code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __UpperCamelCase : str = getLogger(__name__) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ = 8 , A_ = 10_24 , A_="val" , A_=None , A_=False , A_="summarization" , A_=None , A_=1 , A_ = None , A_="" , **A_ , ): lowerCAmelCase__ : Any = str(A_ ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=A_ ) lowerCAmelCase__ : Union[str, Any] = Path(A_ ) lowerCAmelCase__ : Any = save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(A_ ) lowerCAmelCase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(A_ ).cuda() if fpaa: lowerCAmelCase__ : int = model.half() # determine if we need to increase num_beams use_task_specific_params(A_ , A_ ) # update config with task specific params lowerCAmelCase__ : Any = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: lowerCAmelCase__ : Union[str, Any] = num_return_sequences lowerCAmelCase__ : str = AutoTokenizer.from_pretrained(A_ ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: lowerCAmelCase__ : Optional[int] = tokenizer.model_max_length if prefix is None: lowerCAmelCase__ : str = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' lowerCAmelCase__ : List[Any] = SeqaSeqDataset( A_ , A_ , A_ , max_target_length=10_24 , type_path=A_ , n_obs=A_ , prefix=A_ , **A_ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. lowerCAmelCase__ : List[Any] = ds.make_sortish_sampler(A_ , distributed=A_ , add_extra_examples=A_ , shuffle=A_ ) lowerCAmelCase__ : List[str] = DataLoader(A_ , sampler=A_ , batch_size=A_ , collate_fn=ds.collate_fn ) lowerCAmelCase__ : List[str] = [] for batch in tqdm(A_ ): lowerCAmelCase__ : Tuple = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=A_ , num_beams=A_ , **A_ , ) lowerCAmelCase__ : Tuple = tokenizer.batch_decode(A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ ) lowerCAmelCase__ : List[Any] = batch['''ids'''] if num_return_sequences > 1: lowerCAmelCase__ : List[Any] = chunks(A_ , A_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(A_ ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(A_ , A_ ) return results, sampler.num_replicas def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[Any] = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=A_ , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=A_ , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=A_ , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=A_ , default=A_ ) parser.add_argument( '''--type_path''' , type=A_ , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=A_ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A_ , default=8 , required=A_ , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=A_ , default=-1 , required=A_ , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=A_ , default=A_ , required=A_ , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=A_ , default=1 , required=A_ , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=A_ , default=6_00 , required=A_ , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=A_ , default=A_ , required=A_ ) parser.add_argument('''--tgt_lang''' , type=A_ , default=A_ , required=A_ ) parser.add_argument( '''--prefix''' , type=A_ , required=A_ , default=A_ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) lowerCAmelCase__ : List[Any] = time.time() lowerCAmelCase__ ,lowerCAmelCase__ : Any = parser.parse_known_args() lowerCAmelCase__ : List[Any] = parse_numeric_n_bool_cl_kwargs(A_ ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) lowerCAmelCase__ : Union[str, Any] = Path(args.save_dir + '''_tmp''' ) Path(A_ ).mkdir(exist_ok=A_ ) # this handles locking. lowerCAmelCase__ : List[str] = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. lowerCAmelCase__ : Any = {} if args.src_lang is not None: lowerCAmelCase__ : List[Any] = args.src_lang if args.tgt_lang is not None: lowerCAmelCase__ : Tuple = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Any = eval_data_dir( args.data_dir , A_ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=A_ , **A_ , ) if args.local_rank <= 0: lowerCAmelCase__ : List[str] = Path(args.save_dir ) save_dir.mkdir(exist_ok=A_ ) lowerCAmelCase__ : Tuple = gather_results_from_each_node(A_ , A_ , args.sync_timeout ) lowerCAmelCase__ : str = combine_partial_results(A_ ) if args.num_return_sequences > 1: lowerCAmelCase__ : Optional[int] = save_dir.joinpath('''pseudolabel_results.json''' ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(A_ , A_ ) return lowerCAmelCase__ : List[str] = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(A_ ) as f: lowerCAmelCase__ : Dict = [x.rstrip() for x in f.readlines()][: len(A_ )] # Calculate metrics, save metrics, and save _generations.txt lowerCAmelCase__ : Optional[Any] = '''translation''' in args.task lowerCAmelCase__ : List[Any] = calculate_bleu if calc_bleu else calculate_rouge lowerCAmelCase__ : str = '''bleu''' if calc_bleu else '''rouge''' lowerCAmelCase__ : Dict = score_fn(A_ , A_ ) lowerCAmelCase__ : Union[str, Any] = len(A_ ) lowerCAmelCase__ : Dict = time.time() - start_time lowerCAmelCase__ : str = round(runtime / metrics['''n_obs'''] , 4 ) lowerCAmelCase__ : List[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics lowerCAmelCase__ : str = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(A_ , A_ , indent=A_ ) print(A_ ) write_txt_file(A_ , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(A_ , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(A_ ) def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Dict = [] for partial_result in partial_results: records.extend(A_ ) lowerCAmelCase__ : str = sorted(A_ , key=lambda A_ : x["id"] ) lowerCAmelCase__ : str = [x['''pred'''] for x in records] return preds def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): # WAIT FOR lots of .json files lowerCAmelCase__ : Union[str, Any] = time.time() logger.info('''waiting for all nodes to finish''' ) lowerCAmelCase__ : Union[str, Any] = None while (time.time() - start_wait) < timeout: lowerCAmelCase__ : Union[str, Any] = list(save_dir.glob('''rank_*.json''' ) ) if len(A_ ) < num_replicas: continue try: # make sure all json files are fully saved lowerCAmelCase__ : int = lmap(A_ , A_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
106
def A_ ( snake_case : str ) -> int: '''simple docstring''' assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
328
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCamelCase__ ( A__ : Namespace ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) UpperCAmelCase_ = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class lowerCamelCase__( __lowerCamelCase): @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: ArgumentParser ): __lowerCamelCase = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=UpperCamelCase_ , required=UpperCamelCase_ , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=UpperCamelCase_ , required=UpperCamelCase_ , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=UpperCamelCase_ , required=UpperCamelCase_ , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=UpperCamelCase_ , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self: List[str] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: str , *UpperCamelCase_: Optional[Any] , ): __lowerCamelCase = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(F'Loading model {model_type}' ) __lowerCamelCase = model_type __lowerCamelCase = tf_checkpoint __lowerCamelCase = pytorch_dump_output __lowerCamelCase = config __lowerCamelCase = finetuning_task_name def lowerCAmelCase__ ( self: Any ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(UpperCamelCase_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase_ ) if "ckpt" in self._tf_checkpoint.lower(): __lowerCamelCase = self._tf_checkpoint __lowerCamelCase = """""" else: __lowerCamelCase = self._tf_checkpoint __lowerCamelCase = """""" convert_transfo_xl_checkpoint_to_pytorch( UpperCamelCase_ , self._config , self._pytorch_dump_output , UpperCamelCase_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
360
from __future__ import annotations UpperCAmelCase_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCamelCase__: def __init__( self: Tuple , UpperCamelCase_: dict[str, list[str]] , UpperCamelCase_: str ): __lowerCamelCase = graph # mapping node to its parent in resulting breadth first tree __lowerCamelCase = {} __lowerCamelCase = source_vertex def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = {self.source_vertex} __lowerCamelCase = None __lowerCamelCase = [self.source_vertex] # first in first out queue while queue: __lowerCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase_ ) __lowerCamelCase = vertex queue.append(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str ): if target_vertex == self.source_vertex: return self.source_vertex __lowerCamelCase = self.parent.get(UpperCamelCase_ ) if target_vertex_parent is None: __lowerCamelCase = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(UpperCamelCase_ ) return self.shortest_path(UpperCamelCase_ ) + F'->{target_vertex}' if __name__ == "__main__": UpperCAmelCase_ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
29
0
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case_ : List[Any] = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
7
import comet # From: unbabel-comet import torch import datasets snake_case_ : Tuple = datasets.logging.get_logger(__name__) snake_case_ : str = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" snake_case_ : Tuple = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" snake_case_ : Optional[int] = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def lowerCamelCase ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence'''), '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]): """simple docstring""" if self.config_name == "default": UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''')) else: UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name)) def lowerCamelCase ( self : List[Any] , _snake_case : str , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int=None , _snake_case : Optional[Any]=False): """simple docstring""" if gpus is None: UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0 UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCAmelCase_ = [dict(zip(_snake_case , _snake_case)) for t in zip(*data.values())] UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(_snake_case , gpus=_snake_case , progress_bar=_snake_case) return {"mean_score": mean_score, "scores": scores}
7
1
"""simple docstring""" from math import ceil def __SCREAMING_SNAKE_CASE ( A_ = 10_01 ): lowerCAmelCase__ : Union[str, Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase__ : int = 2 * i + 1 lowerCAmelCase__ : Any = 2 * i lowerCAmelCase__ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCamelCase : Optional[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
106
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''CLIPFeatureExtractor'''] __UpperCamelCase : Optional[Any] = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =[[1, 2, 4], [1, 2, 3, 4]] __UpperCamelCase : int =DisjunctiveConstraint(lowerCamelCase__ ) self.assertTrue(isinstance(dc.token_ids , lowerCamelCase__ ) ) with self.assertRaises(lowerCamelCase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCamelCase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =[[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCamelCase__ ): DisjunctiveConstraint(lowerCamelCase__ ) # fails here def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =[[1, 2, 3], [1, 2, 4]] __UpperCamelCase : Optional[Any] =DisjunctiveConstraint(lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : str =dc.update(1 ) __UpperCamelCase : int =stepped is True and completed is False and reset is False self.assertTrue(lowerCamelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : int =dc.update(2 ) __UpperCamelCase : int =stepped is True and completed is False and reset is False self.assertTrue(lowerCamelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : int =dc.update(3 ) __UpperCamelCase : Any =stepped is True and completed is True and reset is False self.assertTrue(lowerCamelCase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =[[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __UpperCamelCase : str =DisjunctiveConstraint(lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Tuple =dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Tuple =dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] =dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Any =dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Any =dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] =dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Tuple =dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
245
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ :Union[str, Any] = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Optional[Any] = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Optional[int] = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A_ :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
245
1
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration A = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def __A ( a_ :int) -> Optional[int]: __a : Optional[Any] = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase) A = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def __A ( a_ :List[Any]) -> Optional[Any]: __a : Any = list(s_dict.keys()) for key in keys: __a : str = key for k, v in WHISPER_MAPPING.items(): if k in key: __a : Tuple = new_key.replace(__lowerCamelCase , __lowerCamelCase) print(F"""{key} -> {new_key}""") __a : Tuple = s_dict.pop(__lowerCamelCase) return s_dict def __A ( a_ :str) -> Union[str, Any]: __a , __a : List[str] = emb.weight.shape __a : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase) __a : List[Any] = emb.weight.data return lin_layer def __A ( a_ :int , a_ :int) -> bytes: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase) __a : int = os.path.basename(__lowerCamelCase) __a : List[str] = url.split('''/''')[-2] __a : List[str] = os.path.join(__lowerCamelCase , __lowerCamelCase) if os.path.exists(__lowerCamelCase) and not os.path.isfile(__lowerCamelCase): raise RuntimeError(F"""{download_target} exists and is not a regular file""") if os.path.isfile(__lowerCamelCase): __a : Union[str, Any] = open(__lowerCamelCase , '''rb''').read() if hashlib.shaaaa(__lowerCamelCase).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""") with urllib.request.urlopen(__lowerCamelCase) as source, open(__lowerCamelCase , '''wb''') as output: with tqdm( total=int(source.info().get('''Content-Length''')) , ncols=80 , unit='''iB''' , unit_scale=__lowerCamelCase , unit_divisor=10_24) as loop: while True: __a : Optional[int] = source.read(81_92) if not buffer: break output.write(__lowerCamelCase) loop.update(len(__lowerCamelCase)) __a : Tuple = open(__lowerCamelCase , '''rb''').read() if hashlib.shaaaa(__lowerCamelCase).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''') return model_bytes def __A ( a_ :int , a_ :Union[str, Any]) -> str: if ".pt" not in checkpoint_path: __a : Optional[Any] = _download(_MODELS[checkpoint_path]) else: __a : Union[str, Any] = torch.load(__lowerCamelCase , map_location='''cpu''') __a : List[Any] = original_checkpoint['''dims'''] __a : List[Any] = original_checkpoint['''model_state_dict'''] __a : Dict = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(__lowerCamelCase) rename_keys(__lowerCamelCase) __a : Union[str, Any] = True __a : str = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] __a : Optional[int] = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=__lowerCamelCase , decoder_ffn_dim=__lowerCamelCase , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) __a : int = WhisperForConditionalGeneration(__lowerCamelCase) __a , __a : Union[str, Any] = model.model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase) if len(__lowerCamelCase) > 0 and not set(__lowerCamelCase) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F""" but all the following weights are missing {missing}""") if tie_embeds: __a : List[Any] = make_linear_from_emb(model.model.decoder.embed_tokens) else: __a : Optional[Any] = proj_out_weights model.save_pretrained(__lowerCamelCase) if __name__ == "__main__": A = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') A = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
160
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Any = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __UpperCamelCase : Dict = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def __A ( __lowerCamelCase ) -> List[str]: a = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): a = line.strip() if line: a = line.split() a = line_number a = words[0] a = value return result def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: for attribute in key.split(""".""" ): a = getattr(__lowerCamelCase , __lowerCamelCase ) a = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): a = PARAM_MAPPING[full_name.split(""".""" )[-1]] a = """param""" if weight_type is not None and weight_type != "param": a = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": a = hf_pointer for attribute in hf_param_name.split(""".""" ): a = getattr(__lowerCamelCase , __lowerCamelCase ) a = shape_pointer.shape # let's reduce dimension a = value[0] else: a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): a = getattr(__lowerCamelCase , __lowerCamelCase ) a = value else: a = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: a = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): a = PARAM_MAPPING[full_name.split(""".""" )[-1]] a = """param""" if weight_type is not None and weight_type != "param": a = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a = """.""".join([key, hf_param_name] ) else: a = key a = value if """lm_head""" in full_key else value[0] __UpperCamelCase : List[Any] = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ) -> Optional[Any]: a = False for key, mapped_key in MAPPING.items(): a = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: a = True if "*" in mapped_key: a = name.split(__lowerCamelCase )[0].split(""".""" )[-2] a = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: a = """weight_g""" elif "weight_v" in name: a = """weight_v""" elif "bias" in name: a = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj a = """weight""" else: a = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: a = [] a = fairseq_model.state_dict() a = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) a = True else: a = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: a = full_name.split("""conv_layers.""" )[-1] a = name.split(""".""" ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=False ) -> List[Any]: if config_path is not None: a = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: a = WavaVecaConfig() if is_seq_class: a = read_txt_into_dict(__lowerCamelCase ) a = idalabel a = WavaVecaForSequenceClassification(__lowerCamelCase ) a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: a = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a = target_dict.pad_index a = target_dict.bos_index a = target_dict.eos_index a = len(target_dict.symbols ) a = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) a = target_dict.indices # fairseq has the <pad> and <s> switched a = 0 a = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) a = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) a = True if config.feat_extract_norm == """layer""" else False a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) a = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) a = WavaVecaForCTC(__lowerCamelCase ) else: a = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: a = argparse.Namespace(task="""audio_pretraining""" ) a = fairseq.tasks.setup_task(__lowerCamelCase ) a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) a = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __UpperCamelCase : Union[str, Any] = parser.parse_args() __UpperCamelCase : Any = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
228
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase_ = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] ) -> List[str]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__A ) def SCREAMING_SNAKE_CASE_ ( __A : str ) -> str: from transformers.testing_utils import pytest_terminal_summary_main _SCREAMING_SNAKE_CASE = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(__A , id=__A )
111
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''deberta-v2''' def __init__( self : str , __lowerCamelCase : Union[str, Any]=1_2_8_1_0_0 , __lowerCamelCase : Optional[int]=1_5_3_6 , __lowerCamelCase : Optional[int]=2_4 , __lowerCamelCase : Optional[int]=2_4 , __lowerCamelCase : Tuple=6_1_4_4 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Union[str, Any]=5_1_2 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : int=1e-7 , __lowerCamelCase : Any=False , __lowerCamelCase : Any=-1 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : str=True , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Any="gelu" , **__lowerCamelCase : Union[str, Any] , ): """simple docstring""" super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = max_relative_positions _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = position_biased_input # Backwards compatibility if type(__lowerCamelCase ) == str: _SCREAMING_SNAKE_CASE = [x.strip() for x in pos_att_type.lower().split("|" )] _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = kwargs.get("pooler_hidden_size" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = pooler_dropout _SCREAMING_SNAKE_CASE = pooler_hidden_act class lowercase_ ( A ): """simple docstring""" @property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: "batch", 1: "choice", 2: "sequence"} else: _SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" return 1_2 def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 4_0 , __lowerCamelCase : int = 4_0 , __lowerCamelCase : "PreTrainedTokenizerBase" = None , ): """simple docstring""" _SCREAMING_SNAKE_CASE = super().generate_dummy_inputs(preprocessor=__lowerCamelCase , framework=__lowerCamelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
111
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {"""vocab_file""": """vocab.json"""} a_ = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } a_ = {"""mgp-str""": 27} class __lowerCAmelCase ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __UpperCAmelCase , __UpperCAmelCase="[GO]" , __UpperCAmelCase="[GO]" , __UpperCAmelCase="[s]" , __UpperCAmelCase="[GO]" , **__UpperCAmelCase ): '''simple docstring''' super().__init__( unk_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , **_A , ) with open(_A , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(_A ) __lowerCamelCase = {v: k for k, v in self.vocab.items()} @property def lowerCamelCase ( self ): '''simple docstring''' return len(self.vocab ) def lowerCamelCase ( self ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = [] for s in text: char_tokens.extend(_A ) return char_tokens def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.vocab.get(_A , self.vocab.get(self.unk_token ) ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.decoder.get(_A ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_A ) ) return __lowerCamelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_A , ensure_ascii=_A ) + '''\n''' ) return (vocab_file,)
330
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE = get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Dict = os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Dict = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Dict = os.path.join(__a , __a ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving model to {ckpt_dir}""" ) snake_case_ : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Optional[Any] = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[Any] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Optional[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Tuple = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Tuple = ( os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) snake_case_ : List[Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) snake_case_ : Any = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ : str = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : Any = os.path.join(__a , __a ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__a , __a ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ : Union[str, Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : List[Any] = os.path.join(__a , __a ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: snake_case_ : str = ( os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) snake_case_ : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , ) snake_case_ : Optional[int] = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
327
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = MgpstrTokenizer _UpperCAmelCase :Optional[int] = False _UpperCAmelCase :Tuple = {} _UpperCAmelCase :Dict = False def _snake_case ( self ): super().setUp() # fmt: off lowercase__: Union[str, Any] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__: str = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '''\n''' ) def _snake_case ( self , **_UpperCAmelCase ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: str = '''tester''' lowercase__: Any = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def _snake_case ( self ): pass def _snake_case ( self ): lowercase__: Any = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowercase__: List[Any] = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) lowercase__: Tuple = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) lowercase__: List[str] = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def _snake_case ( self ): lowercase__: List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowercase__, lowercase__: int = self.get_input_output_texts(_UpperCAmelCase ) lowercase__: Union[str, Any] = tokenizer.tokenize(_UpperCAmelCase ) lowercase__: List[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ) , 0 ) lowercase__: List[str] = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _UpperCAmelCase ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def _snake_case ( self ): pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def _snake_case ( self ): pass
2
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) __A = parser.parse_args() __A = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
2
1
from __future__ import annotations from typing import Any def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' create_state_space_tree(SCREAMING_SNAKE_CASE , [] , 0 ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' if index == len(SCREAMING_SNAKE_CASE ): print(SCREAMING_SNAKE_CASE ) return create_state_space_tree(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 ) current_subsequence.pop() if __name__ == "__main__": A_ : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
333
import doctest from collections import deque import numpy as np class A_ : '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [2, 1, 2, -1] __UpperCAmelCase = [1, 2, 3, 4] def lowerCAmelCase_ (self ) -> list[float]: __UpperCAmelCase = len(self.first_signal ) __UpperCAmelCase = len(self.second_signal ) __UpperCAmelCase = max(lowercase__ , lowercase__ ) # create a zero matrix of max_length x max_length __UpperCAmelCase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCAmelCase = np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = '''▁''' _lowerCAmelCase : str = {'''vocab_file''': '''spiece.model'''} _lowerCAmelCase : int = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } _lowerCAmelCase : Optional[Any] = { '''google/reformer-crime-and-punishment''': 524_288, } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self :int , snake_case :Any , snake_case :Optional[int]="</s>" , snake_case :Dict="<unk>" , snake_case :Tuple=[] , snake_case :Optional[Dict[str, Any]] = None , **snake_case :Any , ): '''simple docstring''' A_ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case , unk_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) A_ : Dict = vocab_file A_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : int = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Optional[int] ): '''simple docstring''' A_ : List[str] = self.__dict__.copy() A_ : Optional[int] = None return state def __setstate__( self :Dict , snake_case :Optional[Any] ): '''simple docstring''' A_ : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A_ : List[str] = {} A_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :str ): '''simple docstring''' return self.sp_model.encode(snake_case , out_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Optional[int] ): '''simple docstring''' return self.sp_model.piece_to_id(snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Tuple ): '''simple docstring''' if index < self.sp_model.get_piece_size(): A_ : Dict = self.sp_model.IdToPiece(snake_case ) return token def SCREAMING_SNAKE_CASE ( self :int , snake_case :Dict ): '''simple docstring''' A_ : Optional[int] = [] A_ : List[Any] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case ) + token A_ : Dict = [] else: current_sub_tokens.append(snake_case ) out_string += self.sp_model.decode(snake_case ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :str , snake_case :Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A_ : List[Any] = os.path.join( snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , "wb" ) as fi: A_ : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
70
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : List[Any] = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
7
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : """simple docstring""" def __init__( self : Union[str, Any],lowercase_ : Any,lowercase_ : Union[str, Any]=1_3,lowercase_ : Tuple=3_0,lowercase_ : List[Any]=2,lowercase_ : Optional[int]=3,lowercase_ : Union[str, Any]=True,lowercase_ : Tuple=True,lowercase_ : Any=3_2,lowercase_ : List[str]=2,lowercase_ : Optional[int]=4,lowercase_ : Union[str, Any]=3_7,lowercase_ : Tuple="gelu",lowercase_ : str=0.1,lowercase_ : Tuple=0.1,lowercase_ : Union[str, Any]=1_0,lowercase_ : int=0.02,lowercase_ : List[Any]=3,lowercase_ : Any=None,)-> Dict: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A__ = (image_size // patch_size) ** 2 A__ = num_patches + 1 def snake_case__ ( self : int )-> List[str]: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Tuple )-> List[Any]: '''simple docstring''' return ViTConfig( image_size=self.image_size,patch_size=self.patch_size,num_channels=self.num_channels,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,is_decoder=lowercase_,initializer_range=self.initializer_range,) def snake_case__ ( self : List[str],lowercase_ : int,lowercase_ : Union[str, Any],lowercase_ : Tuple )-> Optional[Any]: '''simple docstring''' A__ = TFViTModel(config=lowercase_ ) A__ = model(lowercase_,training=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. A__ = self.image_size // 2 A__ = pixel_values[:, :, :image_size, :image_size] A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ ) A__ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, seq_length, self.hidden_size) ) def snake_case__ ( self : List[Any],lowercase_ : List[Any],lowercase_ : List[Any],lowercase_ : List[Any] )-> Dict: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFViTForImageClassification(lowercase_ ) A__ = model(lowercase_,labels=lowercase_,training=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. A__ = self.image_size // 2 A__ = pixel_values[:, :, :image_size, :image_size] A__ = model(lowercase_,interpolate_pos_encoding=lowercase_,training=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images A__ = 1 A__ = TFViTForImageClassification(lowercase_ ) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.type_sequence_label_size) ) def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : int )-> List[Any]: '''simple docstring''' A__ = TFViTModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,has_text_modality=lowercase_,hidden_size=3_7 ) def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def snake_case__ ( self : Optional[Any] )-> str: '''simple docstring''' pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def snake_case__ ( self : Any )-> int: '''simple docstring''' pass def snake_case__ ( self : str )-> Dict: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings(),(tf.keras.layers.Layer) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_,tf.keras.layers.Layer ) ) def snake_case__ ( self : int )-> List[str]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) A__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1],lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : Optional[Any] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' A__ = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(lowercase_ ) def _snake_case( ) -> str: '''simple docstring''' A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self : List[Any] )-> str: '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def snake_case__ ( self : Any )-> Dict: '''simple docstring''' A__ = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=lowercase_,return_tensors='tf' ) # forward pass A__ = model(**lowercase_ ) # verify the logits A__ = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,lowercase_ ) A__ = tf.constant([-0.2_744, 0.8_215, -0.0_836] ) tf.debugging.assert_near(outputs.logits[0, :3],lowercase_,atol=1E-4 )
7
1
