_ : Dict = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": UpperCAmelCase_ : Any = new_name.replace('''norm''' , '''layernorm''' ) UpperCAmelCase_ : List[str] = '''efficientformer.''' + new_name else: UpperCAmelCase_ : Optional[int] = '''efficientformer.encoder.''' + new_name return new_name def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' for key in checkpoint.copy().keys(): UpperCAmelCase_ : Optional[Any] = checkpoint.pop(_lowercase ) UpperCAmelCase_ : Optional[Any] = val return checkpoint def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ : int = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return image def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.load(_lowercase , map_location='''cpu''' )['''model'''] UpperCAmelCase_ : int = EfficientFormerConfig.from_json_file(_lowercase ) UpperCAmelCase_ : str = EfficientFormerForImageClassificationWithTeacher(_lowercase ) UpperCAmelCase_ : List[Any] = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) UpperCAmelCase_ : List[Any] = config.depths[-1] - config.num_metaad_blocks + 1 UpperCAmelCase_ : List[str] = convert_torch_checkpoint(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCAmelCase_ : int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image UpperCAmelCase_ : int = prepare_img() UpperCAmelCase_ : Union[str, Any] = 256 UpperCAmelCase_ : Dict = 224 UpperCAmelCase_ : Union[str, Any] = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) UpperCAmelCase_ : List[str] = processor(images=_lowercase , return_tensors='''pt''' ).pixel_values # original processing pipeline UpperCAmelCase_ : str = Compose( [ Resize(_lowercase , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(_lowercase ), ToTensor(), Normalize(_lowercase , _lowercase ), ] ) UpperCAmelCase_ : Any = image_transforms(_lowercase ).unsqueeze(0 ) assert torch.allclose(_lowercase , _lowercase ) UpperCAmelCase_ : Any = model(_lowercase ) UpperCAmelCase_ : int = outputs.logits UpperCAmelCase_ : int = (1, 1000) if "l1" in model_name: UpperCAmelCase_ : Dict = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , _lowercase , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: UpperCAmelCase_ : Optional[Any] = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , _lowercase , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: UpperCAmelCase_ : Any = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) print(f'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(_lowercase ) print(f'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add model''' , use_temp_dir=_lowercase , ) processor.push_to_hub( repo_id=f'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add image processor''' , use_temp_dir=_lowercase , ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) __a = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
235
from dataclasses import dataclass, field from typing import Optional @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) lowerCAmelCase = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) lowerCAmelCase = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) lowerCAmelCase = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) lowerCAmelCase = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) lowerCAmelCase = field( default=1_0000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) lowerCAmelCase = field(default=2E-4 , metadata={'''help''': '''Learning rate fo training.'''} ) lowerCAmelCase = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) lowerCAmelCase = field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) lowerCAmelCase = field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) lowerCAmelCase = field(default=5_0000 , metadata={'''help''': '''Maximum number of training steps.'''} ) lowerCAmelCase = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) lowerCAmelCase = field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) lowerCAmelCase = field(default=1 , metadata={'''help''': '''Training seed.'''} ) lowerCAmelCase = field( default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) lowerCAmelCase = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) lowerCAmelCase = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) lowerCAmelCase = field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) lowerCAmelCase = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) lowerCAmelCase = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) lowerCAmelCase = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) lowerCAmelCase = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) lowerCAmelCase = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) lowerCAmelCase = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) lowerCAmelCase = field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) lowerCAmelCase = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) lowerCAmelCase = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) lowerCAmelCase = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) lowerCAmelCase = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default=_a , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) lowerCAmelCase = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) lowerCAmelCase = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) lowerCAmelCase = field( default=10_0000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) lowerCAmelCase = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) lowerCAmelCase = field( default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) lowerCAmelCase = field( default=_a , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) lowerCAmelCase = field( default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) lowerCAmelCase = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) lowerCAmelCase = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) lowerCAmelCase = field(default=20_0000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) lowerCAmelCase = field( default=3_2768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) lowerCAmelCase = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) lowerCAmelCase = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) lowerCAmelCase = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) lowerCAmelCase = field(default=_a , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
235
1
from __future__ import annotations from collections.abc import Generator def _UpperCAmelCase ( ): __UpperCamelCase ={} __UpperCamelCase =2 while True: __UpperCamelCase =factor_map.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if factor: __UpperCamelCase =factor + prime while x in factor_map: x += factor __UpperCamelCase =factor else: __UpperCamelCase =prime yield prime prime += 1 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float = 1E10 ): __UpperCamelCase =sieve() __UpperCamelCase =1 while True: __UpperCamelCase =next(SCREAMING_SNAKE_CASE__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE__ ) n += 2 if __name__ == "__main__": print(solution())
62
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCAmelCase_ ( A_ ,A_ ,A_ ,A_ ,A_): UpperCamelCase__: List[str] = cva.getAffineTransform(A_ ,A_) return cva.warpAffine(A_ ,A_ ,(rows, cols)) if __name__ == "__main__": # read original image A__: Union[str, Any] = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value A__: Tuple = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A__ , A__: List[Any] = gray_img.shape # set different points to rotate image A__: Tuple = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) A__: Dict = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) A__: Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) A__: Union[str, Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list A__: str = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A__: Optional[int] = plt.figure(1) A__: List[str] = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
149
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class UpperCAmelCase_ ( _a): snake_case__ = '''xlm-roberta-xl''' def __init__( self : List[str] , __UpperCamelCase : List[Any]=25_0880 , __UpperCamelCase : Any=2560 , __UpperCamelCase : Any=36 , __UpperCamelCase : str=32 , __UpperCamelCase : List[str]=1_0240 , __UpperCamelCase : int="gelu" , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Any=514 , __UpperCamelCase : Tuple=1 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : str=1E-05 , __UpperCamelCase : Optional[int]=1 , __UpperCamelCase : Tuple=0 , __UpperCamelCase : Optional[Any]=2 , __UpperCamelCase : str="absolute" , __UpperCamelCase : Tuple=True , __UpperCamelCase : List[str]=None , **__UpperCamelCase : Tuple , ) -> str: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = classifier_dropout class UpperCAmelCase_ ( _a): @property def _UpperCamelCase ( self : str ) -> int: if self.task == "multiple-choice": _UpperCamelCase = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCamelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
370
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
54
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : List[Any] = {'''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase : List[str] = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Dict = VOCAB_FILES_NAMES _A : List[str] = PRETRAINED_VOCAB_FILES_MAP _A : int = ['''input_ids''', '''attention_mask'''] _A : Tuple = None def __init__( self : Tuple , __a : Optional[Any]=None , __a : Any=None , __a : int=None , __a : Tuple="<unk>" , __a : Tuple="<s>" , __a : Optional[int]="</s>" , __a : int="<pad>" , __a : List[str]=False , __a : str=False , **__a : Any , ) -> Dict: """simple docstring""" super().__init__( __a , __a , tokenizer_file=__a , unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , add_prefix_space=__a , clean_up_tokenization_spaces=__a , **__a , ) __lowercase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __a ) != add_prefix_space: __lowercase : int = getattr(__a , pre_tok_state.pop("""type""" ) ) __lowercase : str = add_prefix_space __lowercase : List[Any] = pre_tok_class(**__a ) __lowercase : List[str] = add_prefix_space def lowerCAmelCase ( self : int , *__a : List[str] , **__a : str ) -> BatchEncoding: """simple docstring""" __lowercase : Dict = kwargs.get("""is_split_into_words""" , __a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" """ pretokenized inputs.""" ) return super()._batch_encode_plus(*__a , **__a ) def lowerCAmelCase ( self : Union[str, Any] , *__a : Optional[int] , **__a : Union[str, Any] ) -> BatchEncoding: """simple docstring""" __lowercase : Union[str, Any] = kwargs.get("""is_split_into_words""" , __a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" """ pretokenized inputs.""" ) return super()._encode_plus(*__a , **__a ) def lowerCAmelCase ( self : List[str] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __lowercase : Optional[Any] = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def lowerCAmelCase ( self : int , __a : "Conversation" ) -> List[int]: """simple docstring""" __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: __lowercase : int = input_ids[-self.model_max_length :] return input_ids
233
lowerCamelCase : Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def snake_case_ ( ): __lowercase : List[str] = input("""Enter message: """ ) __lowercase : int = input("""Enter key [alphanumeric]: """ ) __lowercase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __lowercase : Optional[int] = """encrypt""" __lowercase : Dict = encrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) elif mode.lower().startswith("""d""" ): __lowercase : Union[str, Any] = """decrypt""" __lowercase : Optional[int] = decrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) print(F"\n{mode.title()}ed message:" ) print(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , """encrypt""" ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , """decrypt""" ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Union[str, Any] = [] __lowercase : Tuple = 0 __lowercase : Dict = key.upper() for symbol in message: __lowercase : Optional[Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowerCAmelCase_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowerCAmelCase_ ): __lowercase : str = 0 else: translated.append(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) if __name__ == "__main__": main()
233
1
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __get__( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) SCREAMING_SNAKE_CASE : Union[str, Any] = "__cached_" + self.fget.__name__ SCREAMING_SNAKE_CASE : Any = getattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if cached is None: SCREAMING_SNAKE_CASE : List[str] = self.fget(UpperCAmelCase_ ) setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return cached def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'''invalid truth value {val!r}''' ) def lowerCamelCase__ ( lowercase ): """simple docstring""" if is_torch_fx_proxy(lowercase ): return True if is_torch_available(): import torch if isinstance(lowercase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowercase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowercase , (jnp.ndarray, Tracer) ): return True return isinstance(lowercase , np.ndarray ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return isinstance(lowercase , np.ndarray ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return _is_numpy(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" import torch return isinstance(lowercase , torch.Tensor ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return False if not is_torch_available() else _is_torch(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" import torch return isinstance(lowercase , torch.device ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" import torch if isinstance(lowercase , lowercase ): if hasattr(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = getattr(lowercase , lowercase ) else: return False return isinstance(lowercase , torch.dtype ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" import tensorflow as tf return isinstance(lowercase , tf.Tensor ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowercase , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(lowercase ) return type(lowercase ) == tf.Tensor def lowerCamelCase__ ( lowercase ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(lowercase , jnp.ndarray ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return False if not is_flax_available() else _is_jax(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" if isinstance(lowercase , (dict, UserDict) ): return {k: to_py_obj(lowercase ) for k, v in obj.items()} elif isinstance(lowercase , (list, tuple) ): return [to_py_obj(lowercase ) for o in obj] elif is_tf_tensor(lowercase ): return obj.numpy().tolist() elif is_torch_tensor(lowercase ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowercase ): return np.asarray(lowercase ).tolist() elif isinstance(lowercase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowerCamelCase__ ( lowercase ): """simple docstring""" if isinstance(lowercase , (dict, UserDict) ): return {k: to_numpy(lowercase ) for k, v in obj.items()} elif isinstance(lowercase , (list, tuple) ): return np.array(lowercase ) elif is_tf_tensor(lowercase ): return obj.numpy() elif is_torch_tensor(lowercase ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowercase ): return np.asarray(lowercase ) else: return obj class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Optional[int] = fields(self ) # Safety and consistency checks if not len(UpperCAmelCase_ ): raise ValueError(f'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' ) SCREAMING_SNAKE_CASE : List[str] = getattr(self , class_fields[0].name ) SCREAMING_SNAKE_CASE : Tuple = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Any = first_field.items() SCREAMING_SNAKE_CASE : List[Any] = True else: try: SCREAMING_SNAKE_CASE : str = iter(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = True except TypeError: SCREAMING_SNAKE_CASE : str = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(UpperCAmelCase_ ): if ( not isinstance(UpperCAmelCase_ , (list, tuple) ) or not len(UpperCAmelCase_ ) == 2 or not isinstance(element[0] , UpperCAmelCase_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute SCREAMING_SNAKE_CASE : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = element[1] elif first_field is not None: SCREAMING_SNAKE_CASE : int = first_field else: for field in class_fields: SCREAMING_SNAKE_CASE : Any = getattr(self , field.name ) if v is not None: SCREAMING_SNAKE_CASE : Tuple = v def __delitem__( self : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ): raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def _A ( self : List[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ): raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def _A ( self : List[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def _A ( self : str , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ): raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : Tuple , UpperCAmelCase_ : Tuple ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Any = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(UpperCAmelCase_ , UpperCAmelCase_ ) super().__setattr__(UpperCAmelCase_ , UpperCAmelCase_ ) def __setitem__( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int ): # Will raise a KeyException if needed super().__setitem__(UpperCAmelCase_ , UpperCAmelCase_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): return tuple(self[k] for k in self.keys() ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' @classmethod def _A ( cls : List[str] , UpperCAmelCase_ : Tuple ): raise ValueError( f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : int = '''longest''' UpperCamelCase_ : List[Any] = '''max_length''' UpperCamelCase_ : Tuple = '''do_not_pad''' class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = '''pt''' UpperCamelCase_ : Optional[Any] = '''tf''' UpperCamelCase_ : Tuple = '''np''' UpperCamelCase_ : List[Any] = '''jax''' class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : List[ContextManager] ): SCREAMING_SNAKE_CASE : Optional[Any] = context_managers SCREAMING_SNAKE_CASE : List[str] = ExitStack() def __enter__( self : Union[str, Any] ): for context_manager in self.context_managers: self.stack.enter_context(UpperCAmelCase_ ) def __exit__( self : int , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[Any] ): self.stack.__exit__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = infer_framework(lowercase ) if framework == "tf": SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": SCREAMING_SNAKE_CASE : Optional[Any] = inspect.signature(model_class.forward ) # PyTorch models else: SCREAMING_SNAKE_CASE : Any = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = model_class.__name__ SCREAMING_SNAKE_CASE : str = infer_framework(lowercase ) if framework == "tf": SCREAMING_SNAKE_CASE : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": SCREAMING_SNAKE_CASE : int = inspect.signature(model_class.forward ) # PyTorch models else: SCREAMING_SNAKE_CASE : Any = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowerCamelCase__ ( lowercase , lowercase = "" , lowercase = "." ): """simple docstring""" def _flatten_dict(lowercase , lowercase="" , lowercase="." ): for k, v in d.items(): SCREAMING_SNAKE_CASE : Any = str(lowercase ) + delimiter + str(lowercase ) if parent_key else k if v and isinstance(lowercase , lowercase ): yield from flatten_dict(lowercase , lowercase , delimiter=lowercase ).items() else: yield key, v return dict(_flatten_dict(lowercase , lowercase , lowercase ) ) @contextmanager def lowerCamelCase__ ( lowercase , lowercase = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowerCamelCase__ ( lowercase , lowercase=None ): """simple docstring""" if is_numpy_array(lowercase ): return np.transpose(lowercase , axes=lowercase ) elif is_torch_tensor(lowercase ): return array.T if axes is None else array.permute(*lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.transpose(lowercase , perm=lowercase ) elif is_jax_tensor(lowercase ): return jnp.transpose(lowercase , axes=lowercase ) else: raise ValueError(F'''Type not supported for transpose: {type(lowercase )}.''' ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if is_numpy_array(lowercase ): return np.reshape(lowercase , lowercase ) elif is_torch_tensor(lowercase ): return array.reshape(*lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.reshape(lowercase , lowercase ) elif is_jax_tensor(lowercase ): return jnp.reshape(lowercase , lowercase ) else: raise ValueError(F'''Type not supported for reshape: {type(lowercase )}.''' ) def lowerCamelCase__ ( lowercase , lowercase=None ): """simple docstring""" if is_numpy_array(lowercase ): return np.squeeze(lowercase , axis=lowercase ) elif is_torch_tensor(lowercase ): return array.squeeze() if axis is None else array.squeeze(dim=lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.squeeze(lowercase , axis=lowercase ) elif is_jax_tensor(lowercase ): return jnp.squeeze(lowercase , axis=lowercase ) else: raise ValueError(F'''Type not supported for squeeze: {type(lowercase )}.''' ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if is_numpy_array(lowercase ): return np.expand_dims(lowercase , lowercase ) elif is_torch_tensor(lowercase ): return array.unsqueeze(dim=lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.expand_dims(lowercase , axis=lowercase ) elif is_jax_tensor(lowercase ): return jnp.expand_dims(lowercase , axis=lowercase ) else: raise ValueError(F'''Type not supported for expand_dims: {type(lowercase )}.''' ) def lowerCamelCase__ ( lowercase ): """simple docstring""" if is_numpy_array(lowercase ): return np.size(lowercase ) elif is_torch_tensor(lowercase ): return array.numel() elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.size(lowercase ) elif is_jax_tensor(lowercase ): return array.size else: raise ValueError(F'''Type not supported for expand_dims: {type(lowercase )}.''' ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" for key, value in auto_map.items(): if isinstance(lowercase , (tuple, list) ): SCREAMING_SNAKE_CASE : str = [F'''{repo_id}--{v}''' if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: SCREAMING_SNAKE_CASE : str = F'''{repo_id}--{value}''' return auto_map def lowerCamelCase__ ( lowercase ): """simple docstring""" for base_class in inspect.getmro(lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = base_class.__module__ SCREAMING_SNAKE_CASE : int = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'''Could not infer framework from class {model_class}.''' )
360
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
319
0
"""simple docstring""" from __future__ import annotations _a = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class _UpperCAmelCase: def __init__( self , __a , __a) -> None: '''simple docstring''' _UpperCamelCase = graph # mapping node to its parent in resulting breadth first tree _UpperCamelCase = {} _UpperCamelCase = source_vertex def UpperCAmelCase ( self) -> None: '''simple docstring''' _UpperCamelCase = {self.source_vertex} _UpperCamelCase = None _UpperCamelCase = [self.source_vertex] # first in first out queue while queue: _UpperCamelCase = queue.pop(0) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_A) _UpperCamelCase = vertex queue.append(_A) def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex _UpperCamelCase = self.parent.get(_A) if target_vertex_parent is None: _UpperCamelCase = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(_A) return self.shortest_path(_A) + F'''->{target_vertex}''' if __name__ == "__main__": _a = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
194
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A(__a: str , __a: List[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) return (preds == labels).mean() def A(__a: Any , __a: Any ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = simple_accuracy(__a , __a ) lowerCAmelCase_ = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A(__a: List[str] , __a: Optional[int] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = pearsonr(__a , __a )[0] lowerCAmelCase_ = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A(__a: Union[str, Any] , __a: Any , __a: str ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) assert len(__a ) == len(__a ), F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def A(__a: int , __a: Optional[Any] , __a: Optional[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) if len(__a ) != len(__a ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
22
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''mobilenet_v2''' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a="relu6" , _a=True , _a=0.8 , _a=0.0_2 , _a=0.0_0_1 , _a=255 , **_a , ) -> Dict: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = depth_multiplier lowerCAmelCase_ = depth_divisible_by lowerCAmelCase_ = min_depth lowerCAmelCase_ = expand_ratio lowerCAmelCase_ = output_stride lowerCAmelCase_ = first_layer_is_expansion lowerCAmelCase_ = finegrained_output lowerCAmelCase_ = hidden_act lowerCAmelCase_ = tf_padding lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = semantic_loss_ignore_index class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self ) -> float: return 1E-4
22
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _SCREAMING_SNAKE_CASE : List[str] = {'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys _SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
183
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : int ) -> int: lowerCamelCase_ = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowerCamelCase_ = n - k # Calculate C(n,k) for i in range(_lowerCamelCase ): result *= n - i result //= i + 1 return result def lowerCamelCase__ ( _lowerCamelCase : int ) -> int: return binomial_coefficient(2 * node_count , _lowerCamelCase ) // (node_count + 1) def lowerCamelCase__ ( _lowerCamelCase : int ) -> int: if n < 0: raise ValueError('factorial() not defined for negative values' ) lowerCamelCase_ = 1 for i in range(1 , n + 1 ): result *= i return result def lowerCamelCase__ ( _lowerCamelCase : int ) -> int: return catalan_number(_lowerCamelCase ) * factorial(_lowerCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
183
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: """simple docstring""" snake_case_ : Union[str, Any] = 'laion/clap-htsat-unfused' snake_case_ : Union[str, Any] = tempfile.mkdtemp() def UpperCAmelCase_ ( self : Optional[int] , **_A : Optional[Any] ) -> Optional[Any]: """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **_A ) def UpperCAmelCase_ ( self : Tuple , **_A : List[str] ) -> int: """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_A ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = self.get_tokenizer() snake_case_ : int = self.get_feature_extractor() snake_case_ : Optional[int] = ClapProcessor(tokenizer=_A , feature_extractor=_A ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Optional[int] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ : Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) snake_case_ : Dict = self.get_feature_extractor(do_normalize=_A , padding_value=1.0 ) snake_case_ : List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) def UpperCAmelCase_ ( self : str ) -> str: """simple docstring""" snake_case_ : Optional[Any] = self.get_feature_extractor() snake_case_ : Optional[Any] = self.get_tokenizer() snake_case_ : Tuple = ClapProcessor(tokenizer=_A , feature_extractor=_A ) snake_case_ : Optional[Any] = floats_list((3, 1000) ) snake_case_ : Optional[int] = feature_extractor(_A , return_tensors='np' ) snake_case_ : Any = processor(audios=_A , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case_ : Any = self.get_feature_extractor() snake_case_ : List[Any] = self.get_tokenizer() snake_case_ : List[str] = ClapProcessor(tokenizer=_A , feature_extractor=_A ) snake_case_ : Union[str, Any] = 'This is a test string' snake_case_ : str = processor(text=_A ) snake_case_ : Any = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: """simple docstring""" snake_case_ : int = self.get_feature_extractor() snake_case_ : List[Any] = self.get_tokenizer() snake_case_ : Tuple = ClapProcessor(tokenizer=_A , feature_extractor=_A ) snake_case_ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ : Union[str, Any] = processor.batch_decode(_A ) snake_case_ : int = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case_ : Optional[Any] = self.get_feature_extractor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : Dict = ClapProcessor(tokenizer=_A , feature_extractor=_A ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
369