'''simple docstring''' from __future__ import annotations import math def lowercase (_A ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[str] = str(_A ) _lowerCAmelCase : Any = [n] for i in range(1 , len(_A ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def lowercase (_A ): """simple docstring""" if len(str(_A ) ) > 3: if not is_prime(int(str(_A )[-3:] ) ) or not is_prime(int(str(_A )[:3] ) ): return False return True def lowercase (_A = 1_1 ): """simple docstring""" _lowerCAmelCase : list[int] = [] _lowerCAmelCase : Optional[int] = 1_3 while len(_A ) != count: if validate(_A ): _lowerCAmelCase : Any = list_truncated_nums(_A ) if all(is_prime(_A ) for i in list_nums ): list_truncated_primes.append(_A ) num += 2 return list_truncated_primes def lowercase (): """simple docstring""" return sum(compute_truncated_primes(1_1 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(11)) = }''')
25
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaInpaintPipeline __magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __magic_name__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __magic_name__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , ) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase : Dict = 0 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[int] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 'a hat' _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : Optional[Any] = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
25
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase__ : str = logging.getLogger(__name__) UpperCAmelCase__ : Dict = 50 # max width of layer names UpperCAmelCase__ : Dict = 70 # max width of quantizer names def __lowercase ( _A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = parser.add_argument_group("""quant_trainer arguments""" ) group.add_argument("""--wprec""" , type=_A , default=8 , help="""weight precision""" ) group.add_argument("""--aprec""" , type=_A , default=8 , help="""activation precision""" ) group.add_argument("""--quant-per-tensor""" , action="""store_true""" , help="""per tensor weight scaling""" ) group.add_argument("""--quant-disable""" , action="""store_true""" , help="""disable all quantizers""" ) group.add_argument("""--quant-disable-embeddings""" , action="""store_true""" , help="""disable all embeddings quantizers""" ) group.add_argument("""--quant-disable-keyword""" , type=_A , nargs="""+""" , help="""disable quantizers by keyword""" ) group.add_argument("""--quant-disable-layer-module""" , type=_A , help="""disable quantizers by keyword under layer.""" ) group.add_argument("""--quant-enable-layer-module""" , type=_A , help="""enable quantizers by keyword under layer""" ) group.add_argument("""--calibrator""" , default="""max""" , help="""which quantization range calibrator to use""" ) group.add_argument("""--percentile""" , default=_A , type=_A , help="""percentile for PercentileCalibrator""" ) group.add_argument("""--fuse-qkv""" , action="""store_true""" , help="""use the same scale factor for qkv""" ) group.add_argument("""--clip-gelu""" , metavar="""N""" , type=_A , help="""clip gelu output maximum value to N""" ) group.add_argument( """--recalibrate-weights""" , action="""store_true""" , help=( """recalibrate weight amaxes by taking the max of the weights.""" """ amaxes will be computed with the current quantization granularity (axis).""" ) , ) def __lowercase ( _A ) -> Dict: if args.calibrator == "max": SCREAMING_SNAKE_CASE : List[str] = """max""" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("""Specify --percentile when using percentile calibrator""" ) SCREAMING_SNAKE_CASE : List[str] = """histogram""" elif args.calibrator == "mse": SCREAMING_SNAKE_CASE : Optional[int] = """histogram""" else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) SCREAMING_SNAKE_CASE : Dict = QuantDescriptor(num_bits=args.aprec , calib_method=_A ) SCREAMING_SNAKE_CASE : int = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_A ) quant_nn.QuantLinear.set_default_quant_desc_weight(_A ) def __lowercase ( _A , _A , _A=False , _A=False ) -> str: logger.info("""Configuring Model for Quantization""" ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_A , ["""embeddings"""] , which="""weight""" , _disabled=_A ) if args.quant_disable: set_quantizer_by_name(_A , [""""""] , _disabled=_A ) if args.quant_disable_keyword: set_quantizer_by_name(_A , args.quant_disable_keyword , _disabled=_A ) if args.quant_disable_layer_module: set_quantizer_by_name(_A , [R"""layer.\d+.""" + args.quant_disable_layer_module] , _disabled=_A ) if args.quant_enable_layer_module: set_quantizer_by_name(_A , [R"""layer.\d+.""" + args.quant_enable_layer_module] , _disabled=_A ) if args.recalibrate_weights: recalibrate_weights(_A ) if args.fuse_qkv: fuse_qkv(_A , _A ) if args.clip_gelu: clip_gelu(_A , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_A ) def __lowercase ( _A ) -> Any: logger.info("""Enabling Calibration""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def __lowercase ( _A , _A ) -> int: logger.info("""Loading calibrated amax""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("""percentile""" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_A ) def __lowercase ( _A , _A ) -> Dict: def fusea(_A , _A , _A ): for mod in [qq, qk, qv]: if not hasattr(_A , """_amax""" ): print(""" WARNING: NO AMAX BUFFER""" ) return SCREAMING_SNAKE_CASE : str = qq._amax.detach().item() SCREAMING_SNAKE_CASE : str = qk._amax.detach().item() SCREAMING_SNAKE_CASE : str = qv._amax.detach().item() SCREAMING_SNAKE_CASE : int = max(_A , _A , _A ) qq._amax.fill_(_A ) qk._amax.fill_(_A ) qv._amax.fill_(_A ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith(""".attention.self""" ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def __lowercase ( _A , _A ) -> Dict: for name, mod in model.named_modules(): if name.endswith(""".output.dense""" ) and not name.endswith("""attention.output.dense""" ): SCREAMING_SNAKE_CASE : Any = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_A ) SCREAMING_SNAKE_CASE : List[Any] = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def __lowercase ( _A ) -> Any: for name, mod in model.named_modules(): if hasattr(_A , """_weight_quantizer""" ) and mod._weight_quantizer.axis is not None: SCREAMING_SNAKE_CASE : List[Any] = mod.weight.shape[0] SCREAMING_SNAKE_CASE : List[Any] = mod._weight_quantizer._amax.detach() SCREAMING_SNAKE_CASE : Tuple = torch.ones(_A , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def __lowercase ( _A ) -> List[str]: for name, mod in model.named_modules(): if hasattr(_A , """_weight_quantizer""" ): if not hasattr(mod.weight_quantizer , """_amax""" ): print("""RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER""" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) SCREAMING_SNAKE_CASE : str = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) SCREAMING_SNAKE_CASE : str = set(range(len(mod.weight.size() ) ) ) - axis_set SCREAMING_SNAKE_CASE : Dict = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_A , keepdims=_A ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) SCREAMING_SNAKE_CASE : Optional[Any] = amax def __lowercase ( _A , _A=25 , _A=180 , _A=None ) -> List[str]: if ignore is None: SCREAMING_SNAKE_CASE : Optional[Any] = [] elif not isinstance(_A , _A ): SCREAMING_SNAKE_CASE : Dict = [ignore] SCREAMING_SNAKE_CASE : Optional[int] = 0 for name, mod in model.named_modules(): if not hasattr(_A , """weight""" ): continue SCREAMING_SNAKE_CASE : Optional[Any] = max(_A , len(_A ) ) for name, mod in model.named_modules(): SCREAMING_SNAKE_CASE : Any = getattr(_A , """_input_quantizer""" , _A ) SCREAMING_SNAKE_CASE : List[Any] = getattr(_A , """_weight_quantizer""" , _A ) if not hasattr(_A , """weight""" ): continue if type(_A ) in ignore: continue if [True for s in ignore if type(_A ) is str and s in name]: continue SCREAMING_SNAKE_CASE : Tuple = F"Act:{input_q.extra_repr()}" SCREAMING_SNAKE_CASE : List[Any] = F"Wgt:{weight_q.extra_repr()}" SCREAMING_SNAKE_CASE : Any = F"{name:{name_width}} {act_str} {wgt_str}" if len(_A ) <= line_width: logger.info(_A ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def __lowercase ( _A ) -> List[Any]: SCREAMING_SNAKE_CASE : Any = 0 for name, mod in model.named_modules(): if isinstance(_A , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def __lowercase ( _A , _A , _A , _A , _A ) -> Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = getattr(_A , _A , _A ) if quantizer_mod is not None: assert hasattr(_A , _A ) setattr(_A , _A , _A ) else: logger.warning(F"{name} has no {quantizer}" ) def __lowercase ( _A , _A , _A="both" , **_A ) -> Tuple: SCREAMING_SNAKE_CASE : Tuple = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(_A , _A , """_input_quantizer""" , _A , _A ) if which in ["weight", "both"]: set_quantizer(_A , _A , """_weight_quantizer""" , _A , _A ) logger.info(_A ) def __lowercase ( _A , _A , **_A ) -> Tuple: for name, mod in model.named_modules(): if hasattr(_A , """_input_quantizer""" ) or hasattr(_A , """_weight_quantizer""" ): for n in names: if re.search(_A , _A ): set_quantizers(_A , _A , **_A ) elif name.endswith("""_quantizer""" ): for n in names: if re.search(_A , _A ): SCREAMING_SNAKE_CASE : Dict = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(_A , _A , _A ) logger.info(_A )
245
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __lowercase ( _A ) -> List[Tuple[int, ...]]: SCREAMING_SNAKE_CASE : Optional[int] = [] if isinstance(_A , _A ): for v in tree.values(): shapes.extend(_fetch_dims(_A ) ) elif isinstance(_A , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(_A ) ) elif isinstance(_A , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def __lowercase ( _A , _A ) -> Tuple[int, ...]: SCREAMING_SNAKE_CASE : List[Any] = [] for d in reversed(_A ): idx.append(flat_idx % d ) SCREAMING_SNAKE_CASE : Tuple = flat_idx // d return tuple(reversed(_A ) ) @torch.jit.ignore def __lowercase ( _A , _A , _A , _A = None , _A = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(_A ) -> None: SCREAMING_SNAKE_CASE : int = True for i in range(len(_A ) ): SCREAMING_SNAKE_CASE : Dict = -1 * (i + 1) l[reversed_idx] &= tally SCREAMING_SNAKE_CASE : Any = l[reversed_idx] if start_edges is None: SCREAMING_SNAKE_CASE : Tuple = [s == 0 for s in start] reduce_edge_list(_A ) if end_edges is None: SCREAMING_SNAKE_CASE : Tuple = [e == (d - 1) for e, d in zip(_A , _A )] reduce_edge_list(_A ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(_A ) == 0: return [()] elif len(_A ) == 1: return [(slice(start[0] , end[0] + 1 ),)] SCREAMING_SNAKE_CASE : List[Tuple[slice, ...]] = [] SCREAMING_SNAKE_CASE : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(_A , _A ): if s == e: path_list.append(slice(_A , s + 1 ) ) else: break SCREAMING_SNAKE_CASE : Tuple[slice, ...] = tuple(_A ) SCREAMING_SNAKE_CASE : List[str] = len(_A ) # start == end, and we're done if divergence_idx == len(_A ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE : List[str] = start[divergence_idx] return tuple( path + (slice(_A , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE : Tuple = end[divergence_idx] return tuple( path + (slice(_A , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) SCREAMING_SNAKE_CASE : int = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __lowercase ( _A , _A , _A , _A ) -> torch.Tensor: SCREAMING_SNAKE_CASE : Tuple = t.shape[:no_batch_dims] SCREAMING_SNAKE_CASE : Union[str, Any] = list(_flat_idx_to_idx(_A , _A ) ) # _get_minimal_slice_set is inclusive SCREAMING_SNAKE_CASE : Any = list(_flat_idx_to_idx(flat_end - 1 , _A ) ) # Get an ordered list of slices to perform SCREAMING_SNAKE_CASE : List[Any] = _get_minimal_slice_set( _A , _A , _A , ) SCREAMING_SNAKE_CASE : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __lowercase ( _A , _A , _A , _A , _A = False , _A = None , _A = False , ) -> Any: if not (len(_A ) > 0): raise ValueError("""Must provide at least one input""" ) SCREAMING_SNAKE_CASE : Tuple = [shape[:no_batch_dims] for shape in _fetch_dims(_A )] SCREAMING_SNAKE_CASE : str = tuple([max(_A ) for s in zip(*_A )] ) def _prep_inputs(_A ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: SCREAMING_SNAKE_CASE : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) SCREAMING_SNAKE_CASE : Union[str, Any] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: SCREAMING_SNAKE_CASE : Optional[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(_prep_inputs , _A ) SCREAMING_SNAKE_CASE : Optional[int] = None if _out is not None: SCREAMING_SNAKE_CASE : Optional[int] = tensor_tree_map(lambda _A : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) SCREAMING_SNAKE_CASE : Optional[int] = 1 for d in orig_batch_dims: flat_batch_dim *= d SCREAMING_SNAKE_CASE : Tuple = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_A ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = prepped_outputs for _ in range(_A ): # Chunk the input if not low_mem: SCREAMING_SNAKE_CASE : int = _select_chunk else: SCREAMING_SNAKE_CASE : Optional[int] = partial( _chunk_slice , flat_start=_A , flat_end=min(_A , i + chunk_size ) , no_batch_dims=len(_A ) , ) SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(_A , _A ) # Run the layer on the chunk SCREAMING_SNAKE_CASE : Tuple = layer(**_A ) # Allocate space for the output if out is None: SCREAMING_SNAKE_CASE : List[str] = tensor_tree_map(lambda _A : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , _A ) # Put the chunk in its pre-allocated space if isinstance(_A , _A ): def assign(_A , _A ) -> None: for k, v in da.items(): if isinstance(_A , _A ): assign(_A , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: SCREAMING_SNAKE_CASE : Optional[Any] = da[k] assign(_A , _A ) elif isinstance(_A , _A ): for xa, xa in zip(_A , _A ): if _add_into_out: xa[i : i + chunk_size] += xa else: SCREAMING_SNAKE_CASE : str = xa elif isinstance(_A , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: SCREAMING_SNAKE_CASE : List[Any] = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size SCREAMING_SNAKE_CASE : Any = tensor_tree_map(lambda _A : t.view(orig_batch_dims + t.shape[1:] ) , _A ) return out class a__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : int = 5_1_2 , ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : str = max_chunk_size SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[tuple] = None def _lowercase ( self : List[Any] , UpperCAmelCase__ : Callable , UpperCAmelCase__ : tuple , UpperCAmelCase__ : int ) ->int: """simple docstring""" logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size SCREAMING_SNAKE_CASE : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] SCREAMING_SNAKE_CASE : Dict = [c for c in candidates if c > min_chunk_size] SCREAMING_SNAKE_CASE : List[str] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase__ : int ) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase__ , chunk_size=UpperCAmelCase__ ) return True except RuntimeError: return False SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : List[str] = len(UpperCAmelCase__ ) - 1 while i > min_viable_chunk_size_index: SCREAMING_SNAKE_CASE : int = test_chunk_size(candidates[i] ) if not viable: SCREAMING_SNAKE_CASE : Tuple = (min_viable_chunk_size_index + i) // 2 else: SCREAMING_SNAKE_CASE : List[str] = i SCREAMING_SNAKE_CASE : List[str] = (i + len(UpperCAmelCase__ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _lowercase ( self : List[Any] , UpperCAmelCase__ : Iterable , UpperCAmelCase__ : Iterable ) ->bool: """simple docstring""" SCREAMING_SNAKE_CASE : str = True for aa, aa in zip(UpperCAmelCase__ , UpperCAmelCase__ ): assert type(UpperCAmelCase__ ) == type(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , (list, tuple) ): consistent &= self._compare_arg_caches(UpperCAmelCase__ , UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : Optional[Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase__ : x[0] )] SCREAMING_SNAKE_CASE : List[str] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase__ : x[0] )] consistent &= self._compare_arg_caches(UpperCAmelCase__ , UpperCAmelCase__ ) else: consistent &= aa == aa return consistent def _lowercase ( self : List[str] , UpperCAmelCase__ : Callable , UpperCAmelCase__ : tuple , UpperCAmelCase__ : int , ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : tuple = tree_map(lambda UpperCAmelCase__ : a.shape if isinstance(UpperCAmelCase__ , torch.Tensor ) else a , UpperCAmelCase__ , UpperCAmelCase__ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase__ ) else: # Otherwise, we can reuse the precomputed value SCREAMING_SNAKE_CASE : List[Any] = False if not consistent: SCREAMING_SNAKE_CASE : List[Any] = self._determine_favorable_chunk_size( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
245
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _lowercase: Any = None _lowercase: Optional[int] = logging.get_logger(__name__) _lowercase: str = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} _lowercase: Tuple = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } _lowercase: List[Any] = { "google/rembert": 256, } _lowercase: Dict = "▁" class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = RemBertTokenizer def __init__(self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="[CLS]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="<unk>" , lowerCamelCase_="[SEP]" , lowerCamelCase_="<pad>" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , **lowerCamelCase_ , ): """simple docstring""" a = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , ) a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = False if not self.vocab_file else True def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1] def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowerCamelCase_ ) ) return a = os.path.join( lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
371
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a( A : List[str] , A : int=0.999 , A : Union[str, Any]="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(A : Optional[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) a = [] for i in range(A ): a = i / num_diffusion_timesteps a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A ) / alpha_bar_fn(A ) , A ) ) return torch.tensor(A , dtype=torch.floataa ) class _lowercase ( lowerCAmelCase, lowerCAmelCase ): """simple docstring""" __A = [e.name for e in KarrasDiffusionSchedulers] __A = 2 @register_to_config def __init__(self , lowerCamelCase_ = 1000 , lowerCamelCase_ = 0.0_0085 , lowerCamelCase_ = 0.012 , lowerCamelCase_ = "linear" , lowerCamelCase_ = None , lowerCamelCase_ = "epsilon" , lowerCamelCase_ = "linspace" , lowerCamelCase_ = 0 , ): """simple docstring""" if trained_betas is not None: a = torch.tensor(lowerCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": a = torch.linspace(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a = betas_for_alpha_bar(lowerCamelCase_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) a = 1.0 - self.betas a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None ): """simple docstring""" if schedule_timesteps is None: a = self.timesteps a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: a = 1 if len(lowerCamelCase_ ) > 1 else 0 else: a = timestep.cpu().item() if torch.is_tensor(lowerCamelCase_ ) else timestep a = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase_ (self ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , ): """simple docstring""" a = self.index_for_timestep(lowerCamelCase_ ) if self.state_in_first_order: a = self.sigmas[step_index] else: a = self.sigmas_interpol[step_index] a = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ): """simple docstring""" a = num_inference_steps a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": a = np.linspace(0 , num_train_timesteps - 1 , lowerCamelCase_ , dtype=lowerCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a = (np.arange(0 , lowerCamelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a = (np.arange(lowerCamelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCamelCase_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) a = torch.from_numpy(np.log(lowerCamelCase_ ) ).to(lowerCamelCase_ ) a = np.interp(lowerCamelCase_ , np.arange(0 , len(lowerCamelCase_ ) ) , lowerCamelCase_ ) a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) a = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_ ) # interpolate sigmas a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(lowerCamelCase_ ).startswith("mps" ): # mps does not support float64 a = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ , dtype=torch.floataa ) else: a = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) # interpolate timesteps a = self.sigma_to_t(lowerCamelCase_ ).to(lowerCamelCase_ , dtype=timesteps.dtype ) a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() a = torch.cat([timesteps[:1], interleaved_timesteps] ) a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter a = defaultdict(lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = sigma.log() # get distribution a = log_sigma - self.log_sigmas[:, None] # get sigmas range a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) a = low_idx + 1 a = self.log_sigmas[low_idx] a = self.log_sigmas[high_idx] # interpolate sigmas a = (low - log_sigma) / (low - high) a = w.clamp(0 , 1 ) # transform interpolation to time range a = (1 - w) * low_idx + w * high_idx a = t.view(sigma.shape ) return t @property def UpperCamelCase_ (self ): """simple docstring""" return self.sample is None def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = True , ): """simple docstring""" a = self.index_for_timestep(lowerCamelCase_ ) # advance index counter by 1 a = timestep.cpu().item() if torch.is_tensor(lowerCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: a = self.sigmas[step_index] a = self.sigmas_interpol[step_index + 1] a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method a = self.sigmas[step_index - 1] a = self.sigmas_interpol[step_index] a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API a = 0 a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": a = sigma_hat if self.state_in_first_order else sigma_interpol a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": a = sigma_hat if self.state_in_first_order else sigma_interpol a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep a = sigma_interpol - sigma_hat # store for 2nd order step a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep a = sigma_next - sigma_hat a = self.sample a = None a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): """simple docstring""" a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCamelCase_ ): # mps does not support float64 a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: a = self.timesteps.to(original_samples.device ) a = timesteps.to(original_samples.device ) a = [self.index_for_timestep(lowerCamelCase_ , lowerCamelCase_ ) for t in timesteps] a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): a = sigma.unsqueeze(-1 ) a = original_samples + noise * sigma return noisy_samples def __len__(self ): """simple docstring""" return self.config.num_train_timesteps
71
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> None: lowercase__: int = len(__UpperCAmelCase ) print('''The following activities are selected:''' ) # The first activity is always selected lowercase__: str = 0 print(__UpperCAmelCase , end=''',''' ) # Consider rest of the activities for j in range(__UpperCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__UpperCAmelCase , end=''',''' ) lowercase__: Optional[int] = j if __name__ == "__main__": import doctest doctest.testmod() __A = [1, 3, 0, 5, 8, 5] __A = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
177
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
0
'''simple docstring''' from itertools import product def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = sides_number __SCREAMING_SNAKE_CASE = max_face_number * dice_number __SCREAMING_SNAKE_CASE = [0] * (max_total + 1) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = range(a__ , max_face_number + 1 ) for dice_numbers in product(a__ , repeat=a__ ): __SCREAMING_SNAKE_CASE = sum(a__ ) totals_frequencies[total] += 1 return totals_frequencies def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = total_frequency_distribution( sides_number=4 , dice_number=9 ) __SCREAMING_SNAKE_CASE = total_frequency_distribution( sides_number=6 , dice_number=6 ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 9 __SCREAMING_SNAKE_CASE = 4 * 9 __SCREAMING_SNAKE_CASE = 6 for peter_total in range(a__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __SCREAMING_SNAKE_CASE = (4**9) * (6**6) __SCREAMING_SNAKE_CASE = peter_wins_count / total_games_number __SCREAMING_SNAKE_CASE = round(a__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
364
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : List[str]=8 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Tuple=99 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Optional[int]=5 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=36 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Any=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : int=None , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = 300 return config def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = MraModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = MraForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = MraForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_choices __SCREAMING_SNAKE_CASE = MraForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = MraModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""MRA does not output attentions""" ) def UpperCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" return @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __SCREAMING_SNAKE_CASE = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __SCREAMING_SNAKE_CASE = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = 50_265 __SCREAMING_SNAKE_CASE = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __SCREAMING_SNAKE_CASE = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = 50_265 __SCREAMING_SNAKE_CASE = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
331
0
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = MgpstrTokenizer lowerCAmelCase__ : Dict = False lowerCAmelCase__ : str = {} lowerCAmelCase__ : int = False def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' super().setUp() # fmt: off lowercase__ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase__ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase ) + '''\n''' ) def UpperCamelCase__ (self : Tuple , **UpperCamelCase : Dict ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase__ (self : List[str] , UpperCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = '''tester''' lowercase__ = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def UpperCamelCase__ (self : Tuple ): '''simple docstring''' pass def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowercase__ = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) lowercase__ = tokenizer.encode([special_token] , add_special_tokens=UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 1 ) lowercase__ = tokenizer.decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) self.assertTrue(special_token not in decoded ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowercase__ ,lowercase__ = self.get_input_output_texts(UpperCamelCase ) lowercase__ = tokenizer.tokenize(UpperCamelCase ) lowercase__ = tokenizer.convert_tokens_to_ids(UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertNotEqual(len(UpperCamelCase ) , 0 ) lowercase__ = tokenizer.decode(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , UpperCamelCase ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass
2
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : str = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
1
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
369
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase ) -> Optional[Any]: A_ : Any = data A_ : Node | None = None class _lowerCAmelCase : """simple docstring""" def __init__( self ) -> List[str]: A_ : Tuple = None A_ : str = None def __iter__( self ) -> Iterator[Any]: A_ : Dict = self.head while self.head: yield node.data A_ : Optional[Any] = node.next if node == self.head: break def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join(str(_lowerCamelCase ) for item in iter(self ) ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: self.insert_nth(len(self ) , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: self.insert_nth(0 , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> None: if index < 0 or index > len(self ): raise IndexError("""list index out of range.""" ) A_ : Optional[int] = Node(_lowerCamelCase ) if self.head is None: A_ : str = new_node # first node points itself A_ : Union[str, Any] = new_node elif index == 0: # insert at head A_ : List[Any] = self.head A_ : List[Any] = new_node else: A_ : List[str] = self.head for _ in range(index - 1 ): A_ : Optional[int] = temp.next A_ : Tuple = temp.next A_ : str = new_node if index == len(self ) - 1: # insert at tail A_ : Optional[int] = new_node def UpperCAmelCase_ ( self ) -> List[Any]: return self.delete_nth(0 ) def UpperCAmelCase_ ( self ) -> Any: return self.delete_nth(len(self ) - 1 ) def UpperCAmelCase_ ( self , _lowerCamelCase = 0 ) -> Any: if not 0 <= index < len(self ): raise IndexError("""list index out of range.""" ) A_ : int = self.head if self.head == self.tail: # just one node A_ : int = None elif index == 0: # delete head node A_ : Union[str, Any] = self.tail.next.next A_ : Tuple = self.head.next else: A_ : Optional[int] = self.head for _ in range(index - 1 ): A_ : Tuple = temp.next A_ : Any = temp.next A_ : Tuple = temp.next.next if index == len(self ) - 1: # delete at tail A_ : List[str] = temp return delete_node.data def UpperCAmelCase_ ( self ) -> bool: return len(self ) == 0 def UpperCAmelCase ( ) -> None: """simple docstring""" A_ : Any = CircularLinkedList() assert len(a_ ) == 0 assert circular_linked_list.is_empty() is True assert str(a_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(a_ ) == i circular_linked_list.insert_nth(a_ , i + 1 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
164
0
import math from datetime import datetime, timedelta def lowerCamelCase_ ( _UpperCamelCase ) -> datetime: """simple docstring""" snake_case_ : List[str] = year % 19 snake_case_ : Union[str, Any] = year % 4 snake_case_ : List[str] = year % 7 snake_case_ : Optional[Any] = math.floor(year / 100 ) snake_case_ : Any = math.floor((13 + 8 * leap_day_inhibits) / 25 ) snake_case_ : Optional[int] = leap_day_inhibits / 4 snake_case_ : Union[str, Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 snake_case_ : Tuple = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 snake_case_ : Optional[Any] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon snake_case_ : Optional[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(_UpperCamelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(_UpperCamelCase , 4 , 18 ) else: return datetime(_UpperCamelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowerCAmelCase_ = '''will be''' if year > datetime.now().year else '''was''' print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
279
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCAmelCase_ = random.Random() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: """simple docstring""" if rng is None: snake_case_ : str = global_rng snake_case_ : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=400 , __magic_name__=2000 , __magic_name__=10 , __magic_name__=160 , __magic_name__=8 , __magic_name__=0.0 , __magic_name__=4000 , __magic_name__=False , __magic_name__=True , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : str = batch_size snake_case_ : Union[str, Any] = min_seq_length snake_case_ : Tuple = max_seq_length snake_case_ : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ : Optional[int] = padding_value snake_case_ : Union[str, Any] = sampling_rate snake_case_ : Optional[int] = return_attention_mask snake_case_ : str = do_normalize snake_case_ : str = feature_size snake_case_ : Optional[Any] = chunk_length snake_case_ : Union[str, Any] = hop_length def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase (self , __magic_name__=False , __magic_name__=False ) -> Optional[Any]: '''simple docstring''' def _flatten(__magic_name__ ): return list(itertools.chain(*__magic_name__ ) ) if equal_length: snake_case_ : int = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case_ : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ : str = [np.asarray(__magic_name__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : List[str] = WhisperFeatureExtractionTester(self ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Union[str, Any] = feat_extract_first.save_pretrained(__magic_name__ )[0] check_json_file_has_correct_format(__magic_name__ ) snake_case_ : List[Any] = self.feature_extraction_class.from_pretrained(__magic_name__ ) snake_case_ : Optional[int] = feat_extract_first.to_dict() snake_case_ : Dict = feat_extract_second.to_dict() snake_case_ : List[str] = feat_extract_first.mel_filters snake_case_ : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(__magic_name__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(__magic_name__ ) snake_case_ : Optional[int] = self.feature_extraction_class.from_json_file(__magic_name__ ) snake_case_ : int = feat_extract_first.to_dict() snake_case_ : Optional[int] = feat_extract_second.to_dict() snake_case_ : Union[str, Any] = feat_extract_first.mel_filters snake_case_ : str = feat_extract_second.mel_filters self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case_ : str = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] # Test feature size snake_case_ : str = feature_extractor(__magic_name__ , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input snake_case_ : Dict = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features snake_case_ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # Test batched snake_case_ : int = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features snake_case_ : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] snake_case_ : List[str] = np.asarray(__magic_name__ ) snake_case_ : List[Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features snake_case_ : Dict = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # Test truncation required snake_case_ : Any = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] snake_case_ : Union[str, Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] snake_case_ : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] snake_case_ : Optional[Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs_truncated] snake_case_ : Any = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features snake_case_ : List[Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) def lowerCamelCase (self ) -> int: '''simple docstring''' import torch snake_case_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Union[str, Any] = np.random.rand(100 , 32 ).astype(np.floataa ) snake_case_ : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ : Optional[Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case_ : Optional[Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech snake_case_ : Optional[Any] = ds.sort('''id''' ).select(range(__magic_name__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : str = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on snake_case_ : List[Any] = self._load_datasamples(1 ) snake_case_ : Union[str, Any] = WhisperFeatureExtractor() snake_case_ : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __magic_name__ , atol=1e-4 ) ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Optional[int] = self._load_datasamples(1 )[0] snake_case_ : List[str] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue snake_case_ : Optional[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__magic_name__ )[0] self.assertTrue(np.all(np.mean(__magic_name__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__magic_name__ ) - 1 ) < 1e-3 ) )
279
1
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=99 , _lowerCamelCase=0 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=12 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase="last" , _lowerCamelCase=None , _lowerCamelCase=None , ): """simple docstring""" UpperCAmelCase__ : Any = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Tuple = seq_length UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Any = use_input_lengths UpperCAmelCase__ : Any = use_token_type_ids UpperCAmelCase__ : Optional[int] = use_labels UpperCAmelCase__ : Optional[Any] = gelu_activation UpperCAmelCase__ : Dict = sinusoidal_embeddings UpperCAmelCase__ : Union[str, Any] = causal UpperCAmelCase__ : Union[str, Any] = asm UpperCAmelCase__ : List[Any] = n_langs UpperCAmelCase__ : int = vocab_size UpperCAmelCase__ : Dict = n_special UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : str = num_hidden_layers UpperCAmelCase__ : Any = num_attention_heads UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Union[str, Any] = max_position_embeddings UpperCAmelCase__ : Optional[int] = type_vocab_size UpperCAmelCase__ : Tuple = type_sequence_label_size UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : Optional[Any] = num_labels UpperCAmelCase__ : List[Any] = num_choices UpperCAmelCase__ : int = summary_type UpperCAmelCase__ : Union[str, Any] = use_proj UpperCAmelCase__ : Union[str, Any] = scope def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Dict = None if self.use_input_lengths: UpperCAmelCase__ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase__ : int = None if self.use_token_type_ids: UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase__ : str = None UpperCAmelCase__ : int = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a (self ): """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Tuple = FlaubertModel(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ : Tuple = model(_lowercase , lengths=_lowercase , langs=_lowercase ) UpperCAmelCase__ : int = model(_lowercase , langs=_lowercase ) UpperCAmelCase__ : Union[str, Any] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : List[Any] = FlaubertWithLMHeadModel(_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ : Optional[Any] = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Dict = FlaubertForQuestionAnsweringSimple(_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ : List[Any] = model(_lowercase ) UpperCAmelCase__ : Optional[Any] = model(_lowercase , start_positions=_lowercase , end_positions=_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = FlaubertForQuestionAnswering(_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ : int = model(_lowercase ) UpperCAmelCase__ : Optional[Any] = model( _lowercase , start_positions=_lowercase , end_positions=_lowercase , cls_index=_lowercase , is_impossible=_lowercase , p_mask=_lowercase , ) UpperCAmelCase__ : Tuple = model( _lowercase , start_positions=_lowercase , end_positions=_lowercase , cls_index=_lowercase , is_impossible=_lowercase , ) ((UpperCAmelCase__ ) , ) : List[str] = result_with_labels.to_tuple() UpperCAmelCase__ : str = model(_lowercase , start_positions=_lowercase , end_positions=_lowercase ) ((UpperCAmelCase__ ) , ) : int = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Optional[int] = FlaubertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ : Dict = model(_lowercase ) UpperCAmelCase__ : Union[str, Any] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : int = self.num_labels UpperCAmelCase__ : Union[str, Any] = FlaubertForTokenClassification(_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ : List[str] = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Optional[int] = self.num_choices UpperCAmelCase__ : List[Any] = FlaubertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : List[Any] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Any = config_and_inputs UpperCAmelCase__ : List[str] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): """simple docstring""" UpperCAmelCase__ : Optional[int] = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": UpperCAmelCase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) UpperCAmelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = FlaubertModelTester(self ) UpperCAmelCase__ : Tuple = ConfigTester(self , config_class=_lowercase , emb_dim=37 ) def _a (self ): """simple docstring""" self.config_tester.run_common_tests() def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_lowercase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_lowercase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_lowercase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_lowercase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_lowercase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_lowercase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_lowercase ) @slow def _a (self ): """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = FlaubertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @slow @require_torch_gpu def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return UpperCAmelCase__ : Any = True UpperCAmelCase__ : List[str] = model_class(config=_lowercase ) UpperCAmelCase__ : List[str] = self._prepare_for_class(_lowercase , _lowercase ) UpperCAmelCase__ : Union[str, Any] = torch.jit.trace( _lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowercase , os.path.join(_lowercase , """traced_model.pt""" ) ) UpperCAmelCase__ : Any = torch.jit.load(os.path.join(_lowercase , """traced_model.pt""" ) , map_location=_lowercase ) loaded(inputs_dict["""input_ids"""].to(_lowercase ) , inputs_dict["""attention_mask"""].to(_lowercase ) ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) UpperCAmelCase__ : Optional[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): UpperCAmelCase__ : Any = model(_lowercase )[0] UpperCAmelCase__ : Optional[Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowercase ) UpperCAmelCase__ : List[Any] = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=1e-4 ) )
370
"""simple docstring""" import numpy # List of input, output pairs _A = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _A = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) _A = [2, 4, 1, 5] _A = len(train_data) _A = 0.009 def a__ ( lowerCAmelCase , lowerCAmelCase="train" ) -> int: return calculate_hypothesis_value(lowerCAmelCase , lowerCAmelCase ) - output( lowerCAmelCase , lowerCAmelCase ) def a__ ( lowerCAmelCase ) -> int: UpperCAmelCase__ : Dict = 0 for i in range(len(lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Any: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( lowerCAmelCase , lowerCAmelCase=m ) -> List[str]: UpperCAmelCase__ : Optional[int] = 0 for i in range(lowerCAmelCase ): if index == -1: summation_value += _error(lowerCAmelCase ) else: summation_value += _error(lowerCAmelCase ) * train_data[i][0][index] return summation_value def a__ ( lowerCAmelCase ) -> List[Any]: UpperCAmelCase__ : int = summation_of_cost_derivative(lowerCAmelCase , lowerCAmelCase ) / m return cost_derivative_value def a__ ( ) -> List[str]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase__ : Any = 0.00_0002 UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Union[str, Any] = 0 while True: j += 1 UpperCAmelCase__ : str = [0, 0, 0, 0] for i in range(0 , len(lowerCAmelCase ) ): UpperCAmelCase__ : List[Any] = get_cost_derivative(i - 1 ) UpperCAmelCase__ : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCAmelCase , lowerCAmelCase , atol=lowerCAmelCase , rtol=lowerCAmelCase , ): break UpperCAmelCase__ : Any = temp_parameter_vector print(("""Number of iterations:""", j) ) def a__ ( ) -> Optional[int]: for i in range(len(lowerCAmelCase ) ): print(("""Actual output value:""", output(lowerCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(lowerCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
166
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class __a ( _SCREAMING_SNAKE_CASE ): __lowercase : Union[str, Any] = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) __lowercase : List[Any] = Features({'text': Value('string' )} ) __lowercase : int = Features({'summary': Value('string' )} ) __lowercase : Optional[int] = 'text' __lowercase : Any = 'summary' @property def SCREAMING_SNAKE_CASE__ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
196
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __A : Optional[int] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __A : int = "UperNetConfig" class __snake_case ( nn.Module): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : Union[int, Tuple[int, int]] , lowerCamelCase : Union[int, Tuple[int, int], str] = 0 , lowerCamelCase : bool = False , lowerCamelCase : Union[int, Tuple[int, int]] = 1 , ) -> None: super().__init__() lowerCAmelCase_ : int = nn.Convad( in_channels=lowerCamelCase , out_channels=lowerCamelCase , kernel_size=lowerCamelCase , padding=lowerCamelCase , bias=lowerCamelCase , dilation=lowerCamelCase , ) lowerCAmelCase_ : Dict = nn.BatchNormad(lowerCamelCase ) lowerCAmelCase_ : Dict = nn.ReLU() def __lowercase ( self : Tuple , lowerCamelCase : torch.Tensor ) -> torch.Tensor: lowerCAmelCase_ : Optional[Any] = self.conv(lowerCamelCase ) lowerCAmelCase_ : Tuple = self.batch_norm(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = self.activation(lowerCamelCase ) return output class __snake_case ( nn.Module): """simple docstring""" def __init__( self : List[str] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ) -> None: super().__init__() lowerCAmelCase_ : str = [ nn.AdaptiveAvgPoolad(lowerCamelCase ), UperNetConvModule(lowerCamelCase , lowerCamelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(lowerCamelCase ) , lowerCamelCase ) def __lowercase ( self : List[str] , lowerCamelCase : torch.Tensor ) -> torch.Tensor: lowerCAmelCase_ : List[Any] = input for layer in self.layers: lowerCAmelCase_ : Tuple = layer(lowerCamelCase ) return hidden_state class __snake_case ( nn.Module): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase : Tuple[int, ...] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : bool ) -> None: super().__init__() lowerCAmelCase_ : List[str] = pool_scales lowerCAmelCase_ : Union[str, Any] = align_corners lowerCAmelCase_ : Tuple = in_channels lowerCAmelCase_ : List[str] = channels lowerCAmelCase_ : Tuple = [] for i, pool_scale in enumerate(lowerCamelCase ): lowerCAmelCase_ : Optional[int] = UperNetPyramidPoolingBlock(pool_scale=lowerCamelCase , in_channels=lowerCamelCase , channels=lowerCamelCase ) self.blocks.append(lowerCamelCase ) self.add_module(str(lowerCamelCase ) , lowerCamelCase ) def __lowercase ( self : Optional[Any] , lowerCamelCase : torch.Tensor ) -> List[torch.Tensor]: lowerCAmelCase_ : Any = [] for ppm in self.blocks: lowerCAmelCase_ : Any = ppm(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = nn.functional.interpolate( lowerCamelCase , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(lowerCamelCase ) return ppm_outs class __snake_case ( nn.Module): """simple docstring""" def __init__( self : int , lowerCamelCase : List[str] , lowerCamelCase : List[Any] ) -> Dict: super().__init__() lowerCAmelCase_ : List[Any] = config lowerCAmelCase_ : Any = config.pool_scales # e.g. (1, 2, 3, 6) lowerCAmelCase_ : Dict = in_channels lowerCAmelCase_ : Any = config.hidden_size lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowerCAmelCase_ : Dict = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowerCAmelCase_ : Union[str, Any] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowerCAmelCase_ : Dict = nn.ModuleList() lowerCAmelCase_ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowerCAmelCase_ : List[str] = UperNetConvModule(lowerCamelCase , self.channels , kernel_size=1 ) lowerCAmelCase_ : Optional[int] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(lowerCamelCase ) self.fpn_convs.append(lowerCamelCase ) lowerCAmelCase_ : List[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def __lowercase ( self : List[Any] ) -> Any: self.apply(self._init_weights ) def __lowercase ( self : Optional[int] , lowerCamelCase : str ) -> List[Any]: if isinstance(lowerCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __lowercase ( self : List[str] , lowerCamelCase : Optional[Any] ) -> Any: lowerCAmelCase_ : Union[str, Any] = inputs[-1] lowerCAmelCase_ : List[str] = [x] psp_outs.extend(self.psp_modules(lowerCamelCase ) ) lowerCAmelCase_ : str = torch.cat(lowerCamelCase , dim=1 ) lowerCAmelCase_ : str = self.bottleneck(lowerCamelCase ) return output def __lowercase ( self : Dict , lowerCamelCase : torch.Tensor ) -> torch.Tensor: # build laterals lowerCAmelCase_ : Optional[int] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(lowerCamelCase ) ) # build top-down path lowerCAmelCase_ : Tuple = len(lowerCamelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCAmelCase_ : Union[str, Any] = laterals[i - 1].shape[2:] lowerCAmelCase_ : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=lowerCamelCase , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs lowerCAmelCase_ : Optional[Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCAmelCase_ : Union[str, Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) lowerCAmelCase_ : Dict = torch.cat(lowerCamelCase , dim=1 ) lowerCAmelCase_ : Any = self.fpn_bottleneck(lowerCamelCase ) lowerCAmelCase_ : str = self.classifier(lowerCamelCase ) return output class __snake_case ( nn.Module): """simple docstring""" def __init__( self : List[str] , lowerCamelCase : Dict , lowerCamelCase : int = 2 , lowerCamelCase : int = 3 , lowerCamelCase : Union[int, Tuple[int, int]] = 1 ) -> None: super().__init__() lowerCAmelCase_ : List[Any] = config lowerCAmelCase_ : Dict = config.auxiliary_in_channels lowerCAmelCase_ : Optional[Any] = config.auxiliary_channels lowerCAmelCase_ : Dict = config.auxiliary_num_convs lowerCAmelCase_ : int = config.auxiliary_concat_input lowerCAmelCase_ : List[Any] = in_index lowerCAmelCase_ : List[Any] = (kernel_size // 2) * dilation lowerCAmelCase_ : Tuple = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=lowerCamelCase , padding=lowerCamelCase , dilation=lowerCamelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=lowerCamelCase , padding=lowerCamelCase , dilation=lowerCamelCase ) ) if self.num_convs == 0: lowerCAmelCase_ : Optional[Any] = nn.Identity() else: lowerCAmelCase_ : List[str] = nn.Sequential(*lowerCamelCase ) if self.concat_input: lowerCAmelCase_ : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=lowerCamelCase , padding=kernel_size // 2 ) lowerCAmelCase_ : Any = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def __lowercase ( self : int ) -> List[Any]: self.apply(self._init_weights ) def __lowercase ( self : Union[str, Any] , lowerCamelCase : Optional[Any] ) -> Optional[Any]: if isinstance(lowerCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __lowercase ( self : Any , lowerCamelCase : torch.Tensor ) -> torch.Tensor: # just take the relevant feature maps lowerCAmelCase_ : Dict = encoder_hidden_states[self.in_index] lowerCAmelCase_ : List[str] = self.convs(lowerCamelCase ) if self.concat_input: lowerCAmelCase_ : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowerCAmelCase_ : Union[str, Any] = self.classifier(lowerCamelCase ) return output class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = UperNetConfig lowercase = 'pixel_values' lowercase = True def __lowercase ( self : List[str] , lowerCamelCase : Dict ) -> Optional[Any]: if isinstance(lowerCamelCase , lowerCamelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def __lowercase ( self : Optional[int] ) -> int: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def __lowercase ( self : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Any=False ) -> Optional[int]: if isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : str = value __A : Union[str, Any] = R"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __A : str = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' ,_SCREAMING_SNAKE_CASE ,) class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __init__( self : Any , lowerCamelCase : List[Any] ) -> Union[str, Any]: super().__init__(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowerCAmelCase_ : Optional[Any] = UperNetHead(lowerCamelCase , in_channels=self.backbone.channels ) lowerCAmelCase_ : List[Any] = UperNetFCNHead(lowerCamelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC ) def __lowercase ( self : Any , lowerCamelCase : Optional[torch.Tensor] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[torch.Tensor] = None , lowerCamelCase : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]: lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions lowerCAmelCase_ : Dict = self.backbone.forward_with_filtered_kwargs( lowerCamelCase , output_hidden_states=lowerCamelCase , output_attentions=lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = outputs.feature_maps lowerCAmelCase_ : Dict = self.decode_head(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = nn.functional.interpolate(lowerCamelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=lowerCamelCase ) lowerCAmelCase_ : Tuple = None if self.auxiliary_head is not None: lowerCAmelCase_ : Optional[int] = self.auxiliary_head(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = nn.functional.interpolate( lowerCamelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=lowerCamelCase ) lowerCAmelCase_ : str = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss lowerCAmelCase_ : str = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowerCAmelCase_ : int = loss_fct(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : List[str] = loss_fct(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : str = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowerCAmelCase_ : int = (logits,) + outputs[1:] else: lowerCAmelCase_ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=lowerCamelCase , logits=lowerCamelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
120
0
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> np.ndarray: '''simple docstring''' _snake_case : List[Any] = cva.getAffineTransform(__lowercase , __lowercase ) return cva.warpAffine(__lowercase , __lowercase , (rows, cols) ) if __name__ == "__main__": # read original image __SCREAMING_SNAKE_CASE : List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value __SCREAMING_SNAKE_CASE : Union[str, Any] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE : List[Any] = gray_img.shape # set different points to rotate image __SCREAMING_SNAKE_CASE : int = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) __SCREAMING_SNAKE_CASE : Optional[int] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) __SCREAMING_SNAKE_CASE : str = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) __SCREAMING_SNAKE_CASE : Dict = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list __SCREAMING_SNAKE_CASE : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __SCREAMING_SNAKE_CASE : int = plt.figure(1) __SCREAMING_SNAKE_CASE : Tuple = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
284
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowercase_ : def UpperCamelCase ( self ): torch.manual_seed(0 ) _snake_case : Tuple = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _snake_case : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _snake_case : Optional[int] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _snake_case : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0_001 , beta_end=0.02 , thresholding=lowercase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) _snake_case : int = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase ( self ): torch.manual_seed(0 ) _snake_case : List[str] = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _snake_case : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _snake_case : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _snake_case : Union[str, Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0_001 , beta_end=0.02 , thresholding=lowercase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) _snake_case : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0_001 , beta_end=0.02 , ) torch.manual_seed(0 ) _snake_case : Dict = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase ( self ): _snake_case : List[Any] = self.get_dummy_components() _snake_case : List[Any] = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) _snake_case : Union[str, Any] = self.get_dummy_inputs(lowercase_ ) _snake_case : Union[str, Any] = inputs["prompt"] _snake_case : Dict = inputs["generator"] _snake_case : Any = inputs["num_inference_steps"] _snake_case : Union[str, Any] = inputs["output_type"] if "image" in inputs: _snake_case : int = inputs["image"] else: _snake_case : Union[str, Any] = None if "mask_image" in inputs: _snake_case : int = inputs["mask_image"] else: _snake_case : List[str] = None if "original_image" in inputs: _snake_case : Tuple = inputs["original_image"] else: _snake_case : Any = None _snake_case ,_snake_case : Optional[int] = pipe.encode_prompt(lowercase_ ) # inputs with prompt converted to embeddings _snake_case : Dict = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _snake_case : int = image if mask_image is not None: _snake_case : int = mask_image if original_image is not None: _snake_case : Any = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowercase_ , lowercase_ , lowercase_ ) _snake_case : Optional[int] = pipe(**lowercase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase_ ) _snake_case : Any = self.pipeline_class.from_pretrained(lowercase_ ) pipe_loaded.to(lowercase_ ) pipe_loaded.set_progress_bar_config(disable=lowercase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowercase_ , lowercase_ ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) _snake_case : int = self.get_dummy_inputs(lowercase_ ) _snake_case : Optional[int] = inputs["generator"] _snake_case : List[Any] = inputs["num_inference_steps"] _snake_case : Tuple = inputs["output_type"] # inputs with prompt converted to embeddings _snake_case : int = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _snake_case : int = image if mask_image is not None: _snake_case : str = mask_image if original_image is not None: _snake_case : int = original_image _snake_case : Optional[Any] = pipe_loaded(**lowercase_ )[0] _snake_case : Dict = np.abs(to_np(lowercase_ ) - to_np(lowercase_ ) ).max() self.assertLess(lowercase_ , 1e-4 ) def UpperCamelCase ( self ): _snake_case : Tuple = self.get_dummy_components() _snake_case : Any = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) _snake_case : int = self.get_dummy_inputs(lowercase_ ) _snake_case : List[str] = pipe(**lowercase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase_ ) _snake_case : List[Any] = self.pipeline_class.from_pretrained(lowercase_ ) pipe_loaded.to(lowercase_ ) pipe_loaded.set_progress_bar_config(disable=lowercase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests _snake_case : Optional[Any] = self.get_dummy_inputs(lowercase_ ) _snake_case : int = pipe_loaded(**lowercase_ )[0] _snake_case : Tuple = np.abs(to_np(lowercase_ ) - to_np(lowercase_ ) ).max() self.assertLess(lowercase_ , 1e-4 )
284
1
'''simple docstring''' import math import sys def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE_ ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 _lowerCAmelCase = [-1] * (number + 1) _lowerCAmelCase = 0 for i in range(1 , number + 1 ): _lowerCAmelCase = sys.maxsize _lowerCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) for j in range(1 , root + 1 ): _lowerCAmelCase = 1 + answers[i - (j**2)] _lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
158
'''simple docstring''' import math import unittest def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> str: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _snake_case ( self ) -> List[Any]: with self.assertRaises(_lowerCAmelCase ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , ) self.assertFalse( is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
158
1
from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase ( ) -> Dict: snake_case_ = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=__lowerCAmelCase ) snake_case_ = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=__lowerCAmelCase ) env_command_parser(subparsers=__lowerCAmelCase ) launch_command_parser(subparsers=__lowerCAmelCase ) tpu_command_parser(subparsers=__lowerCAmelCase ) test_command_parser(subparsers=__lowerCAmelCase ) # Let's go snake_case_ = parser.parse_args() if not hasattr(__lowerCAmelCase , 'func' ): parser.print_help() exit(1 ) # Run args.func(__lowerCAmelCase ) if __name__ == "__main__": main()
362
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=1 ) -> Optional[Any]: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Dict: snake_case_ = [] for old_item in old_list: snake_case_ = old_item.replace('in_layers.0' , 'norm1' ) snake_case_ = new_item.replace('in_layers.2' , 'conv1' ) snake_case_ = new_item.replace('out_layers.0' , 'norm2' ) snake_case_ = new_item.replace('out_layers.3' , 'conv2' ) snake_case_ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) snake_case_ = new_item.replace('skip_connection' , 'conv_shortcut' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Union[str, Any]: snake_case_ = [] for old_item in old_list: snake_case_ = old_item snake_case_ = new_item.replace('norm.weight' , 'group_norm.weight' ) snake_case_ = new_item.replace('norm.bias' , 'group_norm.bias' ) snake_case_ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) snake_case_ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[Any]: assert isinstance(UpperCAmelCase , UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): snake_case_ = old_checkpoint[path] snake_case_ = old_tensor.shape[0] // 3 snake_case_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) snake_case_ = old_tensor.shape[0] // config['num_head_channels'] // 3 snake_case_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) snake_case_ , snake_case_ , snake_case_ = old_tensor.split(channels // num_heads , dim=1 ) snake_case_ = query.reshape(UpperCAmelCase ) snake_case_ = key.reshape(UpperCAmelCase ) snake_case_ = value.reshape(UpperCAmelCase ) for path in paths: snake_case_ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here snake_case_ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) snake_case_ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) snake_case_ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: snake_case_ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: snake_case_ = old_checkpoint[path['old']][:, :, 0] else: snake_case_ = old_checkpoint[path['old']] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = {} snake_case_ = checkpoint['time_embed.0.weight'] snake_case_ = checkpoint['time_embed.0.bias'] snake_case_ = checkpoint['time_embed.2.weight'] snake_case_ = checkpoint['time_embed.2.bias'] snake_case_ = checkpoint['input_blocks.0.0.weight'] snake_case_ = checkpoint['input_blocks.0.0.bias'] snake_case_ = checkpoint['out.0.weight'] snake_case_ = checkpoint['out.0.bias'] snake_case_ = checkpoint['out.2.weight'] snake_case_ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the middle blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the output blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } for i in range(1 , UpperCAmelCase ): snake_case_ = (i - 1) // (config['num_res_blocks'] + 1) snake_case_ = (i - 1) % (config['num_res_blocks'] + 1) snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.weight' ] snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} snake_case_ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path, resnet_op] , config=UpperCAmelCase ) if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'input_blocks.{i}.1.qkv.bias': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase , ) snake_case_ = middle_blocks[0] snake_case_ = middle_blocks[1] snake_case_ = middle_blocks[2] snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase ) for i in range(UpperCAmelCase ): snake_case_ = i // (config['num_res_blocks'] + 1) snake_case_ = i % (config['num_res_blocks'] + 1) snake_case_ = [shave_segments(UpperCAmelCase , 2 ) for name in output_blocks[i]] snake_case_ = {} for layer in output_block_layers: snake_case_ , snake_case_ = layer.split('.' )[0], shave_segments(UpperCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCAmelCase ) else: snake_case_ = [layer_name] if len(UpperCAmelCase ) > 1: snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , config=UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): snake_case_ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(UpperCAmelCase ) == 2: snake_case_ = [] if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'output_blocks.{i}.1.qkv.bias': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=UpperCAmelCase , ) else: snake_case_ = renew_resnet_paths(UpperCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: snake_case_ = '.'.join(['output_blocks', str(UpperCAmelCase ), path['old']] ) snake_case_ = '.'.join(['up_blocks', str(UpperCAmelCase ), 'resnets', str(UpperCAmelCase ), path['new']] ) snake_case_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __UpperCamelCase = json.loads(f.read()) __UpperCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __UpperCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __UpperCamelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
312
0
import argparse from collections import defaultdict import yaml snake_case : Dict = '''docs/source/en/_toctree.yml''' def __lowercase ( __lowerCAmelCase : List[Any] ): a__ = defaultdict(__lowerCAmelCase ) a__ = [] a__ = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(__lowerCAmelCase ) a__ = new_doc_list a__ = [key for key, value in counts.items() if value > 1] a__ = [] for duplicate_key in duplicates: a__ = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(__lowerCAmelCase ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) a__ = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__lowerCAmelCase ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(__lowerCAmelCase ) # Sort return overview_doc def __lowercase ( __lowerCAmelCase : str=False ): with open(__lowerCAmelCase , encoding='utf-8' ) as f: a__ = yaml.safe_load(f.read() ) # Get to the API doc a__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 a__ = content[api_idx]['sections'] # Then to the model doc a__ = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 a__ = api_doc[scheduler_idx]['sections'] a__ = clean_doc_toc(__lowerCAmelCase ) a__ = False if new_scheduler_doc != scheduler_doc: a__ = True if overwrite: a__ = new_scheduler_doc if diff: if overwrite: a__ = api_doc with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__lowerCAmelCase , allow_unicode=__lowerCAmelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def __lowercase ( __lowerCAmelCase : Any=False ): with open(__lowerCAmelCase , encoding='utf-8' ) as f: a__ = yaml.safe_load(f.read() ) # Get to the API doc a__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 a__ = content[api_idx]['sections'] # Then to the model doc a__ = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 a__ = False a__ = api_doc[pipeline_idx]['sections'] a__ = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: a__ = pipeline_doc['section'] a__ = clean_doc_toc(__lowerCAmelCase ) if overwrite: a__ = new_sub_pipeline_doc new_pipeline_docs.append(__lowerCAmelCase ) # sort overall pipeline doc a__ = clean_doc_toc(__lowerCAmelCase ) if new_pipeline_docs != pipeline_docs: a__ = True if overwrite: a__ = new_pipeline_docs if diff: if overwrite: a__ = api_doc with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__lowerCAmelCase , allow_unicode=__lowerCAmelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') snake_case : str = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
240