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Optional[int] = None if token is not None: snake_case_ : List[str] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} snake_case_ : Union[str, Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" snake_case_ : Optional[int] = requests.get(__a , headers=__a ).json() snake_case_ : List[str] = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) snake_case_ : Dict = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(__a ): snake_case_ : Optional[Any] = requests.get(url + f"""&page={i + 2}""" , headers=__a ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Union[str, Any] = None if token is not None: snake_case_ : List[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} snake_case_ : Optional[Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" snake_case_ : Union[str, Any] = requests.get(__a , headers=__a ).json() snake_case_ : Any = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) snake_case_ : str = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(__a ): snake_case_ : int = requests.get(url + f"""&page={i + 2}""" , headers=__a ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a ): snake_case_ : Dict = None if token is not None: snake_case_ : List[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} snake_case_ : Optional[int] = requests.get(__a , headers=__a , allow_redirects=__a ) snake_case_ : str = result.headers['Location'] snake_case_ : List[str] = requests.get(__a , allow_redirects=__a ) snake_case_ : Optional[Any] = os.path.join(__a , f"""{artifact_name}.zip""" ) with open(__a , 'wb' ) as fp: fp.write(response.content ) def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Any = [] snake_case_ : Any = [] snake_case_ : Tuple = None with zipfile.ZipFile(__a ) as z: for filename in z.namelist(): if not os.path.isdir(__a ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__a ) as f: for line in f: snake_case_ : Tuple = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs snake_case_ : Tuple = line[: line.index(': ' )] snake_case_ : Union[str, Any] = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed snake_case_ : Any = line[len('FAILED ' ) :] failed_tests.append(__a ) elif filename == "job_name.txt": snake_case_ : Union[str, Any] = line if len(__a ) != len(__a ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(__a )} for `errors` """ f"""and {len(__a )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ' problem.' ) snake_case_ : List[str] = None if job_name and job_links: snake_case_ : Union[str, Any] = job_links.get(__a , __a ) # A list with elements of the form (line of error, error, failed test) snake_case_ : Optional[Any] = [x + [y] + [job_link] for x, y in zip(__a , __a )] return result def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Any = [] snake_case_ : Any = [os.path.join(__a , __a ) for p in os.listdir(__a ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(__a , job_links=__a ) ) return errors def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Optional[int] = Counter() counter.update([x[1] for x in logs] ) snake_case_ : str = counter.most_common() snake_case_ : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: snake_case_ : int = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} snake_case_ : int = dict(sorted(r.items() , key=lambda __a : item[1]["count"] , reverse=__a ) ) return r def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Tuple = test.split('::' )[0] if test.startswith('tests/models/' ): snake_case_ : List[str] = test.split('/' )[2] else: snake_case_ : Union[str, Any] = None return test def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Optional[int] = [(x[0], x[1], get_model(x[2] )) for x in logs] snake_case_ : str = [x for x in logs if x[2] is not None] snake_case_ : int = {x[2] for x in logs} snake_case_ : Dict = {} for test in tests: snake_case_ : List[str] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) snake_case_ : Any = counter.most_common() snake_case_ : str = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} snake_case_ : Tuple = sum(error_counts.values() ) if n_errors > 0: snake_case_ : List[Any] = {'count': n_errors, 'errors': error_counts} snake_case_ : int = dict(sorted(r.items() , key=lambda __a : item[1]["count"] , reverse=__a ) ) return r def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[Any] = '| no. | error | status |' snake_case_ : str = '|-:|:-|:-|' snake_case_ : Tuple = [header, sep] for error in reduced_by_error: snake_case_ : Dict = reduced_by_error[error]['count'] snake_case_ : List[str] = f"""| {count} | {error[:1_00]} | |""" lines.append(__a ) return "\n".join(__a ) def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[Any] = '| model | no. of errors | major error | count |' snake_case_ : Union[str, Any] = '|-:|-:|-:|-:|' snake_case_ : Optional[int] = [header, sep] for model in reduced_by_model: snake_case_ : Any = reduced_by_model[model]['count'] snake_case_ ,snake_case_ : Dict = list(reduced_by_model[model]['errors'].items() )[0] snake_case_ : Any = f"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(__a ) return "\n".join(__a ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") _SCREAMING_SNAKE_CASE = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token) _SCREAMING_SNAKE_CASE = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _SCREAMING_SNAKE_CASE = k.find(""" / """) _SCREAMING_SNAKE_CASE = k[index + len(""" / """) :] _SCREAMING_SNAKE_CASE = v with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _SCREAMING_SNAKE_CASE = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _SCREAMING_SNAKE_CASE = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = reduce_by_error(errors) _SCREAMING_SNAKE_CASE = reduce_by_model(errors) _SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error) _SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa) with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa)
88
0
"""simple docstring""" def _snake_case ( lowercase__ : int = 1_0 ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError("""Invalid input""" ) lowerCAmelCase_ :List[str] = 1_0**n lowerCAmelCase_ :int = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
84
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = 'gptj' __lowerCamelCase : List[str] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , A=50_400 , A=2_048 , A=4_096 , A=28 , A=16 , A=64 , A=None , A="gelu_new" , A=0.0 , A=0.0 , A=0.0 , A=1E-5 , A=0.02 , A=True , A=50_256 , A=50_256 , A=False , **A , ) -> Tuple: """simple docstring""" _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A ) class __A ( A ): '''simple docstring''' def __init__(self , A , A = "default" , A = None , A = False , ) -> List[str]: """simple docstring""" super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , '''pad_token_id''' , A ): # TODO: how to do that better? _a = 0 @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(A , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a__ (self ) -> int: """simple docstring""" return self._config.n_layer @property def a__ (self ) -> int: """simple docstring""" return self._config.n_head def a__ (self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: """simple docstring""" _a = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def a__ (self ) -> int: """simple docstring""" return 13
211
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ : List[Any] = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Any = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
370
from __future__ import annotations def __magic_name__ ( __lowerCAmelCase : list[int] ) -> bool: return len(set(__lowerCAmelCase ) ) == len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
339
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __snake_case = logging.getLogger(__name__) def _A ( SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Any=16 , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : int = 2 ): def get_dataset(SCREAMING_SNAKE_CASE__ : List[Any] ): UpperCamelCase :Union[str, Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(SCREAMING_SNAKE_CASE__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCamelCase :str = get_dataset(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = get_dataset(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) UpperCamelCase :Any = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def _A ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any=None ): UpperCamelCase :Dict = [] for epoch in range(SCREAMING_SNAKE_CASE__ ): # Train quickly model.train() for batch in dataloader: UpperCamelCase , UpperCamelCase :Optional[Any] = batch UpperCamelCase :int = model(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self ) -> str: super().__init__() UpperCamelCase :Optional[int] = nn.Parameter(torch.randn(1 ) ) UpperCamelCase :int = nn.Parameter(torch.randn(1 ) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> int: return x * self.a + self.b class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :Optional[Any] = DummyModel() UpperCamelCase :List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :Tuple = dummy_dataloaders() UpperCamelCase :Tuple = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline UpperCamelCase :Dict = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Union[str, Any] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def UpperCAmelCase ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :List[str] = DummyModel() UpperCamelCase :Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :Dict = dummy_dataloaders() # Train baseline UpperCamelCase :Dict = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :int = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial UpperCamelCase :int = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Optional[Any] = model.a.item(), model.b.item() UpperCamelCase :Optional[int] = optimizer.state_dict() UpperCamelCase :Optional[int] = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Dict = model.a.item(), model.b.item() UpperCamelCase :Optional[Any] = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase :Any = DummyModel() UpperCamelCase :List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :List[Any] = dummy_dataloaders() UpperCamelCase :List[str] = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Tuple = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Tuple = model.a.item(), model.b.item() UpperCamelCase :Tuple = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything UpperCamelCase :Optional[int] = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Union[str, Any] = model.a.item(), model.b.item() UpperCamelCase :Optional[Any] = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :List[Any] = DummyModel() UpperCamelCase :Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :int = dummy_dataloaders() UpperCamelCase :int = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline UpperCamelCase :Union[str, Any] = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Optional[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((UpperCamelCase) , (UpperCamelCase)) :List[str] = model.a.item(), model.b.item() UpperCamelCase :Dict = optimizer.state_dict() UpperCamelCase :Any = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Optional[int] = model.a.item(), model.b.item() UpperCamelCase :Any = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase :Union[str, Any] = DummyModel() UpperCamelCase :List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :Tuple = dummy_dataloaders() UpperCamelCase :Optional[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :List[str] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((UpperCamelCase) , (UpperCamelCase)) :Dict = model.a.item(), model.b.item() UpperCamelCase :Dict = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Optional[Any] = model.a.item(), model.b.item() UpperCamelCase :str = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :List[Any] = torch.tensor([1, 2, 3] ) UpperCamelCase :Any = torch.tensor([2, 3, 4] ) UpperCamelCase :Optional[Any] = DummyModel() UpperCamelCase :Optional[Any] = torch.optim.Adam(net.parameters() ) UpperCamelCase :Optional[Any] = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :List[Any] = DummyModel() UpperCamelCase :List[str] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase :Any = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.99 ) UpperCamelCase , UpperCamelCase :Any = dummy_dataloaders() UpperCamelCase :Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline UpperCamelCase :str = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Tuple = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() UpperCamelCase :int = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def UpperCAmelCase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :Optional[Any] = DummyModel() UpperCamelCase :int = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline UpperCamelCase :Tuple = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def UpperCAmelCase ( self ) -> int: UpperCamelCase :int = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": __snake_case = """/tmp/accelerate/state_checkpointing""" __snake_case = DummyModel() __snake_case = torch.optim.Adam(params=model.parameters(), lr=1E-3) __snake_case = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __snake_case , __snake_case = dummy_dataloaders() __snake_case = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __snake_case = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __snake_case , __snake_case = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __snake_case = group["""params"""][0].device break assert param_device.type == accelerator.device.type __snake_case = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: __snake_case = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: __snake_case = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
259
import math def _A ( SCREAMING_SNAKE_CASE__ : int = 100 ): UpperCamelCase :Dict = sum(i * i for i in range(1 , n + 1 ) ) UpperCamelCase :List[str] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
259
1
'''simple docstring''' def UpperCamelCase ( a ) -> int: '''simple docstring''' if n == 1 or not isinstance(a , a ): return 0 elif n == 2: return 1 else: __magic_name__ = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( a ) -> int: '''simple docstring''' __magic_name__ = 0 __magic_name__ = 2 while digits < n: index += 1 __magic_name__ = len(str(fibonacci(a ) ) ) return index def UpperCamelCase ( a = 1000 ) -> int: '''simple docstring''' return fibonacci_digits_index(a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
98
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): __SCREAMING_SNAKE_CASE :List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __SCREAMING_SNAKE_CASE :Any = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def snake_case__ ( self : Tuple , a__ : Tuple , a__ : int , a__ : int ): __magic_name__ = TextaTextGenerationPipeline(model=a__ , tokenizer=a__ ) return generator, ["Something to write", "Something else"] def snake_case__ ( self : List[str] , a__ : List[Any] , a__ : List[str] ): __magic_name__ = generator('''Something there''' ) self.assertEqual(a__ , [{'''generated_text''': ANY(a__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) __magic_name__ = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=a__ ) self.assertEqual( a__ , [ [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], ] , ) __magic_name__ = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=a__ ) self.assertEqual( a__ , [ [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], [{'''generated_text''': ANY(a__ )}, {'''generated_text''': ANY(a__ )}], ] , ) with self.assertRaises(a__ ): generator(4 ) @require_torch def snake_case__ ( self : Any ): __magic_name__ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility __magic_name__ = generator('''Something there''' , do_sample=a__ ) self.assertEqual(a__ , [{'''generated_text''': ''''''}] ) __magic_name__ = 3 __magic_name__ = generator( '''Something there''' , num_return_sequences=a__ , num_beams=a__ , ) __magic_name__ = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(a__ , a__ ) __magic_name__ = generator('''This is a test''' , do_sample=a__ , num_return_sequences=2 , return_tensors=a__ ) self.assertEqual( a__ , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) __magic_name__ = generator.model.config.eos_token_id __magic_name__ = '''<pad>''' __magic_name__ = generator( ['''This is a test''', '''This is a second test'''] , do_sample=a__ , num_return_sequences=2 , batch_size=2 , return_tensors=a__ , ) self.assertEqual( a__ , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def snake_case__ ( self : int ): __magic_name__ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility __magic_name__ = generator('''Something there''' , do_sample=a__ ) self.assertEqual(a__ , [{'''generated_text''': ''''''}] )
98
1
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __a , __a=13 , __a=30 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.0_2 , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 1 def snake_case ( self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) return config, pixel_values def snake_case ( self , __a , __a ): __lowerCAmelCase = FlaxViTModel(config=__a ) __lowerCAmelCase = model(__a ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase = (self.image_size, self.image_size) __lowerCAmelCase = (self.patch_size, self.patch_size) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def snake_case ( self , __a , __a ): __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = FlaxViTForImageClassification(config=__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = FlaxViTForImageClassification(__a ) __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(__a ) def snake_case ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _UpperCamelCase ( lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int =(FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def snake_case ( self ): __lowerCAmelCase = FlaxViTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(__a , __a ) __lowerCAmelCase = model_class(__a ) @jax.jit def model_jitted(__a , **__a ): return model(pixel_values=__a , **__a ) with self.subTest("JIT Enabled" ): __lowerCAmelCase = model_jitted(**__a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case ( self ): for model_class_name in self.all_model_classes: __lowerCAmelCase = model_class_name.from_pretrained("google/vit-base-patch16-224" ) __lowerCAmelCase = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(__a )
57
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if number > 0: raise ValueError("input must be a negative integer" ) __SCREAMING_SNAKE_CASE = len(bin(lowerCAmelCase_ )[3:] ) __SCREAMING_SNAKE_CASE = bin(abs(lowerCAmelCase_ ) - (1 << binary_number_length) )[3:] __SCREAMING_SNAKE_CASE = ( ( "1" + "0" * (binary_number_length - len(lowerCAmelCase_ )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
54
0
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _lowerCamelCase : int = HUGGINGFACE_HUB_CACHE _lowerCamelCase : Tuple = '''config.json''' _lowerCamelCase : Optional[Any] = '''diffusion_pytorch_model.bin''' _lowerCamelCase : Tuple = '''diffusion_flax_model.msgpack''' _lowerCamelCase : Optional[int] = '''model.onnx''' _lowerCamelCase : Any = '''diffusion_pytorch_model.safetensors''' _lowerCamelCase : Optional[Any] = '''weights.pb''' _lowerCamelCase : Tuple = '''https://huggingface.co''' _lowerCamelCase : Optional[Any] = default_cache_path _lowerCamelCase : List[Any] = '''diffusers_modules''' _lowerCamelCase : Dict = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) _lowerCamelCase : Tuple = ['''fp16''', '''non-ema'''] _lowerCamelCase : Optional[int] = '''.self_attn'''
367
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a_ ( __lowercase : Optional[Any] , __lowercase : Optional[int] , __lowercase : str , __lowercase : Optional[int] , __lowercase : str ) -> Union[str, Any]: # Load configuration defined in the metadata file with open(__lowercase ) as metadata_file: _snake_case = json.load(__lowercase ) _snake_case = LukeConfig(use_entity_aware_attention=__lowercase , **metadata['model_config'] ) # Load in the weights from the checkpoint_path _snake_case = torch.load(__lowercase , map_location='cpu' )['module'] # Load the entity vocab file _snake_case = load_original_entity_vocab(__lowercase ) # add an entry for [MASK2] _snake_case = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _snake_case = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks _snake_case = AddedToken('<ent>' , lstrip=__lowercase , rstrip=__lowercase ) _snake_case = AddedToken('<ent2>' , lstrip=__lowercase , rstrip=__lowercase ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , 'tokenizer_config.json' ) , 'r' ) as f: _snake_case = json.load(__lowercase ) _snake_case = 'MLukeTokenizer' with open(os.path.join(__lowercase , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(__lowercase , __lowercase ) with open(os.path.join(__lowercase , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(__lowercase , __lowercase ) _snake_case = MLukeTokenizer.from_pretrained(__lowercase ) # Initialize the embeddings of the special tokens _snake_case = tokenizer.convert_tokens_to_ids(['@'] )[0] _snake_case = tokenizer.convert_tokens_to_ids(['#'] )[0] _snake_case = state_dict['embeddings.word_embeddings.weight'] _snake_case = word_emb[ent_init_index].unsqueeze(0 ) _snake_case = word_emb[enta_init_index].unsqueeze(0 ) _snake_case = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _snake_case = state_dict[bias_name] _snake_case = decoder_bias[ent_init_index].unsqueeze(0 ) _snake_case = decoder_bias[enta_init_index].unsqueeze(0 ) _snake_case = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _snake_case = f'''encoder.layer.{layer_index}.attention.self.''' _snake_case = state_dict[prefix + matrix_name] _snake_case = state_dict[prefix + matrix_name] _snake_case = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _snake_case = state_dict['entity_embeddings.entity_embeddings.weight'] _snake_case = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) _snake_case = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _snake_case = state_dict['entity_predictions.bias'] _snake_case = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) _snake_case = torch.cat([entity_prediction_bias, entity_mask_bias] ) _snake_case = LukeForMaskedLM(config=__lowercase ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) _snake_case = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): _snake_case = state_dict[key] else: _snake_case = state_dict[key] _snake_case , _snake_case = model.load_state_dict(__lowercase , strict=__lowercase ) if set(__lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(__lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _snake_case = MLukeTokenizer.from_pretrained(__lowercase , task='entity_classification' ) _snake_case = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' _snake_case = (0, 9) _snake_case = tokenizer(__lowercase , entity_spans=[span] , return_tensors='pt' ) _snake_case = model(**__lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _snake_case = torch.Size((1, 33, 768) ) _snake_case = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _snake_case = torch.Size((1, 1, 768) ) _snake_case = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _snake_case = MLukeTokenizer.from_pretrained(__lowercase ) _snake_case = 'Tokyo is the capital of <mask>.' _snake_case = (24, 30) _snake_case = tokenizer(__lowercase , entity_spans=[span] , return_tensors='pt' ) _snake_case = model(**__lowercase ) _snake_case = encoding['input_ids'][0].tolist() _snake_case = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) _snake_case = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__lowercase ) _snake_case = outputs.entity_logits[0][0].argmax().item() _snake_case = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(__lowercase ) ) model.save_pretrained(__lowercase ) def a_ ( __lowercase : int ) -> int: _snake_case = ['[MASK]', '[PAD]', '[UNK]'] _snake_case = [json.loads(__lowercase ) for line in open(__lowercase )] _snake_case = {} for entry in data: _snake_case = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _snake_case = entity_id break _snake_case = f'''{language}:{entity_name}''' _snake_case = entity_id return new_mapping if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _lowerCamelCase : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
130
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
208
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _UpperCamelCase = data_utils.TransfoXLTokenizer _UpperCamelCase = data_utils.TransfoXLCorpus _UpperCamelCase = data_utils _UpperCamelCase = data_utils def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_lowerCAmelCase ,'rb' ) as fp: __lowerCamelCase : Optional[Any] = pickle.load(_lowerCAmelCase ,encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCamelCase : Tuple = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) __lowerCamelCase : str = corpus.vocab.__dict__ torch.save(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' ,_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(_lowerCAmelCase ,_lowerCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCamelCase : int = os.path.abspath(_lowerCAmelCase ) __lowerCamelCase : Any = os.path.abspath(_lowerCAmelCase ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCamelCase : Optional[int] = TransfoXLConfig() else: __lowerCamelCase : Optional[int] = TransfoXLConfig.from_json_file(_lowerCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) __lowerCamelCase : List[str] = TransfoXLLMHeadModel(_lowerCAmelCase ) __lowerCamelCase : Dict = load_tf_weights_in_transfo_xl(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # Save pytorch-model __lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : int = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) print(F'Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}' ) torch.save(model.state_dict() ,_lowerCAmelCase ) print(F'Save configuration file to {os.path.abspath(_lowerCAmelCase )}' ) with open(_lowerCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) _UpperCamelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
208
1
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __magic_name__ ( self : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : int =tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Dict =5 # Realm tok SCREAMING_SNAKE_CASE__ : Optional[Any] =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ : List[Any] =os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(__lowercase , exist_ok=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =os.path.join(__lowercase , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Any =os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(__lowercase , exist_ok=__lowercase ) def __magic_name__ ( self : Tuple ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def __magic_name__ ( self : Union[str, Any] ) -> Tuple: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ : Any =RealmConfig(num_block_records=self.num_block_records ) return config def __magic_name__ ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ : Any =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def __magic_name__ ( self : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Any =np.array( [ B'''This is the first record''', B'''This is the second record''', B'''This is the third record''', B'''This is the fourth record''', B'''This is the fifth record''', B'''This is a longer longer longer record''', ] , dtype=__lowercase , ) return block_records def __magic_name__ ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __magic_name__ ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ : List[str] =self.get_config() SCREAMING_SNAKE_CASE__ : Dict =self.get_dummy_retriever() SCREAMING_SNAKE_CASE__ : str =retriever.tokenizer SCREAMING_SNAKE_CASE__ : Union[str, Any] =np.array([0, 3] , dtype='''long''' ) SCREAMING_SNAKE_CASE__ : int =tokenizer(['''Test question'''] ).input_ids SCREAMING_SNAKE_CASE__ : int =tokenizer( ['''the fourth'''] , add_special_tokens=__lowercase , return_token_type_ids=__lowercase , return_attention_mask=__lowercase , ).input_ids SCREAMING_SNAKE_CASE__ : int =config.reader_seq_len SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =retriever( __lowercase , __lowercase , answer_ids=__lowercase , max_length=__lowercase , return_tensors='''np''' ) self.assertEqual(len(__lowercase ) , 2 ) self.assertEqual(len(__lowercase ) , 2 ) self.assertEqual(len(__lowercase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def __magic_name__ ( self : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] =self.get_config() SCREAMING_SNAKE_CASE__ : Tuple =self.get_dummy_retriever() SCREAMING_SNAKE_CASE__ : Tuple =retriever.tokenizer SCREAMING_SNAKE_CASE__ : Dict =np.array([0, 3, 5] , dtype='''long''' ) SCREAMING_SNAKE_CASE__ : Any =tokenizer(['''Test question'''] ).input_ids SCREAMING_SNAKE_CASE__ : Tuple =tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=__lowercase , return_token_type_ids=__lowercase , return_attention_mask=__lowercase , ).input_ids SCREAMING_SNAKE_CASE__ : Tuple =config.reader_seq_len SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] =retriever( __lowercase , __lowercase , answer_ids=__lowercase , max_length=__lowercase , return_tensors='''np''' ) self.assertEqual([False, True, True] , __lowercase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __lowercase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __lowercase ) def __magic_name__ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ : Dict =self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path SCREAMING_SNAKE_CASE__ : int =retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: SCREAMING_SNAKE_CASE__ : str =os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) SCREAMING_SNAKE_CASE__ : Tuple =RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' )
222
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class __SCREAMING_SNAKE_CASE : def __init__( self : Any , __lowercase : set[int] , __lowercase : Mapping[EdgeT, int] ) -> None: SCREAMING_SNAKE_CASE__ : set[int] =vertices SCREAMING_SNAKE_CASE__ : dict[EdgeT, int] ={ (min(__lowercase ), max(__lowercase )): weight for edge, weight in edges.items() } def __magic_name__ ( self : Union[str, Any] , __lowercase : EdgeT , __lowercase : int ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) SCREAMING_SNAKE_CASE__ : List[str] =weight def __magic_name__ ( self : Optional[Any] ) -> Graph: SCREAMING_SNAKE_CASE__ : Graph =Graph({min(self.vertices )} , {} ) SCREAMING_SNAKE_CASE__ : EdgeT SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : EdgeT SCREAMING_SNAKE_CASE__ : int while len(subgraph.vertices ) < len(self.vertices ): SCREAMING_SNAKE_CASE__ : Any =max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: SCREAMING_SNAKE_CASE__ : List[str] =edge SCREAMING_SNAKE_CASE__ : Any =weight subgraph.add_edge(__lowercase , __lowercase ) return subgraph def _a( UpperCamelCase__ : str = "p107_network.txt" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =os.path.abspath(os.path.dirname(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ : str =os.path.join(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : dict[EdgeT, int] ={} SCREAMING_SNAKE_CASE__ : list[str] SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int with open(UpperCamelCase__ ) as f: SCREAMING_SNAKE_CASE__ : Any =f.read().strip().split('''\n''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =[line.split(''',''' ) for line in data] for edgea in range(1, len(UpperCamelCase__ ) ): for edgea in range(UpperCamelCase__ ): if adjaceny_matrix[edgea][edgea] != "-": SCREAMING_SNAKE_CASE__ : List[Any] =int(adjaceny_matrix[edgea][edgea] ) SCREAMING_SNAKE_CASE__ : Graph =Graph(set(range(len(UpperCamelCase__ ) ) ), UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Graph =graph.prims_algorithm() SCREAMING_SNAKE_CASE__ : int =sum(graph.edges.values() ) SCREAMING_SNAKE_CASE__ : int =sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
222
1