import math def __lowercase ( __lowerCAmelCase : int ): a__ = [True] * n a__ = False a__ = False a__ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): a__ = i * 2 while index < n: a__ = False a__ = index + i a__ = [2] for i in range(3 , __lowerCAmelCase , 2 ): if is_prime[i]: primes.append(__lowerCAmelCase ) return primes def __lowercase ( __lowerCAmelCase : int = 9_9_9_9_6_6_6_6_3_3_3_3 ): a__ = math.floor(math.sqrt(__lowerCAmelCase ) ) + 1_0_0 a__ = prime_sieve(__lowerCAmelCase ) a__ = 0 a__ = 0 a__ = primes[prime_index] while (last_prime**2) <= limit: a__ = primes[prime_index + 1] a__ = last_prime**2 a__ = next_prime**2 # Get numbers divisible by lps(current) a__ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a__ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a__ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a__ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
240
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase : def __init__( self :List[Any] , _lowercase :List[Any] , _lowercase :Dict=12 , _lowercase :Optional[int]=7 , _lowercase :Union[str, Any]=True , _lowercase :List[Any]=True , _lowercase :str=True , _lowercase :List[Any]=99 , _lowercase :int=32 , _lowercase :Optional[int]=32 , _lowercase :Dict=2 , _lowercase :str=4 , _lowercase :Dict=37 , _lowercase :List[str]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Union[str, Any]=5_12 , _lowercase :int=0.02 , _lowercase :Tuple=0 , _lowercase :List[Any]=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = projection_dim lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = scope lowercase__ = bos_token_id def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowercase__ = input_mask.numpy() lowercase__ , lowercase__ = input_mask.shape lowercase__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowercase ): lowercase__ = 1 lowercase__ = 0 lowercase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(_lowercase ) def UpperCAmelCase ( self :int ): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self :Tuple , _lowercase :int , _lowercase :Optional[Any] , _lowercase :Dict ): '''simple docstring''' lowercase__ = TFBlipTextModel(config=_lowercase ) lowercase__ = model(_lowercase , attention_mask=_lowercase , training=_lowercase ) lowercase__ = model(_lowercase , training=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( lowercase_ , unittest.TestCase ): __lowerCamelCase = (TFBlipTextModel,) if is_tf_available() else () __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = BlipTextModelTester(self ) lowercase__ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase ( self :str ): '''simple docstring''' pass def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def UpperCAmelCase ( self :Any ): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def UpperCAmelCase ( self :int ): '''simple docstring''' pass @slow def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFBlipTextModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def UpperCAmelCase ( self :str , _lowercase :Union[str, Any]=True ): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=_lowercase )
369
from __future__ import annotations from collections import deque class lowerCAmelCase : def __init__( self :List[Any] , _lowercase :list[str] ): '''simple docstring''' lowercase__ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(_lowercase ) self.set_fail_transitions() def UpperCAmelCase ( self :str , _lowercase :int , _lowercase :str ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCAmelCase ( self :List[str] , _lowercase :str ): '''simple docstring''' lowercase__ = 0 for character in keyword: lowercase__ = self.find_next_state(_lowercase , _lowercase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase__ = len(self.adlist ) - 1 else: lowercase__ = next_state self.adlist[current_state]["output"].append(_lowercase ) def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = deque() for node in self.adlist[0]["next_states"]: q.append(_lowercase ) lowercase__ = 0 while q: lowercase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_lowercase ) lowercase__ = self.adlist[r]["fail_state"] while ( self.find_next_state(_lowercase , self.adlist[child]["value"] ) is None and state != 0 ): lowercase__ = self.adlist[state]["fail_state"] lowercase__ = self.find_next_state( _lowercase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: lowercase__ = 0 lowercase__ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def UpperCAmelCase ( self :Optional[Any] , _lowercase :str ): '''simple docstring''' lowercase__ = {} # returns a dict with keywords and list of its occurrences lowercase__ = 0 for i in range(len(_lowercase ) ): while ( self.find_next_state(_lowercase , string[i] ) is None and current_state != 0 ): lowercase__ = self.adlist[current_state]["fail_state"] lowercase__ = self.find_next_state(_lowercase , string[i] ) if next_state is None: lowercase__ = 0 else: lowercase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase__ = [] result[key].append(i - len(_lowercase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
201
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __lowercase = logging.get_logger(__name__) class _A ( _a ): """simple docstring""" def __init__( self : List[str] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : List[Any]): warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase)
40
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A = spec.loader.load_module() __A = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def UpperCamelCase__ ( ): snake_case : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case : Tuple = False # source code of `config_class` snake_case : Tuple = inspect.getsource(lowercase__ ) snake_case : Optional[int] = _re_checkpoint.findall(lowercase__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case , snake_case : str = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case : Optional[int] = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: snake_case : Any = True break snake_case : Optional[Any] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowercase__ ) if len(lowercase__ ) > 0: snake_case : Optional[Any] = "\n".join(sorted(lowercase__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
148
0
from collections.abc import Callable def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: a = a a = b if function(_a ) == 0: # one of the a or b is a root for the function return a elif function(_a ) == 0: return b elif ( function(_a ) * function(_a ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: a = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_a ) == 0: return mid elif function(_a ) * function(_a ) < 0: a = mid else: a = mid a = start + (end - start) / 2.0 return mid def __A ( __lowerCamelCase ) -> Dict: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
365
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCamelCase ) a = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: a = dataset_size < in_memory_max_size else: a = False a = is_small_dataset(__lowerCamelCase ) assert result == expected
347
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } lowerCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } lowerCamelCase = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } lowerCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _a ( _lowercase): _a : Any = VOCAB_FILES_NAMES _a : List[str] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _a ( _lowercase): _a : int = VOCAB_FILES_NAMES _a : List[Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Any = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCamelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCamelCase = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_lowercase) class _a : def __call__( self : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : Union[bool, str] = False , _SCREAMING_SNAKE_CASE : Union[bool, str] = False , _SCREAMING_SNAKE_CASE : Optional[int] = None , _SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , **_SCREAMING_SNAKE_CASE : str , )-> BatchEncoding: if titles is None and texts is None: return super().__call__( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) elif titles is None or texts is None: lowerCAmelCase__ : Tuple = titles if texts is None else texts return super().__call__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : int = titles if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else [titles] lowerCAmelCase__ : Dict = texts if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else [texts] lowerCAmelCase__ : Dict = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = questions if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else [questions] * n_passages if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( F'There should be as many titles than texts but got {len(_SCREAMING_SNAKE_CASE )} titles and {len(_SCREAMING_SNAKE_CASE )} texts.' ) lowerCAmelCase__ : Union[str, Any] = super().__call__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] lowerCAmelCase__ : str = super().__call__(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] lowerCAmelCase__ : Dict = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] } if return_attention_mask is not False: lowerCAmelCase__ : Union[str, Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCAmelCase__ : Tuple = attention_mask return self.pad(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : BatchEncoding , _SCREAMING_SNAKE_CASE : DPRReaderOutput , _SCREAMING_SNAKE_CASE : int = 16 , _SCREAMING_SNAKE_CASE : int = 64 , _SCREAMING_SNAKE_CASE : int = 4 , )-> List[DPRSpanPrediction]: lowerCAmelCase__ : Optional[int] = reader_input['''input_ids'''] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = reader_output[:3] lowerCAmelCase__ : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = sorted(range(_SCREAMING_SNAKE_CASE ) , reverse=_SCREAMING_SNAKE_CASE , key=relevance_logits.__getitem__ ) lowerCAmelCase__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: lowerCAmelCase__ : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCAmelCase__ : Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCAmelCase__ : Any = sequence_ids.index(self.pad_token_id ) else: lowerCAmelCase__ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_SCREAMING_SNAKE_CASE , top_spans=_SCREAMING_SNAKE_CASE , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_SCREAMING_SNAKE_CASE , start_index=_SCREAMING_SNAKE_CASE , end_index=_SCREAMING_SNAKE_CASE , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_SCREAMING_SNAKE_CASE ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , )-> List[DPRSpanPrediction]: lowerCAmelCase__ : Union[str, Any] = [] for start_index, start_score in enumerate(_SCREAMING_SNAKE_CASE ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCAmelCase__ : List[Any] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x[1] , reverse=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'Wrong span indices: [{start_index}:{end_index}]' ) lowerCAmelCase__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_SCREAMING_SNAKE_CASE ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowercase) class _a ( _lowercase , _lowercase): _a : List[str] = VOCAB_FILES_NAMES _a : str = READER_PRETRAINED_VOCAB_FILES_MAP _a : Optional[int] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION _a : Optional[int] = ['''input_ids''', '''attention_mask''']
131
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa lowerCamelCase = logging.getLogger(__name__) class _a ( _lowercase): _a : Dict = '''summarization''' _a : int = ['''loss'''] _a : Optional[Any] = ROUGE_KEYS _a : Any = '''rouge2''' def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] , **_SCREAMING_SNAKE_CASE : Dict )-> int: if hparams.sortish_sampler and hparams.gpus > 1: lowerCAmelCase__ : int = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_SCREAMING_SNAKE_CASE , num_labels=_SCREAMING_SNAKE_CASE , mode=self.mode , **_SCREAMING_SNAKE_CASE ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) lowerCAmelCase__ : List[Any] = Path(self.output_dir ) / '''metrics.json''' lowerCAmelCase__ : int = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : List[Any] = defaultdict(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = self.config.model_type lowerCAmelCase__ : Any = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size lowerCAmelCase__ : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } lowerCAmelCase__ : List[Any] = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } lowerCAmelCase__ : Union[str, Any] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} lowerCAmelCase__ : Tuple = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], F'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) lowerCAmelCase__ : List[str] = get_git_info()['''repo_sha'''] lowerCAmelCase__ : int = hparams.num_workers lowerCAmelCase__ : Optional[int] = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : Optional[int] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] lowerCAmelCase__ : List[Any] = self.decoder_start_token_id lowerCAmelCase__ : int = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : List[str] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: lowerCAmelCase__ : int = self.hparams.eval_max_gen_length else: lowerCAmelCase__ : Tuple = self.model.config.max_length lowerCAmelCase__ : List[str] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] )-> Dict[str, List[str]]: lowerCAmelCase__ : Any = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_SCREAMING_SNAKE_CASE , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) lowerCAmelCase__ : Union[str, Any] = True return readable_batch def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple , **_SCREAMING_SNAKE_CASE : Tuple )-> Tuple: return self.model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[int] )-> Tuple: lowerCAmelCase__ : int = self.tokenizer.batch_decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) return lmap(str.strip , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : dict )-> Tuple: lowerCAmelCase__ : Any = self.tokenizer.pad_token_id lowerCAmelCase__ , lowerCAmelCase__ : int = batch['''input_ids'''], batch['''attention_mask'''] lowerCAmelCase__ : Optional[Any] = batch['''labels'''] if isinstance(self.model , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : List[str] = self.model._shift_right(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase__ : Any = shift_tokens_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero lowerCAmelCase__ : Any = decoder_input_ids self.save_readable_batch(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = self(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[str] = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id lowerCAmelCase__ : Optional[int] = nn.CrossEntropyLoss(ignore_index=_SCREAMING_SNAKE_CASE ) assert lm_logits.shape[-1] == self.vocab_size lowerCAmelCase__ : Optional[Any] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: lowerCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = label_smoothed_nll_loss( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.hparams.label_smoothing , ignore_index=_SCREAMING_SNAKE_CASE ) return (loss,) @property def UpperCAmelCase__( self : Optional[Any] )-> int: return self.tokenizer.pad_token_id def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )-> Dict: lowerCAmelCase__ : List[Any] = self._step(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = dict(zip(self.loss_names , _SCREAMING_SNAKE_CASE ) ) # tokens per batch lowerCAmelCase__ : Dict = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() lowerCAmelCase__ : Optional[int] = batch['''input_ids'''].shape[0] lowerCAmelCase__ : List[Any] = batch['''input_ids'''].eq(self.pad ).sum() lowerCAmelCase__ : List[str] = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] )-> Dict: return self._generative_step(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple="val" )-> Dict: self.step_count += 1 lowerCAmelCase__ : Any = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} lowerCAmelCase__ : Union[str, Any] = losses['''loss'''] lowerCAmelCase__ : Union[str, Any] = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } lowerCAmelCase__ : Optional[Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) lowerCAmelCase__ : torch.FloatTensor = torch.tensor(_SCREAMING_SNAKE_CASE ).type_as(_SCREAMING_SNAKE_CASE ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = {F'{prefix}_avg_{k}': x for k, x in losses.items()} lowerCAmelCase__ : Optional[Any] = self.step_count self.metrics[prefix].append(_SCREAMING_SNAKE_CASE ) # callback writes this to self.metrics_save_path lowerCAmelCase__ : Optional[int] = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'{prefix}_loss': loss, F'{prefix}_{self.val_metric}': metric_tensor, } def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] )-> Dict: return calculate_rouge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : dict )-> dict: lowerCAmelCase__ : Any = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') lowerCAmelCase__ : str = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_SCREAMING_SNAKE_CASE , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) lowerCAmelCase__ : List[str] = (time.time() - ta) / batch['''input_ids'''].shape[0] lowerCAmelCase__ : List[str] = self.ids_to_clean_text(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[str] = self.ids_to_clean_text(batch['''labels'''] ) lowerCAmelCase__ : Any = self._step(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = dict(zip(self.loss_names , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : Dict = self.calc_generative_metrics(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = np.mean(lmap(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) base_metrics.update(gen_time=_SCREAMING_SNAKE_CASE , gen_len=_SCREAMING_SNAKE_CASE , preds=_SCREAMING_SNAKE_CASE , target=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return base_metrics def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Optional[int]: return self._generative_step(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : int )-> str: return self.validation_epoch_end(_SCREAMING_SNAKE_CASE , prefix='''test''' ) def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : int )-> SeqaSeqDataset: lowerCAmelCase__ : Dict = self.n_obs[type_path] lowerCAmelCase__ : Dict = self.target_lens[type_path] lowerCAmelCase__ : int = self.dataset_class( self.tokenizer , type_path=_SCREAMING_SNAKE_CASE , n_obs=_SCREAMING_SNAKE_CASE , max_target_length=_SCREAMING_SNAKE_CASE , **self.dataset_kwargs , ) return dataset def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool = False )-> DataLoader: lowerCAmelCase__ : str = self.get_dataset(_SCREAMING_SNAKE_CASE ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": lowerCAmelCase__ : Any = dataset.make_sortish_sampler(_SCREAMING_SNAKE_CASE , distributed=self.hparams.gpus > 1 ) return DataLoader( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=_SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=_SCREAMING_SNAKE_CASE , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": lowerCAmelCase__ : Optional[int] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _SCREAMING_SNAKE_CASE , batch_sampler=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=_SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=_SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__( self : List[str] )-> DataLoader: lowerCAmelCase__ : Dict = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_SCREAMING_SNAKE_CASE ) return dataloader def UpperCAmelCase__( self : List[str] )-> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def UpperCAmelCase__( self : List[Any] )-> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str )-> List[str]: BaseTransformer.add_model_specific_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) add_generic_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_SCREAMING_SNAKE_CASE , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_SCREAMING_SNAKE_CASE , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_SCREAMING_SNAKE_CASE , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_SCREAMING_SNAKE_CASE , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--max_tokens_per_batch''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--logger_name''' , type=_SCREAMING_SNAKE_CASE , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_SCREAMING_SNAKE_CASE , default=500 , required=_SCREAMING_SNAKE_CASE , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_SCREAMING_SNAKE_CASE , default='''summarization''' , required=_SCREAMING_SNAKE_CASE , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_SCREAMING_SNAKE_CASE , default=0.0 , required=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--src_lang''' , type=_SCREAMING_SNAKE_CASE , default='''''' , required=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--tgt_lang''' , type=_SCREAMING_SNAKE_CASE , default='''''' , required=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--eval_beams''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--val_metric''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_SCREAMING_SNAKE_CASE , default=1 , required=_SCREAMING_SNAKE_CASE , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class _a ( _lowercase): _a : Tuple = '''translation''' _a : Union[str, Any] = ['''loss'''] _a : int = ['''bleu'''] _a : List[str] = '''bleu''' def __init__( self : Optional[int] , _SCREAMING_SNAKE_CASE : int , **_SCREAMING_SNAKE_CASE : Any )-> Optional[int]: super().__init__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = hparams.src_lang lowerCAmelCase__ : str = hparams.tgt_lang def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple )-> dict: return calculate_bleu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( _a , _a=None ): """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=_a ) check_output_dir(_a , expected_items=3 ) if model is None: if "summarization" in args.task: lowerCAmelCase__ : SummarizationModule = SummarizationModule(_a ) else: lowerCAmelCase__ : SummarizationModule = TranslationModule(_a ) lowerCAmelCase__ : Optional[int] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): lowerCAmelCase__ : Any = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger lowerCAmelCase__ : Optional[int] = os.environ.get('''WANDB_PROJECT''' , _a ) lowerCAmelCase__ : Union[str, Any] = WandbLogger(name=model.output_dir.name , project=_a ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger lowerCAmelCase__ : List[Any] = WandbLogger(name=model.output_dir.name , project=f'hf_{dataset}' ) if args.early_stopping_patience >= 0: lowerCAmelCase__ : Optional[Any] = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: lowerCAmelCase__ : int = False lowerCAmelCase__ : str = args.val_metric == '''loss''' lowerCAmelCase__ : pl.Trainer = generic_train( _a , _a , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _a ) , early_stopping_callback=_a , logger=_a , ) pickle_save(model.hparams , model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model lowerCAmelCase__ : Any = '''''' lowerCAmelCase__ : Tuple = sorted(glob.glob(os.path.join(args.output_dir , '''*.ckpt''' ) , recursive=_a ) ) if checkpoints: lowerCAmelCase__ : List[str] = checkpoints[-1] lowerCAmelCase__ : Any = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() lowerCamelCase = pl.Trainer.add_argparse_args(parser) lowerCamelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) lowerCamelCase = parser.parse_args() main(args)
131
1
'''simple docstring''' __lowerCAmelCase : Optional[int] ="ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase ( ): A__ = input("Enter message: " ) A__ = input("Enter key [alphanumeric]: " ) A__ = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): A__ = "encrypt" A__ = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("d" ): A__ = "decrypt" A__ = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F"\n{mode.title()}ed message:" ) print(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : str ): return translate_message(_lowerCamelCase , _lowerCamelCase , "encrypt" ) def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : str ): return translate_message(_lowerCamelCase , _lowerCamelCase , "decrypt" ) def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : str ): A__ = [] A__ = 0 A__ = key.upper() for symbol in message: A__ = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): A__ = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
123
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCAmelCase : Optional[Any] ="\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __lowerCAmelCase : Union[str, Any] ="\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __lowerCAmelCase : str ="\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCamelCase ( _lowerCamelCase : List[Any] ): def remove_articles(_lowerCamelCase : Dict ): A__ = re.compile(r"\b(a|an|the)\b" , re.UNICODE ) return re.sub(_lowerCamelCase , " " , _lowerCamelCase ) def white_space_fix(_lowerCamelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase : int ): A__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase ) ) ) ) def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] ): return int(normalize_answer(_lowerCamelCase ) == normalize_answer(_lowerCamelCase ) ) def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : List[Any] ): A__ = [any(compute_exact(_lowerCamelCase , _lowerCamelCase ) for ref in refs ) for pred, refs in zip(_lowerCamelCase , _lowerCamelCase )] return (sum(_lowerCamelCase ) / len(_lowerCamelCase )) * 1_00 def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str ): A__ = [rgram for rgrams in rgramslist for rgram in rgrams] A__ = Counter(_lowerCamelCase ) A__ = Counter(_lowerCamelCase ) A__ = Counter() for sgram, scount in sgramcounter.items(): A__ = scount * numref A__ = Counter(_lowerCamelCase ) A__ = Counter() for cgram, ccount in cgramcounter.items(): A__ = ccount * numref # KEEP A__ = sgramcounter_rep & cgramcounter_rep A__ = keepgramcounter_rep & rgramcounter A__ = sgramcounter_rep & rgramcounter A__ = 0 A__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 A__ = 1 if len(_lowerCamelCase ) > 0: A__ = keeptmpscorea / len(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) A__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) A__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: A__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION A__ = sgramcounter_rep - cgramcounter_rep A__ = delgramcounter_rep - rgramcounter A__ = sgramcounter_rep - rgramcounter A__ = 0 A__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 if len(_lowerCamelCase ) > 0: A__ = deltmpscorea / len(_lowerCamelCase ) # ADDITION A__ = set(_lowerCamelCase ) - set(_lowerCamelCase ) A__ = set(_lowerCamelCase ) & set(_lowerCamelCase ) A__ = set(_lowerCamelCase ) - set(_lowerCamelCase ) A__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 A__ = 1 if len(_lowerCamelCase ) > 0: A__ = addtmpscore / len(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: A__ = addtmpscore / len(_lowerCamelCase ) A__ = 0 if addscore_precision > 0 or addscore_recall > 0: A__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): A__ = len(_lowerCamelCase ) A__ = ssent.split(" " ) A__ = csent.split(" " ) A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] for rsent in rsents: A__ = rsent.split(" " ) A__ = [] A__ = [] A__ = [] ragramslist.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: A__ = ragrams[i] + " " + ragrams[i + 1] ragrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: A__ = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: A__ = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: A__ = sagrams[i] + " " + sagrams[i + 1] sagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: A__ = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: A__ = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: A__ = cagrams[i] + " " + cagrams[i + 1] cagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: A__ = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: A__ = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(_lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 A__ = sum([delascore, delascore, delascore, delascore] ) / 4 A__ = sum([addascore, addascore, addascore, addascore] ) / 4 A__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : bool = True , _lowerCamelCase : str = "13a" , _lowerCamelCase : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: A__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: A__ = sacrebleu.metrics.bleu._get_tokenizer(_lowerCamelCase )()(_lowerCamelCase ) else: A__ = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCamelCase ) elif tokenizer == "moses": A__ = sacremoses.MosesTokenizer().tokenize(_lowerCamelCase , return_str=_lowerCamelCase , escape=_lowerCamelCase ) elif tokenizer == "penn": A__ = sacremoses.MosesTokenizer().penn_tokenize(_lowerCamelCase , return_str=_lowerCamelCase ) else: A__ = sentence if not return_str: A__ = normalized_sent.split() return normalized_sent def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] ): if not (len(_lowerCamelCase ) == len(_lowerCamelCase ) == len(_lowerCamelCase )): raise ValueError("Sources length must match predictions and references lengths." ) A__ = 0 for src, pred, refs in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): sari_score += SARIsent(normalize(_lowerCamelCase ) , normalize(_lowerCamelCase ) , [normalize(_lowerCamelCase ) for sent in refs] ) A__ = sari_score / len(_lowerCamelCase ) return 1_00 * sari_score def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : List[Any]="exp" , _lowerCamelCase : int=None , _lowerCamelCase : str=False , _lowerCamelCase : List[str]=False , _lowerCamelCase : Dict=False , ): A__ = len(references[0] ) if any(len(_lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A__ = [[refs[i] for refs in references] for i in range(_lowerCamelCase )] A__ = sacrebleu.corpus_bleu( _lowerCamelCase , _lowerCamelCase , smooth_method=_lowerCamelCase , smooth_value=_lowerCamelCase , force=_lowerCamelCase , lowercase=_lowerCamelCase , use_effective_order=_lowerCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def UpperCAmelCase_ ( self :Any )-> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def UpperCAmelCase_ ( self :str , lowercase_ :Dict , lowercase_ :List[Any] , lowercase_ :int )-> int: A__ = {} result.update({"sari": compute_sari(sources=lowercase_ , predictions=lowercase_ , references=lowercase_ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=lowercase_ , references=lowercase_ )} ) result.update({"exact": compute_em(predictions=lowercase_ , references=lowercase_ )} ) return result
123
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Union[str, Any] = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
144
"""simple docstring""" from sklearn.metrics import fa_score import datasets A__ : List[str] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' A__ : List[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' A__ : Optional[int] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCAmelCase__ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : int=None , snake_case__ : Optional[int]=1 , snake_case__ : int="binary" , snake_case__ : List[str]=None ): lowerCamelCase_ : str =fa_score( snake_case__ , snake_case__ , labels=snake_case__ , pos_label=snake_case__ , average=snake_case__ , sample_weight=snake_case__ ) return {"f1": float(snake_case__ ) if score.size == 1 else score}
144
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _A = logging.getLogger(__name__) @dataclass(frozen=__UpperCAmelCase ) class A : __snake_case = 42 __snake_case = 42 __snake_case = None __snake_case = None __snake_case = None @dataclass(frozen=__UpperCAmelCase ) class A : __snake_case = 42 __snake_case = None __snake_case = None __snake_case = None __snake_case = None if is_torch_available(): import torch from torch.utils.data import Dataset class A ( __UpperCAmelCase ): __snake_case = 42 def __init__( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__=False, UpperCamelCase__ = False, ): """simple docstring""" lowerCAmelCase_ = hans_processors[task]() lowerCAmelCase_ = os.path.join( UpperCamelCase__, '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''', tokenizer.__class__.__name__, str(UpperCamelCase__ ), UpperCamelCase__, ), ) lowerCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase_ , lowerCAmelCase_ = label_list[2], label_list[1] lowerCAmelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase_ = cached_features_file + '''.lock''' with FileLock(UpperCamelCase__ ): if os.path.exists(UpperCamelCase__ ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) lowerCAmelCase_ = torch.load(UpperCamelCase__ ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) lowerCAmelCase_ = ( processor.get_dev_examples(UpperCamelCase__ ) if evaluate else processor.get_train_examples(UpperCamelCase__ ) ) logger.info('''Training examples: %s''', len(UpperCamelCase__ ) ) lowerCAmelCase_ = hans_convert_examples_to_features(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) logger.info('''Saving features into cached file %s''', UpperCamelCase__ ) torch.save(self.features, UpperCamelCase__ ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, UpperCamelCase__ ): """simple docstring""" return self.features[i] def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class A : __snake_case = 42 def __init__( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = 128, UpperCamelCase__=False, UpperCamelCase__ = False, ): """simple docstring""" lowerCAmelCase_ = hans_processors[task]() lowerCAmelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase_ , lowerCAmelCase_ = label_list[2], label_list[1] lowerCAmelCase_ = label_list lowerCAmelCase_ = processor.get_dev_examples(UpperCamelCase__ ) if evaluate else processor.get_train_examples(UpperCamelCase__ ) lowerCAmelCase_ = hans_convert_examples_to_features(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ), desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(UpperCamelCase__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCAmelCase_ = tf.data.Dataset.from_generator( UpperCamelCase__, ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ), ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ), ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.dataset def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, UpperCamelCase__ ): """simple docstring""" return self.features[i] def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.label_list class A ( __UpperCAmelCase ): def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase__, '''heuristics_train_set.txt''' ) ), '''train''' ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase__, '''heuristics_evaluation_set.txt''' ) ), '''dev''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = [] for i, line in enumerate(UpperCamelCase__ ): if i == 0: continue lowerCAmelCase_ = '''%s-%s''' % (set_type, line[0]) lowerCAmelCase_ = line[5] lowerCAmelCase_ = line[6] lowerCAmelCase_ = line[7][2:] if line[7].startswith('''ex''' ) else line[7] lowerCAmelCase_ = line[0] examples.append(InputExample(guid=UpperCamelCase__, text_a=UpperCamelCase__, text_b=UpperCamelCase__, label=UpperCamelCase__, pairID=UpperCamelCase__ ) ) return examples def __UpperCamelCase ( _A , _A , _A , _A , ): lowerCAmelCase_ = {label: i for i, label in enumerate(_A )} lowerCAmelCase_ = [] for ex_index, example in tqdm.tqdm(enumerate(_A ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d''' % (ex_index) ) lowerCAmelCase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=_A , max_length=_A , padding='''max_length''' , truncation=_A , return_overflowing_tokens=_A , ) lowerCAmelCase_ = label_map[example.label] if example.label in label_map else 0 lowerCAmelCase_ = int(example.pairID ) features.append(InputFeatures(**_A , label=_A , pairID=_A ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"guid: {example}" ) logger.info(f"features: {features[i]}" ) return features _A = { '''hans''': 3, } _A = { '''hans''': HansProcessor, }
360
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A ( __UpperCAmelCase ): __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'OwlViTImageProcessor' __snake_case = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self, UpperCamelCase__=None, UpperCamelCase__=None, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', UpperCamelCase__, ) lowerCAmelCase_ = kwargs.pop('''feature_extractor''' ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__, UpperCamelCase__ ) def __call__( self, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__="max_length", UpperCamelCase__="np", **UpperCamelCase__ ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(UpperCamelCase__, UpperCamelCase__ ) or (isinstance(UpperCamelCase__, UpperCamelCase__ ) and not isinstance(text[0], UpperCamelCase__ )): lowerCAmelCase_ = [self.tokenizer(UpperCamelCase__, padding=UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__ )] elif isinstance(UpperCamelCase__, UpperCamelCase__ ) and isinstance(text[0], UpperCamelCase__ ): lowerCAmelCase_ = [] # Maximum number of queries across batch lowerCAmelCase_ = max([len(UpperCamelCase__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCamelCase__ ) != max_num_queries: lowerCAmelCase_ = t + [''' '''] * (max_num_queries - len(UpperCamelCase__ )) lowerCAmelCase_ = self.tokenizer(UpperCamelCase__, padding=UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__ ) encodings.append(UpperCamelCase__ ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": lowerCAmelCase_ = np.concatenate([encoding['''input_ids'''] for encoding in encodings], axis=0 ) lowerCAmelCase_ = np.concatenate([encoding['''attention_mask'''] for encoding in encodings], axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCAmelCase_ = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings], axis=0 ) lowerCAmelCase_ = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings], axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCAmelCase_ = torch.cat([encoding['''input_ids'''] for encoding in encodings], dim=0 ) lowerCAmelCase_ = torch.cat([encoding['''attention_mask'''] for encoding in encodings], dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCAmelCase_ = tf.stack([encoding['''input_ids'''] for encoding in encodings], axis=0 ) lowerCAmelCase_ = tf.stack([encoding['''attention_mask'''] for encoding in encodings], axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) lowerCAmelCase_ = BatchEncoding() lowerCAmelCase_ = input_ids lowerCAmelCase_ = attention_mask if query_images is not None: lowerCAmelCase_ = BatchEncoding() lowerCAmelCase_ = self.image_processor( UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__ ).pixel_values lowerCAmelCase_ = query_pixel_values if images is not None: lowerCAmelCase_ = self.image_processor(UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__ ) if text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ), tensor_type=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.image_processor.post_process(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.image_processor.post_process_object_detection(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__, **UpperCamelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', UpperCamelCase__, ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', UpperCamelCase__, ) return self.image_processor
167
0
'''simple docstring''' from ... import PretrainedConfig UpperCamelCase_ = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Tuple = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP A : Optional[Any] = '''nezha''' def __init__( self, A=21_128, A=768, A=12, A=12, A=3_072, A="gelu", A=0.1, A=0.1, A=512, A=64, A=2, A=0.02, A=1E-12, A=0.1, A=0, A=2, A=3, A=True, **A, ): '''simple docstring''' super().__init__(pad_token_id=A, bos_token_id=A, eos_token_id=A, **A ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : List[Any] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : Any = max_relative_position SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = layer_norm_eps SCREAMING_SNAKE_CASE : Tuple = classifier_dropout SCREAMING_SNAKE_CASE : Optional[int] = use_cache
251
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") UpperCamelCase_ = parser.parse_args() if args.model_type == "bert": UpperCamelCase_ = BertForMaskedLM.from_pretrained(args.model_name) UpperCamelCase_ = "bert" else: raise ValueError("args.model_type should be \"bert\".") UpperCamelCase_ = model.state_dict() UpperCamelCase_ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCamelCase_ = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: UpperCamelCase_ = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] UpperCamelCase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] UpperCamelCase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 UpperCamelCase_ = state_dict["cls.predictions.decoder.weight"] UpperCamelCase_ = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: UpperCamelCase_ = state_dict[F"""cls.predictions.transform.dense.{w}"""] UpperCamelCase_ = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
251
1
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __a : '''simple docstring''' def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = parent SCREAMING_SNAKE_CASE__ : Any = batch_size SCREAMING_SNAKE_CASE__ : int = image_size SCREAMING_SNAKE_CASE__ : Optional[Any] = patch_size SCREAMING_SNAKE_CASE__ : Optional[int] = num_channels SCREAMING_SNAKE_CASE__ : List[Any] = is_training SCREAMING_SNAKE_CASE__ : str = use_labels SCREAMING_SNAKE_CASE__ : Any = hidden_size SCREAMING_SNAKE_CASE__ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : str = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE__ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Optional[int] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ : int = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ : List[Any] = num_patches + 1 def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : int = self.get_config() return config, pixel_values, labels def _a ( self ) -> List[str]: """simple docstring""" return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self , _a , _a , _a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = ViTMSNModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : str = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _a , _a , _a ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ : List[Any] = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Tuple = model(_a , labels=_a ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ : Optional[int] = 1 SCREAMING_SNAKE_CASE__ : List[str] = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Any = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE :List[Any] = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE :Dict = False _SCREAMING_SNAKE_CASE :Dict = False _SCREAMING_SNAKE_CASE :Optional[Any] = False _SCREAMING_SNAKE_CASE :str = False def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = ViTMSNModelTester(self ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def _a ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def _a ( self ) -> List[Any]: """simple docstring""" pass def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : List[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def _a ( self ) -> List[Any]: """simple docstring""" for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Dict = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _lowercase ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a (unittest.TestCase): '''simple docstring''' @cached_property def _a ( self ) -> Optional[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def _a ( self ) -> Dict: """simple docstring""" torch.manual_seed(2 ) SCREAMING_SNAKE_CASE__ : int = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a ) SCREAMING_SNAKE_CASE__ : Dict = self.default_image_processor SCREAMING_SNAKE_CASE__ : str = prepare_img() SCREAMING_SNAKE_CASE__ : int = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_a ) # verify the logits SCREAMING_SNAKE_CASE__ : Dict = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
56
"""simple docstring""" from ..utils import DummyObject, requires_backends class __a (metaclass=UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = ["""transformers""", """torch""", """note_seq"""] def __init__( self , *_a , **_a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def _a ( cls , *_a , **_a ) -> int: """simple docstring""" requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def _a ( cls , *_a , **_a ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
56
1
def _a ( SCREAMING_SNAKE_CASE_ : list ): if len(SCREAMING_SNAKE_CASE_ ) <= 1: return [tuple(SCREAMING_SNAKE_CASE_ )] __lowerCAmelCase = [] def generate(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , SCREAMING_SNAKE_CASE_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __lowerCAmelCase , __lowerCAmelCase = arr[k - 1], arr[i] else: # k is odd __lowerCAmelCase , __lowerCAmelCase = arr[k - 1], arr[0] generate(k - 1 , SCREAMING_SNAKE_CASE_ ) generate(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return res if __name__ == "__main__": UpperCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
92
'''simple docstring''' class lowercase : """simple docstring""" def __init__( self ) -> List[str]: _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Optional[int] = {} def _snake_case ( self ,a_ ) -> Optional[Any]: if vertex not in self.adjacency: _UpperCAmelCase : int = {} self.num_vertices += 1 def _snake_case ( self ,a_ ,a_ ,a_ ) -> int: self.add_vertex(a_ ) self.add_vertex(a_ ) if head == tail: return _UpperCAmelCase : List[Any] = weight _UpperCAmelCase : Dict = weight def _snake_case ( self ) -> Dict: _UpperCAmelCase : Optional[int] = self.get_edges() for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = edge edges.remove((tail, head, weight) ) for i in range(len(a_ ) ): _UpperCAmelCase : str = list(edges[i] ) edges.sort(key=lambda a_ : e[2] ) for i in range(len(a_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _UpperCAmelCase : Optional[Any] = edges[i][2] + 1 for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = edge _UpperCAmelCase : str = weight _UpperCAmelCase : List[str] = weight def __str__( self ) -> Any: _UpperCAmelCase : List[Any] = """""" for tail in self.adjacency: for head in self.adjacency[tail]: _UpperCAmelCase : List[str] = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _snake_case ( self ) -> Optional[int]: return self.adjacency.keys() @staticmethod def _snake_case ( a_=None ,a_=None ) -> Tuple: _UpperCAmelCase : List[Any] = Graph() if vertices is None: _UpperCAmelCase : List[str] = [] if edges is None: _UpperCAmelCase : Optional[Any] = [] for vertex in vertices: g.add_vertex(a_ ) for edge in edges: g.add_edge(*a_ ) return g class lowercase : """simple docstring""" def __init__( self ) -> int: _UpperCAmelCase : List[str] = {} _UpperCAmelCase : int = {} def __len__( self ) -> Tuple: return len(self.parent ) def _snake_case ( self ,a_ ) -> str: if item in self.parent: return self.find(a_ ) _UpperCAmelCase : Optional[Any] = item _UpperCAmelCase : List[Any] = 0 return item def _snake_case ( self ,a_ ) -> List[str]: if item not in self.parent: return self.make_set(a_ ) if item != self.parent[item]: _UpperCAmelCase : List[Any] = self.find(self.parent[item] ) return self.parent[item] def _snake_case ( self ,a_ ,a_ ) -> Union[str, Any]: _UpperCAmelCase : Any = self.find(a_ ) _UpperCAmelCase : List[str] = self.find(a_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _UpperCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _UpperCAmelCase : Any = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _UpperCAmelCase : List[str] = roota return roota return None @staticmethod def _snake_case ( a_ ) -> List[Any]: _UpperCAmelCase : int = graph.num_vertices _UpperCAmelCase : int = Graph.UnionFind() _UpperCAmelCase : Optional[int] = [] while num_components > 1: _UpperCAmelCase : int = {} for vertex in graph.get_vertices(): _UpperCAmelCase : Union[str, Any] = -1 _UpperCAmelCase : Tuple = graph.get_edges() for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = edge edges.remove((tail, head, weight) ) for edge in edges: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = edge _UpperCAmelCase : Any = union_find.find(a_ ) _UpperCAmelCase : Any = union_find.find(a_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCAmelCase : Tuple = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _UpperCAmelCase : List[str] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = cheap_edge[vertex] if union_find.find(a_ ) != union_find.find(a_ ): union_find.union(a_ ,a_ ) mst_edges.append(cheap_edge[vertex] ) _UpperCAmelCase : Tuple = num_components - 1 _UpperCAmelCase : Optional[int] = Graph.build(edges=a_ ) return mst
215
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[str] = {} class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Union[str, Any] = "llama" __magic_name__ : Union[str, Any] = ["past_key_values"] def __init__( self : List[Any] , lowerCAmelCase : Any=32000 , lowerCAmelCase : Any=4096 , lowerCAmelCase : int=11008 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="silu" , lowerCAmelCase : List[Any]=2048 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : Any=1E-6 , lowerCAmelCase : Dict=True , lowerCAmelCase : int=0 , lowerCAmelCase : Union[str, Any]=1 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Dict=1 , lowerCAmelCase : List[str]=False , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : List[str] , )-> int: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase = num_attention_heads UpperCAmelCase = num_key_value_heads UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = rms_norm_eps UpperCAmelCase = pretraining_tp UpperCAmelCase = use_cache UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , **lowerCAmelCase , ) def a__( self : Optional[Any] )-> List[str]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""" ) UpperCAmelCase = self.rope_scaling.get('''type''' , lowerCAmelCase ) UpperCAmelCase = self.rope_scaling.get('''factor''' , lowerCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowerCAmelCase , lowerCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
371
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : str = logging.get_logger(__name__) _lowercase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _lowercase : Tuple = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } _lowercase : Union[str, Any] = { """gpt2""": 1024, """gpt2-medium""": 1024, """gpt2-large""": 1024, """gpt2-xl""": 1024, """distilgpt2""": 1024, } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = VOCAB_FILES_NAMES __magic_name__ : str = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : List[Any] = ["input_ids", "attention_mask"] __magic_name__ : List[Any] = GPTaTokenizer def __init__( self : Tuple , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Tuple="<|endoftext|>" , lowerCAmelCase : Union[str, Any]="<|endoftext|>" , lowerCAmelCase : Union[str, Any]="<|endoftext|>" , lowerCAmelCase : Optional[int]=False , **lowerCAmelCase : Tuple , )-> int: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''add_bos_token''' , lowerCAmelCase ) UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase = getattr(lowerCAmelCase , pre_tok_state.pop('''type''' ) ) UpperCAmelCase = add_prefix_space UpperCAmelCase = pre_tok_class(**lowerCAmelCase ) UpperCAmelCase = add_prefix_space def a__( self : Union[str, Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def a__( self : List[Any] , lowerCAmelCase : "Conversation" )-> List[int]: """simple docstring""" UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
91
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''timm_backbone''' def __init__( self :List[str] , snake_case :Union[str, Any]=None , snake_case :Any=3 , snake_case :Union[str, Any]=True , snake_case :Any=True , snake_case :Optional[Any]=None , **snake_case :List[Any] , ): '''simple docstring''' super().__init__(**snake_case ) A_ : Optional[Any] = backbone A_ : Dict = num_channels A_ : str = features_only A_ : Tuple = use_pretrained_backbone A_ : List[Any] = True A_ : Optional[Any] = out_indices if out_indices is not None else (-1,)
300
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCAmelCase : List[Any] = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } _lowerCAmelCase : Any = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = RobertaTokenizer def __init__( self :Dict , snake_case :List[str]=None , snake_case :List[Any]=None , snake_case :Union[str, Any]=None , snake_case :List[str]="replace" , snake_case :Tuple="<s>" , snake_case :Union[str, Any]="</s>" , snake_case :str="</s>" , snake_case :Union[str, Any]="<s>" , snake_case :int="<unk>" , snake_case :Tuple="<pad>" , snake_case :List[str]="<mask>" , snake_case :Any=False , snake_case :Union[str, Any]=True , **snake_case :Optional[int] , ): '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) A_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : Dict = getattr(snake_case , pre_tok_state.pop("type" ) ) A_ : Optional[int] = add_prefix_space A_ : int = pre_tok_class(**snake_case ) A_ : Optional[int] = add_prefix_space A_ : Optional[int] = "post_processor" A_ : Dict = getattr(self.backend_tokenizer , snake_case , snake_case ) if tokenizer_component_instance: A_ : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : List[Any] = tuple(state["sep"] ) if "cls" in state: A_ : Optional[Any] = tuple(state["cls"] ) A_ : Tuple = False if state.get("add_prefix_space" , snake_case ) != add_prefix_space: A_ : List[Any] = add_prefix_space A_ : Optional[int] = True if state.get("trim_offsets" , snake_case ) != trim_offsets: A_ : List[str] = trim_offsets A_ : Any = True if changes_to_apply: A_ : Optional[Any] = getattr(snake_case , state.pop("type" ) ) A_ : Any = component_class(**snake_case ) setattr(self.backend_tokenizer , snake_case , snake_case ) @property def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self :Any , snake_case :Dict ): '''simple docstring''' A_ : Dict = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else value A_ : Any = value def SCREAMING_SNAKE_CASE ( self :Dict , *snake_case :Tuple , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , *snake_case :str , **snake_case :Union[str, Any] ): '''simple docstring''' A_ : Any = kwargs.get("is_split_into_words" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :str , snake_case :Optional[str] = None ): '''simple docstring''' A_ : str = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[str] , snake_case :Optional[Any]=None ): '''simple docstring''' A_ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self :Any , snake_case :List[int] , snake_case :Optional[List[int]] = None ): '''simple docstring''' A_ : Any = [self.sep_token_id] A_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
300
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): @slow @require_torch def UpperCamelCase ( self ): A__ = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''','''prajjwal1/bert-tiny''' ) A__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) A__ = bertabert.config.encoder.vocab_size A__ = tokenizer.sep_token_id A__ = tokenizer.cls_token_id A__ = 128 A__ = datasets.load_dataset('''cnn_dailymail''','''3.0.0''',split='''train[:1%]''' ) A__ = datasets.load_dataset('''cnn_dailymail''','''3.0.0''',split='''validation[:1%]''' ) A__ = train_dataset.select(range(32 ) ) A__ = val_dataset.select(range(16 ) ) A__ = 4 def _map_to_encoder_decoder_inputs(__lowerCamelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] A__ = tokenizer(batch['''article'''],padding='''max_length''',truncation=__lowerCamelCase,max_length=512 ) A__ = tokenizer(batch['''highlights'''],padding='''max_length''',truncation=__lowerCamelCase,max_length=128 ) A__ = inputs.input_ids A__ = inputs.attention_mask A__ = outputs.input_ids A__ = outputs.input_ids.copy() A__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] A__ = outputs.attention_mask assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCamelCase ): A__ = pred.label_ids A__ = pred.predictions # all unnecessary tokens are removed A__ = tokenizer.batch_decode(__lowerCamelCase,skip_special_tokens=__lowerCamelCase ) A__ = tokenizer.batch_decode(__lowerCamelCase,skip_special_tokens=__lowerCamelCase ) A__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase ) return {"accuracy": accuracy} # map train dataset A__ = train_dataset.map( _map_to_encoder_decoder_inputs,batched=__lowerCamelCase,batch_size=__lowerCamelCase,remove_columns=['''article''', '''highlights'''],) train_dataset.set_format( type='''torch''',columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''],) # same for validation dataset A__ = val_dataset.map( _map_to_encoder_decoder_inputs,batched=__lowerCamelCase,batch_size=__lowerCamelCase,remove_columns=['''article''', '''highlights'''],) val_dataset.set_format( type='''torch''',columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''],) A__ = self.get_auto_remove_tmp_dir() A__ = SeqaSeqTrainingArguments( output_dir=__lowerCamelCase,per_device_train_batch_size=__lowerCamelCase,per_device_eval_batch_size=__lowerCamelCase,predict_with_generate=__lowerCamelCase,evaluation_strategy='''steps''',do_train=__lowerCamelCase,do_eval=__lowerCamelCase,warmup_steps=0,eval_steps=2,logging_steps=2,) # instantiate trainer A__ = SeqaSeqTrainer( model=__lowerCamelCase,args=__lowerCamelCase,compute_metrics=_compute_metrics,train_dataset=__lowerCamelCase,eval_dataset=__lowerCamelCase,tokenizer=__lowerCamelCase,) # start training trainer.train()
39
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path a__: str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) a__: list[int] = [ord(letter) for letter in string.ascii_lowercase] a__: set[int] = {ord(char) for char in VALID_CHARS} a__: list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCamelCase__( UpperCamelCase__ : list[int] , UpperCamelCase__ : tuple[int, ...] )->str | None: A__ = "" A__ = 42 A__ = 42 A__ = 42 for keychar, cipherchar in zip(cycle(UpperCamelCase__ ) , UpperCamelCase__ ): A__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCamelCase__ ) return decoded def UpperCamelCase__( UpperCamelCase__ : list[int] )->list[str]: A__ = [] for key in product(UpperCamelCase__ , repeat=3 ): A__ = try_key(UpperCamelCase__ , UpperCamelCase__ ) if encoded is not None: possibles.append(UpperCamelCase__ ) return possibles def UpperCamelCase__( UpperCamelCase__ : list[str] , UpperCamelCase__ : str )->list[str]: return [possible for possible in possibles if common_word in possible.lower()] def UpperCamelCase__( UpperCamelCase__ : str = "p059_cipher.txt" )->int: A__ = 42 A__ = 42 A__ = 42 A__ = 42 A__ = Path(UpperCamelCase__ ).parent.joinpath(UpperCamelCase__ ).read_text(encoding='''utf-8''' ) A__ = [int(UpperCamelCase__ ) for number in data.strip().split(''',''' )] A__ = filter_valid_chars(UpperCamelCase__ ) for common_word in COMMON_WORDS: A__ = filter_common_word(UpperCamelCase__ , UpperCamelCase__ ) if len(UpperCamelCase__ ) == 1: break A__ = possibles[0] return sum(ord(UpperCamelCase__ ) for char in decoded_text ) if __name__ == "__main__": print(F"{solution() = }")
39
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
28
from ....configuration_utils import PretrainedConfig from ....utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """trajectory_transformer""" _UpperCamelCase = ["""past_key_values"""] _UpperCamelCase = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , A_=100 , A_=5 , A_=1 , A_=1 , A_=249 , A_=6 , A_=17 , A_=25 , A_=4 , A_=4 , A_=128 , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0_006 , A_=512 , A_=0.02 , A_=1e-12 , A_=1 , A_=True , A_=1 , A_=5_0256 , A_=5_0256 , **A_ , ) ->int: '''simple docstring''' __lowerCAmelCase : Any = vocab_size __lowerCAmelCase : Tuple = action_weight __lowerCAmelCase : Tuple = reward_weight __lowerCAmelCase : Union[str, Any] = value_weight __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : str = block_size __lowerCAmelCase : Optional[Any] = action_dim __lowerCAmelCase : Union[str, Any] = observation_dim __lowerCAmelCase : Union[str, Any] = transition_dim __lowerCAmelCase : Dict = learning_rate __lowerCAmelCase : Any = n_layer __lowerCAmelCase : Any = n_head __lowerCAmelCase : Optional[int] = n_embd __lowerCAmelCase : str = embd_pdrop __lowerCAmelCase : Dict = attn_pdrop __lowerCAmelCase : Optional[int] = resid_pdrop __lowerCAmelCase : Union[str, Any] = initializer_range __lowerCAmelCase : Optional[int] = layer_norm_eps __lowerCAmelCase : Any = kaiming_initializer_range __lowerCAmelCase : List[str] = use_cache super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
275
0
import json import sys def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: lowercase__ = json.load(_SCREAMING_SNAKE_CASE ) lowercase__ = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(_SCREAMING_SNAKE_CASE ): lowercase__ = results[benchmark_name] lowercase__ = benchmark_name.split('/' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) lowercase__ = '| metric |' lowercase__ = '|--------|' lowercase__ = '| new / old (diff) |' for metric_name in sorted(_SCREAMING_SNAKE_CASE ): lowercase__ = benchmark_res[metric_name] lowercase__ = metric_vals['new'] lowercase__ = metric_vals.get('old' , _SCREAMING_SNAKE_CASE ) lowercase__ = metric_vals.get('diff' , _SCREAMING_SNAKE_CASE ) lowercase__ = F""" {new_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else 'None' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": lowercase_ = sys.argv[1] lowercase_ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
363
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: if is_torch_version('<' , '2.0.0' ) or not hasattr(_SCREAMING_SNAKE_CASE , '_dynamo' ): return False return isinstance(_SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True ) -> Dict: lowercase__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase__ = is_compiled_module(_SCREAMING_SNAKE_CASE ) if is_compiled: lowercase__ = model lowercase__ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = model.module if not keep_fpaa_wrapper: lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'forward' ) lowercase__ = model.__dict__.pop('_original_forward' , _SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(_SCREAMING_SNAKE_CASE , '__wrapped__' ): lowercase__ = forward.__wrapped__ if forward == original_forward: break lowercase__ = forward if getattr(_SCREAMING_SNAKE_CASE , '_converted_to_transformer_engine' , _SCREAMING_SNAKE_CASE ): convert_model(_SCREAMING_SNAKE_CASE , to_transformer_engine=_SCREAMING_SNAKE_CASE ) if is_compiled: lowercase__ = model lowercase__ = compiled_model return model def __UpperCamelCase () -> Tuple: PartialState().wait_for_everyone() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: if PartialState().distributed_type == DistributedType.TPU: xm.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @contextmanager def __UpperCamelCase (**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: for key, value in kwargs.items(): lowercase__ = str(_SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: if not hasattr(_SCREAMING_SNAKE_CASE , '__qualname__' ) and not hasattr(_SCREAMING_SNAKE_CASE , '__name__' ): lowercase__ = getattr(_SCREAMING_SNAKE_CASE , '__class__' , _SCREAMING_SNAKE_CASE ) if hasattr(_SCREAMING_SNAKE_CASE , '__qualname__' ): return obj.__qualname__ if hasattr(_SCREAMING_SNAKE_CASE , '__name__' ): return obj.__name__ return str(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: for key, value in source.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = destination.setdefault(_SCREAMING_SNAKE_CASE , {} ) merge_dicts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: lowercase__ = value return destination def __UpperCamelCase (_SCREAMING_SNAKE_CASE = None ) -> bool: if port is None: lowercase__ = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
269
0
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : int = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. A_ : Optional[int] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : List[Any] = spec.loader.load_module() A_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Dict = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") A_ : List[str] = { """CLIPConfigMixin""", """DecisionTransformerConfigMixin""", """EncoderDecoderConfigMixin""", """RagConfigMixin""", """SpeechEncoderDecoderConfigMixin""", """VisionEncoderDecoderConfigMixin""", """VisionTextDualEncoderConfigMixin""", } def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for config_class in list(CONFIG_MAPPING.values() ): SCREAMING_SNAKE_CASE__ = False # source code of `config_class` SCREAMING_SNAKE_CASE__ = inspect.getsource(_lowercase ) SCREAMING_SNAKE_CASE__ = _re_checkpoint.findall(_lowercase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` SCREAMING_SNAKE_CASE__ = checkpoint # verify the checkpoint name corresponds to the checkpoint link SCREAMING_SNAKE_CASE__ = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: SCREAMING_SNAKE_CASE__ = True break SCREAMING_SNAKE_CASE__ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowercase ) if len(_lowercase ) > 0: SCREAMING_SNAKE_CASE__ = """\n""".join(sorted(_lowercase ) ) raise ValueError(f"""The following configurations don\'t contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
165
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder a : List[Any] = """__DUMMY_TRANSFORMERS_USER__""" a : Tuple = """Dummy User""" a : Optional[Any] = """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""" a : Optional[Any] = """https://hub-ci.huggingface.co""" a : List[Any] = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" a : Tuple = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" a : str = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def __lowerCamelCase ( _lowercase ) -> Optional[int]: monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , _lowercase ) @pytest.fixture def __lowerCamelCase ( _lowercase ) -> List[str]: monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , _lowercase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , _lowercase ) @pytest.fixture def __lowerCamelCase ( _lowercase ) -> Any: monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , _lowercase ) @pytest.fixture def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: HfFolder.save_token(_lowercase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> str: return HfApi(endpoint=_lowercase ) @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : str = HfFolder.get_token() HfFolder.save_token(_lowercase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_lowercase ) @pytest.fixture def __lowerCamelCase ( _lowercase ) -> Any: def _cleanup_repo(_lowercase ): hf_api.delete_repo(_lowercase , token=_lowercase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __lowerCamelCase ( _lowercase ) -> List[str]: @contextmanager def _temporary_repo(_lowercase ): try: yield repo_id finally: cleanup_repo(_lowercase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : str = F'''repo_txt_data-{int(time.time() * 10e3 )}''' UpperCAmelCase : List[Any] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_lowercase , token=_lowercase , repo_type="""dataset""" , private=_lowercase ) hf_api.upload_file( token=_lowercase , path_or_fileobj=str(_lowercase ) , path_in_repo="""data/text_data.txt""" , repo_id=_lowercase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(_lowercase , token=_lowercase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[int] = F'''repo_zipped_txt_data-{int(time.time() * 10e3 )}''' UpperCAmelCase : Optional[int] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_lowercase , token=_lowercase , repo_type="""dataset""" , private=_lowercase ) hf_api.upload_file( token=_lowercase , path_or_fileobj=str(_lowercase ) , path_in_repo="""data.zip""" , repo_id=_lowercase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(_lowercase , token=_lowercase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Tuple: UpperCAmelCase : List[Any] = F'''repo_zipped_img_data-{int(time.time() * 10e3 )}''' UpperCAmelCase : List[str] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_lowercase , token=_lowercase , repo_type="""dataset""" , private=_lowercase ) hf_api.upload_file( token=_lowercase , path_or_fileobj=str(_lowercase ) , path_in_repo="""data.zip""" , repo_id=_lowercase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(_lowercase , token=_lowercase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: return hf_private_dataset_repo_zipped_img_data_