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __SCREAMING_SNAKE_CASE :int = TypeVar('''KEY''') __SCREAMING_SNAKE_CASE :List[Any] = TypeVar('''VAL''') @dataclass(frozen=lowerCAmelCase_ , slots=lowerCAmelCase_ ) class A_ ( Generic[KEY, VAL] ): _lowerCamelCase : KEY _lowerCamelCase : VAL class A_ ( _Item ): def __init__( self : List[Any] ): super().__init__(snake_case_ , snake_case_ ) def __bool__( self : List[Any] ): return False __SCREAMING_SNAKE_CASE :Dict = _DeletedItem() class A_ ( MutableMapping[KEY, VAL] ): def __init__( self : str , snake_case_ : int = 8 , snake_case_ : float = 0.7_5 ): _UpperCAmelCase = initial_block_size _UpperCAmelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _UpperCAmelCase = capacity_factor _UpperCAmelCase = 0 def lowercase ( self : Any , snake_case_ : KEY ): return hash(snake_case_ ) % len(self._buckets ) def lowercase ( self : List[Any] , snake_case_ : int ): return (ind + 1) % len(self._buckets ) def lowercase ( self : Any , snake_case_ : int , snake_case_ : KEY , snake_case_ : VAL ): _UpperCAmelCase = self._buckets[ind] if not stored: _UpperCAmelCase = _Item(snake_case_ , snake_case_ ) self._len += 1 return True elif stored.key == key: _UpperCAmelCase = _Item(snake_case_ , snake_case_ ) return True else: return False def lowercase ( self : Optional[Any] ): _UpperCAmelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(snake_case_ ) def lowercase ( self : Tuple ): if len(self._buckets ) <= self._initial_block_size: return False _UpperCAmelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowercase ( self : str , snake_case_ : int ): _UpperCAmelCase = self._buckets _UpperCAmelCase = [None] * new_size _UpperCAmelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowercase ( self : Dict ): self._resize(len(self._buckets ) * 2 ) def lowercase ( self : Optional[Any] ): self._resize(len(self._buckets ) // 2 ) def lowercase ( self : List[Any] , snake_case_ : KEY ): _UpperCAmelCase = self._get_bucket_index(snake_case_ ) for _ in range(len(self._buckets ) ): yield ind _UpperCAmelCase = self._get_next_ind(snake_case_ ) def lowercase ( self : Optional[int] , snake_case_ : KEY , snake_case_ : VAL ): for ind in self._iterate_buckets(snake_case_ ): if self._try_set(snake_case_ , snake_case_ , snake_case_ ): break def __setitem__( self : Tuple , snake_case_ : KEY , snake_case_ : VAL ): if self._is_full(): self._size_up() self._add_item(snake_case_ , snake_case_ ) def __delitem__( self : Optional[int] , snake_case_ : KEY ): for ind in self._iterate_buckets(snake_case_ ): _UpperCAmelCase = self._buckets[ind] if item is None: raise KeyError(snake_case_ ) if item is _deleted: continue if item.key == key: _UpperCAmelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Dict , snake_case_ : KEY ): for ind in self._iterate_buckets(snake_case_ ): _UpperCAmelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(snake_case_ ) def __len__( self : List[Any] ): return self._len def __iter__( self : Union[str, Any] ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[int] ): _UpperCAmelCase = " ,".join( f'{item.key}: {item.val}' for item in self._buckets if item ) return f'HashMap({val_string})'
22
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class A_ : def __init__( self : str , snake_case_ : int , snake_case_ : Union[str, Any]=2 , snake_case_ : List[Any]=True , snake_case_ : str=False , snake_case_ : str=1_0 , snake_case_ : str=3 , snake_case_ : Dict=3_2 * 4 , snake_case_ : Any=3_2 * 6 , snake_case_ : Optional[Any]=4 , snake_case_ : Optional[int]=3_2 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = is_training _UpperCAmelCase = use_auxiliary_loss _UpperCAmelCase = num_queries _UpperCAmelCase = num_channels _UpperCAmelCase = min_size _UpperCAmelCase = max_size _UpperCAmelCase = num_labels _UpperCAmelCase = mask_feature_size def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( snake_case_ ) _UpperCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case_ ) _UpperCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case_ ) > 0.5 ).float() _UpperCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=snake_case_ ) > 0.5).long() _UpperCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase ( self : List[Any] ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def lowercase ( self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] ): _UpperCAmelCase = output.encoder_hidden_states _UpperCAmelCase = output.pixel_decoder_hidden_states _UpperCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case_ ) , config.decoder_config.decoder_layers ) def lowercase ( self : Tuple , snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Optional[Any]=False ): with torch.no_grad(): _UpperCAmelCase = MaskFormerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(pixel_values=snake_case_ , pixel_mask=snake_case_ ) _UpperCAmelCase = model(snake_case_ , output_hidden_states=snake_case_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(snake_case_ , snake_case_ ) def lowercase ( self : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : str , snake_case_ : List[Any] ): _UpperCAmelCase = MaskFormerForInstanceSegmentation(config=snake_case_ ) model.to(snake_case_ ) model.eval() def comm_check_on_output(snake_case_ : int ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _UpperCAmelCase = model(pixel_values=snake_case_ , pixel_mask=snake_case_ ) _UpperCAmelCase = model(snake_case_ ) comm_check_on_output(snake_case_ ) _UpperCAmelCase = model( pixel_values=snake_case_ , pixel_mask=snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ) comm_check_on_output(snake_case_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : Dict = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () _lowerCamelCase : Tuple = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Dict = False _lowerCamelCase : Any = False _lowerCamelCase : List[Any] = False def lowercase ( self : Optional[int] ): _UpperCAmelCase = MaskFormerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowercase ( self : Union[str, Any] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_ ) def lowercase ( self : int ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*snake_case_ ) @unittest.skip(reason="MaskFormer does not use inputs_embeds" ) def lowercase ( self : Any ): pass @unittest.skip(reason="MaskFormer does not have a get_input_embeddings method" ) def lowercase ( self : List[str] ): pass @unittest.skip(reason="MaskFormer is not a generative model" ) def lowercase ( self : List[str] ): pass @unittest.skip(reason="MaskFormer does not use token embeddings" ) def lowercase ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip( reason="MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowercase ( self : Any ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase ( self : Union[str, Any] ): pass def lowercase ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) @slow def lowercase ( self : Optional[int] ): for model_name in ["facebook/maskformer-swin-small-coco"]: _UpperCAmelCase = MaskFormerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowercase ( self : Optional[int] ): _UpperCAmelCase = (self.model_tester.min_size,) * 2 _UpperCAmelCase = { "pixel_values": torch.randn((2, 3, *size) , device=snake_case_ ), "mask_labels": torch.randn((2, 1_0, *size) , device=snake_case_ ), "class_labels": torch.zeros(2 , 1_0 , device=snake_case_ ).long(), } _UpperCAmelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(snake_case_ ) _UpperCAmelCase = model(**snake_case_ ) self.assertTrue(outputs.loss is not None ) def lowercase ( self : Dict ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_ ) def lowercase ( self : Any ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ).to(snake_case_ ) _UpperCAmelCase = model(**snake_case_ , output_attentions=snake_case_ ) self.assertTrue(outputs.attentions is not None ) def lowercase ( self : int ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _UpperCAmelCase = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.train() _UpperCAmelCase = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ).loss loss.backward() def lowercase ( self : int ): # only MaskFormerForInstanceSegmentation has the loss _UpperCAmelCase = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.train() _UpperCAmelCase = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ) _UpperCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _UpperCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _UpperCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _UpperCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __SCREAMING_SNAKE_CASE :Dict = 1e-4 def UpperCAmelCase_ ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class A_ ( unittest.TestCase ): @cached_property def lowercase ( self : Dict ): return ( MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco" ) if is_vision_available() else None ) def lowercase ( self : List[Any] ): _UpperCAmelCase = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco" ).to(snake_case_ ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(snake_case_ , return_tensors="pt" ).to(snake_case_ ) _UpperCAmelCase = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _UpperCAmelCase = model(**snake_case_ ) _UpperCAmelCase = torch.tensor( [[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) _UpperCAmelCase = torch.tensor( [[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) _UpperCAmelCase = torch.tensor( [[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowercase ( self : Tuple ): _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(snake_case_ ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(snake_case_ , return_tensors="pt" ).to(snake_case_ ) _UpperCAmelCase = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _UpperCAmelCase = model(**snake_case_ ) # masks_queries_logits _UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _UpperCAmelCase = [ [-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3], [-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5], [-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2], ] _UpperCAmelCase = torch.tensor(snake_case_ ).to(snake_case_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) # class_queries_logits _UpperCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _UpperCAmelCase = torch.tensor( [ [1.6_512e00, -5.2_572e00, -3.3_519e00], [3.6_169e-02, -5.9_025e00, -2.9_313e00], [1.0_766e-04, -7.7_630e00, -5.1_263e00], ] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowercase ( self : int ): _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff" ) .to(snake_case_ ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(snake_case_ , return_tensors="pt" ).to(snake_case_ ) _UpperCAmelCase = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _UpperCAmelCase = model(**snake_case_ ) # masks_queries_logits _UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _UpperCAmelCase = [[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -1_0.7_7_1_1]] _UpperCAmelCase = torch.tensor(snake_case_ ).to(snake_case_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) # class_queries_logits _UpperCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _UpperCAmelCase = torch.tensor( [[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowercase ( self : List[Any] ): _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(snake_case_ ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors="pt" , ) _UpperCAmelCase = inputs["pixel_values"].to(snake_case_ ) _UpperCAmelCase = [el.to(snake_case_ ) for el in inputs["mask_labels"]] _UpperCAmelCase = [el.to(snake_case_ ) for el in inputs["class_labels"]] with torch.no_grad(): _UpperCAmelCase = model(**snake_case_ ) self.assertTrue(outputs.loss is not None )
22
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ ): __magic_name__: Union[str, Any] = "pixel_values" __magic_name__: Union[str, Any] = False __magic_name__: Optional[int] = TimmBackboneConfig def __init__( self : Optional[Any] , _A : str , **_A : List[Any] ) -> str: """simple docstring""" requires_backends(self , 'timm' ) super().__init__(_A ) snake_case_ : Union[str, Any] = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(F"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(_A , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) snake_case_ : Tuple = getattr(_A , 'use_pretrained_backbone' , _A ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. snake_case_ : Union[str, Any] = config.out_indices if getattr(_A , 'out_indices' , _A ) is not None else (-1,) snake_case_ : Optional[int] = timm.create_model( config.backbone , pretrained=_A , features_only=config.features_only , in_chans=config.num_channels , out_indices=_A , **_A , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. snake_case_ : Optional[int] = self._backbone.return_layers snake_case_ : Dict = {layer['module']: str(_A ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(_A ) @classmethod def UpperCAmelCase_ ( cls : Union[str, Any] , _A : List[str] , *_A : Union[str, Any] , **_A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig snake_case_ : int = kwargs.pop('config' , TimmBackboneConfig() ) snake_case_ : Optional[Any] = kwargs.pop('use_timm_backbone' , _A ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) snake_case_ : Tuple = kwargs.pop('num_channels' , config.num_channels ) snake_case_ : int = kwargs.pop('features_only' , config.features_only ) snake_case_ : str = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) snake_case_ : Optional[int] = kwargs.pop('out_indices' , config.out_indices ) snake_case_ : Optional[Any] = TimmBackboneConfig( backbone=_A , num_channels=_A , features_only=_A , use_pretrained_backbone=_A , out_indices=_A , ) return super()._from_config(_A , **_A ) def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple , _A : int , _A : List[str]=None , _A : Union[str, Any]=None , _A : Union[str, Any]=None , **_A : Tuple ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: """simple docstring""" snake_case_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ : Union[str, Any] = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone snake_case_ : Optional[int] = self._all_layers snake_case_ : Any = self._backbone(_A , **_A ) snake_case_ : List[str] = self._return_layers snake_case_ : int = tuple(hidden_states[i] for i in self.out_indices ) else: snake_case_ : int = self._backbone(_A , **_A ) snake_case_ : Any = None snake_case_ : Any = tuple(_A ) snake_case_ : int = tuple(_A ) if hidden_states is not None else None if not return_dict: snake_case_ : Optional[int] = (feature_maps,) if output_hidden_states: snake_case_ : Union[str, Any] = output + (hidden_states,) return output return BackboneOutput(feature_maps=_A , hidden_states=_A , attentions=_A )
88
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["image_processor", "tokenizer"] __magic_name__: Optional[Any] = "LayoutLMv3ImageProcessor" __magic_name__: str = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : int , _A : List[str]=None , _A : Dict=None , **_A : int ) -> List[str]: """simple docstring""" snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _A , ) snake_case_ : Any = kwargs.pop('feature_extractor' ) snake_case_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_A , _A ) def __call__( self : List[str] , _A : Optional[Any] , _A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _A : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _A : Union[List[List[int]], List[List[List[int]]]] = None , _A : Optional[Union[List[int], List[List[int]]]] = None , _A : bool = True , _A : Union[bool, str, PaddingStrategy] = False , _A : Union[bool, str, TruncationStrategy] = None , _A : Optional[int] = None , _A : int = 0 , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[bool] = None , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = True , _A : Optional[Union[str, TensorType]] = None , **_A : str , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor snake_case_ : str = self.image_processor(images=_A , return_tensors=_A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_A , _A ): snake_case_ : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case_ : str = features['words'] snake_case_ : Optional[int] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_token_type_ids=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) # add pixel values snake_case_ : List[str] = features.pop('pixel_values' ) if return_overflowing_tokens is True: snake_case_ : Dict = self.get_overflowing_images(_A , encoded_inputs['overflow_to_sample_mapping'] ) snake_case_ : Optional[Any] = images return encoded_inputs def UpperCAmelCase_ ( self : Dict , _A : Tuple , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_A ) != len(_A ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F""" {len(_A )} and {len(_A )}""" ) return images_with_overflow def UpperCAmelCase_ ( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*_A , **_A ) def UpperCAmelCase_ ( self : Union[str, Any] , *_A : Dict , **_A : str ) -> Any: """simple docstring""" return self.tokenizer.decode(*_A , **_A ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase_ ( self : Any ) -> Any: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _A , ) return self.image_processor_class @property def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _A , ) return self.image_processor
88
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : List[Any] ={'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] =['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] =['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str =[ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple =[ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] =[ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys A__ : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
70
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase ( snake_case_ ): _lowercase: Union[str, Any] = ['''image_processor''', '''tokenizer'''] _lowercase: int = '''AutoImageProcessor''' _lowercase: Optional[int] = '''AutoTokenizer''' def __init__( self : int , __snake_case : Tuple=None , __snake_case : Optional[int]=None , **__snake_case : Tuple ) -> List[Any]: _lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __snake_case , ) _lowerCAmelCase = kwargs.pop("""feature_extractor""" ) _lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__snake_case , __snake_case ) _lowerCAmelCase = self.image_processor _lowerCAmelCase = False def __call__( self : Dict , *__snake_case : Optional[int] , **__snake_case : Union[str, Any] ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) _lowerCAmelCase = kwargs.pop("""images""" , __snake_case ) _lowerCAmelCase = kwargs.pop("""text""" , __snake_case ) if len(__snake_case ) > 0: _lowerCAmelCase = args[0] _lowerCAmelCase = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: _lowerCAmelCase = self.image_processor(__snake_case , *__snake_case , **__snake_case ) if text is not None: _lowerCAmelCase = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif images is None: return encodings else: _lowerCAmelCase = encodings["""input_ids"""] return inputs def lowercase__ ( self : List[Any] , *__snake_case : Dict , **__snake_case : List[str] ) -> int: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowercase__ ( self : int , *__snake_case : Tuple , **__snake_case : Optional[Any] ) -> Any: return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def lowercase__ ( self : int ) -> Optional[Any]: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) _lowerCAmelCase = True _lowerCAmelCase = self.tokenizer yield _lowerCAmelCase = self.image_processor _lowerCAmelCase = False def lowercase__ ( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any]=False , __snake_case : Dict=None ) -> Tuple: if added_vocab is None: _lowerCAmelCase = self.tokenizer.get_added_vocab() _lowerCAmelCase = {} while tokens: _lowerCAmelCase = re.search(R"""<s_(.*?)>""" , __snake_case , re.IGNORECASE ) if start_token is None: break _lowerCAmelCase = start_token.group(1 ) _lowerCAmelCase = re.search(Rf"</s_{key}>" , __snake_case , re.IGNORECASE ) _lowerCAmelCase = start_token.group() if end_token is None: _lowerCAmelCase = tokens.replace(__snake_case , """""" ) else: _lowerCAmelCase = end_token.group() _lowerCAmelCase = re.escape(__snake_case ) _lowerCAmelCase = re.escape(__snake_case ) _lowerCAmelCase = re.search(f"{start_token_escaped}(.*?){end_token_escaped}" , __snake_case , re.IGNORECASE ) if content is not None: _lowerCAmelCase = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _lowerCAmelCase = self.tokenajson(__snake_case , is_inner_value=__snake_case , added_vocab=__snake_case ) if value: if len(__snake_case ) == 1: _lowerCAmelCase = value[0] _lowerCAmelCase = value else: # leaf nodes _lowerCAmelCase = [] for leaf in content.split(R"""<sep/>""" ): _lowerCAmelCase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _lowerCAmelCase = leaf[1:-2] # for categorical special tokens output[key].append(__snake_case ) if len(output[key] ) == 1: _lowerCAmelCase = output[key][0] _lowerCAmelCase = tokens[tokens.find(__snake_case ) + len(__snake_case ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=__snake_case , added_vocab=__snake_case ) if len(__snake_case ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __snake_case , ) return self.image_processor_class @property def lowercase__ ( self : List[Any] ) -> Any: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __snake_case , ) return self.image_processor
70
1
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right SCREAMING_SNAKE_CASE = 12_8022 SCREAMING_SNAKE_CASE = 12_8028 @require_sentencepiece class UpperCAmelCase_ ( lowercase__, unittest.TestCase ): lowercase__ = MaMaaaTokenizer lowercase__ = False lowercase__ = False lowercase__ = True def __magic_name__ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() A__ = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] A__ = dict(zip(_a , range(len(_a ) ) ) ) A__ = Path(self.tmpdirname ) save_json(_a , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_a , save_dir / VOCAB_FILES_NAMES["spm_file"] ) A__ = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : Any , **snake_case_ : Optional[int] ) -> Dict: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_a ) def __magic_name__ ( self : Tuple , snake_case_ : int ) -> Tuple: '''simple docstring''' return ( "This is a test", "This is a test", ) def __magic_name__ ( self : Dict ) -> List[Any]: '''simple docstring''' A__ = '</s>' A__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ = self.get_tokenizer() A__ = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(_a ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __magic_name__ ( self : Optional[Any] ) -> Any: '''simple docstring''' pass def __magic_name__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ = self.get_tokenizer() A__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [2, 3, 4, 5, 6] , ) A__ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(_a , ["▁This", "▁is", "▁a", "▁t", "est"] ) A__ = tokenizer.convert_tokens_to_string(_a ) self.assertEqual(_a , "This is a test" ) @slow def __magic_name__ ( self : Tuple ) -> Any: '''simple docstring''' A__ = {'input_ids': [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): lowercase__ = '''facebook/m2m100_418M''' lowercase__ = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] lowercase__ = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off lowercase__ = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def __magic_name__ ( cls : Dict ) -> str: '''simple docstring''' A__ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) A__ = 1 return cls def __magic_name__ ( self : int ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 ) def __magic_name__ ( self : int ) -> Union[str, Any]: '''simple docstring''' A__ = self.tokenizer.get_vocab() self.assertEqual(len(_a ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , _a ) def __magic_name__ ( self : str ) -> Dict: '''simple docstring''' A__ = 'en' A__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _a ) def __magic_name__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertIn(_a , self.tokenizer.all_special_ids ) # fmt: off A__ = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on A__ = self.tokenizer.decode(_a , skip_special_tokens=_a ) A__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_a ) self.assertEqual(_a , _a ) self.assertNotIn(self.tokenizer.eos_token , _a ) def __magic_name__ ( self : Any ) -> int: '''simple docstring''' A__ = tempfile.mkdtemp() A__ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_a ) A__ = MaMaaaTokenizer.from_pretrained(_a ) self.assertDictEqual(new_tok.lang_token_to_id , _a ) @require_torch def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ = 'en' A__ = 'fr' A__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_a , return_tensors="pt" ) A__ = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: A__ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __magic_name__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) A__ = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __magic_name__ ( self : Dict ) -> List[str]: '''simple docstring''' A__ = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) A__ = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __magic_name__ ( self : Optional[Any] ) -> Any: '''simple docstring''' A__ = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(_a ) , { # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } , )
355
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class UpperCAmelCase_ ( A_ ): lowercase__ = '''lilt''' def __init__( self : List[str] , snake_case_ : Any=30_522 , snake_case_ : Optional[Any]=768 , snake_case_ : Union[str, Any]=12 , snake_case_ : Union[str, Any]=12 , snake_case_ : Any=3_072 , snake_case_ : List[str]="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : Any=512 , snake_case_ : Optional[Any]=2 , snake_case_ : List[str]=0.02 , snake_case_ : Optional[Any]=1e-12 , snake_case_ : List[Any]=0 , snake_case_ : Any="absolute" , snake_case_ : str=None , snake_case_ : int=4 , snake_case_ : int=1_024 , **snake_case_ : Tuple , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case_ , **snake_case_ ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = classifier_dropout A__ = channel_shrink_ratio A__ = max_ad_position_embeddings
230
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCAmelCase: str = logging.get_logger(__name__) lowerCAmelCase: Optional[int] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCAmelCase: str = { 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } lowerCAmelCase: Union[str, Any] = { 'RUCAIBox/mvp': 1_0_2_4, } class a__( lowerCamelCase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = MvpTokenizer def __init__( self : List[str] , __snake_case : Optional[Any]=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : List[str]="replace" , __snake_case : Tuple="<s>" , __snake_case : List[Any]="</s>" , __snake_case : str="</s>" , __snake_case : List[str]="<s>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : Any="<pad>" , __snake_case : List[Any]="<mask>" , __snake_case : Any=False , __snake_case : int=True , **__snake_case : List[str] , ): super().__init__( __snake_case , __snake_case , tokenizer_file=__snake_case , errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case , **__snake_case , ) a : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __snake_case ) != add_prefix_space: a : Any = getattr(__snake_case , pre_tok_state.pop('type' ) ) a : int = add_prefix_space a : Any = pre_tok_class(**__snake_case ) a : Dict = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a : Dict = 'post_processor' a : Dict = getattr(self.backend_tokenizer , __snake_case , __snake_case ) if tokenizer_component_instance: a : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a : List[Any] = tuple(state['sep'] ) if "cls" in state: a : Dict = tuple(state['cls'] ) a : Optional[Any] = False if state.get('add_prefix_space' , __snake_case ) != add_prefix_space: a : List[Any] = add_prefix_space a : Dict = True if state.get('trim_offsets' , __snake_case ) != trim_offsets: a : Union[str, Any] = trim_offsets a : Optional[Any] = True if changes_to_apply: a : str = getattr(__snake_case , state.pop('type' ) ) a : Tuple = component_class(**__snake_case ) setattr(self.backend_tokenizer , __snake_case , __snake_case ) @property def lowercase_ ( self : List[str] ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowercase_ ( self : Dict , __snake_case : int ): a : List[str] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else value a : str = value def lowercase_ ( self : Tuple , *__snake_case : List[Any] , **__snake_case : Optional[int] ): a : Dict = kwargs.get('is_split_into_words' , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__snake_case , **__snake_case ) def lowercase_ ( self : Optional[int] , *__snake_case : Optional[int] , **__snake_case : Optional[int] ): a : Optional[int] = kwargs.get('is_split_into_words' , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__snake_case , **__snake_case ) def lowercase_ ( self : List[Any] , __snake_case : str , __snake_case : Optional[str] = None ): a : Optional[int] = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def lowercase_ ( self : List[Any] , __snake_case : Optional[Any] , __snake_case : List[str]=None ): a : List[str] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): a : Any = [self.sep_token_id] a : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
297
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCAmelCase: Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase: List[str] = { 't5-small': 'https://huggingface.co/t5-small/resolve/main/config.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/config.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/config.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/config.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/config.json', } class a__( lowerCamelCase__ ): lowercase__ = """t5""" lowercase__ = ["""past_key_values"""] lowercase__ = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Union[str, Any] , __snake_case : int=3_21_28 , __snake_case : str=5_12 , __snake_case : Dict=64 , __snake_case : Optional[int]=20_48 , __snake_case : Tuple=6 , __snake_case : Any=None , __snake_case : Optional[int]=8 , __snake_case : str=32 , __snake_case : Union[str, Any]=1_28 , __snake_case : Optional[int]=0.1 , __snake_case : Dict=1e-6 , __snake_case : int=1.0 , __snake_case : Optional[int]="relu" , __snake_case : Any=True , __snake_case : List[str]=True , __snake_case : Union[str, Any]=0 , __snake_case : Dict=1 , **__snake_case : Optional[int] , ): a : Optional[int] = vocab_size a : Dict = d_model a : Union[str, Any] = d_kv a : Dict = d_ff a : Tuple = num_layers a : Dict = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a : int = num_heads a : str = relative_attention_num_buckets a : List[Any] = relative_attention_max_distance a : int = dropout_rate a : Tuple = layer_norm_epsilon a : str = initializer_factor a : List[Any] = feed_forward_proj a : Union[str, Any] = use_cache a : List[str] = self.feed_forward_proj.split('-' ) a : int = act_info[-1] a : Union[str, Any] = act_info[0] == 'gated' if len(__snake_case ) > 1 and act_info[0] != "gated" or len(__snake_case ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": a : Optional[Any] = 'gelu_new' super().__init__( pad_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , **__snake_case , ) class a__( lowerCamelCase__ ): @property def lowercase_ ( self : Optional[int] ): a : Dict = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: a : Dict = 'past_encoder_sequence + sequence' a : Dict = {0: 'batch'} a : Any = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: a : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} a : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__snake_case , direction='inputs' ) return common_inputs @property def lowercase_ ( self : List[Any] ): return 13
297
1
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def __lowerCamelCase ( lowerCAmelCase_ ) -> str: return "".join(sorted(lowerCAmelCase_ ) ) def __lowerCamelCase ( lowerCAmelCase_ ) -> list[str]: return word_by_signature[signature(lowerCAmelCase_ )] __lowerCAmelCase = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') __lowerCAmelCase = sorted({word.strip().lower() for word in data.splitlines()}) __lowerCAmelCase = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __lowerCAmelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
107
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __lowerCAmelCase = 3 def __lowerCamelCase ( lowerCAmelCase_ ) -> int: print('Generating primitive root of p' ) while True: _a : List[Any] = random.randrange(3 , lowerCAmelCase_ ) if pow(lowerCAmelCase_ , 2 , lowerCAmelCase_ ) == 1: continue if pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) == 1: continue return g def __lowerCamelCase ( lowerCAmelCase_ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) _a : int = rabin_miller.generate_large_prime(lowerCAmelCase_ ) # select large prime number. _a : List[str] = primitive_root(lowerCAmelCase_ ) # one primitive root on modulo p. _a : Any = random.randrange(3 , lowerCAmelCase_ ) # private_key -> have to be greater than 2 for safety. _a : List[Any] = cryptomath.find_mod_inverse(pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) _a : Tuple = (key_size, e_a, e_a, p) _a : str = (key_size, d) return public_key, private_key def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() _a , _a : Dict = generate_key(lowerCAmelCase_ ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def __lowerCamelCase ( ) -> None: print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
107
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Any = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
236
import torch def UpperCAmelCase__ ( ): if torch.cuda.is_available(): lowercase :Optional[int] = torch.cuda.device_count() else: lowercase :Dict = 0 print(F"Successfully ran on {num_gpus} GPUs" ) if __name__ == "__main__": main()
236
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: UpperCamelCase_ = None UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } UpperCamelCase_ = { "google/fnet-base": 512, "google/fnet-large": 512, } UpperCamelCase_ = "▁" class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : List[str] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any =["input_ids", "token_type_ids"] UpperCamelCase__ : Optional[Any] =FNetTokenizer def __init__( self :int , _lowercase :Union[str, Any]=None , _lowercase :List[Any]=None , _lowercase :Optional[Any]=False , _lowercase :int=True , _lowercase :Optional[Any]=True , _lowercase :Tuple="<unk>" , _lowercase :List[str]="[SEP]" , _lowercase :Tuple="<pad>" , _lowercase :int="[CLS]" , _lowercase :Optional[int]="[MASK]" , **_lowercase :Optional[Any] , ) -> int: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ = ( AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase , normalized=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token ) super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True def __a ( self :Any , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self :int , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def __a ( self :Optional[Any] , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase): copyfile(self.vocab_file , _lowercase) return (out_vocab_file,)
344
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
1
"""simple docstring""" import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): _UpperCAmelCase = yaml.safe_load( """\ name: \"\" allow_empty: false allow_empty_text: true subsections: - name: \"Dataset Card for X\" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: \"Table of Contents\" allow_empty: false allow_empty_text: false subsections: null - name: \"Dataset Description\" allow_empty: false allow_empty_text: false subsections: - name: \"Dataset Summary\" allow_empty: false allow_empty_text: false subsections: null - name: \"Supported Tasks and Leaderboards\" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null """ ) _UpperCAmelCase = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } _UpperCAmelCase = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ _UpperCAmelCase = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text """ _UpperCAmelCase = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Extra Ignored Subsection""", """text""": """""", """is_empty_text""": True, """subsections""": [], } ], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } _UpperCAmelCase = """\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ _UpperCAmelCase = ( """The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.""" ) _UpperCAmelCase = """\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ _UpperCAmelCase = ( """The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.""" ) _UpperCAmelCase = """\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ _UpperCAmelCase = """The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.""" _UpperCAmelCase = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text """ _UpperCAmelCase = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).""" _UpperCAmelCase = """\ --- language: - zh - en --- # Dataset Card for My Dataset """ _UpperCAmelCase = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'.""" _UpperCAmelCase = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text """ _UpperCAmelCase = """The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.""" _UpperCAmelCase = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages """ _UpperCAmelCase = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.""" _UpperCAmelCase = """\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ _UpperCAmelCase = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.""" _UpperCAmelCase = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset """ _UpperCAmelCase = """The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.""" _UpperCAmelCase = """\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ _UpperCAmelCase = """The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.""" _UpperCAmelCase = """""" _UpperCAmelCase = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.""" _UpperCAmelCase = """\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ _UpperCAmelCase = """The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.""" @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __magic_name__ ( lowercase , lowercase ): assert ReadMe.from_string(lowercase , lowercase ).to_dict() == expected_dict @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __magic_name__ ( lowercase , lowercase ): with pytest.raises(lowercase , match=re.escape(expected_error.format(path="""root""" ) ) ): SCREAMING_SNAKE_CASE_: Union[str, Any] =ReadMe.from_string(lowercase , lowercase ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __magic_name__ ( lowercase , lowercase ): with pytest.raises(lowercase , match=re.escape(expected_error.format(path="""root""" ) ) ): ReadMe.from_string(lowercase , lowercase ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __magic_name__ ( lowercase ): ReadMe.from_string(lowercase , lowercase , suppress_parsing_errors=lowercase ) @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __magic_name__ ( lowercase , lowercase ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_: Union[str, Any] =Path(lowercase ) / """README.md""" with open(lowercase , """w+""" ) as readme_file: readme_file.write(lowercase ) SCREAMING_SNAKE_CASE_: str =ReadMe.from_readme(lowercase , lowercase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __magic_name__ ( lowercase , lowercase ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_: Dict =Path(lowercase ) / """README.md""" with open(lowercase , """w+""" ) as readme_file: readme_file.write(lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =expected_error.format(path=lowercase ) with pytest.raises(lowercase , match=re.escape(lowercase ) ): SCREAMING_SNAKE_CASE_: Tuple =ReadMe.from_readme(lowercase , lowercase ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __magic_name__ ( lowercase , lowercase ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_: Union[str, Any] =Path(lowercase ) / """README.md""" with open(lowercase , """w+""" ) as readme_file: readme_file.write(lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =expected_error.format(path=lowercase ) with pytest.raises(lowercase , match=re.escape(lowercase ) ): ReadMe.from_readme(lowercase , lowercase ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __magic_name__ ( lowercase ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_: Union[str, Any] =Path(lowercase ) / """README.md""" with open(lowercase , """w+""" ) as readme_file: readme_file.write(lowercase ) ReadMe.from_readme(lowercase , lowercase , suppress_parsing_errors=lowercase )
173
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __magic_name__ ( *lowercase ): if not isinstance(lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =list(lowercase ) for i in range(len(lowercase ) ): SCREAMING_SNAKE_CASE_: Optional[Any] =None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =[ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowercase , lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __magic_name__ ( lowercase = None , lowercase = 128 ): if function is None: return functools.partial(lowercase , starting_batch_size=lowercase ) SCREAMING_SNAKE_CASE_: str =starting_batch_size def decorator(*lowercase , **lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE_: Optional[int] =list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): SCREAMING_SNAKE_CASE_: List[Any] =""", """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowercase , *lowercase , **lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
173
1
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if isinstance(__snake_case , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCamelCase : def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: pass def __UpperCAmelCase ( self ) -> List[Any]: pass def __UpperCAmelCase ( self ) -> List[str]: pass def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : Tuple = np.abs((a - b) ).max() self.assertLessEqual(_UpperCamelCase , _UpperCamelCase , f"Difference between torch and flax is {diff} (>= {tol})." ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , **_UpperCamelCase ) -> str: UpperCAmelCase_ : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : int = FlaxVisionTextDualEncoderModel(_UpperCamelCase ) UpperCAmelCase_ : int = model(input_ids=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , **_UpperCamelCase ) -> Any: UpperCAmelCase_ : str = self.get_vision_text_model(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : str = {'vision_model': vision_model, 'text_model': text_model} UpperCAmelCase_ : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = model(input_ids=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , **_UpperCamelCase ) -> Dict: UpperCAmelCase_ : Tuple = self.get_vision_text_model(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = {'vision_model': vision_model, 'text_model': text_model} UpperCAmelCase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_UpperCamelCase ) UpperCAmelCase_ : str = model(input_ids=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase ) UpperCAmelCase_ : Dict = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = model(input_ids=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = after_output[0] UpperCAmelCase_ : Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_UpperCamelCase , 1E-3 ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , **_UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : Any = self.get_vision_text_model(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : int = {'vision_model': vision_model, 'text_model': text_model} UpperCAmelCase_ : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = model( input_ids=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase , output_attentions=_UpperCamelCase ) UpperCAmelCase_ : Any = output.vision_model_output.attentions self.assertEqual(len(_UpperCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : Optional[int] = to_atuple(vision_model.config.image_size ) UpperCAmelCase_ : Dict = to_atuple(vision_model.config.patch_size ) UpperCAmelCase_ : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCAmelCase_ : List[str] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCAmelCase_ : Any = output.text_model_output.attentions self.assertEqual(len(_UpperCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: pt_model.to(_UpperCamelCase ) pt_model.eval() # prepare inputs UpperCAmelCase_ : str = inputs_dict UpperCAmelCase_ : Dict = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): UpperCAmelCase_ : Tuple = pt_model(**_UpperCamelCase ).to_tuple() UpperCAmelCase_ : int = fx_model(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(_UpperCamelCase , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : str = FlaxVisionTextDualEncoderModel.from_pretrained(_UpperCamelCase , from_pt=_UpperCamelCase ) UpperCAmelCase_ : Any = fx_model_loaded(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(_UpperCamelCase , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : int = VisionTextDualEncoderModel.from_pretrained(_UpperCamelCase , from_flax=_UpperCamelCase ) pt_model_loaded.to(_UpperCamelCase ) pt_model_loaded.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = pt_model_loaded(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(_UpperCamelCase , pt_output_loaded.numpy() , 4E-2 ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : int = VisionTextDualEncoderModel(_UpperCamelCase ) UpperCAmelCase_ : str = FlaxVisionTextDualEncoderModel(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = fx_state self.check_pt_flax_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: UpperCAmelCase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : List[str] = VisionTextDualEncoderModel(_UpperCamelCase ) UpperCAmelCase_ : List[str] = FlaxVisionTextDualEncoderModel(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(_UpperCamelCase , fx_model.params ) self.check_pt_flax_equivalence(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_UpperCamelCase ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : Any = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_UpperCamelCase ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() self.check_save_load(**_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_UpperCamelCase ) @is_pt_flax_cross_test def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase_ : Optional[int] = config_inputs_dict.pop('vision_config' ) UpperCAmelCase_ : int = config_inputs_dict.pop('text_config' ) UpperCAmelCase_ : str = config_inputs_dict self.check_equivalence_pt_to_flax(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.check_equivalence_flax_to_pt(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Tuple = self.get_pretrained_model_and_inputs() UpperCAmelCase_ : List[Any] = model_a(**_UpperCamelCase ) UpperCAmelCase_ : int = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = model_a(**_UpperCamelCase ) UpperCAmelCase_ : Any = after_outputs[0] UpperCAmelCase_ : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_UpperCamelCase , 1E-5 ) @require_flax class lowerCamelCase (_snake_case , unittest.TestCase ): def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_UpperCamelCase , text_from_pt=_UpperCamelCase , ) UpperCAmelCase_ : Tuple = 1_3 UpperCAmelCase_ : Optional[int] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCAmelCase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCAmelCase_ : Any = random_attention_mask([batch_size, 4] ) UpperCAmelCase_ : Any = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Tuple: UpperCAmelCase_ : Any = FlaxViTModel(_UpperCamelCase ) UpperCAmelCase_ : int = FlaxBertModel(_UpperCamelCase ) return vision_model, text_model def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : List[str] = FlaxViTModelTester(self ) UpperCAmelCase_ : Optional[int] = FlaxBertModelTester(self ) UpperCAmelCase_ : Optional[int] = vit_model_tester.prepare_config_and_inputs() UpperCAmelCase_ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase_ : Optional[Any] = vision_config_and_inputs UpperCAmelCase_ : List[str] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCamelCase (_snake_case , unittest.TestCase ): def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_UpperCamelCase , text_from_pt=_UpperCamelCase , ) UpperCAmelCase_ : Tuple = 1_3 UpperCAmelCase_ : List[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCAmelCase_ : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCAmelCase_ : Tuple = random_attention_mask([batch_size, 4] ) UpperCAmelCase_ : Union[str, Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : Dict = FlaxCLIPVisionModel(_UpperCamelCase ) UpperCAmelCase_ : Any = FlaxBertModel(_UpperCamelCase ) return vision_model, text_model def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : int = FlaxCLIPVisionModelTester(self ) UpperCAmelCase_ : Any = FlaxBertModelTester(self ) UpperCAmelCase_ : Dict = clip_model_tester.prepare_config_and_inputs() UpperCAmelCase_ : str = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase_ : List[str] = vision_config_and_inputs UpperCAmelCase_ : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCamelCase (unittest.TestCase ): @slow def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : int = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) UpperCAmelCase_ : List[str] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) UpperCAmelCase_ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCAmelCase_ : str = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=_UpperCamelCase , padding=_UpperCamelCase , return_tensors='np' ) UpperCAmelCase_ : List[str] = model(**_UpperCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCAmelCase_ : Dict = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , _UpperCamelCase , atol=1E-3 ) )
354
import os import re import shutil import sys import tempfile import unittest import black __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __UpperCAmelCase = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) UpperCAmelCase_ : int = self.diffusers_dir shutil.copy( os.path.join(_UpperCamelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Optional[Any]: UpperCAmelCase_ : Dict = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: UpperCAmelCase_ : Optional[Any] = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result UpperCAmelCase_ : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) UpperCAmelCase_ : Optional[Any] = black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) UpperCAmelCase_ : Any = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCamelCase , 'w' , newline='\n' ) as f: f.write(_UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCamelCase ) with open(_UpperCamelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> str: # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCamelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCamelCase ) , ) # Copy consistency with a really long name UpperCAmelCase_ : Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , f"{long_class_name}SchedulerOutput" , re.sub('Bert' , _UpperCamelCase , _UpperCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCamelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCamelCase ) , )
145
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = 42 # setable values snake_case_ = 42 snake_case_ = 42 snake_case_ = None @classmethod def lowercase_ ( cls , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' return cls(common=lowerCamelCase__ , init_noise_sigma=lowerCamelCase__ , timesteps=lowerCamelCase__ ) @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" snake_case_ = [e.name for e in FlaxKarrasDiffusionSchedulers] snake_case_ = 42 @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' return True @register_to_config def __init__( self , lowerCamelCase__ = 1_000 , lowerCamelCase__ = 0.00_01 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = "linear" , lowerCamelCase__ = None , lowerCamelCase__ = "fixed_small" , lowerCamelCase__ = True , lowerCamelCase__ = "epsilon" , lowerCamelCase__ = jnp.floataa , ) -> List[Any]: '''simple docstring''' __lowerCamelCase = dtype def lowercase_ ( self , lowerCamelCase__ = None ) -> DDPMSchedulerState: '''simple docstring''' if common is None: __lowerCamelCase = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __lowerCamelCase = jnp.array(1.0 , dtype=self.dtype ) __lowerCamelCase = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowerCamelCase__ , init_noise_sigma=lowerCamelCase__ , timesteps=lowerCamelCase__ , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None ) -> jnp.ndarray: '''simple docstring''' return sample def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = () ) -> DDPMSchedulerState: '''simple docstring''' __lowerCamelCase = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (jnp.arange(0 , lowerCamelCase__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowerCamelCase__ , timesteps=lowerCamelCase__ , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = state.common.alphas_cumprod[t] __lowerCamelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowerCamelCase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __lowerCamelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __lowerCamelCase = jnp.clip(lowerCamelCase__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __lowerCamelCase = jnp.log(jnp.clip(lowerCamelCase__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": __lowerCamelCase = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __lowerCamelCase = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __lowerCamelCase = variance __lowerCamelCase = state.common.betas[t] __lowerCamelCase = (predicted_variance + 1) / 2 __lowerCamelCase = frac * max_log + (1 - frac) * min_log return variance def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: '''simple docstring''' __lowerCamelCase = timestep if key is None: __lowerCamelCase = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __lowerCamelCase , __lowerCamelCase = jnp.split(lowerCamelCase__ , sample.shape[1] , axis=1 ) else: __lowerCamelCase = None # 1. compute alphas, betas __lowerCamelCase = state.common.alphas_cumprod[t] __lowerCamelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __lowerCamelCase = 1 - alpha_prod_t __lowerCamelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowerCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowerCamelCase = model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowerCamelCase = jnp.clip(lowerCamelCase__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __lowerCamelCase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __lowerCamelCase = jax.random.split(lowerCamelCase__ , num=1 ) __lowerCamelCase = jax.random.normal(lowerCamelCase__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(lowerCamelCase__ , lowerCamelCase__ , predicted_variance=lowerCamelCase__ ) ** 0.5) * noise __lowerCamelCase = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __lowerCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowerCamelCase__ , state=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> jnp.ndarray: '''simple docstring''' return add_noise_common(state.common , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> jnp.ndarray: '''simple docstring''' return get_velocity_common(state.common , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __len__( self ) -> List[str]: '''simple docstring''' return self.config.num_train_timesteps
90
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _A = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
0
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(A ) class _SCREAMING_SNAKE_CASE( A ): def __init__( self ,**SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) requires_backends(self ,'''vision''' ) requires_backends(self ,'''torch''' ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,**SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = {} __SCREAMING_SNAKE_CASE :Union[str, Any] = {} __SCREAMING_SNAKE_CASE :Union[str, Any] = {} # preprocess args if "points_per_batch" in kwargs: __SCREAMING_SNAKE_CASE :str = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: __SCREAMING_SNAKE_CASE :Tuple = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: __SCREAMING_SNAKE_CASE :List[str] = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: __SCREAMING_SNAKE_CASE :Tuple = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: __SCREAMING_SNAKE_CASE :Dict = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: __SCREAMING_SNAKE_CASE :Optional[int] = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: __SCREAMING_SNAKE_CASE :List[Any] = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: __SCREAMING_SNAKE_CASE :Tuple = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: __SCREAMING_SNAKE_CASE :Optional[int] = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: __SCREAMING_SNAKE_CASE :str = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: __SCREAMING_SNAKE_CASE :Union[str, Any] = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: __SCREAMING_SNAKE_CASE :Tuple = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self ,SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" return super().__call__(SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ ,num_workers=SCREAMING_SNAKE_CASE__ ,batch_size=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=64 ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 5_12 / 15_00 ,SCREAMING_SNAKE_CASE__ = 32 ,SCREAMING_SNAKE_CASE__ = 1 ,) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = load_image(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = self.image_processor.size['''longest_edge'''] __SCREAMING_SNAKE_CASE :Union[str, Any] = self.image_processor.generate_crop_boxes( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = self.image_processor(images=SCREAMING_SNAKE_CASE__ ,return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": __SCREAMING_SNAKE_CASE :List[str] = self.get_inference_context() with inference_context(): __SCREAMING_SNAKE_CASE :List[Any] = self._ensure_tensor_on_device(SCREAMING_SNAKE_CASE__ ,device=self.device ) __SCREAMING_SNAKE_CASE :Tuple = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) __SCREAMING_SNAKE_CASE :List[str] = image_embeddings __SCREAMING_SNAKE_CASE :str = grid_points.shape[1] __SCREAMING_SNAKE_CASE :int = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :str = grid_points[:, i : i + points_per_batch, :, :] __SCREAMING_SNAKE_CASE :Any = input_labels[:, i : i + points_per_batch] __SCREAMING_SNAKE_CASE :List[Any] = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=0.8_8 ,SCREAMING_SNAKE_CASE__=0.9_5 ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=1 ,) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = model_inputs.pop('''input_boxes''' ) __SCREAMING_SNAKE_CASE :Tuple = model_inputs.pop('''is_last''' ) __SCREAMING_SNAKE_CASE :List[Any] = model_inputs.pop('''original_sizes''' ).tolist() __SCREAMING_SNAKE_CASE :Optional[Any] = model_inputs.pop('''reshaped_input_sizes''' ).tolist() __SCREAMING_SNAKE_CASE :List[Any] = self.model(**SCREAMING_SNAKE_CASE__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __SCREAMING_SNAKE_CASE :Tuple = model_outputs['''pred_masks'''] __SCREAMING_SNAKE_CASE :Tuple = self.image_processor.post_process_masks( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,binarize=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[str] = model_outputs['''iou_scores'''] __SCREAMING_SNAKE_CASE :List[Any] = self.image_processor.filter_masks( masks[0] ,iou_scores[0] ,original_sizes[0] ,input_boxes[0] ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=0.7 ,) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = [] __SCREAMING_SNAKE_CASE :Union[str, Any] = [] __SCREAMING_SNAKE_CASE :Dict = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) __SCREAMING_SNAKE_CASE :Dict = torch.cat(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = torch.cat(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = self.image_processor.post_process_for_mask_generation( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = defaultdict(SCREAMING_SNAKE_CASE__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = {} if output_rle_mask: __SCREAMING_SNAKE_CASE :Union[str, Any] = rle_mask if output_bboxes_mask: __SCREAMING_SNAKE_CASE :Optional[int] = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
350
"""simple docstring""" from torch import nn class _SCREAMING_SNAKE_CASE( nn.Module ): def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE :Tuple = class_size __SCREAMING_SNAKE_CASE :str = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __SCREAMING_SNAKE_CASE :Optional[Any] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self.mlp(SCREAMING_SNAKE_CASE__ ) return logits
239
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __A = IFInpaintingPipeline __A = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __A = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __A = PipelineTesterMixin.required_optional_params - {"latents"} def lowercase__ ( self : Union[str, Any] ): """simple docstring""" return self._get_dummy_components() def lowercase__ ( self : Tuple , lowercase : Optional[Any] , lowercase : Tuple=0 ): """simple docstring""" if str(lowercase ).startswith("mps" ): lowercase_ :Union[str, Any] = torch.manual_seed(lowercase ) else: lowercase_ :Tuple = torch.Generator(device=lowercase ).manual_seed(lowercase ) lowercase_ :Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) lowercase_ :List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) lowercase_ :List[str] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase__ ( self : List[str] ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase__ ( self : Optional[int] ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase__ ( self : Any ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase__ ( self : Any ): """simple docstring""" self._test_save_load_local() def lowercase__ ( self : List[Any] ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
223
'''simple docstring''' import math def UpperCAmelCase_ ( __lowerCamelCase : int ): lowercase_ :Dict = [] lowercase_ :List[Any] = 2 lowercase_ :Optional[Any] = int(math.sqrt(__lowerCamelCase ) ) # Size of every segment lowercase_ :Optional[Any] = [True] * (end + 1) lowercase_ :Dict = [] while start <= end: if temp[start] is True: in_prime.append(__lowerCamelCase ) for i in range(start * start ,end + 1 ,__lowerCamelCase ): lowercase_ :List[str] = False start += 1 prime += in_prime lowercase_ :Dict = end + 1 lowercase_ :Dict = min(2 * end ,__lowerCamelCase ) while low <= n: lowercase_ :Any = [True] * (high - low + 1) for each in in_prime: lowercase_ :List[Any] = math.floor(low / each ) * each if t < low: t += each for j in range(__lowerCamelCase ,high + 1 ,__lowerCamelCase ): lowercase_ :str = False for j in range(len(__lowerCamelCase ) ): if temp[j] is True: prime.append(j + low ) lowercase_ :Dict = high + 1 lowercase_ :Dict = min(high + end ,__lowerCamelCase ) return prime print(sieve(10**6))