265
0
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __magic_name__ :str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __magic_name__ :Optional[Any] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = AudioClassificationPipeline(model=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) # test with a raw waveform lowerCAmelCase__ :Tuple = np.zeros((3_4_0_0_0,) ) lowerCAmelCase__ :Any = np.zeros((1_4_0_0_0,) ) return audio_classifier, [audioa, audio] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = examples lowerCAmelCase__ :Dict = audio_classifier(__UpperCAmelCase ) # by default a model is initialized with num_labels=2 self.assertEqual( __UpperCAmelCase , [ {'score': ANY(__UpperCAmelCase ), 'label': ANY(__UpperCAmelCase )}, {'score': ANY(__UpperCAmelCase ), 'label': ANY(__UpperCAmelCase )}, ] , ) lowerCAmelCase__ :Dict = audio_classifier(__UpperCAmelCase , top_k=1 ) self.assertEqual( __UpperCAmelCase , [ {'score': ANY(__UpperCAmelCase ), 'label': ANY(__UpperCAmelCase )}, ] , ) self.run_torchaudio(__UpperCAmelCase ) @require_torchaudio def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' import datasets # test with a local file lowerCAmelCase__ :Optional[Any] = datasets.load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) lowerCAmelCase__ :List[Any] = dataset[0]['audio']['array'] lowerCAmelCase__ :Any = audio_classifier(__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {'score': ANY(__UpperCAmelCase ), 'label': ANY(__UpperCAmelCase )}, {'score': ANY(__UpperCAmelCase ), 'label': ANY(__UpperCAmelCase )}, ] , ) @require_torch def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = 'anton-l/wav2vec2-random-tiny-classifier' lowerCAmelCase__ :List[str] = pipeline('audio-classification' , model=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = np.ones((8_0_0_0,) ) lowerCAmelCase__ :List[Any] = audio_classifier(__UpperCAmelCase , top_k=4 ) lowerCAmelCase__ :Optional[int] = [ {'score': 0.08_42, 'label': 'no'}, {'score': 0.08_38, 'label': 'up'}, {'score': 0.08_37, 'label': 'go'}, {'score': 0.08_34, 'label': 'right'}, ] lowerCAmelCase__ :List[str] = [ {'score': 0.08_45, 'label': 'stop'}, {'score': 0.08_44, 'label': 'on'}, {'score': 0.08_41, 'label': 'right'}, {'score': 0.08_34, 'label': 'left'}, ] self.assertIn(nested_simplify(__UpperCAmelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) lowerCAmelCase__ :int = {'array': np.ones((8_0_0_0,) ), 'sampling_rate': audio_classifier.feature_extractor.sampling_rate} lowerCAmelCase__ :Union[str, Any] = audio_classifier(__UpperCAmelCase , top_k=4 ) self.assertIn(nested_simplify(__UpperCAmelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def snake_case ( self ): '''simple docstring''' import datasets lowerCAmelCase__ :Tuple = 'superb/wav2vec2-base-superb-ks' lowerCAmelCase__ :Optional[int] = pipeline('audio-classification' , model=__UpperCAmelCase ) lowerCAmelCase__ :Any = datasets.load_dataset('anton-l/superb_dummy' , 'ks' , split='test' ) lowerCAmelCase__ :Tuple = np.array(dataset[3]['speech'] , dtype=np.floataa ) lowerCAmelCase__ :Dict = audio_classifier(__UpperCAmelCase , top_k=4 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=3 ) , [ {'score': 0.9_81, 'label': 'go'}, {'score': 0.0_07, 'label': 'up'}, {'score': 0.0_06, 'label': '_unknown_'}, {'score': 0.0_01, 'label': 'down'}, ] , ) @require_tf @unittest.skip('Audio classification is not implemented for TF' ) def snake_case ( self ): '''simple docstring''' pass
254
"""simple docstring""" from pathlib import Path import fire def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :List[str] = Path(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = Path(_SCREAMING_SNAKE_CASE ) dest_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) for path in src_dir.iterdir(): lowerCAmelCase__ :Union[str, Any] = [x.rstrip() for x in list(path.open().readlines() )][:n] lowerCAmelCase__ :Tuple = dest_dir.joinpath(path.name ) print(_SCREAMING_SNAKE_CASE ) dest_path.open('w' ).write('\n'.join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": fire.Fire(minify)
254
1
import sys from collections import defaultdict class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> List[str]: __UpperCamelCase =[] def _a ( self , A_ ) -> List[Any]: return self.node_position[vertex] def _a ( self , A_ , A_ ) -> List[Any]: __UpperCamelCase =pos def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __UpperCamelCase =2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __UpperCamelCase =2 * start + 1 else: __UpperCamelCase =2 * start + 2 if heap[smallest_child] < heap[start]: __UpperCamelCase , __UpperCamelCase =heap[smallest_child], positions[smallest_child] __UpperCamelCase , __UpperCamelCase =( heap[start], positions[start], ) __UpperCamelCase , __UpperCamelCase =temp, tempa __UpperCamelCase =self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , A_ ) self.top_to_bottom(A_ , A_ , A_ , A_ ) def _a ( self , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =position[index] while index != 0: __UpperCamelCase =int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __UpperCamelCase =heap[parent] __UpperCamelCase =position[parent] self.set_position(position[parent] , A_ ) else: __UpperCamelCase =val __UpperCamelCase =temp self.set_position(A_ , A_ ) break __UpperCamelCase =parent else: __UpperCamelCase =val __UpperCamelCase =temp self.set_position(A_ , 0 ) def _a ( self , A_ , A_ ) -> List[str]: __UpperCamelCase =len(A_ ) // 2 - 1 for i in range(A_ , -1 , -1 ): self.top_to_bottom(A_ , A_ , len(A_ ) , A_ ) def _a ( self , A_ , A_ ) -> str: __UpperCamelCase =positions[0] __UpperCamelCase =sys.maxsize self.top_to_bottom(A_ , 0 , len(A_ ) , A_ ) return temp def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =Heap() __UpperCamelCase =[0] * len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[-1] * len(SCREAMING_SNAKE_CASE__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __UpperCamelCase =[] # Heap of Distance of vertices from their neighboring vertex __UpperCamelCase =[] for vertex in range(len(SCREAMING_SNAKE_CASE__ ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE__ ) heap.node_position.append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] __UpperCamelCase =1 __UpperCamelCase =sys.maxsize for neighbor, distance in adjacency_list[0]: __UpperCamelCase =0 __UpperCamelCase =distance heap.heapify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =heap.delete_minimum(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __UpperCamelCase =1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE__ )] ): __UpperCamelCase =distance heap.bottom_to_top( SCREAMING_SNAKE_CASE__ , heap.get_position(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _A = int(input('Enter number of edges: ').strip()) _A = defaultdict(list) for _ in range(edges_number): _A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
62
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "instructblip_vision_model" def __init__( self , A_=1408 , A_=6144 , A_=39 , A_=16 , A_=224 , A_=14 , A_="gelu" , A_=1E-6 , A_=0.0 , A_=1E-10 , A_=True , **A_ , ) -> Tuple: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =qkv_bias @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "instructblip_qformer" def __init__( self , A_=30522 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=0.02 , A_=1E-12 , A_=0 , A_="absolute" , A_=2 , A_=1408 , **A_ , ) -> Optional[Any]: super().__init__(pad_token_id=A_ , **A_ ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =position_embedding_type __UpperCamelCase =cross_attention_frequency __UpperCamelCase =encoder_hidden_size @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __UpperCamelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "instructblip" UpperCAmelCase__ : Optional[Any] = True def __init__( self , A_=None , A_=None , A_=None , A_=32 , **A_ ) -> List[str]: super().__init__(**A_ ) if vision_config is None: __UpperCamelCase ={} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __UpperCamelCase ={} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __UpperCamelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __UpperCamelCase =InstructBlipVisionConfig(**A_ ) __UpperCamelCase =InstructBlipQFormerConfig(**A_ ) __UpperCamelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' __UpperCamelCase =CONFIG_MAPPING[text_model_type](**A_ ) __UpperCamelCase =self.text_config.tie_word_embeddings __UpperCamelCase =self.text_config.is_encoder_decoder __UpperCamelCase =num_query_tokens __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __UpperCamelCase =1.0 __UpperCamelCase =0.02 @classmethod def _a ( cls , A_ , A_ , A_ , **A_ , ) -> Optional[Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A_ , ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.qformer_config.to_dict() __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
62
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = None lowerCAmelCase__ = BloomTokenizerFast lowerCAmelCase__ = BloomTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = "tokenizer_file" lowerCAmelCase__ = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() lowercase_ = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , **UpperCAmelCase ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.get_rust_tokenizer() lowercase_ = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] lowercase_ = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowercase_ = tokenizer.batch_encode_plus(UpperCAmelCase )["input_ids"] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowercase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase=6 ) -> Any: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase_ = "This is a simple input" lowercase_ = ["This is a simple input 1", "This is a simple input 2"] lowercase_ = ("This is a simple input", "This is a pair") lowercase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(UpperCAmelCase , max_length=UpperCAmelCase ) tokenizer_r.encode_plus(UpperCAmelCase , max_length=UpperCAmelCase ) tokenizer_r.batch_encode_plus(UpperCAmelCase , max_length=UpperCAmelCase ) tokenizer_r.encode(UpperCAmelCase , max_length=UpperCAmelCase ) tokenizer_r.batch_encode_plus(UpperCAmelCase , max_length=UpperCAmelCase ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) lowercase_ = None # Hotfixing padding = None self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" ) # Simple input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" ) # Simple input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" ) # Pair input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" , ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = self.get_rust_tokenizer() lowercase_ = load_dataset("xnli" , "all_languages" , split="test" , streaming=UpperCAmelCase ) lowercase_ = next(iter(UpperCAmelCase ) )["premise"] # pick up one data lowercase_ = list(sample_data.values() ) lowercase_ = list(map(tokenizer.encode , UpperCAmelCase ) ) lowercase_ = [tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) for x in output_tokens] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> List[Any]: '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
297
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[32, 64, 128] , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2"] , UpperCAmelCase=[1, 2] , ) -> Optional[int]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride lowercase_ = out_features lowercase_ = out_indices def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = FocalNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = FocalNetForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Optional[Any]: '''simple docstring''' return def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def A__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # FocalNet has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = FocalNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ = FocalNetConfig lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetModelTester(self )
297
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = "informer" UpperCAmelCase__ : Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , A_ = None , A_ = None , A_ = "student_t" , A_ = "nll" , A_ = 1 , A_ = None , A_ = "mean" , A_ = 0 , A_ = 0 , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 64 , A_ = 32 , A_ = 32 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = True , A_ = "gelu" , A_ = 0.05 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 100 , A_ = 0.02 , A_=True , A_ = "prob" , A_ = 5 , A_ = True , **A_ , ) -> str: # time series specific configuration __UpperCamelCase =prediction_length __UpperCamelCase =context_length or prediction_length __UpperCamelCase =distribution_output __UpperCamelCase =loss __UpperCamelCase =input_size __UpperCamelCase =num_time_features __UpperCamelCase =lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __UpperCamelCase =scaling __UpperCamelCase =num_dynamic_real_features __UpperCamelCase =num_static_real_features __UpperCamelCase =num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __UpperCamelCase =cardinality else: __UpperCamelCase =[0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __UpperCamelCase =embedding_dimension else: __UpperCamelCase =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __UpperCamelCase =num_parallel_samples # Transformer architecture configuration __UpperCamelCase =input_size * len(self.lags_sequence ) + self._number_of_features __UpperCamelCase =d_model __UpperCamelCase =encoder_attention_heads __UpperCamelCase =decoder_attention_heads __UpperCamelCase =encoder_ffn_dim __UpperCamelCase =decoder_ffn_dim __UpperCamelCase =encoder_layers __UpperCamelCase =decoder_layers __UpperCamelCase =dropout __UpperCamelCase =attention_dropout __UpperCamelCase =activation_dropout __UpperCamelCase =encoder_layerdrop __UpperCamelCase =decoder_layerdrop __UpperCamelCase =activation_function __UpperCamelCase =init_std __UpperCamelCase =use_cache # Informer __UpperCamelCase =attention_type __UpperCamelCase =sampling_factor __UpperCamelCase =distil super().__init__(is_encoder_decoder=A_ , **A_ ) @property def _a ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
62
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
62
1
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCAmelCase ( UpperCAmelCase_ ,UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self , *, A = 4 , A = 7_6_8 , A , A , ) -> str: super().__init__() _UpperCAmelCase : Any = nn.Parameter(torch.zeros(__lowercase ) ) # parameters for additional clip time embeddings _UpperCAmelCase : Optional[Any] = nn.Linear(__lowercase , __lowercase ) _UpperCAmelCase : int = nn.Linear(__lowercase , __lowercase ) # parameters for encoder hidden states _UpperCAmelCase : Tuple = clip_extra_context_tokens _UpperCAmelCase : int = nn.Linear( __lowercase , self.clip_extra_context_tokens * cross_attention_dim ) _UpperCAmelCase : Union[str, Any] = nn.Linear(__lowercase , __lowercase ) _UpperCAmelCase : int = nn.LayerNorm(__lowercase ) def __lowerCAmelCase ( self , *, A , A , A , A ) -> Tuple: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _UpperCAmelCase : str = image_embeddings.shape[0] _UpperCAmelCase : int = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _UpperCAmelCase : Any = classifier_free_guidance_embeddings.expand( __lowercase , -1 ) _UpperCAmelCase : List[Any] = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _UpperCAmelCase : Tuple = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _UpperCAmelCase : Dict = self.embedding_proj(__lowercase ) _UpperCAmelCase : Optional[Any] = self.clip_image_embeddings_project_to_time_embeddings(__lowercase ) _UpperCAmelCase : Any = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _UpperCAmelCase : Tuple = self.clip_extra_context_tokens_proj(__lowercase ) _UpperCAmelCase : Optional[int] = clip_extra_context_tokens.reshape(__lowercase , -1 , self.clip_extra_context_tokens ) _UpperCAmelCase : Dict = clip_extra_context_tokens.permute(0 , 2 , 1 ) _UpperCAmelCase : Dict = self.encoder_hidden_states_proj(__lowercase ) _UpperCAmelCase : Union[str, Any] = self.text_encoder_hidden_states_norm(__lowercase ) _UpperCAmelCase : str = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
366
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Dict: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _UpperCAmelCase : List[str] = [[1, 2, 4], [1, 2, 3, 4]] _UpperCAmelCase : List[str] = DisjunctiveConstraint(A ) self.assertTrue(isinstance(dc.token_ids , A ) ) with self.assertRaises(A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _UpperCAmelCase : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(A ): DisjunctiveConstraint(A ) # fails here def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Optional[Any] = [[1, 2, 3], [1, 2, 4]] _UpperCAmelCase : Optional[int] = DisjunctiveConstraint(A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = dc.update(1 ) _UpperCAmelCase : Dict = stepped is True and completed is False and reset is False self.assertTrue(A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(2 ) _UpperCAmelCase : Any = stepped is True and completed is False and reset is False self.assertTrue(A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = dc.update(3 ) _UpperCAmelCase : Optional[int] = stepped is True and completed is True and reset is False self.assertTrue(A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : Tuple = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _UpperCAmelCase : Any = DisjunctiveConstraint(A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
68
0
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class _a : __a : float __a : TreeNode | None = None __a : TreeNode | None = None def snake_case_ (_a : TreeNode | None ): def is_valid_tree(_a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(snake_case_ , snake_case_ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(snake_case_ ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( _a : TreeNode | None , _a : float , _a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , snake_case_ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , snake_case_ ) ) return is_binary_search_tree_recursive_check(snake_case_ , -float('''inf''' ) , float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
34
'''simple docstring''' import re from filelock import FileLock try: import nltk _A : int = True except (ImportError, ModuleNotFoundError): _A : Optional[Any] = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def UpperCamelCase_ ( snake_case_ : str ) -> str: '''simple docstring''' re.sub("""<n>""" , """""" , snake_case_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(snake_case_ ) )
229
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: int ={ 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class __A ( UpperCamelCase__ , UpperCamelCase__ ): a__ : Any = """swin""" a__ : Any = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__(self : Any , __a : Optional[int]=224 , __a : Tuple=4 , __a : Optional[Any]=3 , __a : List[str]=96 , __a : List[str]=[2, 2, 6, 2] , __a : Union[str, Any]=[3, 6, 12, 24] , __a : int=7 , __a : Optional[Any]=4.0 , __a : Union[str, Any]=True , __a : Dict=0.0 , __a : Optional[int]=0.0 , __a : Optional[int]=0.1 , __a : Dict="gelu" , __a : int=False , __a : Optional[Any]=0.02 , __a : str=1E-5 , __a : str=32 , __a : Tuple=None , __a : List[Any]=None , **__a : List[str] , ): super().__init__(**__a ) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(__a ) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range UpperCAmelCase_ = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(__a ) - 1) ) UpperCAmelCase_ = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(__a ) + 1 )] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names ) class __A ( UpperCamelCase__ ): a__ : Tuple = version.parse("""1.11""" ) @property def _lowercase (self : str ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowercase (self : Dict ): return 1E-4
106
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): @slow def _lowercase (self : Dict ): UpperCAmelCase_ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) UpperCAmelCase_ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCAmelCase_ = model(__a )["last_hidden_state"] UpperCAmelCase_ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. UpperCAmelCase_ = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
106
1
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
343
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase_ ) * abs(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
343
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[str]: def is_in_circle(__lowerCAmelCase , __lowerCAmelCase ) -> bool: UpperCamelCase__ : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCamelCase__ : Dict = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. UpperCamelCase__ : List[str] = proportion * 4 print(f'The estimated value of pi is {pi_estimate}' ) print(f'The numpy value of pi is {pi}' ) print(f'The total error is {abs(pi - pi_estimate )}' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , ) -> float: return mean( function_to_integrate(uniform(_UpperCamelCase , _UpperCamelCase ) ) for _ in range(_UpperCamelCase ) ) * (max_value - min_value) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 ) -> None: def identity_function(__lowerCAmelCase ) -> float: return x UpperCamelCase__ : Any = area_under_curve_estimator( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ : int = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {expected_value}' ) print(f'Total error is {abs(estimated_value - expected_value )}' ) print("******************" ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> None: def function_to_integrate(__lowerCAmelCase ) -> float: return sqrt(4.0 - x * x ) UpperCamelCase__ : Dict = area_under_curve_estimator( _UpperCamelCase , _UpperCamelCase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {pi}' ) print(f'Total error is {abs(estimated_value - pi )}' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
359
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: if len(__lowerCAmelCase ) == 0: return False UpperCamelCase__ : Any = len(__lowerCAmelCase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __lowerCAmelCase ) else: return binary_search(a_list[midpoint + 1 :] , __lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase : Any =input('''Enter numbers separated by comma:\n''').strip() lowerCamelCase : Dict =[int(item.strip()) for item in user_input.split(''',''')] lowerCamelCase : List[str] =int(input('''Enter the number to be found in the list:\n''').strip()) lowerCamelCase : Union[str, Any] ='''''' if binary_search(sequence, target) else '''not ''' print(F"""{target} was {not_str}found in {sequence}""")
196
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase_ ( _a ): """simple docstring""" def __get__( self : str , snake_case_ : Union[str, Any] , snake_case_ : Tuple=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) snake_case__ : Optional[int] = """__cached_""" + self.fget.__name__ snake_case__ : int = getattr(snake_case_ , snake_case_ , snake_case_ ) if cached is None: snake_case__ : Union[str, Any] = self.fget(snake_case_ ) setattr(snake_case_ , snake_case_ , snake_case_ ) return cached def __snake_case( _lowerCAmelCase ) -> Tuple: snake_case__ : Optional[int] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"invalid truth value {val!r}" ) def __snake_case( _lowerCAmelCase ) -> Any: if is_torch_fx_proxy(_lowerCAmelCase ): return True if is_torch_available(): import torch if isinstance(_lowerCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_lowerCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_lowerCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(_lowerCAmelCase , np.ndarray ) def __snake_case( _lowerCAmelCase ) -> Optional[Any]: return isinstance(_lowerCAmelCase , np.ndarray ) def __snake_case( _lowerCAmelCase ) -> int: return _is_numpy(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> List[str]: import torch return isinstance(_lowerCAmelCase , torch.Tensor ) def __snake_case( _lowerCAmelCase ) -> str: return False if not is_torch_available() else _is_torch(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> List[str]: import torch return isinstance(_lowerCAmelCase , torch.device ) def __snake_case( _lowerCAmelCase ) -> List[Any]: return False if not is_torch_available() else _is_torch_device(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> List[Any]: import torch if isinstance(_lowerCAmelCase , _lowerCAmelCase ): if hasattr(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Union[str, Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) else: return False return isinstance(_lowerCAmelCase , torch.dtype ) def __snake_case( _lowerCAmelCase ) -> List[Any]: return False if not is_torch_available() else _is_torch_dtype(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> List[str]: import tensorflow as tf return isinstance(_lowerCAmelCase , tf.Tensor ) def __snake_case( _lowerCAmelCase ) -> Any: return False if not is_tf_available() else _is_tensorflow(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> Optional[int]: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_lowerCAmelCase , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(_lowerCAmelCase ) return type(_lowerCAmelCase ) == tf.Tensor def __snake_case( _lowerCAmelCase ) -> Optional[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> Dict: import jax.numpy as jnp # noqa: F811 return isinstance(_lowerCAmelCase , jnp.ndarray ) def __snake_case( _lowerCAmelCase ) -> List[str]: return False if not is_flax_available() else _is_jax(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> Any: if isinstance(_lowerCAmelCase , (dict, UserDict) ): return {k: to_py_obj(_lowerCAmelCase ) for k, v in obj.items()} elif isinstance(_lowerCAmelCase , (list, tuple) ): return [to_py_obj(_lowerCAmelCase ) for o in obj] elif is_tf_tensor(_lowerCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(_lowerCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_lowerCAmelCase ): return np.asarray(_lowerCAmelCase ).tolist() elif isinstance(_lowerCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __snake_case( _lowerCAmelCase ) -> List[Any]: if isinstance(_lowerCAmelCase , (dict, UserDict) ): return {k: to_numpy(_lowerCAmelCase ) for k, v in obj.items()} elif isinstance(_lowerCAmelCase , (list, tuple) ): return np.array(_lowerCAmelCase ) elif is_tf_tensor(_lowerCAmelCase ): return obj.numpy() elif is_torch_tensor(_lowerCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_lowerCAmelCase ): return np.asarray(_lowerCAmelCase ) else: return obj class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : List[str] = fields(self ) # Safety and consistency checks if not len(snake_case_ ): raise ValueError(f"{self.__class__.__name__} has no fields." ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"{self.__class__.__name__} should not have more than one required field." ) snake_case__ : List[str] = getattr(self , class_fields[0].name ) snake_case__ : int = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(snake_case_ ): if isinstance(snake_case_ , snake_case_ ): snake_case__ : List[str] = first_field.items() snake_case__ : Optional[int] = True else: try: snake_case__ : Optional[Any] = iter(snake_case_ ) snake_case__ : Optional[int] = True except TypeError: snake_case__ : Dict = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(snake_case_ ): if ( not isinstance(snake_case_ , (list, tuple) ) or not len(snake_case_ ) == 2 or not isinstance(element[0] , snake_case_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute snake_case__ : int = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self , element[0] , element[1] ) if element[1] is not None: snake_case__ : Union[str, Any] = element[1] elif first_field is not None: snake_case__ : List[str] = first_field else: for field in class_fields: snake_case__ : List[Any] = getattr(self , field.name ) if v is not None: snake_case__ : Dict = v def __delitem__( self : Union[str, Any] , *snake_case_ : Tuple , **snake_case_ : int ): raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance." ) def lowerCamelCase ( self : List[str] , *snake_case_ : List[Any] , **snake_case_ : Optional[Any] ): raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance." ) def lowerCamelCase ( self : Dict , *snake_case_ : List[Any] , **snake_case_ : str ): raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance." ) def lowerCamelCase ( self : List[str] , *snake_case_ : Tuple , **snake_case_ : Tuple ): raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance." ) def __getitem__( self : Tuple , snake_case_ : Optional[Any] ): if isinstance(snake_case_ , snake_case_ ): snake_case__ : int = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : List[str] , snake_case_ : Tuple , snake_case_ : Union[str, Any] ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(snake_case_ , snake_case_ ) super().__setattr__(snake_case_ , snake_case_ ) def __setitem__( self : str , snake_case_ : Union[str, Any] , snake_case_ : int ): # Will raise a KeyException if needed super().__setitem__(snake_case_ , snake_case_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(snake_case_ , snake_case_ ) def lowerCamelCase ( self : int ): return tuple(self[k] for k in self.keys() ) class UpperCAmelCase_ ( _a , _a ): """simple docstring""" @classmethod def lowerCamelCase ( cls : int , snake_case_ : List[Any] ): raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}" ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "longest" lowercase = "max_length" lowercase = "do_not_pad" class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "pt" lowercase = "tf" lowercase = "np" lowercase = "jax" class UpperCAmelCase_ : """simple docstring""" def __init__( self : int , snake_case_ : List[ContextManager] ): snake_case__ : Any = context_managers snake_case__ : int = ExitStack() def __enter__( self : Union[str, Any] ): for context_manager in self.context_managers: self.stack.enter_context(snake_case_ ) def __exit__( self : Optional[int] , *snake_case_ : List[Any] , **snake_case_ : Any ): self.stack.__exit__(*snake_case_ , **snake_case_ ) def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : Optional[Any] = infer_framework(_lowerCAmelCase ) if framework == "tf": snake_case__ : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case__ : str = inspect.signature(model_class.forward ) # PyTorch models else: snake_case__ : str = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : Optional[int] = model_class.__name__ snake_case__ : int = infer_framework(_lowerCAmelCase ) if framework == "tf": snake_case__ : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case__ : int = inspect.signature(model_class.forward ) # PyTorch models else: snake_case__ : Any = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __snake_case( _lowerCAmelCase , _lowerCAmelCase = "" , _lowerCAmelCase = "." ) -> List[str]: def _flatten_dict(_lowerCAmelCase , _lowerCAmelCase="" , _lowerCAmelCase="." ): for k, v in d.items(): snake_case__ : Optional[int] = str(_lowerCAmelCase ) + delimiter + str(_lowerCAmelCase ) if parent_key else k if v and isinstance(_lowerCAmelCase , _lowerCAmelCase ): yield from flatten_dict(_lowerCAmelCase , _lowerCAmelCase , delimiter=_lowerCAmelCase ).items() else: yield key, v return dict(_flatten_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) @contextmanager def __snake_case( _lowerCAmelCase , _lowerCAmelCase = False ) -> Tuple: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None ) -> Optional[Any]: if is_numpy_array(_lowerCAmelCase ): return np.transpose(_lowerCAmelCase , axes=_lowerCAmelCase ) elif is_torch_tensor(_lowerCAmelCase ): return array.T if axes is None else array.permute(*_lowerCAmelCase ) elif is_tf_tensor(_lowerCAmelCase ): import tensorflow as tf return tf.transpose(_lowerCAmelCase , perm=_lowerCAmelCase ) elif is_jax_tensor(_lowerCAmelCase ): return jnp.transpose(_lowerCAmelCase , axes=_lowerCAmelCase ) else: raise ValueError(f"Type not supported for transpose: {type(_lowerCAmelCase )}." ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: if is_numpy_array(_lowerCAmelCase ): return np.reshape(_lowerCAmelCase , _lowerCAmelCase ) elif is_torch_tensor(_lowerCAmelCase ): return array.reshape(*_lowerCAmelCase ) elif is_tf_tensor(_lowerCAmelCase ): import tensorflow as tf return tf.reshape(_lowerCAmelCase , _lowerCAmelCase ) elif is_jax_tensor(_lowerCAmelCase ): return jnp.reshape(_lowerCAmelCase , _lowerCAmelCase ) else: raise ValueError(f"Type not supported for reshape: {type(_lowerCAmelCase )}." ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None ) -> Dict: if is_numpy_array(_lowerCAmelCase ): return np.squeeze(_lowerCAmelCase , axis=_lowerCAmelCase ) elif is_torch_tensor(_lowerCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=_lowerCAmelCase ) elif is_tf_tensor(_lowerCAmelCase ): import tensorflow as tf return tf.squeeze(_lowerCAmelCase , axis=_lowerCAmelCase ) elif is_jax_tensor(_lowerCAmelCase ): return jnp.squeeze(_lowerCAmelCase , axis=_lowerCAmelCase ) else: raise ValueError(f"Type not supported for squeeze: {type(_lowerCAmelCase )}." ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: if is_numpy_array(_lowerCAmelCase ): return np.expand_dims(_lowerCAmelCase , _lowerCAmelCase ) elif is_torch_tensor(_lowerCAmelCase ): return array.unsqueeze(dim=_lowerCAmelCase ) elif is_tf_tensor(_lowerCAmelCase ): import tensorflow as tf return tf.expand_dims(_lowerCAmelCase , axis=_lowerCAmelCase ) elif is_jax_tensor(_lowerCAmelCase ): return jnp.expand_dims(_lowerCAmelCase , axis=_lowerCAmelCase ) else: raise ValueError(f"Type not supported for expand_dims: {type(_lowerCAmelCase )}." ) def __snake_case( _lowerCAmelCase ) -> Optional[Any]: if is_numpy_array(_lowerCAmelCase ): return np.size(_lowerCAmelCase ) elif is_torch_tensor(_lowerCAmelCase ): return array.numel() elif is_tf_tensor(_lowerCAmelCase ): import tensorflow as tf return tf.size(_lowerCAmelCase ) elif is_jax_tensor(_lowerCAmelCase ): return array.size else: raise ValueError(f"Type not supported for expand_dims: {type(_lowerCAmelCase )}." ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: for key, value in auto_map.items(): if isinstance(_lowerCAmelCase , (tuple, list) ): snake_case__ : Tuple = [f"{repo_id}--{v}" if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: snake_case__ : str = f"{repo_id}--{value}" return auto_map def __snake_case( _lowerCAmelCase ) -> int: for base_class in inspect.getmro(_lowerCAmelCase ): snake_case__ : int = base_class.__module__ snake_case__ : Any = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"Could not infer framework from class {model_class}." )
35
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase , _lowerCAmelCase=False ) -> str: snake_case__ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = """""" else: snake_case__ : Dict = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Optional[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case__ : Tuple = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Any = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[int] = in_proj_bias[: config.hidden_size] snake_case__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Tuple = in_proj_bias[-config.hidden_size :] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : str = dct.pop(_lowerCAmelCase ) snake_case__ : Tuple = val def __snake_case( ) -> Tuple: snake_case__ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : Optional[int] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ : Union[str, Any] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : int = 1_000 snake_case__ : Any = """huggingface/label-files""" snake_case__ : Optional[Any] = """imagenet-1k-id2label.json""" snake_case__ : Tuple = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : List[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[str] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = int(deit_name[-6:-4] ) snake_case__ : Optional[Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): snake_case__ : Tuple = 192 snake_case__ : Union[str, Any] = 768 snake_case__ : Tuple = 12 snake_case__ : Union[str, Any] = 3 elif deit_name[9:].startswith("""small""" ): snake_case__ : str = 384 snake_case__ : Any = 1_536 snake_case__ : str = 12 snake_case__ : int = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): snake_case__ : Union[str, Any] = 1_024 snake_case__ : Any = 4_096 snake_case__ : List[Any] = 24 snake_case__ : Tuple = 16 # load original model from timm snake_case__ : List[Any] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[Any] = timm_model.state_dict() snake_case__ : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model snake_case__ : Optional[Any] = DeiTForImageClassificationWithTeacher(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : List[Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : Optional[Any] = DeiTImageProcessor(size=_lowerCAmelCase , crop_size=config.image_size ) snake_case__ : str = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case__ : Optional[Any] = encoding["""pixel_values"""] snake_case__ : Tuple = model(_lowerCAmelCase ) snake_case__ : Optional[int] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
35
1
def a ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int = 0 ): """simple docstring""" UpperCamelCase : Optional[Any] = length or len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: UpperCamelCase : int = list_data[i + 1], list_data[i] UpperCamelCase : int = True return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
371
def a ( SCREAMING_SNAKE_CASE_ : int = 5_0 ): """simple docstring""" UpperCamelCase : List[str] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
315
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : Any ): """simple docstring""" __a =np.argmax(_snake_case , axis=1 ) return np.sum(outputs == labels ) def UpperCamelCase_( _snake_case : List[str] ): """simple docstring""" with open(_snake_case , encoding='utf_8' ) as f: __a =csv.reader(_snake_case ) __a =[] next(_snake_case ) # skip the first line for line in tqdm(_snake_case ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def UpperCamelCase_( _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Dict , _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Tuple ): """simple docstring""" __a =[] for dataset in encoded_datasets: __a =len(_snake_case ) __a =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __a =np.zeros((n_batch, 2) , dtype=np.intaa ) __a =np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) __a =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_snake_case ): __a =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __a =with_conta __a =with_conta __a =len(_snake_case ) - 1 __a =len(_snake_case ) - 1 __a =with_conta __a =with_conta __a =mc_label __a =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_snake_case ) for t in all_inputs ) ) return tensor_datasets def UpperCamelCase_( ): """simple docstring""" __a =argparse.ArgumentParser() parser.add_argument('--model_name' , type=_snake_case , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=_snake_case , type=_snake_case , required=_snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=_snake_case , default='' ) parser.add_argument('--eval_dataset' , type=_snake_case , default='' ) parser.add_argument('--seed' , type=_snake_case , default=42 ) parser.add_argument('--num_train_epochs' , type=_snake_case , default=3 ) parser.add_argument('--train_batch_size' , type=_snake_case , default=8 ) parser.add_argument('--eval_batch_size' , type=_snake_case , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=_snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=_snake_case , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=_snake_case , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=_snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=_snake_case , default=6.2_5e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=_snake_case , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=_snake_case , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=_snake_case , default=0.01 ) parser.add_argument('--lm_coef' , type=_snake_case , default=0.9 ) parser.add_argument('--n_valid' , type=_snake_case , default=374 ) parser.add_argument('--server_ip' , type=_snake_case , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_snake_case , default='' , help='Can be used for distant debugging.' ) __a =parser.parse_args() print(_snake_case ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_snake_case ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __a =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __a =torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(_snake_case , _snake_case ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __a =['_start_', '_delimiter_', '_classify_'] __a =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_snake_case ) __a =tokenizer.convert_tokens_to_ids(_snake_case ) __a =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_snake_case ) ) model.to(_snake_case ) # Load and encode the datasets def tokenize_and_encode(_snake_case : int ): if isinstance(_snake_case , _snake_case ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_snake_case ) ) elif isinstance(_snake_case , _snake_case ): return obj return [tokenize_and_encode(_snake_case ) for o in obj] logger.info('Encoding dataset...' ) __a =load_rocstories_dataset(args.train_dataset ) __a =load_rocstories_dataset(args.eval_dataset ) __a =(train_dataset, eval_dataset) __a =tokenize_and_encode(_snake_case ) # Compute the max input length for the Transformer __a =model.config.n_positions // 2 - 2 __a =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __a =min(_snake_case , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __a =pre_process_datasets(_snake_case , _snake_case , _snake_case , *_snake_case ) __a , __a =tensor_datasets[0], tensor_datasets[1] __a =TensorDataset(*_snake_case ) __a =RandomSampler(_snake_case ) __a =DataLoader(_snake_case , sampler=_snake_case , batch_size=args.train_batch_size ) __a =TensorDataset(*_snake_case ) __a =SequentialSampler(_snake_case ) __a =DataLoader(_snake_case , sampler=_snake_case , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __a =args.max_steps __a =args.max_steps // (len(_snake_case ) // args.gradient_accumulation_steps) + 1 else: __a =len(_snake_case ) // args.gradient_accumulation_steps * args.num_train_epochs __a =list(model.named_parameters() ) __a =['bias', 'LayerNorm.bias', 'LayerNorm.weight'] __a =[ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] __a =AdamW(_snake_case , lr=args.learning_rate , eps=args.adam_epsilon ) __a =get_linear_schedule_with_warmup( _snake_case , num_warmup_steps=args.warmup_steps , num_training_steps=_snake_case ) if args.do_train: __a , __a , __a =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): __a =0 __a =0 __a =tqdm(_snake_case , desc='Training' ) for step, batch in enumerate(_snake_case ): __a =tuple(t.to(_snake_case ) for t in batch ) __a , __a , __a , __a =batch __a =model(_snake_case , mc_token_ids=_snake_case , lm_labels=_snake_case , mc_labels=_snake_case ) __a =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __a =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __a ='Training loss: {:.2e} lr: {:.2e}'.format(_snake_case , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __a =model.module if hasattr(_snake_case , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __a =os.path.join(args.output_dir , _snake_case ) __a =os.path.join(args.output_dir , _snake_case ) torch.save(model_to_save.state_dict() , _snake_case ) model_to_save.config.to_json_file(_snake_case ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __a =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __a =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_snake_case ) if args.do_eval: model.eval() __a , __a =0, 0 __a , __a =0, 0 for batch in tqdm(_snake_case , desc='Evaluating' ): __a =tuple(t.to(_snake_case ) for t in batch ) __a , __a , __a , __a =batch with torch.no_grad(): __a , __a , __a , __a =model( _snake_case , mc_token_ids=_snake_case , lm_labels=_snake_case , mc_labels=_snake_case ) __a =mc_logits.detach().cpu().numpy() __a =mc_labels.to('cpu' ).numpy() __a =accuracy(_snake_case , _snake_case ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __a =eval_loss / nb_eval_steps __a =eval_accuracy / nb_eval_examples __a =tr_loss / nb_tr_steps if args.do_train else None __a ={'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} __a =os.path.join(args.output_dir , 'eval_results.txt' ) with open(_snake_case , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _snake_case , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
218
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _lowerCAmelCase : str = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1_000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _lowerCAmelCase : List[Any] = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1_000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _lowerCAmelCase : str = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } _lowerCAmelCase : List[str] = { "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } _lowerCAmelCase : Optional[Any] = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } _lowerCAmelCase : List[str] = { "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def UpperCamelCase_( _snake_case : str ): """simple docstring""" if isinstance(_snake_case , _snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( _snake_case : Tuple , _snake_case : List[str] , _snake_case : Any , _snake_case : str , _snake_case : Union[str, Any]=False ): """simple docstring""" __a =checkpoint[F'{old_prefix}.in_layers.0.weight'] __a =checkpoint[F'{old_prefix}.in_layers.0.bias'] __a =checkpoint[F'{old_prefix}.in_layers.2.weight'] __a =checkpoint[F'{old_prefix}.in_layers.2.bias'] __a =checkpoint[F'{old_prefix}.emb_layers.1.weight'] __a =checkpoint[F'{old_prefix}.emb_layers.1.bias'] __a =checkpoint[F'{old_prefix}.out_layers.0.weight'] __a =checkpoint[F'{old_prefix}.out_layers.0.bias'] __a =checkpoint[F'{old_prefix}.out_layers.3.weight'] __a =checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: __a =checkpoint[F'{old_prefix}.skip_connection.weight'] __a =checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def UpperCamelCase_( _snake_case : Dict , _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Optional[int]=None ): """simple docstring""" __a , __a , __a =checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 , dim=0 ) __a , __a , __a =checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 , dim=0 ) __a =checkpoint[F'{old_prefix}.norm.weight'] __a =checkpoint[F'{old_prefix}.norm.bias'] __a =weight_q.squeeze(-1 ).squeeze(-1 ) __a =bias_q.squeeze(-1 ).squeeze(-1 ) __a =weight_k.squeeze(-1 ).squeeze(-1 ) __a =bias_k.squeeze(-1 ).squeeze(-1 ) __a =weight_v.squeeze(-1 ).squeeze(-1 ) __a =bias_v.squeeze(-1 ).squeeze(-1 ) __a =( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) __a =checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( _snake_case : str , _snake_case : Tuple ): """simple docstring""" __a =torch.load(_snake_case , map_location='cpu' ) __a ={} __a =checkpoint['time_embed.0.weight'] __a =checkpoint['time_embed.0.bias'] __a =checkpoint['time_embed.2.weight'] __a =checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: __a =checkpoint['label_emb.weight'] __a =checkpoint['input_blocks.0.0.weight'] __a =checkpoint['input_blocks.0.0.bias'] __a =unet_config['down_block_types'] __a =unet_config['layers_per_block'] __a =unet_config['attention_head_dim'] __a =unet_config['block_out_channels'] __a =1 __a =channels_list[0] for i, layer_type in enumerate(_snake_case ): __a =channels_list[i] __a =current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_snake_case ): __a =F'down_blocks.{i}.resnets.{j}' __a =F'input_blocks.{current_layer}.0' __a =True if j == 0 and downsample_block_has_skip else False __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_snake_case ): __a =F'down_blocks.{i}.resnets.{j}' __a =F'input_blocks.{current_layer}.0' __a =True if j == 0 and downsample_block_has_skip else False __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) __a =F'down_blocks.{i}.attentions.{j}' __a =F'input_blocks.{current_layer}.1' __a =convert_attention( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: __a =F'down_blocks.{i}.downsamplers.0' __a =F'input_blocks.{current_layer}.0' __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 __a =current_channels # hardcoded the mid-block for now __a ='mid_block.resnets.0' __a ='middle_block.0' __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) __a ='mid_block.attentions.0' __a ='middle_block.1' __a =convert_attention(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) __a ='mid_block.resnets.1' __a ='middle_block.2' __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) __a =0 __a =unet_config['up_block_types'] for i, layer_type in enumerate(_snake_case ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __a =F'up_blocks.{i}.resnets.{j}' __a =F'output_blocks.{current_layer}.0' __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: __a =F'up_blocks.{i}.upsamplers.0' __a =F'output_blocks.{current_layer-1}.1' __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __a =F'up_blocks.{i}.resnets.{j}' __a =F'output_blocks.{current_layer}.0' __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) __a =F'up_blocks.{i}.attentions.{j}' __a =F'output_blocks.{current_layer}.1' __a =convert_attention( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: __a =F'up_blocks.{i}.upsamplers.0' __a =F'output_blocks.{current_layer-1}.2' __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) __a =checkpoint['out.0.weight'] __a =checkpoint['out.0.bias'] __a =checkpoint['out.2.weight'] __a =checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") _lowerCAmelCase : Optional[Any] = parser.parse_args() _lowerCAmelCase : Optional[Any] = strabool(args.class_cond) _lowerCAmelCase : Dict = os.path.basename(args.unet_path) print(f'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: _lowerCAmelCase : Tuple = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _lowerCAmelCase : Optional[int] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _lowerCAmelCase : int = TEST_UNET_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Tuple = con_pt_to_diffuser(args.unet_path, unet_config) _lowerCAmelCase : Optional[int] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _lowerCAmelCase : int = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _lowerCAmelCase : Optional[int] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _lowerCAmelCase : List[str] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') _lowerCAmelCase : Any = CMStochasticIterativeScheduler(**scheduler_config) _lowerCAmelCase : str = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
218
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _A : @property def __A ( self ) -> int: '''simple docstring''' return self.get_dummy_input() @property def __A ( self ) -> str: '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def __A ( self , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 4 __UpperCAmelCase : str = 32 __UpperCAmelCase : List[Any] = (32, 32) __UpperCAmelCase : List[Any] = torch.manual_seed(0 ) __UpperCAmelCase : Tuple = torch.device(_a ) __UpperCAmelCase : Optional[Any] = (batch_size, num_channels) + sizes __UpperCAmelCase : Dict = randn_tensor(_a , generator=_a , device=_a ) __UpperCAmelCase : Dict = {"""hidden_states""": hidden_states} if include_temb: __UpperCAmelCase : str = 128 __UpperCAmelCase : Any = randn_tensor((batch_size, temb_channels) , generator=_a , device=_a ) if include_res_hidden_states_tuple: __UpperCAmelCase : Optional[int] = torch.manual_seed(1 ) __UpperCAmelCase : Any = (randn_tensor(_a , generator=_a , device=_a ),) if include_encoder_hidden_states: __UpperCAmelCase : Any = floats_tensor((batch_size, 32, 32) ).to(_a ) if include_skip_sample: __UpperCAmelCase : Any = randn_tensor(((batch_size, 3) + sizes) , generator=_a , device=_a ) return dummy_input def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[Any] = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": __UpperCAmelCase : List[Any] = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) __UpperCAmelCase : Any = self.dummy_input return init_dict, inputs_dict def __A ( self , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.prepare_init_args_and_inputs_for_common() __UpperCAmelCase : List[Any] = self.block_class(**_a ) unet_block.to(_a ) unet_block.eval() with torch.no_grad(): __UpperCAmelCase : str = unet_block(**_a ) if isinstance(_a , _a ): __UpperCAmelCase : Any = output[0] self.assertEqual(output.shape , self.output_shape ) __UpperCAmelCase : Optional[int] = output[0, -1, -3:, -3:] __UpperCAmelCase : Any = torch.tensor(_a ).to(_a ) assert torch_all_close(output_slice.flatten() , _a , atol=5E-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = self.prepare_init_args_and_inputs_for_common() __UpperCAmelCase : Tuple = self.block_class(**_a ) model.to(_a ) model.train() __UpperCAmelCase : Union[str, Any] = model(**_a ) if isinstance(_a , _a ): __UpperCAmelCase : str = output[0] __UpperCAmelCase : int = torch.device(_a ) __UpperCAmelCase : List[str] = randn_tensor(output.shape , device=_a ) __UpperCAmelCase : Tuple = torch.nn.functional.mse_loss(_a , _a ) loss.backward()
371
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
16
0
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = {'''vocab_file''': '''vocab.json'''} a = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a = {'''mgp-str''': 2_7} class SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]="[GO]" , lowerCAmelCase : Optional[Any]="[GO]" , lowerCAmelCase : Union[str, Any]="[s]" , lowerCAmelCase : Any="[GO]" , **lowerCAmelCase : Dict ): super().__init__( unk_token=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , pad_token=snake_case_ , **snake_case_ , ) with open(snake_case_ , encoding="""utf-8""" ) as vocab_handle: lowerCAmelCase = json.load(snake_case_ ) lowerCAmelCase = {v: k for k, v in self.vocab.items()} @property def __lowercase ( self : str ): return len(self.vocab ) def __lowercase ( self : int ): return dict(self.vocab , **self.added_tokens_encoder ) def __lowercase ( self : Optional[Any] , lowerCAmelCase : int ): lowerCAmelCase = [] for s in text: char_tokens.extend(snake_case_ ) return char_tokens def __lowercase ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] ): return self.vocab.get(snake_case_ , self.vocab.get(self.unk_token ) ) def __lowercase ( self : int , lowerCAmelCase : int ): return self.decoder.get(snake_case_ ) def __lowercase ( self : int , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(snake_case_ ): logger.error("""Vocabulary path ({}) should be a directory""".format(snake_case_ ) ) return lowerCAmelCase = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) with open(snake_case_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + """\n""" ) return (vocab_file,)
155
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __SCREAMING_SNAKE_CASE :Dict = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class A_ : def __init__( self : List[Any] , snake_case_ : int , snake_case_ : Dict=1_6 , snake_case_ : Dict=1_3 , snake_case_ : int=7 , snake_case_ : Any=1_4 , snake_case_ : int=1_0 , snake_case_ : Any=1_9 , snake_case_ : int=5 , snake_case_ : Any=4 , snake_case_ : Tuple=True , snake_case_ : Optional[int]=1_6 , snake_case_ : List[str]=2 , snake_case_ : Any=4 , snake_case_ : List[Any]=4 , snake_case_ : Optional[Any]="gelu" , snake_case_ : Optional[int]=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Tuple=[1, 2, 3, 4, 5] , snake_case_ : str=2_5 , snake_case_ : Any=5 , ): _UpperCAmelCase = d_model _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = prediction_length _UpperCAmelCase = context_length _UpperCAmelCase = cardinality _UpperCAmelCase = num_time_features _UpperCAmelCase = lags_sequence _UpperCAmelCase = embedding_dimension _UpperCAmelCase = is_training _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = context_length _UpperCAmelCase = prediction_length + label_length _UpperCAmelCase = label_length _UpperCAmelCase = moving_average _UpperCAmelCase = autocorrelation_factor def lowercase ( self : Union[str, Any] ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowercase ( self : int , snake_case_ : Optional[Any] ): _UpperCAmelCase = config.context_length + max(config.lags_sequence ) _UpperCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _UpperCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _UpperCAmelCase = floats_tensor([self.batch_size, _past_length] ) _UpperCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _UpperCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _UpperCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) _UpperCAmelCase = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def lowercase ( self : List[Any] ): _UpperCAmelCase = self.get_config() _UpperCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def lowercase ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def lowercase ( self : Optional[Any] , snake_case_ : int , snake_case_ : Optional[int] ): _UpperCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() _UpperCAmelCase = model(**snake_case_ ) _UpperCAmelCase = outputs.encoder_last_hidden_state _UpperCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) _UpperCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = model.create_network_inputs(**snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _UpperCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _UpperCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _UpperCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _UpperCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _UpperCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _UpperCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) _UpperCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) _UpperCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class A_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : List[Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _lowerCamelCase : Tuple = (AutoformerForPrediction,) if is_torch_available() else () _lowerCamelCase : List[Any] = {"""feature-extraction""": AutoformerModel} if is_torch_available() else {} _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Tuple = False _lowerCamelCase : int = False _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Optional[Any] = False _lowerCamelCase : List[Any] = False def lowercase ( self : Tuple ): _UpperCAmelCase = AutoformerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowercase ( self : Union[str, Any] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["missing_keys"] , [] ) def lowercase ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="Model has no tokens embeddings" ) def lowercase ( self : Optional[int] ): pass def lowercase ( self : Optional[int] ): _UpperCAmelCase = inspect.signature(getattr(snake_case_ , "forward" ) ) # The main input is the name of the argument after `self` _UpperCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def lowercase ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def lowercase ( self : Optional[int] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True _UpperCAmelCase = getattr(self.model_tester , "seq_length" , snake_case_ ) _UpperCAmelCase = getattr(self.model_tester , "decoder_seq_length" , snake_case_ ) _UpperCAmelCase = getattr(self.model_tester , "encoder_seq_length" , snake_case_ ) _UpperCAmelCase = getattr(self.model_tester , "d_model" , snake_case_ ) _UpperCAmelCase = getattr(self.model_tester , "num_attention_heads" , snake_case_ ) _UpperCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _UpperCAmelCase = len(snake_case_ ) _UpperCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions _UpperCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _UpperCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) _UpperCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowercase ( self : Dict ): super().test_retain_grad_hidden_states_attentions() def UpperCAmelCase_ ( __lowercase : str="train-batch.pt" ) -> List[str]: '''simple docstring''' _UpperCAmelCase = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=__lowercase , repo_type="dataset" ) _UpperCAmelCase = torch.load(__lowercase , map_location=__lowercase ) return batch @require_torch @slow class A_ ( unittest.TestCase ): def lowercase ( self : Optional[int] ): _UpperCAmelCase = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case_ ) _UpperCAmelCase = prepare_batch() with torch.no_grad(): _UpperCAmelCase = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] _UpperCAmelCase = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) _UpperCAmelCase = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowercase ( self : Optional[Any] ): _UpperCAmelCase = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case_ ) _UpperCAmelCase = prepare_batch("val-batch.pt" ) with torch.no_grad(): _UpperCAmelCase = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state _UpperCAmelCase = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) _UpperCAmelCase = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowercase ( self : Tuple ): _UpperCAmelCase = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case_ ) _UpperCAmelCase = prepare_batch("val-batch.pt" ) with torch.no_grad(): _UpperCAmelCase = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) _UpperCAmelCase = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) _UpperCAmelCase = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=snake_case_ ) _UpperCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
22
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : List[Any] = '''microsoft/speecht5_tts''' _SCREAMING_SNAKE_CASE : Any = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _SCREAMING_SNAKE_CASE : int = '''text_reader''' _SCREAMING_SNAKE_CASE : List[str] = SpeechTaProcessor _SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaForTextToSpeech _SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGan _SCREAMING_SNAKE_CASE : Optional[int] = ['''text'''] _SCREAMING_SNAKE_CASE : List[Any] = ['''audio'''] def UpperCamelCase__ ( self ): """simple docstring""" if self.post_processor is None: lowerCAmelCase__ = 'microsoft/speecht5_hifigan' super().setup() def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowerCAmelCase__ = self.pre_processor(text=_UpperCamelCase , return_tensors='pt' , truncation=_UpperCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) lowerCAmelCase__ = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) lowerCAmelCase__ = torch.tensor(embeddings_dataset[73_05]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" with torch.no_grad(): return self.post_processor(_UpperCamelCase ).cpu().detach()
122
import qiskit def _UpperCamelCase ( UpperCamelCase_ : int , UpperCamelCase_ : int ) -> qiskit.result.counts.Counts: """simple docstring""" lowerCAmelCase__ = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register lowerCAmelCase__ = qiskit.QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator lowerCAmelCase__ = qiskit.execute(UpperCamelCase_ , UpperCamelCase_ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCamelCase_ ) if __name__ == "__main__": print(f'Total count for various states are: {single_qubit_measure(1, 1)}')
122
1
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' assert isinstance(_A , _A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_A , cache_dir=_A , keep_in_memory=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} SCREAMING_SNAKE_CASE__ = features.copy() SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_A , cache_dir=_A , split=_A ).read() _check_json_dataset(_A , _A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' if issubclass(_A , _A ): SCREAMING_SNAKE_CASE__ = jsonl_path elif issubclass(_A , _A ): SCREAMING_SNAKE_CASE__ = [jsonl_path] SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) def UpperCAmelCase_ ( _A , _A , _A=("train",) ): '''simple docstring''' assert isinstance(_A , _A ) for split in splits: SCREAMING_SNAKE_CASE__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_A , keep_in_memory=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ = JsonDatasetReader({'''train''': jsonl_path} , features=_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' if split: SCREAMING_SNAKE_CASE__ = {split: jsonl_path} else: SCREAMING_SNAKE_CASE__ = '''train''' SCREAMING_SNAKE_CASE__ = {'''train''': jsonl_path, '''test''': jsonl_path} SCREAMING_SNAKE_CASE__ = tmp_path / '''cache''' SCREAMING_SNAKE_CASE__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__ = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase_ ( _A ): '''simple docstring''' return json.load(_A ) def UpperCAmelCase_ ( _A ): '''simple docstring''' return [json.loads(_A ) for line in buffer] class UpperCAmelCase__ : """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowercase_ ( self : str , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ) -> Optional[int]: with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json_function(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert isinstance(exported_content[0] , __lowerCamelCase ) assert len(__lowerCamelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowercase_ ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase , orient=__lowerCamelCase ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__lowerCamelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__lowerCamelCase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ) -> str: with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json_function(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert isinstance(exported_content[0] , __lowerCamelCase ) assert len(__lowerCamelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowercase_ ( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : int ) -> str: with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase , orient=__lowerCamelCase , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__ = load_json(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__lowerCamelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__lowerCamelCase ) == 10 def lowercase_ ( self : Tuple , __lowerCamelCase : Optional[int] ) -> int: with pytest.raises(__lowerCamelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def lowercase_ ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = tmp_path_factory.mktemp('''data''' ) / f'''test.json.{extension}''' SCREAMING_SNAKE_CASE__ = str(shared_datadir / f'''test_file.json.{extension}''' ) JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , compression=__lowerCamelCase ).write() with fsspec.open(__lowerCamelCase , '''rb''' , compression='''infer''' ) as f: SCREAMING_SNAKE_CASE__ = f.read() with fsspec.open(__lowerCamelCase , '''rb''' , compression='''infer''' ) as f: SCREAMING_SNAKE_CASE__ = f.read() assert exported_content == original_content
314