223
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCamelCase : List[Any] = logging.get_logger(__name__) # General docstring __UpperCamelCase : Optional[int] = 'RegNetConfig' # Base docstring __UpperCamelCase : Tuple = 'facebook/regnet-y-040' __UpperCamelCase : str = [1, 1_0_8_8, 7, 7] # Image classification docstring __UpperCamelCase : Any = 'facebook/regnet-y-040' __UpperCamelCase : List[Any] = 'tabby, tabby cat' __UpperCamelCase : Optional[Any] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : str ,lowercase_ : int ,lowercase_ : int ,lowercase_ : int = 3 ,lowercase_ : int = 1 ,lowercase_ : int = 1 ,lowercase_ : Optional[str] = "relu" ,): super().__init__() lowerCAmelCase__ : Tuple = nn.Convad( __snake_case ,__snake_case ,kernel_size=__snake_case ,stride=__snake_case ,padding=kernel_size // 2 ,groups=__snake_case ,bias=__snake_case ,) lowerCAmelCase__ : Dict = nn.BatchNormad(__snake_case ) lowerCAmelCase__ : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def __lowerCAmelCase ( self : Dict ,lowercase_ : int ): lowerCAmelCase__ : int = self.convolution(__snake_case ) lowerCAmelCase__ : int = self.normalization(__snake_case ) lowerCAmelCase__ : Any = self.activation(__snake_case ) return hidden_state class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : List[str] ,lowercase_ : RegNetConfig ): super().__init__() lowerCAmelCase__ : Optional[int] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowerCAmelCase__ : Optional[int] = config.num_channels def __lowerCAmelCase ( self : int ,lowercase_ : List[str] ): lowerCAmelCase__ : List[Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowerCAmelCase__ : List[str] = self.embedder(__snake_case ) return hidden_state class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Tuple ,lowercase_ : int ,lowercase_ : int ,lowercase_ : int = 2 ): super().__init__() lowerCAmelCase__ : Optional[int] = nn.Convad(__snake_case ,__snake_case ,kernel_size=1 ,stride=__snake_case ,bias=__snake_case ) lowerCAmelCase__ : Optional[Any] = nn.BatchNormad(__snake_case ) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : Tensor ): lowerCAmelCase__ : Any = self.convolution(__snake_case ) lowerCAmelCase__ : Dict = self.normalization(__snake_case ) return hidden_state class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] ,lowercase_ : int ,lowercase_ : int ): super().__init__() lowerCAmelCase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowerCAmelCase__ : Dict = nn.Sequential( nn.Convad(__snake_case ,__snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(__snake_case ,__snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def __lowerCAmelCase ( self : List[str] ,lowercase_ : List[Any] ): # b c h w -> b c 1 1 lowerCAmelCase__ : Any = self.pooler(__snake_case ) lowerCAmelCase__ : Optional[Any] = self.attention(__snake_case ) lowerCAmelCase__ : Tuple = hidden_state * attention return hidden_state class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : List[str] ,lowercase_ : RegNetConfig ,lowercase_ : int ,lowercase_ : int ,lowercase_ : int = 1 ): super().__init__() lowerCAmelCase__ : Union[str, Any] = in_channels != out_channels or stride != 1 lowerCAmelCase__ : Dict = max(1 ,out_channels // config.groups_width ) lowerCAmelCase__ : List[str] = ( RegNetShortCut(__snake_case ,__snake_case ,stride=__snake_case ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ : int = nn.Sequential( RegNetConvLayer(__snake_case ,__snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(__snake_case ,__snake_case ,stride=__snake_case ,groups=__snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(__snake_case ,__snake_case ,kernel_size=1 ,activation=__snake_case ) ,) lowerCAmelCase__ : int = ACTaFN[config.hidden_act] def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : Tuple ): lowerCAmelCase__ : List[str] = hidden_state lowerCAmelCase__ : Dict = self.layer(__snake_case ) lowerCAmelCase__ : Tuple = self.shortcut(__snake_case ) hidden_state += residual lowerCAmelCase__ : Optional[int] = self.activation(__snake_case ) return hidden_state class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : List[str] ,lowercase_ : RegNetConfig ,lowercase_ : int ,lowercase_ : int ,lowercase_ : int = 1 ): super().__init__() lowerCAmelCase__ : Union[str, Any] = in_channels != out_channels or stride != 1 lowerCAmelCase__ : Dict = max(1 ,out_channels // config.groups_width ) lowerCAmelCase__ : Dict = ( RegNetShortCut(__snake_case ,__snake_case ,stride=__snake_case ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ : List[str] = nn.Sequential( RegNetConvLayer(__snake_case ,__snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(__snake_case ,__snake_case ,stride=__snake_case ,groups=__snake_case ,activation=config.hidden_act ) ,RegNetSELayer(__snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(__snake_case ,__snake_case ,kernel_size=1 ,activation=__snake_case ) ,) lowerCAmelCase__ : Union[str, Any] = ACTaFN[config.hidden_act] def __lowerCAmelCase ( self : Any ,lowercase_ : int ): lowerCAmelCase__ : Tuple = hidden_state lowerCAmelCase__ : Tuple = self.layer(__snake_case ) lowerCAmelCase__ : Optional[int] = self.shortcut(__snake_case ) hidden_state += residual lowerCAmelCase__ : Any = self.activation(__snake_case ) return hidden_state class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : int ,lowercase_ : RegNetConfig ,lowercase_ : int ,lowercase_ : int ,lowercase_ : int = 2 ,lowercase_ : int = 2 ,): super().__init__() lowerCAmelCase__ : int = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer lowerCAmelCase__ : Any = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( __snake_case ,__snake_case ,__snake_case ,stride=__snake_case ,) ,*[layer(__snake_case ,__snake_case ,__snake_case ) for _ in range(depth - 1 )] ,) def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : str ): lowerCAmelCase__ : Dict = self.layers(__snake_case ) return hidden_state class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : List[Any] ,lowercase_ : RegNetConfig ): super().__init__() lowerCAmelCase__ : Dict = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( __snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowerCAmelCase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(__snake_case ,__snake_case ,__snake_case ,depth=__snake_case ) ) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : Tensor ,lowercase_ : bool = False ,lowercase_ : bool = True ): lowerCAmelCase__ : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ : List[str] = hidden_states + (hidden_state,) lowerCAmelCase__ : int = stage_module(__snake_case ) if output_hidden_states: lowerCAmelCase__ : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__snake_case ,hidden_states=__snake_case ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): """simple docstring""" lowercase__ = RegNetConfig lowercase__ = "regnet" lowercase__ = "pixel_values" lowercase__ = True def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Optional[int] ): if isinstance(__snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(__snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def __lowerCAmelCase ( self : Dict ,lowercase_ : List[str] ,lowercase_ : Dict=False ): if isinstance(__snake_case ,__snake_case ): lowerCAmelCase__ : Optional[Any] = value __UpperCamelCase : Union[str, Any] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __UpperCamelCase : int = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCamelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): """simple docstring""" def __init__( self : Dict ,lowercase_ : Dict ): super().__init__(__snake_case ) lowerCAmelCase__ : str = config lowerCAmelCase__ : str = RegNetEmbeddings(__snake_case ) lowerCAmelCase__ : Dict = RegNetEncoder(__snake_case ) lowerCAmelCase__ : int = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Tensor ,lowercase_ : Optional[bool] = None ,lowercase_ : Optional[bool] = None ): lowerCAmelCase__ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : int = self.embedder(__snake_case ) lowerCAmelCase__ : Optional[int] = self.encoder( __snake_case ,output_hidden_states=__snake_case ,return_dict=__snake_case ) lowerCAmelCase__ : List[Any] = encoder_outputs[0] lowerCAmelCase__ : Any = self.pooler(__snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__snake_case ,pooler_output=__snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCamelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): """simple docstring""" def __init__( self : int ,lowercase_ : Optional[int] ): super().__init__(__snake_case ) lowerCAmelCase__ : Optional[Any] = config.num_labels lowerCAmelCase__ : Tuple = RegNetModel(__snake_case ) # classification head lowerCAmelCase__ : List[Any] = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Optional[torch.FloatTensor] = None ,lowercase_ : Optional[torch.LongTensor] = None ,lowercase_ : Optional[bool] = None ,lowercase_ : Optional[bool] = None ,): lowerCAmelCase__ : str = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : Optional[Any] = self.regnet(__snake_case ,output_hidden_states=__snake_case ,return_dict=__snake_case ) lowerCAmelCase__ : Any = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ : str = self.classifier(__snake_case ) lowerCAmelCase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase__ : List[str] = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase__ : int = 'single_label_classification' else: lowerCAmelCase__ : Dict = 'multi_label_classification' if self.config.problem_type == "regression": lowerCAmelCase__ : Any = MSELoss() if self.num_labels == 1: lowerCAmelCase__ : int = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowerCAmelCase__ : List[str] = loss_fct(__snake_case ,__snake_case ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase__ : Union[str, Any] = CrossEntropyLoss() lowerCAmelCase__ : Tuple = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase__ : Any = BCEWithLogitsLoss() lowerCAmelCase__ : Tuple = loss_fct(__snake_case ,__snake_case ) if not return_dict: lowerCAmelCase__ : Optional[int] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__snake_case ,logits=__snake_case ,hidden_states=outputs.hidden_states )
357
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
74
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase: List[Any] = logging.get_logger(__name__) _UpperCamelCase: int = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 'megatron-bert' def __init__( self : int, lowerCAmelCase : List[Any]=29056, lowerCAmelCase : int=1024, lowerCAmelCase : List[str]=24, lowerCAmelCase : Union[str, Any]=16, lowerCAmelCase : Union[str, Any]=4096, lowerCAmelCase : Dict="gelu", lowerCAmelCase : List[str]=0.1, lowerCAmelCase : Any=0.1, lowerCAmelCase : str=512, lowerCAmelCase : str=2, lowerCAmelCase : Any=0.02, lowerCAmelCase : Any=1e-12, lowerCAmelCase : List[str]=0, lowerCAmelCase : List[str]="absolute", lowerCAmelCase : Any=True, **lowerCAmelCase : Union[str, Any], ) -> Tuple: super().__init__(pad_token_id=lowerCAmelCase, **lowerCAmelCase ) lowercase : Tuple = vocab_size lowercase : Any = hidden_size lowercase : int = num_hidden_layers lowercase : Optional[int] = num_attention_heads lowercase : Optional[int] = hidden_act lowercase : Optional[int] = intermediate_size lowercase : List[Any] = hidden_dropout_prob lowercase : Union[str, Any] = attention_probs_dropout_prob lowercase : Optional[int] = max_position_embeddings lowercase : Optional[int] = type_vocab_size lowercase : Any = initializer_range lowercase : Any = layer_norm_eps lowercase : Optional[int] = position_embedding_type lowercase : Optional[int] = use_cache
255
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): @slow def lowercase ( self : List[Any] ) -> List[Any]: lowercase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) lowercase : Dict = AutoTokenizer.from_pretrained('google/mt5-small' ) lowercase : List[Any] = tokenizer('Hello there', return_tensors='tf' ).input_ids lowercase : Any = tokenizer('Hi I am', return_tensors='tf' ).input_ids lowercase : Dict = model(lowerCAmelCase, labels=lowerCAmelCase ).loss lowercase : Optional[int] = -tf.math.reduce_mean(lowerCAmelCase ).numpy() lowercase : Tuple = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
255
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCAmelCase = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] UpperCAmelCase = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] UpperCAmelCase = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) UpperCAmelCase = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) UpperCAmelCase = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List[str]: """simple docstring""" for tf_name, hf_name in patterns: snake_case_ = k.replace(_a , _a ) return k def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Optional[int]: """simple docstring""" snake_case_ = BigBirdPegasusConfig(**_a ) snake_case_ = BigBirdPegasusForConditionalGeneration(_a ) snake_case_ = torch_model.state_dict() snake_case_ = {} # separating decoder weights snake_case_ = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} snake_case_ = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): snake_case_ = [k.endswith(_a ) for ending in KEYS_TO_IGNORE] if any(_a ): continue snake_case_ = DECODER_PATTERNS snake_case_ = rename_state_dict_key(_a , _a ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): snake_case_ = v.T snake_case_ = torch.from_numpy(_a ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): snake_case_ = [k.endswith(_a ) for ending in KEYS_TO_IGNORE] if any(_a ): continue snake_case_ = REMAINING_PATTERNS snake_case_ = rename_state_dict_key(_a , _a ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): snake_case_ = v.T snake_case_ = torch.from_numpy(_a ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' snake_case_ = mapping["model.embed_positions.weight"] snake_case_ = mapping.pop('''model.embed_positions.weight''' ) snake_case_ = torch_model.load_state_dict(_a , strict=_a ) snake_case_ = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> List[Any]: """simple docstring""" snake_case_ = tf.train.list_variables(_a ) snake_case_ = {} snake_case_ = ["global_step"] for name, shape in tqdm(_a , desc='''converting tf checkpoint to dict''' ): snake_case_ = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case_ = tf.train.load_variable(_a , _a ) snake_case_ = array return tf_weights def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" snake_case_ = get_tf_weights_as_numpy(_a ) snake_case_ = convert_bigbird_pegasus(_a , _a ) torch_model.save_pretrained(_a ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") UpperCAmelCase = parser.parse_args() UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
364
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=99 , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=9 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=8 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.002 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=0 , _UpperCAmelCase=None , _UpperCAmelCase=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = encoder_seq_length snake_case_ = decoder_seq_length # For common tests snake_case_ = self.decoder_seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = d_ff snake_case_ = relative_attention_num_buckets snake_case_ = dropout_rate snake_case_ = initializer_factor snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = decoder_start_token_id snake_case_ = None snake_case_ = decoder_layers def UpperCamelCase__ ( self ): return TaConfig.from_pretrained('''google/umt5-base''' ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if attention_mask is None: snake_case_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case_ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_UpperCAmelCase ) if decoder_head_mask is None: snake_case_ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_UpperCAmelCase ) if cross_attn_head_mask is None: snake_case_ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def UpperCamelCase__ ( self ): snake_case_ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) snake_case_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case_ = input_ids.clamp(self.pad_token_id + 1 ) snake_case_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case_ = self.get_config() snake_case_ = config.num_attention_heads snake_case_ = self.prepare_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, input_dict def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase__ ( self ): return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCamelCase__ ( self ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): snake_case_ = UMTaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model( input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , ) snake_case_ = model(input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ) snake_case_ = result.last_hidden_state snake_case_ = result.past_key_values snake_case_ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): snake_case_ = UMTaModel(config=_UpperCAmelCase ).get_decoder().to(_UpperCAmelCase ).eval() # first forward pass snake_case_ = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) snake_case_ = model(_UpperCAmelCase ) snake_case_ = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) + 1 ) snake_case_ , snake_case_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = model(_UpperCAmelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , ): snake_case_ = UMTaModel(config=_UpperCAmelCase ).to(_UpperCAmelCase ).half().eval() snake_case_ = model(**_UpperCAmelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(_UpperCAmelCase ).any().item() ) @require_torch class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) __snake_case = (UMTaForConditionalGeneration,) if is_torch_available() else () __snake_case = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) __snake_case = True __snake_case = False __snake_case = False __snake_case = True __snake_case = True # The small UMT5 model needs higher percentages for CPU/MP tests __snake_case = [0.8, 0.9] def UpperCamelCase__ ( self ): snake_case_ = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() snake_case_ = UMTaModel(config_and_inputs[0] ).to(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=_UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] snake_case_ = self.model_tester.prepare_config_and_inputs() snake_case_ = config_and_inputs[0] snake_case_ = UMTaForConditionalGeneration(_UpperCAmelCase ).eval() model.to(_UpperCAmelCase ) snake_case_ = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=_UpperCAmelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=_UpperCAmelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=_UpperCAmelCase ), } for attn_name, (name, mask) in zip(_UpperCAmelCase , head_masking.items() ): snake_case_ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": snake_case_ = torch.ones( config.num_decoder_layers , config.num_heads , device=_UpperCAmelCase ) snake_case_ = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=_UpperCAmelCase , return_dict_in_generate=_UpperCAmelCase , **_UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step snake_case_ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def UpperCamelCase__ ( self ): pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def UpperCamelCase__ ( self ): snake_case_ = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=_UpperCAmelCase ).to(_UpperCAmelCase ) snake_case_ = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=_UpperCAmelCase , legacy=_UpperCAmelCase ) snake_case_ = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] snake_case_ = tokenizer(_UpperCAmelCase , return_tensors='''pt''' , padding=_UpperCAmelCase ).input_ids # fmt: off snake_case_ = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = model.generate(input_ids.to(_UpperCAmelCase ) ) snake_case_ = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] snake_case_ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
267
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = "x" , lowercase__ = 10**-10 , lowercase__ = 1 , ): __SCREAMING_SNAKE_CASE : Optional[Any] = symbols(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = lambdify(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = lambdify(lowercase__ , diff(lowercase__ , lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[int] = starting_point while True: if diff_function(lowercase__ ) != 0: __SCREAMING_SNAKE_CASE : int = prev_guess - multiplicity * func(lowercase__ ) / diff_function( lowercase__ ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __SCREAMING_SNAKE_CASE : Union[str, Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}""") # Find value of e print( 'The root of log(y) - 1 = 0 is ', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', f"""{newton_raphson("exp(x) - 1", 1_0, precision=0.0_0_5)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
9
'''simple docstring''' import operator def __magic_name__( lowerCamelCase, lowerCamelCase = False, lowerCamelCase = None): __lowerCAmelCase = operator.lt if reverse else operator.gt __lowerCAmelCase = solution or [] if not arr: return solution __lowerCAmelCase = [arr.pop(0)] for i, item in enumerate(lowerCamelCase): if _operator(lowerCamelCase, sublist[-1]): sublist.append(lowerCamelCase) arr.pop(lowerCamelCase) # merging sublist into solution list if not solution: solution.extend(lowerCamelCase) else: while sublist: __lowerCAmelCase = sublist.pop(0) for i, xx in enumerate(lowerCamelCase): if not _operator(lowerCamelCase, lowerCamelCase): solution.insert(lowerCamelCase, lowerCamelCase) break else: solution.append(lowerCamelCase) strand_sort(lowerCamelCase, lowerCamelCase, lowerCamelCase) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
174
0
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) _lowerCAmelCase : List[str] = logging.getLogger(__name__) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30_522, type=int) _lowerCAmelCase : str = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, """rb""") as fp: _lowerCAmelCase : Dict = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") _lowerCAmelCase : Dict = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCAmelCase : Tuple = [0] * args.vocab_size for k, v in counter.items(): _lowerCAmelCase : List[Any] = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
358
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase__ : def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Dict = seq_length UpperCAmelCase__ : Union[str, Any] = act_dim UpperCAmelCase__ : Dict = state_dim UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : List[str] = max_length UpperCAmelCase__ : int = is_training def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase__ : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __a ( self : int ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase__ : Optional[int] = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ =() SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids SCREAMING_SNAKE_CASE_ =False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = DecisionTransformerModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : List[str] ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : str = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Optional[int] = model.config torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset() UpperCAmelCase__ : Optional[Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ ) UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase__ : Union[str, Any] = state UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = model( states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1] UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 ) UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase__ : Tuple = torch.cat( [timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
298
0
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE__:Optional[Any] = logging.get_logger(__name__) def _lowerCamelCase( a , a ): def run_func(a ): @wraps(a ) def run_in_eager_mode(*a , **a ): return func(*a , **a ) @wraps(a ) @tf.function(experimental_compile=a ) def run_in_graph_mode(*a , **a ): return func(*a , **a ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _lowerCamelCase( a , a , a ): __a = random.Random() __a = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(a , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class snake_case__ ( snake_case_ ): _snake_case : TensorFlowBenchmarkArguments _snake_case : PretrainedConfig _snake_case : str = "TensorFlow" @property def a__ ( self ): return tf.__version__ def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # initialize GPU on separate process __a = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __a = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_inference ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __a = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_train ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) __a = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __a = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_inference ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) __a = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __a = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_train ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) __a = ( hasattr(lowerCamelCase , "architectures" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __a = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model __a = __import__("transformers" , fromlist=[model_class] ) __a = getattr(lowerCamelCase , lowerCamelCase ) __a = model_cls(lowerCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: __a = TF_MODEL_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently __a = config.vocab_size if hasattr(lowerCamelCase , "vocab_size" ) else config.encoder.vocab_size __a = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase , decoder_input_ids=lowerCamelCase , training=lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase , training=lowerCamelCase ) __a = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) __a = ( hasattr(lowerCamelCase , "architectures" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __a = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model __a = __import__("transformers" , fromlist=[model_class] ) __a = getattr(lowerCamelCase , lowerCamelCase ) __a = model_cls(lowerCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: __a = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently __a = config.vocab_size if hasattr(lowerCamelCase , "vocab_size" ) else config.encoder.vocab_size __a = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): __a = model(lowerCamelCase , decoder_input_ids=lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] __a = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): __a = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] __a = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients __a = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def a__ ( self , lowerCamelCase ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __a = timeit.repeat( lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def a__ ( self , lowerCamelCase ): logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) __a = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) __a = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() __a = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __a = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase ) __a = meminfo.used __a = Memory(lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) __a = None else: __a = measure_peak_memory_cpu(lowerCamelCase ) __a = Memory(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: __a = stop_memory_tracing(lowerCamelCase ) if memory is None: __a = summary.total else: __a = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
261
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase( a ): return getitem, k def _lowerCamelCase( a , a ): return setitem, k, v def _lowerCamelCase( a ): return delitem, k def _lowerCamelCase( a , a , *a ): try: return fun(a , *a ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE__:List[Any] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) SCREAMING_SNAKE_CASE__:List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] SCREAMING_SNAKE_CASE__:List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] SCREAMING_SNAKE_CASE__:Any = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] SCREAMING_SNAKE_CASE__:int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE__:Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase( a ): __a = HashMap(initial_block_size=4 ) __a = {} for _, (fun, *args) in enumerate(a ): __a , __a = _run_operation(a , a , *a ) __a , __a = _run_operation(a , a , *a ) assert my_res == py_res assert str(a ) == str(a ) assert set(a ) == set(a ) assert len(a ) == len(a ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase( ): def is_public(a ) -> bool: return not name.startswith("_" ) __a = {name for name in dir({} ) if is_public(a )} __a = {name for name in dir(HashMap() ) if is_public(a )} assert dict_public_names > hash_public_names
261
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = LDMTextToImagePipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS - { 'negative_prompt', 'negative_prompt_embeds', 'cross_attention_kwargs', 'prompt_embeds', } lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'callback', 'callback_steps', } lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = False def _lowercase ( self: Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) _lowerCamelCase : Any = DDIMScheduler( beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule="scaled_linear" ,clip_sample=__lowerCAmelCase ,set_alpha_to_one=__lowerCAmelCase ,) torch.manual_seed(0 ) _lowerCamelCase : Dict = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") ,up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCamelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) _lowerCamelCase : Union[str, Any] = CLIPTextModel(__lowerCAmelCase ) _lowerCamelCase : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _lowerCamelCase : str = { "unet": unet, "scheduler": scheduler, "vqvae": vae, "bert": text_encoder, "tokenizer": tokenizer, } return components def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Union[str, Any]=0 ): '''simple docstring''' if str(__lowerCAmelCase ).startswith("mps" ): _lowerCamelCase : Optional[Any] = torch.manual_seed(__lowerCAmelCase ) else: _lowerCamelCase : List[str] = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _lowerCamelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : str = self.get_dummy_components() _lowerCamelCase : Optional[int] = LDMTextToImagePipeline(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : str = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCamelCase : str = np.array([0.61_01, 0.61_56, 0.56_22, 0.48_95, 0.66_61, 0.38_04, 0.57_48, 0.61_36, 0.50_14] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class A_ ( unittest.TestCase ): def _lowercase ( self: Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self: Any ,__lowerCAmelCase: str ,__lowerCAmelCase: Any=torch.floataa ,__lowerCAmelCase: str=0 ): '''simple docstring''' _lowerCamelCase : str = torch.manual_seed(__lowerCAmelCase ) _lowerCamelCase : str = np.random.RandomState(__lowerCAmelCase ).standard_normal((1, 4, 32, 32) ) _lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : str = self.get_inputs(__lowerCAmelCase ) _lowerCamelCase : Any = pipe(**__lowerCAmelCase ).images _lowerCamelCase : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCamelCase : Union[str, Any] = np.array([0.5_18_25, 0.5_28_50, 0.5_25_43, 0.5_42_58, 0.5_23_04, 0.5_25_69, 0.5_43_63, 0.5_52_76, 0.5_68_78] ) _lowerCamelCase : Any = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self: Dict ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Dict=torch.floataa ,__lowerCAmelCase: List[str]=0 ): '''simple docstring''' _lowerCamelCase : int = torch.manual_seed(__lowerCAmelCase ) _lowerCamelCase : Dict = np.random.RandomState(__lowerCAmelCase ).standard_normal((1, 4, 32, 32) ) _lowerCamelCase : Any = torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Any = self.get_inputs(__lowerCAmelCase ) _lowerCamelCase : Dict = pipe(**__lowerCAmelCase ).images[0] _lowerCamelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" ) _lowerCamelCase : int = np.abs(expected_image - image ).max() assert max_diff < 1e-3
363
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Optional[int] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"] _lowerCamelCase : Dict = len(example["content"] ) / len(output["input_ids"] ) return output _lowerCAmelCase : Tuple = HfArgumentParser(PretokenizationArguments) _lowerCAmelCase : Optional[int] = parser.parse_args() if args.num_workers is None: _lowerCAmelCase : Any = multiprocessing.cpu_count() _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : Optional[int] = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') _lowerCAmelCase : Any = time.time() _lowerCAmelCase : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') _lowerCAmelCase : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
340
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = ["pixel_values"] def __init__( self : Any , __A : bool = True , __A : Dict[str, int] = None , __A : int = 0.9 , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : bool = True , __A : Dict[str, int] = None , __A : Union[int, float] = 1 / 2_5_5 , __A : bool = True , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : Union[str, Any] = size if size is not None else {"shortest_edge": 2_2_4} snake_case__ : Tuple = get_size_dict(__A , default_to_square=__A ) snake_case__ : Optional[Any] = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} snake_case__ : Dict = get_size_dict(__A , param_name="crop_size" ) snake_case__ : Optional[Any] = do_resize snake_case__ : Optional[Any] = size snake_case__ : Union[str, Any] = crop_pct snake_case__ : Dict = resample snake_case__ : Tuple = do_center_crop snake_case__ : Any = crop_size snake_case__ : int = do_rescale snake_case__ : List[str] = rescale_factor snake_case__ : Dict = do_normalize snake_case__ : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case__ : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _lowercase ( self : Dict , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[float] = None , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : List[Any] , ): snake_case__ : List[Any] = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: snake_case__ : Union[str, Any] = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case__ : int = int(size["height"] / crop_pct ) else: snake_case__ : Optional[int] = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(__A ) ) snake_case__ : Tuple = get_resize_output_image_size(__A , size=__A , default_to_square=__A ) else: if "shortest_edge" in size: snake_case__ : int = get_resize_output_image_size(__A , size=size["shortest_edge"] , default_to_square=__A ) elif "height" in size and "width" in size: snake_case__ : Dict = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(__A ) ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def _lowercase ( self : Tuple , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[int] , ): snake_case__ : List[Any] = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__A , size=(size["height"], size["width"]) , data_format=__A , **__A ) def _lowercase ( self : Tuple , __A : np.ndarray , __A : Union[int, float] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Any , ): return rescale(__A , scale=__A , data_format=__A , **__A ) def _lowercase ( self : List[Any] , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Tuple , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def _lowercase ( self : Dict , __A : ImageInput , __A : bool = None , __A : Dict[str, int] = None , __A : int = None , __A : PILImageResampling = None , __A : bool = None , __A : Dict[str, int] = None , __A : bool = None , __A : float = None , __A : bool = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[str, TensorType]] = None , __A : ChannelDimension = ChannelDimension.FIRST , **__A : List[Any] , ): snake_case__ : int = do_resize if do_resize is not None else self.do_resize snake_case__ : int = crop_pct if crop_pct is not None else self.crop_pct snake_case__ : Union[str, Any] = resample if resample is not None else self.resample snake_case__ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : Dict = image_mean if image_mean is not None else self.image_mean snake_case__ : Dict = image_std if image_std is not None else self.image_std snake_case__ : int = size if size is not None else self.size snake_case__ : List[Any] = get_size_dict(__A , default_to_square=__A ) snake_case__ : List[str] = crop_size if crop_size is not None else self.crop_size snake_case__ : Tuple = get_size_dict(__A , param_name="crop_size" ) snake_case__ : Any = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case__ : Tuple = [to_numpy_array(__A ) for image in images] if do_resize: snake_case__ : Optional[Any] = [self.resize(image=__A , size=__A , crop_pct=__A , resample=__A ) for image in images] if do_center_crop: snake_case__ : str = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: snake_case__ : List[str] = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: snake_case__ : Dict = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] snake_case__ : Optional[Any] = [to_channel_dimension_format(__A , __A ) for image in images] snake_case__ : Optional[int] = {"pixel_values": images} return BatchFeature(data=__A , tensor_type=__A )
286
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : str , __A : Optional[Any]=1_3 , __A : Dict=7 , __A : List[str]=True , __A : Any=True , __A : str=True , __A : Optional[Any]=True , __A : List[str]=9_9 , __A : Dict=3_2 , __A : Tuple=2 , __A : Tuple=4 , __A : Dict=3_7 , __A : Tuple="gelu" , __A : Any=0.1 , __A : str=0.1 , __A : int=5_1_2 , __A : Union[str, Any]=1_6 , __A : Optional[int]=2 , __A : Union[str, Any]=0.0_2 , __A : Tuple=3 , __A : Union[str, Any]=4 , __A : Optional[int]=None , ): snake_case__ : Optional[int] = parent snake_case__ : Optional[Any] = 1_3 snake_case__ : int = 7 snake_case__ : Optional[int] = True snake_case__ : Optional[Any] = True snake_case__ : List[str] = True snake_case__ : int = True snake_case__ : Optional[int] = 9_9 snake_case__ : Union[str, Any] = 3_8_4 snake_case__ : Optional[Any] = 2 snake_case__ : Union[str, Any] = 4 snake_case__ : Any = 3_7 snake_case__ : Any = "gelu" snake_case__ : str = 0.1 snake_case__ : Optional[Any] = 0.1 snake_case__ : Union[str, Any] = 5_1_2 snake_case__ : Optional[Any] = 1_6 snake_case__ : List[Any] = 2 snake_case__ : Optional[int] = 0.0_2 snake_case__ : Dict = 3 snake_case__ : Any = 4 snake_case__ : int = 1_2_8 snake_case__ : Dict = 2 snake_case__ : Any = 9 snake_case__ : List[str] = 1 snake_case__ : List[Any] = None def _lowercase ( self : List[str] ): snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : str = None if self.use_input_mask: snake_case__ : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_token_type_ids: snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Optional[Any] = None snake_case__ : Any = None snake_case__ : Tuple = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : int = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : int = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Dict , __A : Dict , __A : Dict , __A : Union[str, Any] , __A : Optional[int] , __A : Any , __A : Union[str, Any] , __A : Tuple ): snake_case__ : Optional[int] = TFConvBertModel(config=__A ) snake_case__ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ : List[str] = [input_ids, input_mask] snake_case__ : Union[str, Any] = model(__A ) snake_case__ : str = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Union[str, Any] , __A : List[Any] , __A : Any , __A : Union[str, Any] , __A : int , __A : Optional[Any] , __A : Dict , __A : Optional[int] ): snake_case__ : List[str] = TFConvBertForMaskedLM(config=__A ) snake_case__ : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : int = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Tuple , __A : Union[str, Any] , __A : List[Any] , __A : Any , __A : List[Any] , __A : List[Any] , __A : Optional[int] , __A : List[str] ): snake_case__ : Any = self.num_labels snake_case__ : List[Any] = TFConvBertForSequenceClassification(config=__A ) snake_case__ : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : Optional[int] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : int , __A : List[Any] , __A : Union[str, Any] , __A : Optional[Any] , __A : List[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : Optional[int] ): snake_case__ : Optional[Any] = self.num_choices snake_case__ : Any = TFConvBertForMultipleChoice(config=__A ) snake_case__ : Optional[int] = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Optional[Any] = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Optional[int] = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) snake_case__ : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } snake_case__ : Optional[Any] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : List[str] , __A : Tuple , __A : str , __A : Union[str, Any] , __A : Union[str, Any] , __A : Any , __A : int , __A : Tuple ): snake_case__ : Dict = self.num_labels snake_case__ : str = TFConvBertForTokenClassification(config=__A ) snake_case__ : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : List[str] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Optional[int] , __A : Union[str, Any] , __A : List[Any] , __A : List[str] , __A : Any , __A : Any , __A : Optional[int] , __A : Optional[Any] ): snake_case__ : Any = TFConvBertForQuestionAnswering(config=__A ) snake_case__ : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : int = model(__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : Any ): snake_case__ : List[Any] = self.prepare_config_and_inputs() ( ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ) : List[str] = config_and_inputs snake_case__ : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a_ = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False a_ = False def _lowercase ( self : int ): snake_case__ : Optional[Any] = TFConvBertModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=__A , hidden_size=3_7 ) def _lowercase ( self : List[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Any ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def _lowercase ( self : Dict ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def _lowercase ( self : Optional[int] ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def _lowercase ( self : Dict ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def _lowercase ( self : Dict ): snake_case__, snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = True snake_case__ : int = True if hasattr(__A , "use_cache" ): snake_case__ : Optional[Any] = True snake_case__ : Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) snake_case__ : List[str] = getattr(self.model_tester , "key_length" , __A ) for model_class in self.all_model_classes: snake_case__ : Tuple = self._prepare_for_class(__A , __A ) snake_case__ : List[str] = model_class(__A ) snake_case__ : List[Any] = len(model(__A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A , saved_model=__A ) snake_case__ : str = os.path.join(__A , "saved_model" , "1" ) snake_case__ : str = tf.keras.models.load_model(__A ) snake_case__ : Optional[Any] = model(__A ) if self.is_encoder_decoder: snake_case__ : Tuple = outputs["encoder_hidden_states"] snake_case__ : str = outputs["encoder_attentions"] else: snake_case__ : Dict = outputs["hidden_states"] snake_case__ : Tuple = outputs["attentions"] self.assertEqual(len(__A ) , __A ) snake_case__ : int = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__A ) , __A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowercase ( self : Tuple ): snake_case__ : Optional[Any] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__A ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Optional[Any] = True snake_case__ : List[Any] = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) snake_case__ : int = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) snake_case__ : Any = getattr(self.model_tester , "key_length" , __A ) snake_case__ : List[Any] = getattr(self.model_tester , "key_length" , __A ) def check_decoder_attentions_output(__A : Optional[int] ): snake_case__ : Optional[Any] = len(__A ) self.assertEqual(out_len % 2 , 0 ) snake_case__ : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__A : Any ): snake_case__ : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: snake_case__ : Optional[int] = True snake_case__ : Any = False snake_case__ : Dict = model_class(__A ) snake_case__ : List[Any] = model(self._prepare_for_class(__A , __A ) ) snake_case__ : Dict = len(__A ) self.assertEqual(config.output_hidden_states , __A ) check_encoder_attentions_output(__A ) if self.is_encoder_decoder: snake_case__ : str = model_class(__A ) snake_case__ : List[Any] = model(self._prepare_for_class(__A , __A ) ) self.assertEqual(config.output_hidden_states , __A ) check_decoder_attentions_output(__A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case__ : Optional[int] = True snake_case__ : Optional[Any] = model_class(__A ) snake_case__ : Union[str, Any] = model(self._prepare_for_class(__A , __A ) ) self.assertEqual(config.output_hidden_states , __A ) check_encoder_attentions_output(__A ) # Check attention is always last and order is fine snake_case__ : Optional[int] = True snake_case__ : List[Any] = True snake_case__ : Any = model_class(__A ) snake_case__ : str = model(self._prepare_for_class(__A , __A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__A ) ) self.assertEqual(model.config.output_hidden_states , __A ) check_encoder_attentions_output(__A ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : int ): snake_case__ : int = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) snake_case__ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case__ : str = model(__A )[0] snake_case__ : int = [1, 6, 7_6_8] self.assertEqual(output.shape , __A ) snake_case__ : List[Any] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __A , atol=1e-4 )
286
1
def _a ( lowerCamelCase: int = 10_00 ) -> int: '''simple docstring''' __A = 3 __A = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'{solution() = }')
117
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') snake_case__ : Optional[int] = parser.parse_args() if args.model_type == "bert": snake_case__ : Dict = BertForMaskedLM.from_pretrained(args.model_name) snake_case__ : Union[str, Any] = 'bert' else: raise ValueError('args.model_type should be "bert".') snake_case__ : Optional[int] = model.state_dict() snake_case__ : List[Any] = {} for w in ["word_embeddings", "position_embeddings"]: snake_case__ : Tuple = state_dict[f'{prefix}.embeddings.{w}.weight'] for w in ["weight", "bias"]: snake_case__ : Optional[Any] = state_dict[f'{prefix}.embeddings.LayerNorm.{w}'] snake_case__ : int = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: snake_case__ : Union[str, Any] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}' ] snake_case__ : Dict = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}' ] snake_case__ : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}' ] snake_case__ : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}' ] snake_case__ : Optional[int] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}' ] snake_case__ : Optional[Any] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}' ] snake_case__ : List[str] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}' ] snake_case__ : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}' ] std_idx += 1 snake_case__ : Optional[int] = state_dict['cls.predictions.decoder.weight'] snake_case__ : str = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: snake_case__ : int = state_dict[f'cls.predictions.transform.dense.{w}'] snake_case__ : Optional[int] = state_dict[f'cls.predictions.transform.LayerNorm.{w}'] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
117
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = XLMTokenizer _lowerCamelCase = False def UpperCamelCase__( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __A : Dict = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __A : Union[str, Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__lowerCamelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__lowerCamelCase ) ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = '''lower newer''' __A : int = '''lower newer''' return input_text, output_text def UpperCamelCase__( self ): '''simple docstring''' __A : Union[str, Any] = XLMTokenizer(self.vocab_file , self.merges_file ) __A : Optional[Any] = '''lower''' __A : Any = ['''low''', '''er</w>'''] __A : Tuple = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __A : str = tokens + ['''<unk>'''] __A : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) @slow def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) __A : Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCamelCase ) __A : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCamelCase ) __A : int = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) __A : List[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
291
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __UpperCAmelCase = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __UpperCAmelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( __snake_case : str ): '''simple docstring''' if "://" in dataset_path: UpperCAmelCase_ : int = dataset_path.split('://' )[1] return dataset_path def lowercase__ ( __snake_case : fsspec.AbstractFileSystem ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( __snake_case : fsspec.AbstractFileSystem , __snake_case : str , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = not is_remote_filesystem(__snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__snake_case ) , fs._strip_protocol(__snake_case ) ) else: fs.mv(__snake_case , __snake_case , recursive=__snake_case ) def lowercase__ ( ): '''simple docstring''' if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : int = threading.Lock()
29
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase (_snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = IFImgaImgSuperResolutionPipeline _snake_case : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _snake_case : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} def __UpperCAmelCase ( self ) -> Optional[Any]: return self._get_superresolution_dummy_components() def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> Any: if str(_UpperCamelCase ).startswith('mps' ): UpperCAmelCase_ : List[Any] = torch.manual_seed(_UpperCamelCase ) else: UpperCAmelCase_ : int = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Dict = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __UpperCAmelCase ( self ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __UpperCAmelCase ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __UpperCAmelCase ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self._test_save_load_local() def __UpperCAmelCase ( self ) -> Dict: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
import math def _a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(SCREAMING_SNAKE_CASE_ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
350
import math def _a ( SCREAMING_SNAKE_CASE_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( SCREAMING_SNAKE_CASE_ : float = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(SCREAMING_SNAKE_CASE_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
102
0
'''simple docstring''' from __future__ import annotations def __lowercase ( __lowercase , __lowercase = None , __lowercase = None ) -> None: '''simple docstring''' if start is None: _A = 0 if end is None: _A = len(__lowercase ) - 1 if start >= end: return _A = (start + end) // 2 slowsort(__lowercase , __lowercase , __lowercase ) slowsort(__lowercase , mid + 1 , __lowercase ) if sequence[end] < sequence[mid]: _A , _A = sequence[mid], sequence[end] slowsort(__lowercase , __lowercase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
79
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Tuple = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=A__ ) lowerCAmelCase_ : List[str] = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=A__ ) env_command_parser(subparsers=A__ ) launch_command_parser(subparsers=A__ ) tpu_command_parser(subparsers=A__ ) test_command_parser(subparsers=A__ ) # Let's go lowerCAmelCase_ : Dict = parser.parse_args() if not hasattr(A__ , """func""" ): parser.print_help() exit(1 ) # Run args.func(A__ ) if __name__ == "__main__": main()
89
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __A : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : int = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } __A : List[Any] = { "unc-nlp/lxmert-base-uncased": 512, } __A : Optional[Any] = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = LxmertTokenizer def __init__( self : Dict , lowerCamelCase : Tuple=None , lowerCamelCase : List[str]=None , lowerCamelCase : Dict=True , lowerCamelCase : List[Any]="[UNK]" , lowerCamelCase : Tuple="[SEP]" , lowerCamelCase : str="[PAD]" , lowerCamelCase : Any="[CLS]" , lowerCamelCase : str="[MASK]" , lowerCamelCase : Dict=True , lowerCamelCase : Union[str, Any]=None , **lowerCamelCase : Optional[int] , ) -> Optional[Any]: super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , ) lowerCAmelCase_ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Tuple = getattr(lowerCamelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : Optional[Any] = do_lower_case lowerCAmelCase_ : Dict = strip_accents lowerCAmelCase_ : List[Any] = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCamelCase ) lowerCAmelCase_ : Tuple = do_lower_case def __lowercase ( self : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[Any]=None ) -> int: lowerCAmelCase_ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase_ : int = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase )
89
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str], lowerCamelCase : Any, lowerCamelCase : Tuple=2, lowerCamelCase : Optional[int]=True, lowerCamelCase : int=False, lowerCamelCase : Optional[int]=10, lowerCamelCase : Any=3, lowerCamelCase : List[Any]=32 * 8, lowerCamelCase : List[str]=32 * 8, lowerCamelCase : Dict=4, lowerCamelCase : Dict=64, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = is_training lowercase__ = use_auxiliary_loss lowercase__ = num_queries lowercase__ = num_channels lowercase__ = min_size lowercase__ = max_size lowercase__ = num_labels lowercase__ = hidden_dim lowercase__ = hidden_dim def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase ) lowercase__ = torch.ones([self.batch_size, self.min_size, self.max_size], device=lowerCamelCase ) lowercase__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=lowerCamelCase ) > 0.5 ).float() lowercase__ = (torch.rand((self.batch_size, self.num_labels), device=lowerCamelCase ) > 0.5).long() lowercase__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = MaskaFormerConfig( hidden_size=self.hidden_dim, ) lowercase__ = self.num_queries lowercase__ = self.num_labels lowercase__ = [1, 1, 1, 1] lowercase__ = self.num_channels lowercase__ = 64 lowercase__ = 128 lowercase__ = self.hidden_dim lowercase__ = self.hidden_dim lowercase__ = self.hidden_dim return config def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.prepare_config_and_inputs() lowercase__ = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = output.encoder_hidden_states lowercase__ = output.pixel_decoder_hidden_states lowercase__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase ), config.decoder_layers ) def lowercase__ ( self : int, lowerCamelCase : Any, lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : str=False ): '''simple docstring''' with torch.no_grad(): lowercase__ = MaskaFormerModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(pixel_values=lowerCamelCase, pixel_mask=lowerCamelCase ) lowercase__ = model(lowerCamelCase, output_hidden_states=lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase, lowerCamelCase ) def lowercase__ ( self : List[str], lowerCamelCase : Tuple, lowerCamelCase : Optional[Any], lowerCamelCase : str, lowerCamelCase : Optional[Any], lowerCamelCase : Any ): '''simple docstring''' lowercase__ = MaskaFormerForUniversalSegmentation(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() def comm_check_on_output(lowerCamelCase : Union[str, Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase__ = model(pixel_values=lowerCamelCase, pixel_mask=lowerCamelCase ) lowercase__ = model(lowerCamelCase ) comm_check_on_output(lowerCamelCase ) lowercase__ = model( pixel_values=lowerCamelCase, pixel_mask=lowerCamelCase, mask_labels=lowerCamelCase, class_labels=lowerCamelCase ) comm_check_on_output(lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape, torch.Size([1] ) ) @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowercase__ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = MaskaFormerModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase ) def lowercase__ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase, **lowerCamelCase, output_hidden_states=lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def lowercase__ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def lowercase__ ( self : str ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : List[str] ): '''simple docstring''' pass def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) @slow def lowercase__ ( self : List[str] ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowercase__ = MaskaFormerModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = (self.model_tester.min_size,) * 2 lowercase__ = { '''pixel_values''': torch.randn((2, 3, *size), device=lowerCamelCase ), '''mask_labels''': torch.randn((2, 10, *size), device=lowerCamelCase ), '''class_labels''': torch.zeros(2, 10, device=lowerCamelCase ).long(), } lowercase__ = self.model_tester.get_config() lowercase__ = MaskaFormerForUniversalSegmentation(lowerCamelCase ).to(lowerCamelCase ) lowercase__ = model(**lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def lowercase__ ( self : str ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase, **lowerCamelCase, output_hidden_states=lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ).to(lowerCamelCase ) lowercase__ = model(**lowerCamelCase, output_attentions=lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase__ ( self : int ): '''simple docstring''' if not self.model_tester.is_training: return lowercase__ = self.all_model_classes[1] lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs() lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = model(lowerCamelCase, mask_labels=lowerCamelCase, class_labels=lowerCamelCase ).loss loss.backward() def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.all_model_classes[1] lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs() lowercase__ = True lowercase__ = True lowercase__ = model_class(lowerCamelCase ).to(lowerCamelCase ) model.train() lowercase__ = model(lowerCamelCase, mask_labels=lowerCamelCase, class_labels=lowerCamelCase ) lowercase__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowercase__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) A__ : List[Any] = 1e-4 def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : Any ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) lowercase__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase, (1, 3, 384, 384) ) with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], lowerCamelCase, atol=lowerCamelCase ) ) lowercase__ = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], lowerCamelCase, atol=lowerCamelCase ) ) lowercase__ = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], lowerCamelCase, atol=lowerCamelCase ) ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase ).eval() lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) lowercase__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase, (1, 3, 384, 384) ) with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) # masks_queries_logits lowercase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowercase__ = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] lowercase__ = torch.tensor(lowerCamelCase ).to(lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], lowerCamelCase, atol=lowerCamelCase ) ) # class_queries_logits lowercase__ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1) ) lowercase__ = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCamelCase, atol=lowerCamelCase ) ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase ).eval() lowercase__ = self.default_image_processor lowercase__ = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )], segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )], return_tensors='''pt''', ) lowercase__ = inputs['''pixel_values'''].to(lowerCamelCase ) lowercase__ = [el.to(lowerCamelCase ) for el in inputs['''mask_labels''']] lowercase__ = [el.to(lowerCamelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) self.assertTrue(outputs.loss is not None )
207
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : Dict, lowerCamelCase : List[str]=2, lowerCamelCase : List[str]=32, lowerCamelCase : Tuple=16, lowerCamelCase : List[Any]=3, lowerCamelCase : List[Any]=True, lowerCamelCase : str=True, lowerCamelCase : Tuple=32, lowerCamelCase : Dict=4, lowerCamelCase : Dict=[0, 1, 2, 3], lowerCamelCase : Union[str, Any]=4, lowerCamelCase : Optional[int]=37, lowerCamelCase : Optional[Any]="gelu", lowerCamelCase : List[Any]=0.1, lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : Optional[int]=0.02, lowerCamelCase : str=3, lowerCamelCase : str=[1, 384, 24, 24], lowerCamelCase : Optional[int]=True, lowerCamelCase : List[str]=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = backbone_out_indices lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = backbone_featmap_shape lowercase__ = scope lowercase__ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, backbone_config=lowerCamelCase, backbone_featmap_shape=self.backbone_featmap_shape, ) def lowercase__ ( self : str, lowerCamelCase : Optional[Any], lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = DPTModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = DPTForDepthEstimation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size) ) def lowercase__ ( self : int, lowerCamelCase : Any, lowerCamelCase : Optional[int], lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = DPTForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowercase__ = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = DPTModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' pass def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear ) ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True if model_class in get_values(lowerCamelCase ): continue lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : List[str] ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = False lowercase__ = True if model_class in get_values(lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.gradient_checkpointing_enable() model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: lowercase__ = model_class(config=lowerCamelCase ) # Skip the check for the backbone lowercase__ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowercase__ = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F"""Parameter {name} of model {model_class} seems not properly initialized""", ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : int ): '''simple docstring''' pass @slow def lowercase__ ( self : Dict ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowercase__ = DPTModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = '''add''' with self.assertRaises(lowerCamelCase ): lowercase__ = DPTForDepthEstimation(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Optional[Any] ): '''simple docstring''' lowercase__ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) lowercase__ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(lowerCamelCase ) lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) lowercase__ = outputs.predicted_depth # verify the predicted depth lowercase__ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape, lowerCamelCase ) lowercase__ = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100, lowerCamelCase, atol=1E-4 ) )
207
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__ : Optional[int] ={ '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any =['''ConvNextFeatureExtractor'''] A__ : str =['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] =[ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str =[ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A__ : int =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
360
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase = 4_00_00_00 ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase , _lowerCAmelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = b, a + b return sum(lowerCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
220
0
"""simple docstring""" import functools def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] ): '''simple docstring''' if not isinstance(A__ , A__ ) or not all(isinstance(A__ , A__ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(A__ ) != 3 or not all(isinstance(A__ , A__ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(A__ ) == 0: return 0 if min(A__ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(A__ ) >= 366: raise ValueError('All days elements should be less than 366' ) lowercase__ : Tuple = set(A__ ) @functools.cache def dynamic_programming(_lowerCAmelCase : Optional[int] ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
77
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
99
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _lowerCAmelCase ): def __init__( self :List[Any] , _lowercase :int) -> Optional[int]: super().__init__() UpperCAmelCase_ = nn.ModuleList(SCREAMING_SNAKE_CASE_) def __a ( self :str , _lowercase :str , _lowercase :Union[str, Any] , _lowercase :int , _lowercase :List[Any] , _lowercase :Any , _lowercase :Tuple = None , _lowercase :Union[str, Any] = None , _lowercase :List[str] = None , _lowercase :int = None , _lowercase :Optional[int] = False , _lowercase :Tuple = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.nets)): UpperCAmelCase_ = controlnet( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) # merge samples if i == 0: UpperCAmelCase_ = down_samples, mid_sample else: UpperCAmelCase_ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __a ( self :int , _lowercase :List[str] , _lowercase :str = True , _lowercase :Any = None , _lowercase :Optional[Any] = False , _lowercase :str = None , ) -> str: UpperCAmelCase_ = 0 UpperCAmelCase_ = save_directory for controlnet in self.nets: controlnet.save_pretrained( SCREAMING_SNAKE_CASE_ , is_main_process=SCREAMING_SNAKE_CASE_ , save_function=SCREAMING_SNAKE_CASE_ , safe_serialization=SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ , ) idx += 1 UpperCAmelCase_ = model_path_to_save + f"_{idx}" @classmethod def __a ( cls :List[Any] , _lowercase :str , **_lowercase :int) -> int: UpperCAmelCase_ = 0 UpperCAmelCase_ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... UpperCAmelCase_ = pretrained_model_path while os.path.isdir(SCREAMING_SNAKE_CASE_): UpperCAmelCase_ = ControlNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) controlnets.append(SCREAMING_SNAKE_CASE_) idx += 1 UpperCAmelCase_ = pretrained_model_path + f"_{idx}" logger.info(f"{len(SCREAMING_SNAKE_CASE_)} controlnets loaded from {pretrained_model_path}.") if len(SCREAMING_SNAKE_CASE_) == 0: raise ValueError( f"No ControlNets found under {os.path.dirname(SCREAMING_SNAKE_CASE_)}. Expected at least {pretrained_model_path + '_0'}.") return cls(SCREAMING_SNAKE_CASE_)
366
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) UpperCamelCase_ = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase_ = "sshleifer/tiny-mbart" @require_torch class a_ ( _snake_case ): def __a ( self :str , _lowercase :Any=False , _lowercase :Tuple=None , _lowercase :Dict=True , _lowercase :Tuple=True , _lowercase :List[Any]=True , _lowercase :List[str]=True , ) -> int: UpperCAmelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history if not do_eval: return UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) assert not math.isnan(float(last_step_stats['''eval_loss'''])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __a ( self :Dict) -> str: self.run_seqaseq_quick() @require_torch_multi_gpu def __a ( self :Any) -> int: self.run_seqaseq_quick(distributed=_lowercase) @require_torch_multi_gpu def __a ( self :int) -> Any: self.run_seqaseq_quick(distributed=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> List[str]: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Union[str, Any]) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :int) -> Any: self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase) @require_apex @require_torch_gpu def __a ( self :Tuple) -> str: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') @parameterized.expand(['''base''', '''low''', '''high''', '''mixed''']) @require_torch_multi_gpu def __a ( self :str , _lowercase :Any) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase_ = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase_ = experiments[experiment_id] UpperCAmelCase_ = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase_ = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str''']) UpperCAmelCase_ = len(re.findall(_lowercase , cl.err)) self.assertEqual(_lowercase , data['''n_matches''']) @slow def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] UpperCAmelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) # test if do_predict saves generations and metrics UpperCAmelCase_ = os.listdir(_lowercase) UpperCAmelCase_ = {os.path.basename(_lowercase) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __a ( self :List[str]) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase :str) -> Tuple[int, float]: UpperCAmelCase_ = '''--skip_memory_metrics 0''' UpperCAmelCase_ = self.run_trainer( max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20) UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20) UpperCAmelCase_ = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) UpperCAmelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowercase , _lowercase , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def __a ( self :Any , _lowercase :int , _lowercase :str , _lowercase :int , _lowercase :float = 3E-3 , _lowercase :str = "adafactor" , _lowercase :bool = False , _lowercase :str = None , _lowercase :int = 0 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :int = None , ) -> List[Any]: UpperCAmelCase_ = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowercase)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowercase)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() UpperCAmelCase_ = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowercase)}\n ".split() UpperCAmelCase_ = ''' --do_predict '''.split() UpperCAmelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ = get_gpu_count() UpperCAmelCase_ = get_torch_dist_unique_port() UpperCAmelCase_ = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() UpperCAmelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env()) else: UpperCAmelCase_ = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase): main() return output_dir
344
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase : List[Any] = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __lowerCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
107
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __A : str = parser.parse_args() __A : List[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __A : Dict = CLIPImageProcessor() __A : Union[str, Any] = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __A : List[str] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
33
0
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''', ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''', ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''', [None, '''v2'''] ) def _a( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =hf_hub_url(repo_id=UpperCamelCase__, path=UpperCamelCase__, revision=UpperCamelCase__ ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(UpperCamelCase__ )}"
361
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : List[str] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] =StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE__ : str =sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler('''sample_euler''' ) SCREAMING_SNAKE_CASE__ : List[Any] ='''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : List[str] =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =sd_pipe([prompt] , generator=__lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =output.images SCREAMING_SNAKE_CASE__ : int =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : Any =np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : List[str] =StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE__ : int =sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler('''sample_euler''' ) SCREAMING_SNAKE_CASE__ : Any ='''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : Dict =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple =sd_pipe([prompt] , generator=__lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ : Dict =output.images SCREAMING_SNAKE_CASE__ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : List[str] =np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __magic_name__ ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Any =StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE__ : Tuple =sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) SCREAMING_SNAKE_CASE__ : Tuple ='''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] =sd_pipe( [prompt] , generator=__lowercase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=__lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[int] =output.images SCREAMING_SNAKE_CASE__ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] =np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
222
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Union[str, Any] = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
"""simple docstring""" from math import ceil def a__ ( snake_case__ , snake_case__ ) -> Optional[int]: lowerCamelCase = list(range(0 , snake_case__ ) ) lowerCamelCase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowerCamelCase = [] for i in device_map_blocks: if device_map_blocks.count(snake_case__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(snake_case__ ) # Missing blocks lowerCamelCase = [i for i in blocks if i not in device_map_blocks] lowerCamelCase = [i for i in device_map_blocks if i not in blocks] if len(snake_case__ ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(snake_case__ ) ) if len(snake_case__ ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(snake_case__ ) ) if len(snake_case__ ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(snake_case__ ) ) def a__ ( snake_case__ , snake_case__ ) -> List[Any]: lowerCamelCase = list(range(snake_case__ ) ) lowerCamelCase = int(ceil(n_layers / len(snake_case__ ) ) ) lowerCamelCase = [layers[i : i + n_blocks] for i in range(0 , snake_case__ , snake_case__ )] return dict(zip(snake_case__ , snake_case__ ) )
291
1
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase ( _UpperCamelCase : Callable , _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : int = int(np.ceil((x_end - xa) / step_size ) ) __UpperCAmelCase : Optional[Any] = np.zeros((n + 1,) ) __UpperCAmelCase : Optional[int] = ya __UpperCAmelCase : str = xa for k in range(a__ ): __UpperCAmelCase : int = y[k] + step_size * ode_func(a__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
320
0
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class A : '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase=1_3 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=9_9 , _UpperCAmelCase=3_2 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=3_7 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1_2_8 , _UpperCAmelCase=3_2 , _UpperCAmelCase=1_6 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ) -> str: __UpperCamelCase : Union[str, Any] = parent __UpperCamelCase : Optional[Any] = batch_size __UpperCamelCase : List[str] = seq_length __UpperCamelCase : int = is_training __UpperCamelCase : Union[str, Any] = use_input_mask __UpperCamelCase : Optional[int] = use_token_type_ids __UpperCamelCase : Dict = use_labels __UpperCamelCase : Tuple = vocab_size __UpperCamelCase : Any = hidden_size __UpperCamelCase : str = num_hidden_layers __UpperCamelCase : List[str] = num_attention_heads __UpperCamelCase : Any = intermediate_size __UpperCamelCase : Any = hidden_act __UpperCamelCase : Union[str, Any] = hidden_dropout_prob __UpperCamelCase : Dict = attention_probs_dropout_prob __UpperCamelCase : Optional[int] = max_position_embeddings __UpperCamelCase : Union[str, Any] = type_vocab_size __UpperCamelCase : Optional[Any] = type_sequence_label_size __UpperCamelCase : str = initializer_range __UpperCamelCase : Tuple = num_labels __UpperCamelCase : Dict = num_choices __UpperCamelCase : Any = scope def a_ (self ) -> List[Any]: __UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : Dict = None if self.use_input_mask: __UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : List[Any] = None if self.use_token_type_ids: __UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Tuple = None __UpperCamelCase : str = None if self.use_labels: __UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ (self ) -> Tuple: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def a_ (self ) -> List[Any]: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Union[str, Any] = self.prepare_config_and_inputs() __UpperCamelCase : List[Any] = True __UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: __UpperCamelCase : Union[str, Any] = NezhaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __UpperCamelCase : Optional[int] = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Dict: __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Dict = NezhaModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : Tuple = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __UpperCamelCase : Optional[int] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) __UpperCamelCase : str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: __UpperCamelCase : Optional[Any] = NezhaForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: __UpperCamelCase : Union[str, Any] = NezhaForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : List[Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: __UpperCamelCase : str = NezhaForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: __UpperCamelCase : int = NezhaForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : Dict = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: __UpperCamelCase : int = self.num_labels __UpperCamelCase : Union[str, Any] = NezhaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: __UpperCamelCase : int = self.num_labels __UpperCamelCase : str = NezhaForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : Dict = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: __UpperCamelCase : Tuple = self.num_choices __UpperCamelCase : Tuple = NezhaForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase : Any = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ (self ) -> Dict: __UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Optional[Any] = config_and_inputs __UpperCamelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) A = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) A = True def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> List[str]: __UpperCamelCase : List[str] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __UpperCamelCase : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __UpperCamelCase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a_ (self ) -> Any: __UpperCamelCase : Dict = NezhaModelTester(self ) __UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=3_7 ) def a_ (self ) -> Dict: self.config_tester.run_common_tests() def a_ (self ) -> List[str]: __UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a_ (self ) -> List[str]: __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase ) def a_ (self ) -> List[str]: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() __UpperCamelCase : Tuple = None self.model_tester.create_and_check_model_as_decoder( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) def a_ (self ) -> Dict: __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a_ (self ) -> Optional[Any]: __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a_ (self ) -> int: __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_UpperCAmelCase ) def a_ (self ) -> List[str]: __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a_ (self ) -> List[Any]: __UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a_ (self ) -> str: __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a_ (self ) -> Dict: __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def a_ (self ) -> Any: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : str = NezhaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def a_ (self ) -> str: __UpperCamelCase , __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __UpperCamelCase : Any = True __UpperCamelCase : List[Any] = model_class(config=_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : Optional[int] = torch.jit.trace( _UpperCAmelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , "bert.pt" ) ) __UpperCamelCase : Union[str, Any] = torch.jit.load(os.path.join(_UpperCAmelCase , "bert.pt" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["input_ids"].to(_UpperCAmelCase ) , inputs_dict["attention_mask"].to(_UpperCAmelCase ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def a_ (self ) -> Tuple: __UpperCamelCase : Any = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) __UpperCamelCase : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase : Any = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __UpperCamelCase : Optional[int] = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , _UpperCAmelCase ) __UpperCamelCase : Dict = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) ) @slow def a_ (self ) -> Tuple: __UpperCamelCase : int = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) __UpperCamelCase : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase : Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __UpperCamelCase : Optional[int] = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape , _UpperCAmelCase ) __UpperCamelCase : Optional[Any] = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) )
298
from functools import reduce UpperCAmelCase__ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def A ( _UpperCAmelCase : str = N ) -> int: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _UpperCAmelCase , _UpperCAmelCase : str(int(_UpperCAmelCase ) * int(_UpperCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(_UpperCAmelCase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
339
0
from manim import * class UpperCamelCase ( _UpperCAmelCase ): def __A ( self ): A__ = Rectangle(height=0.5 , width=0.5 ) A__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) A__ = [mem.copy() for i in range(6 )] A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = VGroup(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("CPU" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase__ ) A__ = [mem.copy() for i in range(4 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("GPU" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase__ ) A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("Model" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase__ ) A__ = [] for i, rect in enumerate(UpperCAmelCase__ ): rect.set_stroke(UpperCAmelCase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) A__ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCAmelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=UpperCAmelCase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=UpperCAmelCase__ , buff=0.0 ) self.add(UpperCAmelCase__ ) cpu_targs.append(UpperCAmelCase__ ) A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("Loaded Checkpoint" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , aligned_edge=UpperCAmelCase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) A__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A__ = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(UpperCAmelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) A__ = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase__ ) , Write(UpperCAmelCase__ ) ) self.play(Write(UpperCAmelCase__ , run_time=1 ) , Create(UpperCAmelCase__ , run_time=1 ) ) A__ = [] A__ = [] for i, rect in enumerate(UpperCAmelCase__ ): A__ = fill.copy().set_fill(UpperCAmelCase__ , opacity=0.7 ) target.move_to(UpperCAmelCase__ ) first_animations.append(GrowFromCenter(UpperCAmelCase__ , run_time=1 ) ) A__ = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(UpperCAmelCase__ , run_time=1.5 ) ) self.play(*UpperCAmelCase__ ) self.play(*UpperCAmelCase__ ) self.wait()
198
import argparse import struct import unittest class UpperCamelCase : def __init__( self , UpperCAmelCase__ ): A__ = data # Initialize hash values A__ = [ 0x6A_09E_667, 0xBB_67A_E85, 0x3C_6EF_372, 0xA5_4FF_53A, 0x51_0E5_27F, 0x9B_056_88C, 0x1F_83D_9AB, 0x5B_E0C_D19, ] # Initialize round constants A__ = [ 0x42_8A2_F98, 0x71_374_491, 0xB5_C0F_BCF, 0xE9_B5D_BA5, 0x39_56C_25B, 0x59_F11_1F1, 0x92_3F8_2A4, 0xAB_1C5_ED5, 0xD8_07A_A98, 0x12_835_B01, 0x24_318_5BE, 0x55_0C7_DC3, 0x72_BE5_D74, 0x80_DEB_1FE, 0x9B_DC0_6A7, 0xC1_9BF_174, 0xE4_9B6_9C1, 0xEF_BE4_786, 0x0F_C19_DC6, 0x24_0CA_1CC, 0x2D_E92_C6F, 0x4A_748_4AA, 0x5C_B0A_9DC, 0x76_F98_8DA, 0x98_3E5_152, 0xA8_31C_66D, 0xB0_032_7C8, 0xBF_597_FC7, 0xC6_E00_BF3, 0xD5_A79_147, 0x06_CA6_351, 0x14_292_967, 0x27_B70_A85, 0x2E_1B2_138, 0x4D_2C6_DFC, 0x53_380_D13, 0x65_0A7_354, 0x76_6A0_ABB, 0x81_C2C_92E, 0x92_722_C85, 0xA2_BFE_8A1, 0xA8_1A6_64B, 0xC2_4B8_B70, 0xC7_6C5_1A3, 0xD1_92E_819, 0xD6_990_624, 0xF4_0E3_585, 0x10_6AA_070, 0x19_A4C_116, 0x1E_376_C08, 0x27_487_74C, 0x34_B0B_CB5, 0x39_1C0_CB3, 0x4E_D8A_A4A, 0x5B_9CC_A4F, 0x68_2E6_FF3, 0x74_8F8_2EE, 0x78_A56_36F, 0x84_C87_814, 0x8C_C70_208, 0x90_BEF_FFA, 0xA4_506_CEB, 0xBE_F9A_3F7, 0xC6_717_8F2, ] A__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def __A ( UpperCAmelCase__ ): A__ = b"\x80" + (b"\x00" * (63 - (len(UpperCAmelCase__ ) + 8) % 64)) A__ = struct.pack(">Q" , (len(UpperCAmelCase__ ) * 8) ) return data + padding + big_endian_integer def __A ( self ): # Convert into blocks of 64 bytes A__ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A__ = list(struct.unpack(">16L" , UpperCAmelCase__ ) ) # add 48 0-ed integers words += [0] * 48 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array A__ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) A__ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) A__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100_000_000 # Compression A__ = self.ror(UpperCAmelCase__ , 6 ) ^ self.ror(UpperCAmelCase__ , 11 ) ^ self.ror(UpperCAmelCase__ , 25 ) A__ = (e & f) ^ ((~e & 0xFF_FFF_FFF) & g) A__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100_000_000 A__ = self.ror(UpperCAmelCase__ , 2 ) ^ self.ror(UpperCAmelCase__ , 13 ) ^ self.ror(UpperCAmelCase__ , 22 ) A__ = (a & b) ^ (a & c) ^ (b & c) A__ = (sa + maj) % 0x100_000_000 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = ( g, f, e, ((d + tempa) % 0x100_000_000), c, b, a, ((tempa + tempa) % 0x100_000_000), ) A__ = [a, b, c, d, e, f, g, h] # Modify final values A__ = [ ((element + mutated_hash_values[index]) % 0x100_000_000) for index, element in enumerate(self.hashes ) ] A__ = "".join([hex(UpperCAmelCase__ )[2:].zfill(8 ) for value in self.hashes] ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): return 0xFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase ( unittest.TestCase ): def __A ( self ): import hashlib A__ = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(UpperCAmelCase__ ).hash , hashlib.shaaaa(UpperCAmelCase__ ).hexdigest() ) def UpperCamelCase ( )-> None: """simple docstring""" import doctest doctest.testmod() A__ = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) A__ = parser.parse_args() A__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: A__ = f.read() else: A__ = bytes(_A , "utf-8" ) print(SHAaaa(_A ).hash ) if __name__ == "__main__": main()
198
1
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker UpperCAmelCase__ = """CompVis/stable-diffusion-v1-1""" UpperCAmelCase__ = """CompVis/stable-diffusion-v1-2""" UpperCAmelCase__ = """CompVis/stable-diffusion-v1-3""" UpperCAmelCase__ = """CompVis/stable-diffusion-v1-4""" class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : AutoencoderKL , __lowerCAmelCase : CLIPTextModel , __lowerCAmelCase : CLIPTokenizer , __lowerCAmelCase : UNetaDConditionModel , __lowerCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __lowerCAmelCase : StableDiffusionSafetyChecker , __lowerCAmelCase : CLIPImageProcessor , __lowerCAmelCase : bool = True , ): super()._init_() _UpperCAmelCase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase = StableDiffusionPipeline( vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , requires_safety_checker=__lowerCAmelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def lowerCAmelCase_ ( self : Dict ): return {k: getattr(self , __lowerCAmelCase ) for k in self.config.keys() if not k.startswith("""_""" )} def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): self.enable_attention_slicing(__lowerCAmelCase ) @torch.no_grad() def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Union[str, List[str]] , __lowerCAmelCase : int = 512 , __lowerCAmelCase : int = 512 , __lowerCAmelCase : int = 50 , __lowerCAmelCase : float = 7.5 , __lowerCAmelCase : Optional[Union[str, List[str]]] = None , __lowerCAmelCase : Optional[int] = 1 , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : Optional[torch.Generator] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCAmelCase : int = 1 , **__lowerCAmelCase : Tuple , ): return self.pipea( prompt=__lowerCAmelCase , height=__lowerCAmelCase , width=__lowerCAmelCase , num_inference_steps=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , num_images_per_prompt=__lowerCAmelCase , eta=__lowerCAmelCase , generator=__lowerCAmelCase , latents=__lowerCAmelCase , output_type=__lowerCAmelCase , return_dict=__lowerCAmelCase , callback=__lowerCAmelCase , callback_steps=__lowerCAmelCase , **__lowerCAmelCase , ) @torch.no_grad() def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Union[str, List[str]] , __lowerCAmelCase : int = 512 , __lowerCAmelCase : int = 512 , __lowerCAmelCase : int = 50 , __lowerCAmelCase : float = 7.5 , __lowerCAmelCase : Optional[Union[str, List[str]]] = None , __lowerCAmelCase : Optional[int] = 1 , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : Optional[torch.Generator] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCAmelCase : int = 1 , **__lowerCAmelCase : Any , ): return self.pipea( prompt=__lowerCAmelCase , height=__lowerCAmelCase , width=__lowerCAmelCase , num_inference_steps=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , num_images_per_prompt=__lowerCAmelCase , eta=__lowerCAmelCase , generator=__lowerCAmelCase , latents=__lowerCAmelCase , output_type=__lowerCAmelCase , return_dict=__lowerCAmelCase , callback=__lowerCAmelCase , callback_steps=__lowerCAmelCase , **__lowerCAmelCase , ) @torch.no_grad() def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : Union[str, List[str]] , __lowerCAmelCase : int = 512 , __lowerCAmelCase : int = 512 , __lowerCAmelCase : int = 50 , __lowerCAmelCase : float = 7.5 , __lowerCAmelCase : Optional[Union[str, List[str]]] = None , __lowerCAmelCase : Optional[int] = 1 , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : Optional[torch.Generator] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCAmelCase : int = 1 , **__lowerCAmelCase : List[Any] , ): return self.pipea( prompt=__lowerCAmelCase , height=__lowerCAmelCase , width=__lowerCAmelCase , num_inference_steps=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , num_images_per_prompt=__lowerCAmelCase , eta=__lowerCAmelCase , generator=__lowerCAmelCase , latents=__lowerCAmelCase , output_type=__lowerCAmelCase , return_dict=__lowerCAmelCase , callback=__lowerCAmelCase , callback_steps=__lowerCAmelCase , **__lowerCAmelCase , ) @torch.no_grad() def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : Union[str, List[str]] , __lowerCAmelCase : int = 512 , __lowerCAmelCase : int = 512 , __lowerCAmelCase : int = 50 , __lowerCAmelCase : float = 7.5 , __lowerCAmelCase : Optional[Union[str, List[str]]] = None , __lowerCAmelCase : Optional[int] = 1 , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : Optional[torch.Generator] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCAmelCase : int = 1 , **__lowerCAmelCase : Union[str, Any] , ): return self.pipea( prompt=__lowerCAmelCase , height=__lowerCAmelCase , width=__lowerCAmelCase , num_inference_steps=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , num_images_per_prompt=__lowerCAmelCase , eta=__lowerCAmelCase , generator=__lowerCAmelCase , latents=__lowerCAmelCase , output_type=__lowerCAmelCase , return_dict=__lowerCAmelCase , callback=__lowerCAmelCase , callback_steps=__lowerCAmelCase , **__lowerCAmelCase , ) @torch.no_grad() def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : Union[str, List[str]] , __lowerCAmelCase : int = 512 , __lowerCAmelCase : int = 512 , __lowerCAmelCase : int = 50 , __lowerCAmelCase : float = 7.5 , __lowerCAmelCase : Optional[Union[str, List[str]]] = None , __lowerCAmelCase : Optional[int] = 1 , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : Optional[torch.Generator] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCAmelCase : int = 1 , **__lowerCAmelCase : str , ): _UpperCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(__lowerCAmelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 _UpperCAmelCase = self.textaimg_sda_a( prompt=__lowerCAmelCase , height=__lowerCAmelCase , width=__lowerCAmelCase , num_inference_steps=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , num_images_per_prompt=__lowerCAmelCase , eta=__lowerCAmelCase , generator=__lowerCAmelCase , latents=__lowerCAmelCase , output_type=__lowerCAmelCase , return_dict=__lowerCAmelCase , callback=__lowerCAmelCase , callback_steps=__lowerCAmelCase , **__lowerCAmelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 _UpperCAmelCase = self.textaimg_sda_a( prompt=__lowerCAmelCase , height=__lowerCAmelCase , width=__lowerCAmelCase , num_inference_steps=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , num_images_per_prompt=__lowerCAmelCase , eta=__lowerCAmelCase , generator=__lowerCAmelCase , latents=__lowerCAmelCase , output_type=__lowerCAmelCase , return_dict=__lowerCAmelCase , callback=__lowerCAmelCase , callback_steps=__lowerCAmelCase , **__lowerCAmelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 _UpperCAmelCase = self.textaimg_sda_a( prompt=__lowerCAmelCase , height=__lowerCAmelCase , width=__lowerCAmelCase , num_inference_steps=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , num_images_per_prompt=__lowerCAmelCase , eta=__lowerCAmelCase , generator=__lowerCAmelCase , latents=__lowerCAmelCase , output_type=__lowerCAmelCase , return_dict=__lowerCAmelCase , callback=__lowerCAmelCase , callback_steps=__lowerCAmelCase , **__lowerCAmelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 _UpperCAmelCase = self.textaimg_sda_a( prompt=__lowerCAmelCase , height=__lowerCAmelCase , width=__lowerCAmelCase , num_inference_steps=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , num_images_per_prompt=__lowerCAmelCase , eta=__lowerCAmelCase , generator=__lowerCAmelCase , latents=__lowerCAmelCase , output_type=__lowerCAmelCase , return_dict=__lowerCAmelCase , callback=__lowerCAmelCase , callback_steps=__lowerCAmelCase , **__lowerCAmelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
289
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCAmelCase__ = logging.get_logger(__name__) enable_full_determinism() class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : Optional[int] = UNetaDModel _snake_case : List[str] = 'sample' @property def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (32, 32) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] ).to(__lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase_ ( self : List[Any] ): return (3, 32, 32) @property def lowerCAmelCase_ ( self : Optional[Any] ): return (3, 32, 32) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : int = UNetaDModel _snake_case : Optional[Any] = 'sample' @property def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = 4 _UpperCAmelCase = 4 _UpperCAmelCase = (32, 32) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] ).to(__lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase_ ( self : Optional[Any] ): return (4, 32, 32) @property def lowerCAmelCase_ ( self : Dict ): return (4, 32, 32) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__lowerCAmelCase ) _UpperCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase ) model.to(__lowerCAmelCase ) _UpperCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def lowerCAmelCase_ ( self : str ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase ) model_accelerate.to(__lowerCAmelCase ) model_accelerate.eval() _UpperCAmelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) _UpperCAmelCase = noise.to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] * noise.shape[0] ).to(__lowerCAmelCase ) _UpperCAmelCase = model_accelerate(__lowerCAmelCase , __lowerCAmelCase )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase , low_cpu_mem_usage=__lowerCAmelCase ) model_normal_load.to(__lowerCAmelCase ) model_normal_load.eval() _UpperCAmelCase = model_normal_load(__lowerCAmelCase , __lowerCAmelCase )["""sample"""] assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-3 ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(__lowerCAmelCase ) _UpperCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _UpperCAmelCase = noise.to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([10] * noise.shape[0] ).to(__lowerCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ).sample _UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-3 ) ) class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : Optional[Any] = UNetaDModel _snake_case : str = 'sample' @property def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : str=(32, 32) ): _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase_ ( self : Any ): return (3, 32, 32) @property def lowerCAmelCase_ ( self : Union[str, Any] ): return (3, 32, 32) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1e-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict @slow def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__lowerCAmelCase ) _UpperCAmelCase = self.dummy_input _UpperCAmelCase = floats_tensor((4, 3) + (256, 256) ).to(__lowerCAmelCase ) _UpperCAmelCase = noise _UpperCAmelCase = model(**__lowerCAmelCase ) assert image is not None, "Make sure output is not None" @slow def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(__lowerCAmelCase ) _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (256, 256) _UpperCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor(batch_size * [1e-4] ).to(__lowerCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ).sample _UpperCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -10_980.7_129, -20_028.8_535, 8_148.2_822, 2_342.2_905, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-2 ) ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(__lowerCAmelCase ) _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (32, 32) _UpperCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor(batch_size * [1e-4] ).to(__lowerCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ).sample _UpperCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-2 ) ) def lowerCAmelCase_ ( self : List[str] ): # not required for this model pass
289
1
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> int: if index == number_of_items: return 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : Any = knapsack(snake_case__, snake_case__, snake_case__, snake_case__, index + 1 ) if weights[index] <= max_weight: __UpperCAmelCase : Dict = values[index] + knapsack( snake_case__, snake_case__, snake_case__, max_weight - weights[index], index + 1 ) return max(snake_case__, snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
342
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _snake_case = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _snake_case = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for tf_name, hf_name in patterns: __UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ ) return k def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration: __UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ ) __UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ ) __UpperCAmelCase : Optional[Any] = torch_model.state_dict() __UpperCAmelCase : Optional[int] = {} # separating decoder weights __UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} __UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : List[str] = DECODER_PATTERNS __UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : Optional[int] = v.T __UpperCAmelCase : str = torch.from_numpy(snake_case__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS __UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : List[Any] = v.T __UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"] __UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" ) __UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ ) __UpperCAmelCase : str = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ ) __UpperCAmelCase : List[str] = {} __UpperCAmelCase : str = ["global_step"] for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ): __UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = array return tf_weights def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ ) __UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ ) torch_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() _snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
342
1
"""simple docstring""" def snake_case ( A__ ,A__ ,A__ = 0 ,A__ = 0 ): UpperCAmelCase_ : List[Any] = right or len(A__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(A__ ,A__ ,left + 1 ,right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
268
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class UpperCamelCase_ (__A ): __magic_name__ = '''rwkv''' __magic_name__ = {'''max_position_embeddings''': '''context_length'''} def __init__( self : str , lowerCAmelCase_ : str=50_277 , lowerCAmelCase_ : Optional[int]=1_024 , lowerCAmelCase_ : Optional[int]=4_096 , lowerCAmelCase_ : Union[str, Any]=32 , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=1e-5 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : Tuple=0 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Any=True , **lowerCAmelCase_ : List[Any] , ) -> List[str]: UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : List[str] = context_length UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Optional[int] = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase_ : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[Any] = rescale_every UpperCAmelCase_ : List[str] = use_cache UpperCAmelCase_ : List[str] = bos_token_id UpperCAmelCase_ : Union[str, Any] = eos_token_id super().__init__( tie_word_embeddings=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
268
1
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : int=0): A = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__SCREAMING_SNAKE_CASE)) A = np.random.RandomState(__SCREAMING_SNAKE_CASE) A = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.7_5, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE__ (self : Any): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) A = self.get_dummy_inputs() A = pipe(**__SCREAMING_SNAKE_CASE).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) A = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7]) assert np.abs(image_slice - expected_slice).max() < 1E-1 def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") A = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) A = self.get_dummy_inputs() A = pipe(**__SCREAMING_SNAKE_CASE).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) A = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") A = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs()) A = self.get_dummy_inputs() A = pipe(**__SCREAMING_SNAKE_CASE).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) A = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def SCREAMING_SNAKE_CASE__ (self : Tuple): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") A = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) A = self.get_dummy_inputs() A = pipe(**__SCREAMING_SNAKE_CASE).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) A = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def SCREAMING_SNAKE_CASE__ (self : List[str]): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) A = self.get_dummy_inputs() A = pipe(**__SCREAMING_SNAKE_CASE).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) A = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def SCREAMING_SNAKE_CASE__ (self : str): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) A = self.get_dummy_inputs() A = pipe(**__SCREAMING_SNAKE_CASE).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) A = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ (self : Any): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE__ (self : Any): A = ort.SessionOptions() A = False return options def SCREAMING_SNAKE_CASE__ (self : Dict): A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") A = init_image.resize((7_6_8, 5_1_2)) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) A = "A fantasy landscape, trending on artstation" A = np.random.RandomState(0) A = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__SCREAMING_SNAKE_CASE , output_type="np" , ) A = output.images A = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) A = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def SCREAMING_SNAKE_CASE__ (self : str): A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") A = init_image.resize((7_6_8, 5_1_2)) A = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx") A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) A = "A fantasy landscape, trending on artstation" A = np.random.RandomState(0) A = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__SCREAMING_SNAKE_CASE , output_type="np" , ) A = output.images A = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) A = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
57
"""simple docstring""" from __future__ import annotations class __UpperCamelCase : def __init__(self : Tuple , __SCREAMING_SNAKE_CASE : int = 0): A = key def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(__SCREAMING_SNAKE_CASE) ^ key) for ch in content] def SCREAMING_SNAKE_CASE__ (self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(__SCREAMING_SNAKE_CASE) ^ key) for ch in content] def SCREAMING_SNAKE_CASE__ (self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = 0): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned A = "" for ch in content: ans += chr(ord(__SCREAMING_SNAKE_CASE) ^ key) return ans def SCREAMING_SNAKE_CASE__ (self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = 0): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned A = "" for ch in content: ans += chr(ord(__SCREAMING_SNAKE_CASE) ^ key) return ans def SCREAMING_SNAKE_CASE__ (self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = 0): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) try: with open(__SCREAMING_SNAKE_CASE) as fin, open("encrypt.out" , "w+") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) except OSError: return False return True def SCREAMING_SNAKE_CASE__ (self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) try: with open(__SCREAMING_SNAKE_CASE) as fin, open("decrypt.out" , "w+") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
57
1
import string import numpy def snake_case__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ : __lowerCamelCase : Dict = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __lowerCamelCase : int = numpy.vectorize(lambda __snake_case : x % 36 ) __lowerCamelCase : List[str] = numpy.vectorize(__snake_case ) def __init__( self , a): lowercase__ : Optional[Any] = self.modulus(a) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowercase__ : str = encrypt_key.shape[0] def snake_case_ ( self , a): return self.key_string.index(a) def snake_case_ ( self , a): return self.key_string[round(a)] def snake_case_ ( self): lowercase__ : Optional[int] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: lowercase__ : Dict = det % len(self.key_string) lowercase__ : str = len(self.key_string) if greatest_common_divisor(a , len(self.key_string)) != 1: lowercase__ : Union[str, Any] = ( f"""determinant modular {req_l} of encryption key({det}) """ f"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(a) def snake_case_ ( self , a): lowercase__ : Tuple = [char for char in text.upper() if char in self.key_string] lowercase__ : Any = chars[-1] while len(a) % self.break_key != 0: chars.append(a) return "".join(a) def snake_case_ ( self , a): lowercase__ : Any = self.process_text(text.upper()) lowercase__ : Tuple = '' for i in range(0 , len(a) - self.break_key + 1 , self.break_key): lowercase__ : int = text[i : i + self.break_key] lowercase__ : Optional[int] = [self.replace_letters(a) for char in batch] lowercase__ : str = numpy.array([vec]).T lowercase__ : str = self.modulus(self.encrypt_key.dot(a)).T.tolist()[ 0 ] lowercase__ : Any = ''.join( self.replace_digits(a) for num in batch_encrypted) encrypted += encrypted_batch return encrypted def snake_case_ ( self): lowercase__ : List[Any] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: lowercase__ : List[str] = det % len(self.key_string) lowercase__ : Tuple = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: lowercase__ : Dict = i break lowercase__ : Any = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(a)) def snake_case_ ( self , a): lowercase__ : Tuple = self.make_decrypt_key() lowercase__ : Tuple = self.process_text(text.upper()) lowercase__ : Tuple = '' for i in range(0 , len(a) - self.break_key + 1 , self.break_key): lowercase__ : Optional[int] = text[i : i + self.break_key] lowercase__ : Dict = [self.replace_letters(a) for char in batch] lowercase__ : int = numpy.array([vec]).T lowercase__ : Tuple = self.modulus(decrypt_key.dot(a)).T.tolist()[0] lowercase__ : Optional[Any] = ''.join( self.replace_digits(a) for num in batch_decrypted) decrypted += decrypted_batch return decrypted def snake_case__ ( ): '''simple docstring''' lowercase__ : Dict = int(input('Enter the order of the encryption key: ' ) ) lowercase__ : List[str] = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(SCREAMING_SNAKE_CASE_ ): lowercase__ : Any = [int(SCREAMING_SNAKE_CASE_ ) for x in input().split()] hill_matrix.append(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[Any] = HillCipher(numpy.array(SCREAMING_SNAKE_CASE_ ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) lowercase__ : List[Any] = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": lowercase__ : Optional[int] = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(SCREAMING_SNAKE_CASE_ ) ) elif option == "2": lowercase__ : Dict = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
214
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging snake_case_ = logging.get_logger(__name__) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' lowercase__ : List[str] = set() lowercase__ : List[str] = [] def parse_line(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): for line in fp: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ : Optional[int] = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(SCREAMING_SNAKE_CASE_ ) > 0: lowercase__ : Optional[Any] = '\n'.join(SCREAMING_SNAKE_CASE_ ) # Only keep the warnings specified in `targets` if any(f""": {x}: """ in warning for x in targets ): selected_warnings.add(SCREAMING_SNAKE_CASE_ ) buffer.clear() continue else: lowercase__ : Optional[Any] = line.strip() buffer.append(SCREAMING_SNAKE_CASE_ ) if from_gh: for filename in os.listdir(SCREAMING_SNAKE_CASE_ ): lowercase__ : int = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename != "warnings.txt": continue with open(SCREAMING_SNAKE_CASE_ ) as fp: parse_line(SCREAMING_SNAKE_CASE_ ) else: try: with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename != "warnings.txt": continue with z.open(SCREAMING_SNAKE_CASE_ ) as fp: parse_line(SCREAMING_SNAKE_CASE_ ) except Exception: logger.warning( f"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[Any] = set() lowercase__ : List[str] = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) return selected_warnings if __name__ == "__main__": def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' return values.split(',' ) snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) snake_case_ = parser.parse_args() snake_case_ = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links snake_case_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts snake_case_ = extract_warnings(args.output_dir, args.targets) snake_case_ = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
214
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__: List[str] = logging.get_logger(__name__) a__: List[str] = '▁' a__: str = {'vocab_file': 'sentencepiece.bpe.model'} a__: Dict = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } a__: List[Any] = { 'facebook/xglm-564M': 2_048, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self,__lowerCamelCase,__lowerCamelCase="<s>",__lowerCamelCase="</s>",__lowerCamelCase="</s>",__lowerCamelCase="<s>",__lowerCamelCase="<unk>",__lowerCamelCase="<pad>",__lowerCamelCase = None,**__lowerCamelCase,): A__ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer A__ = 7 A__ = [f"<madeupword{i}>" for i in range(self.num_madeup_words )] A__ = kwargs.get('''additional_special_tokens''',[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__lowerCamelCase,eos_token=__lowerCamelCase,unk_token=__lowerCamelCase,sep_token=__lowerCamelCase,cls_token=__lowerCamelCase,pad_token=__lowerCamelCase,sp_model_kwargs=self.sp_model_kwargs,**__lowerCamelCase,) A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) A__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A__ = 1 # Mimic fairseq token-to-id alignment for the first 4 token A__ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} A__ = len(self.sp_model ) A__ = {f"<madeupword{i}>": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__lowerCamelCase ) A__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): A__ = self.__dict__.copy() A__ = None A__ = self.sp_model.serialized_model_proto() return state def __setstate__( self,__lowerCamelCase ): A__ = d # for backward compatibility if not hasattr(self,'''sp_model_kwargs''' ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a A__ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase,token_ids_a=__lowerCamelCase,already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCamelCase ( self ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCamelCase ( self ): A__ = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase ( self,__lowerCamelCase ): return self.sp_model.encode(__lowerCamelCase,out_type=__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A__ = self.sp_model.PieceToId(__lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase ( self,__lowerCamelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = ''''''.join(__lowerCamelCase ).replace(__lowerCamelCase,''' ''' ).strip() return out_string def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ = os.path.join( __lowerCamelCase,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase,'''wb''' ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
39
from __future__ import annotations from collections.abc import Iterator from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase ): A__ = data A__ = None class SCREAMING_SNAKE_CASE__ : def __init__( self ): A__ = None A__ = None def __iter__( self ): A__ = self.head while self.head: yield node.data A__ = node.next if node == self.head: break def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join(str(__lowerCamelCase ) for item in iter(self ) ) def UpperCamelCase ( self,__lowerCamelCase ): self.insert_nth(len(self ),__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): self.insert_nth(0,__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) A__ = Node(__lowerCamelCase ) if self.head is None: A__ = new_node # first node points itself A__ = A__ = new_node elif index == 0: # insert at head A__ = self.head A__ = A__ = new_node else: A__ = self.head for _ in range(index - 1 ): A__ = temp.next A__ = temp.next A__ = new_node if index == len(self ) - 1: # insert at tail A__ = new_node def UpperCamelCase ( self ): return self.delete_nth(0 ) def UpperCamelCase ( self ): return self.delete_nth(len(self ) - 1 ) def UpperCamelCase ( self,__lowerCamelCase = 0 ): if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) A__ = self.head if self.head == self.tail: # just one node A__ = A__ = None elif index == 0: # delete head node A__ = self.tail.next.next A__ = self.head.next else: A__ = self.head for _ in range(index - 1 ): A__ = temp.next A__ = temp.next A__ = temp.next.next if index == len(self ) - 1: # delete at tail A__ = temp return delete_node.data def UpperCamelCase ( self ): return len(self ) == 0 def UpperCamelCase__( )->None: A__ = CircularLinkedList() assert len(UpperCamelCase__ ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCamelCase__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCamelCase__ ) == i circular_linked_list.insert_nth(UpperCamelCase__ , i + 1 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
39
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowerCAmelCase__ = False class __snake_case ( unittest.TestCase): pass @slow @require_torch_gpu class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) _lowerCamelCase : int = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=__lowerCAmelCase , generator=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' , ).images _lowerCamelCase : List[str] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : List[Any] = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
72
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _snake_case ( lowerCamelCase__ : Tuple ) -> List[Any]: lowerCamelCase_ : Union[str, Any] =384 if "tiny" in model_name: lowerCamelCase_ : str =[3, 3, 9, 3] lowerCamelCase_ : Union[str, Any] =[96, 192, 384, 768] if "small" in model_name: lowerCamelCase_ : Tuple =[3, 3, 27, 3] lowerCamelCase_ : List[str] =[96, 192, 384, 768] if "base" in model_name: lowerCamelCase_ : Tuple =[3, 3, 27, 3] lowerCamelCase_ : Tuple =[128, 256, 512, 1_024] lowerCamelCase_ : str =512 if "large" in model_name: lowerCamelCase_ : Optional[int] =[3, 3, 27, 3] lowerCamelCase_ : Optional[int] =[192, 384, 768, 1_536] lowerCamelCase_ : Optional[Any] =768 if "xlarge" in model_name: lowerCamelCase_ : str =[3, 3, 27, 3] lowerCamelCase_ : Optional[Any] =[256, 512, 1_024, 2_048] lowerCamelCase_ : Any =1_024 # set label information lowerCamelCase_ : Dict =150 lowerCamelCase_ : Union[str, Any] ="huggingface/label-files" lowerCamelCase_ : Optional[int] ="ade20k-id2label.json" lowerCamelCase_ : str =json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ : Dict ={int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ : Optional[Any] ={v: k for k, v in idalabel.items()} lowerCamelCase_ : Optional[int] =ConvNextConfig( depths=lowerCamelCase__ , hidden_sizes=lowerCamelCase__ , out_features=["stage1", "stage2", "stage3", "stage4"] ) lowerCamelCase_ : Any =UperNetConfig( backbone_config=lowerCamelCase__ , auxiliary_in_channels=lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ , ) return config def _snake_case ( lowerCamelCase__ : str ) -> str: lowerCamelCase_ : List[str] =[] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any ) -> Dict: lowerCamelCase_ : List[str] =dct.pop(lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =val def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] ) -> Dict: lowerCamelCase_ : Union[str, Any] ={ "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } lowerCamelCase_ : Optional[int] =model_name_to_url[model_name] lowerCamelCase_ : Optional[Any] =torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="cpu" )["state_dict"] lowerCamelCase_ : List[Any] =get_upernet_config(lowerCamelCase__ ) lowerCamelCase_ : Tuple =UperNetForSemanticSegmentation(lowerCamelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase_ : Optional[Any] =state_dict.pop(lowerCamelCase__ ) if "bn" in key: lowerCamelCase_ : str =key.replace("bn" , "batch_norm" ) lowerCamelCase_ : Union[str, Any] =val # rename keys lowerCamelCase_ : Tuple =create_rename_keys(lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # verify on image lowerCamelCase_ : List[str] ="https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" lowerCamelCase_ : Union[str, Any] =Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ).convert("RGB" ) lowerCamelCase_ : List[str] =SegformerImageProcessor() lowerCamelCase_ : int =processor(lowerCamelCase__ , return_tensors="pt" ).pixel_values with torch.no_grad(): lowerCamelCase_ : Tuple =model(lowerCamelCase__ ) if model_name == "upernet-convnext-tiny": lowerCamelCase_ : List[Any] =torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": lowerCamelCase_ : Dict =torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": lowerCamelCase_ : Tuple =torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": lowerCamelCase_ : Dict =torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": lowerCamelCase_ : List[Any] =torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[f'upernet-convnext-{size}' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A__ : str = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
144
0
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Any ): '''simple docstring''' lowerCamelCase_ = BigBirdConfig.from_json_file(lowercase ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: lowerCamelCase_ = BigBirdForQuestionAnswering(lowercase ) else: lowerCamelCase_ = BigBirdForPreTraining(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(lowercase , lowercase , is_trivia_qa=lowercase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) lowerCamelCase : str = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
208
from ..utils import DummyObject, requires_backends class A( metaclass=UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self : Any , *A_ : Any , **A_ : Tuple ) -> List[Any]: """simple docstring""" requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def a__ ( cls : Tuple , *A_ : Dict , **A_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def a__ ( cls : int , *A_ : Dict , **A_ : List[str] ) -> Tuple: """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
208
1