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = 0 @slow def lowercase_ ( self : List[str] ) -> Any: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) def lowercase_ ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) # Check that tokenizer_type ≠ model_type SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Tuple ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> int: with pytest.raises(__lowerCamelCase ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Tuple: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowerCamelCase ) else: self.assertEqual(tokenizer.do_lower_case , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : Any ) -> str: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowerCamelCase , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : List[str] ) -> Tuple: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai SCREAMING_SNAKE_CASE__ = TOKENIZER_MAPPING.values() SCREAMING_SNAKE_CASE__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Any: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__lowerCamelCase ) , __lowerCamelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''Hello, world. How are you?''' SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Optional[int]: # Check we can load the tokenizer config of an online model. SCREAMING_SNAKE_CASE__ = get_tokenizer_config('''bert-base-cased''' ) SCREAMING_SNAKE_CASE__ = config.pop('''_commit_hash''' , __lowerCamelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowerCamelCase , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) self.assertDictEqual(__lowerCamelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : int ) -> str: try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : List[Any] ) -> List[Any]: try: AutoConfig.register('''custom''' , __lowerCamelCase ) # Can register in two steps AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowerCamelCase , slow_tokenizer_class=__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = BertTokenizerFast.from_pretrained(__lowerCamelCase ) bert_tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizerFast.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : List[str] ) -> str: class UpperCAmelCase__ ( A__ ): """simple docstring""" a = False class UpperCAmelCase__ ( A__ ): """simple docstring""" a = NewTokenizer a = False try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Union[str, Any] ) -> Dict: with self.assertRaisesRegex( __lowerCamelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ) -> Optional[int]: with self.assertRaisesRegex( __lowerCamelCase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , revision='''aaaaaa''' ) def lowercase_ ( self : Any ) -> Optional[Any]: # Make sure we have cached the tokenizer. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
314
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=2 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.0_2 , __A=False , __A=True , __A="None" , __A=3 , __A=4 , __A=None , ) -> List[str]: lowerCAmelCase_ :List[str] = parent lowerCAmelCase_ :str = batch_size lowerCAmelCase_ :int = seq_length lowerCAmelCase_ :str = is_training lowerCAmelCase_ :List[Any] = use_input_mask lowerCAmelCase_ :Union[str, Any] = use_token_type_ids lowerCAmelCase_ :int = use_labels lowerCAmelCase_ :List[Any] = vocab_size lowerCAmelCase_ :Tuple = hidden_size lowerCAmelCase_ :Union[str, Any] = num_hidden_layers lowerCAmelCase_ :Any = num_attention_heads lowerCAmelCase_ :Tuple = intermediate_size lowerCAmelCase_ :List[Any] = hidden_act lowerCAmelCase_ :Any = hidden_dropout_prob lowerCAmelCase_ :List[Any] = attention_probs_dropout_prob lowerCAmelCase_ :List[str] = max_position_embeddings lowerCAmelCase_ :Optional[int] = type_vocab_size lowerCAmelCase_ :Optional[int] = type_sequence_label_size lowerCAmelCase_ :Tuple = initializer_range lowerCAmelCase_ :List[Any] = num_labels lowerCAmelCase_ :Tuple = num_choices lowerCAmelCase_ :Optional[Any] = relative_attention lowerCAmelCase_ :str = position_biased_input lowerCAmelCase_ :List[Any] = pos_att_type lowerCAmelCase_ :Any = scope def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ :int = None if self.use_input_mask: lowerCAmelCase_ :Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ :List[str] = None if self.use_token_type_ids: lowerCAmelCase_ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ :Optional[int] = None lowerCAmelCase_ :str = None lowerCAmelCase_ :str = None if self.use_labels: lowerCAmelCase_ :Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ :Optional[int] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A , __A ) -> Optional[Any]: lowerCAmelCase_ :Any = TFDebertaVaModel(config=__A ) lowerCAmelCase_ :Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase_ :int = [input_ids, input_mask] lowerCAmelCase_ :Union[str, Any] = model(__A ) lowerCAmelCase_ :Optional[int] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[str]: lowerCAmelCase_ :int = TFDebertaVaForMaskedLM(config=__A ) lowerCAmelCase_ :Any = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase_ :Any = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A , __A ) -> Optional[Any]: lowerCAmelCase_ :List[str] = self.num_labels lowerCAmelCase_ :int = TFDebertaVaForSequenceClassification(config=__A ) lowerCAmelCase_ :List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase_ :List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[Any]: lowerCAmelCase_ :Optional[Any] = self.num_labels lowerCAmelCase_ :Dict = TFDebertaVaForTokenClassification(config=__A ) lowerCAmelCase_ :List[str] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase_ :List[Any] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A , __A ) -> List[Any]: lowerCAmelCase_ :Tuple = TFDebertaVaForQuestionAnswering(config=__A ) lowerCAmelCase_ :List[str] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase_ :List[str] = model(__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) :Tuple = config_and_inputs lowerCAmelCase_ :Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): UpperCAmelCase_ :Optional[int] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase_ :Tuple = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase_ :List[Any] = False UpperCAmelCase_ :int = False def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Any = TFDebertaVaModelTester(self ) lowerCAmelCase_ :int = ConfigTester(self , config_class=__A , hidden_size=37 ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Tuple = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(__A ) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def __lowerCAmelCase ( self ) -> Any: pass @slow def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Dict = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) lowerCAmelCase_ :Optional[Any] = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) lowerCAmelCase_ :Optional[int] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCAmelCase_ :Dict = model(__A , attention_mask=__A )[0] lowerCAmelCase_ :Dict = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __A , atol=1E-4 )
1
"""simple docstring""" __UpperCAmelCase = 2_56 # Modulus to hash a string __UpperCAmelCase = 1_00_00_03 def _snake_case ( lowercase__ : str , lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ :Tuple = len(lowercase__ ) lowerCAmelCase_ :List[str] = len(lowercase__ ) if p_len > t_len: return False lowerCAmelCase_ :List[str] = 0 lowerCAmelCase_ :Optional[int] = 0 lowerCAmelCase_ :Any = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase__ ): lowerCAmelCase_ :int = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowerCAmelCase_ :Any = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowerCAmelCase_ :Optional[Any] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowerCAmelCase_ :Any = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _snake_case ( ) -> None: '''simple docstring''' lowerCAmelCase_ :int = """abc1abc12""" lowerCAmelCase_ :Dict = """alskfjaldsabc1abc1abc12k23adsfabcabc""" lowerCAmelCase_ :int = """alskfjaldsk23adsfabcabc""" assert rabin_karp(lowercase__ , lowercase__ ) and not rabin_karp(lowercase__ , lowercase__ ) # Test 2) lowerCAmelCase_ :Dict = """ABABX""" lowerCAmelCase_ :int = """ABABZABABYABABX""" assert rabin_karp(lowercase__ , lowercase__ ) # Test 3) lowerCAmelCase_ :Union[str, Any] = """AAAB""" lowerCAmelCase_ :List[str] = """ABAAAAAB""" assert rabin_karp(lowercase__ , lowercase__ ) # Test 4) lowerCAmelCase_ :Dict = """abcdabcy""" lowerCAmelCase_ :Union[str, Any] = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(lowercase__ , lowercase__ ) # Test 5) lowerCAmelCase_ :Optional[int] = """Lü""" lowerCAmelCase_ :Optional[int] = """Lüsai""" assert rabin_karp(lowercase__ , lowercase__ ) lowerCAmelCase_ :Optional[int] = """Lue""" assert not rabin_karp(lowercase__ , lowercase__ ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
1
1
def __magic_name__ ( A : int ): '''simple docstring''' if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence a = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): a = int(sequence[i], 2 ) return sequence def __magic_name__ ( A : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] a = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits a = gray_code_sequence_string(bit_count - 1 ) a = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): a = "0" + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): a = "1" + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
107
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer a : Tuple = ["gpt2"] a : Dict = "gpt2" if is_tf_available(): class UpperCamelCase__ ( tf.Module ): """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' super().__init__() UpperCAmelCase : Tuple = tokenizer UpperCAmelCase : List[str] = AutoConfig.from_pretrained(snake_case ) UpperCAmelCase : int = TFGPTaLMHeadModel.from_config(snake_case ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.tokenizer(snake_case ) UpperCAmelCase : Optional[int] = tokenized["input_ids"].to_tensor() UpperCAmelCase : Optional[int] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) UpperCAmelCase : List[Any] = self.model(input_ids=snake_case , attention_mask=snake_case )["logits"] return outputs @require_tf @require_keras_nlp class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' super().setUp() UpperCAmelCase : Any = [GPTaTokenizer.from_pretrained(snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS)] UpperCAmelCase : Optional[Any] = [TFGPTaTokenizer.from_pretrained(snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase : Tuple = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] UpperCAmelCase : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def A_ ( self ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: UpperCAmelCase : List[Any] = tokenizer([test_inputs] , return_tensors="tf" ) UpperCAmelCase : Any = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors UpperCAmelCase : Dict = python_outputs[key].numpy() UpperCAmelCase : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(snake_case , tf.intaa ) == tf_outputs_values ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : Optional[Any] = tf.function(snake_case ) for test_inputs in self.test_sentences: UpperCAmelCase : List[str] = tf.constant(snake_case ) UpperCAmelCase : Dict = compiled_tokenizer(snake_case ) UpperCAmelCase : Union[str, Any] = tf_tokenizer(snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : int = ModelToSave(tokenizer=snake_case ) UpperCAmelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : str = model.serving(snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase : Optional[int] = Path(snake_case ) / "saved.model" tf.saved_model.save(snake_case , snake_case , signatures={"serving_default": model.serving} ) UpperCAmelCase : int = tf.saved_model.load(snake_case ) UpperCAmelCase : str = loaded_model.signatures["serving_default"](snake_case )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Tuple = tf_tokenizer(snake_case ) # Build model with some sample inputs UpperCAmelCase : Union[str, Any] = tf_tokenizer.get_config() UpperCAmelCase : str = TFGPTaTokenizer.from_config(snake_case ) UpperCAmelCase : Tuple = model_from_config(snake_case ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run UpperCAmelCase : List[str] = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Tuple = tf_tokenizer(snake_case , max_length=snake_case ) UpperCAmelCase : Union[str, Any] = out["input_ids"].numpy().shape[1] assert out_length == max_length
311
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
279
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
279
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase : Union[str, Any] = int(input('Enter number: ').strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
2
"""simple docstring""" from PIL import Image def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.size __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = image.load() for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = pixels[j, i] mean += pixel mean //= width * height for j in range(lowerCAmelCase_ ): for i in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": a__ : List[str] = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
54
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowerCAmelCase__ = logging.getLogger(__name__) class snake_case__: """simple docstring""" def __init__( self : Optional[int] ): lowercase__ : Optional[int] = False def snake_case ( self : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any ): if not self.initialized: lowercase__ : List[Any] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=SCREAMING_SNAKE_CASE , generator_tokenizer=SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE , init_retrieval=SCREAMING_SNAKE_CASE , ) lowercase__ : List[Any] = True def snake_case ( self : Optional[Any] ): self.retriever.index.init_index() def snake_case ( self : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase__ , lowercase__ : Dict = self.retriever._main_retrieve(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return doc_ids, retrieved_doc_embeds class snake_case__(_UpperCamelCase ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any]=None ): if index is not None and index.is_initialized() and len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=SCREAMING_SNAKE_CASE , generator_tokenizer=SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE , init_retrieval=SCREAMING_SNAKE_CASE , ) lowercase__ : Optional[Any] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for worker in self.retrieval_workers ] ) def snake_case ( self : str ): logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. lowercase__ : List[str] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] lowercase__ , lowercase__ : Union[str, Any] = ray.get(random_worker.retrieve.remote(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) else: lowercase__ , lowercase__ : List[str] = self._main_retrieve(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(SCREAMING_SNAKE_CASE ) @classmethod def snake_case ( cls : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=None , **SCREAMING_SNAKE_CASE : Dict ): return super(SCREAMING_SNAKE_CASE , cls ).get_tokenizers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @classmethod def snake_case ( cls : str , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int=None , **SCREAMING_SNAKE_CASE : Any ): lowercase__ : Tuple = kwargs.pop("config" , SCREAMING_SNAKE_CASE ) or RagConfig.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowercase__ : Dict = RagTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = rag_tokenizer.question_encoder lowercase__ : List[str] = rag_tokenizer.generator if indexed_dataset is not None: lowercase__ : Tuple = "custom" lowercase__ : Optional[int] = CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE ) else: lowercase__ : Optional[Any] = cls._build_index(SCREAMING_SNAKE_CASE ) return cls( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=SCREAMING_SNAKE_CASE , generator_tokenizer=SCREAMING_SNAKE_CASE , retrieval_workers=SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE , )
121
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] lowerCAmelCase__ = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCAmelCase__ = f'''down_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCAmelCase__ = f'''down_blocks.{i}.attentions.{j}.''' lowerCAmelCase__ = f'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCAmelCase__ = f'''up_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCAmelCase__ = f'''up_blocks.{i}.attentions.{j}.''' lowerCAmelCase__ = f'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCAmelCase__ = f'''down_blocks.{i}.downsamplers.0.conv.''' lowerCAmelCase__ = f'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCAmelCase__ = f'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase__ = f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCAmelCase__ = '''mid_block.attentions.0.''' lowerCAmelCase__ = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCAmelCase__ = f'''mid_block.resnets.{j}.''' lowerCAmelCase__ = f'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : List[str] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowercase__ : str = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowercase__ : List[str] = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : str = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowercase__ : int = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Optional[Any] = v lowercase__ : Union[str, Any] = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCAmelCase__ = f'''encoder.down_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCAmelCase__ = f'''down_blocks.{i}.downsamplers.0.''' lowerCAmelCase__ = f'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCAmelCase__ = f'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase__ = f'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCAmelCase__ = f'''decoder.up_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCAmelCase__ = f'''mid_block.resnets.{i}.''' lowerCAmelCase__ = f'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : str = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowercase__ : Optional[int] = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Dict = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowercase__ : List[str] = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : int = v lowercase__ : Union[str, Any] = {v: vae_state_dict[k] for k, v in mapping.items()} lowercase__ : Optional[int] = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"""mid.attn_1.{weight_name}.weight""" in k: print(F"""Reshaping {k} for SD format""" ) lowercase__ : Dict = reshape_weight_for_sd(lowerCamelCase__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] lowerCAmelCase__ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCAmelCase__ = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCAmelCase__ = {'''q''': 0, '''k''': 1, '''v''': 2} def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = {} lowercase__ : List[Any] = {} lowercase__ : List[Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): lowercase__ : int = k[: -len(".q_proj.weight" )] lowercase__ : Optional[Any] = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: lowercase__ : Dict = [None, None, None] lowercase__ : Any = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): lowercase__ : Optional[int] = k[: -len(".q_proj.bias" )] lowercase__ : Any = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: lowercase__ : str = [None, None, None] lowercase__ : str = v continue lowercase__ : Union[str, Any] = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowercase__ : List[Any] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) lowercase__ : str = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowercase__ : Any = torch.cat(lowerCamelCase__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) lowercase__ : List[str] = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowercase__ : Tuple = torch.cat(lowerCamelCase__ ) return new_state_dict def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return text_enc_dict if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) lowerCAmelCase__ = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCAmelCase__ = load_file(unet_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): lowerCAmelCase__ = load_file(vae_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): lowerCAmelCase__ = load_file(text_enc_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') lowerCAmelCase__ = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model lowerCAmelCase__ = convert_unet_state_dict(unet_state_dict) lowerCAmelCase__ = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCAmelCase__ = convert_vae_state_dict(vae_state_dict) lowerCAmelCase__ = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCAmelCase__ = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCAmelCase__ = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} lowerCAmelCase__ = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: lowerCAmelCase__ = convert_text_enc_state_dict(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCAmelCase__ = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCAmelCase__ = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCAmelCase__ = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
121
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Union[str, Any] = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''BeitFeatureExtractor'''] __UpperCamelCase : Optional[int] = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
'''simple docstring''' import numpy # List of input, output pairs lowerCamelCase = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowerCamelCase = (((515, 22, 13), 555), ((61, 35, 49), 150)) lowerCamelCase = [2, 4, 1, 5] lowerCamelCase = len(train_data) lowerCamelCase = 0.0_0_9 def _A ( _lowerCAmelCase , _lowerCAmelCase="train" ): """simple docstring""" return calculate_hypothesis_value(_lowerCAmelCase , _lowerCAmelCase ) - output( _lowerCAmelCase , _lowerCAmelCase ) def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =0 for i in range(len(_lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _A ( _lowerCAmelCase , _lowerCAmelCase=m ): """simple docstring""" __lowercase =0 for i in range(_lowerCAmelCase ): if index == -1: summation_value += _error(_lowerCAmelCase ) else: summation_value += _error(_lowerCAmelCase ) * train_data[i][0][index] return summation_value def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =summation_of_cost_derivative(_lowerCAmelCase , _lowerCAmelCase ) / m return cost_derivative_value def _A ( ): """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output __lowercase =0.00_00_02 __lowercase =0 __lowercase =0 while True: j += 1 __lowercase =[0, 0, 0, 0] for i in range(0 , len(_lowerCAmelCase ) ): __lowercase =get_cost_derivative(i - 1 ) __lowercase =( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase , rtol=_lowerCAmelCase , ): break __lowercase =temp_parameter_vector print(('Number of iterations:', j) ) def _A ( ): """simple docstring""" for i in range(len(_lowerCAmelCase ) ): print(('Actual output value:', output(_lowerCAmelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(_lowerCAmelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
166
0
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def A_ ( snake_case_ : Optional[Any] ): '''simple docstring''' UpperCamelCase : List[str] = fname.split(os.path.sep )[-1] return re.search(R"""^(.*)_\d+\.jpg$""" ,snake_case_ ).groups()[0] class lowerCamelCase ( _UpperCAmelCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ): UpperCamelCase : Union[str, Any] = file_names UpperCamelCase : Any = image_transform UpperCamelCase : Tuple = label_to_id def __len__( self ): return len(self.file_names ) def __getitem__( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = self.file_names[idx] UpperCamelCase : Optional[int] = PIL.Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = raw_image.convert("""RGB""" ) if self.image_transform is not None: UpperCamelCase : List[str] = self.image_transform(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = extract_label(SCREAMING_SNAKE_CASE_ ) if self.label_to_id is not None: UpperCamelCase : Tuple = self.label_to_id[label] return {"image": image, "label": label} def A_ ( snake_case_ : List[str] ,snake_case_ : Any ): '''simple docstring''' # Initialize accelerator if args.with_tracking: UpperCamelCase : List[Any] = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,log_with="""all""" ,project_dir=args.project_dir ) else: UpperCamelCase : Dict = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase : int = config["""lr"""] UpperCamelCase : Any = int(config["""num_epochs"""] ) UpperCamelCase : Any = int(config["""seed"""] ) UpperCamelCase : List[Any] = int(config["""batch_size"""] ) UpperCamelCase : Optional[int] = config["""image_size"""] if not isinstance(snake_case_ ,(list, tuple) ): UpperCamelCase : List[Any] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps ,"""isdigit""" ): if args.checkpointing_steps == "epoch": UpperCamelCase : int = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCamelCase : List[str] = int(args.checkpointing_steps ) else: raise ValueError( f'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.' ) else: UpperCamelCase : int = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCamelCase : List[Any] = os.path.split(snake_case_ )[-1].split(""".""" )[0] accelerator.init_trackers(snake_case_ ,snake_case_ ) # Grab all the image filenames UpperCamelCase : Optional[Any] = [os.path.join(args.data_dir ,snake_case_ ) for fname in os.listdir(args.data_dir ) if fname.endswith(""".jpg""" )] # Build the label correspondences UpperCamelCase : int = [extract_label(snake_case_ ) for fname in file_names] UpperCamelCase : int = list(set(snake_case_ ) ) id_to_label.sort() UpperCamelCase : Optional[int] = {lbl: i for i, lbl in enumerate(snake_case_ )} # Set the seed before splitting the data. np.random.seed(snake_case_ ) torch.manual_seed(snake_case_ ) torch.cuda.manual_seed_all(snake_case_ ) # Split our filenames between train and validation UpperCamelCase : Any = np.random.permutation(len(snake_case_ ) ) UpperCamelCase : Any = int(0.8 * len(snake_case_ ) ) UpperCamelCase : List[str] = random_perm[:cut] UpperCamelCase : int = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCamelCase : Any = Compose([RandomResizedCrop(snake_case_ ,scale=(0.5, 1.0) ), ToTensor()] ) UpperCamelCase : Dict = PetsDataset( [file_names[i] for i in train_split] ,image_transform=snake_case_ ,label_to_id=snake_case_ ) # For evaluation, we use a deterministic Resize UpperCamelCase : str = Compose([Resize(snake_case_ ), ToTensor()] ) UpperCamelCase : int = PetsDataset([file_names[i] for i in eval_split] ,image_transform=snake_case_ ,label_to_id=snake_case_ ) # Instantiate dataloaders. UpperCamelCase : Optional[Any] = DataLoader(snake_case_ ,shuffle=snake_case_ ,batch_size=snake_case_ ,num_workers=4 ) UpperCamelCase : Tuple = DataLoader(snake_case_ ,shuffle=snake_case_ ,batch_size=snake_case_ ,num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase : List[Any] = create_model("""resnet50d""" ,pretrained=snake_case_ ,num_classes=len(snake_case_ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase : str = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCamelCase : int = False for param in model.get_classifier().parameters(): UpperCamelCase : List[Any] = True # We normalize the batches of images to be a bit faster. UpperCamelCase : Union[str, Any] = torch.tensor(model.default_cfg["""mean"""] )[None, :, None, None].to(accelerator.device ) UpperCamelCase : Optional[int] = torch.tensor(model.default_cfg["""std"""] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCamelCase : Any = torch.optim.Adam(params=model.parameters() ,lr=lr / 2_5 ) # Instantiate learning rate scheduler UpperCamelCase : Optional[int] = OneCycleLR(optimizer=snake_case_ ,max_lr=snake_case_ ,epochs=snake_case_ ,steps_per_epoch=len(snake_case_ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase : Tuple = accelerator.prepare( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) # We need to keep track of how many total steps we have iterated over UpperCamelCase : Optional[Any] = 0 # We also need to keep track of the starting epoch so files are named properly UpperCamelCase : Optional[int] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}' ) accelerator.load_state(args.resume_from_checkpoint ) UpperCamelCase : int = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCamelCase : Dict = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCamelCase : str = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCamelCase : List[Any] = os.path.splitext(snake_case_ )[0] if "epoch" in training_difference: UpperCamelCase : Tuple = int(training_difference.replace("""epoch_""" ,"""""" ) ) + 1 UpperCamelCase : Dict = None else: UpperCamelCase : int = int(training_difference.replace("""step_""" ,"""""" ) ) UpperCamelCase : Optional[int] = resume_step // len(snake_case_ ) resume_step -= starting_epoch * len(snake_case_ ) # Now we train the model for epoch in range(snake_case_ ,snake_case_ ): model.train() if args.with_tracking: UpperCamelCase : List[str] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCamelCase : Any = accelerator.skip_first_batches(snake_case_ ,snake_case_ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCamelCase : str = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCamelCase : Optional[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCamelCase : Union[str, Any] = (batch["""image"""] - mean) / std UpperCamelCase : str = model(snake_case_ ) UpperCamelCase : List[Any] = torch.nn.functional.cross_entropy(snake_case_ ,batch["""label"""] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(snake_case_ ,snake_case_ ): UpperCamelCase : Union[str, Any] = f'step_{overall_step}' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCamelCase : int = os.path.join(args.output_dir ,snake_case_ ) accelerator.save_state(snake_case_ ) model.eval() UpperCamelCase : int = 0 UpperCamelCase : List[Any] = 0 for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCamelCase : str = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCamelCase : Optional[int] = (batch["""image"""] - mean) / std with torch.no_grad(): UpperCamelCase : Any = model(snake_case_ ) UpperCamelCase : List[str] = outputs.argmax(dim=-1 ) UpperCamelCase : int = accelerator.gather_for_metrics((predictions, batch["""label"""]) ) UpperCamelCase : Dict = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCamelCase : int = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}: {1_0_0 * eval_metric:.2f}' ) if args.with_tracking: accelerator.log( { """accuracy""": 1_0_0 * eval_metric, """train_loss""": total_loss.item() / len(snake_case_ ), """epoch""": epoch, } ,step=snake_case_ ,) if checkpointing_steps == "epoch": UpperCamelCase : Any = f'epoch_{epoch}' if args.output_dir is not None: UpperCamelCase : int = os.path.join(args.output_dir ,snake_case_ ) accelerator.save_state(snake_case_ ) if args.with_tracking: accelerator.end_training() def A_ ( ): '''simple docstring''' UpperCamelCase : Dict = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument("""--data_dir""" ,required=snake_case_ ,help="""The data folder on disk.""" ) parser.add_argument("""--fp16""" ,action="""store_true""" ,help="""If passed, will use FP16 training.""" ) parser.add_argument( """--mixed_precision""" ,type=snake_case_ ,default=snake_case_ ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) parser.add_argument( """--checkpointing_steps""" ,type=snake_case_ ,default=snake_case_ ,help="""Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.""" ,) parser.add_argument( """--output_dir""" ,type=snake_case_ ,default=""".""" ,help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" ,) parser.add_argument( """--resume_from_checkpoint""" ,type=snake_case_ ,default=snake_case_ ,help="""If the training should continue from a checkpoint folder.""" ,) parser.add_argument( """--with_tracking""" ,action="""store_true""" ,help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" ,) parser.add_argument( """--project_dir""" ,type=snake_case_ ,default="""logs""" ,help="""Location on where to store experiment tracking logs` and relevent project information""" ,) UpperCamelCase : int = parser.parse_args() UpperCamelCase : List[Any] = {"""lr""": 3e-2, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 6_4, """image_size""": 2_2_4} training_function(snake_case_ ,snake_case_ ) if __name__ == "__main__": main()
361
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[int] = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class lowerCamelCase ( _UpperCAmelCase ): lowercase : Optional[int] = 'mvp' lowercase : Optional[Any] = ['past_key_values'] lowercase : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=5_0267 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=800 , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : Dict = max_position_embeddings UpperCamelCase : Optional[int] = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : Any = encoder_layers UpperCamelCase : List[Any] = encoder_attention_heads UpperCamelCase : Optional[Any] = decoder_ffn_dim UpperCamelCase : Optional[int] = decoder_layers UpperCamelCase : Dict = decoder_attention_heads UpperCamelCase : List[str] = dropout UpperCamelCase : List[str] = attention_dropout UpperCamelCase : List[Any] = activation_dropout UpperCamelCase : Dict = activation_function UpperCamelCase : List[str] = init_std UpperCamelCase : int = encoder_layerdrop UpperCamelCase : Dict = decoder_layerdrop UpperCamelCase : Any = classifier_dropout UpperCamelCase : Tuple = use_cache UpperCamelCase : Dict = encoder_layers UpperCamelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase : Optional[Any] = use_prompt UpperCamelCase : Any = prompt_length UpperCamelCase : List[Any] = prompt_mid_dim super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , forced_eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = self.bos_token_id warnings.warn( f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' """The config can simply be saved and uploaded again to be fixed.""" )
27
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case_ : int = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure)
83
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : List[str] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'camembert' def __init__( self : int , lowerCAmelCase_ : Tuple=3_05_22 , lowerCAmelCase_ : Tuple=7_68 , lowerCAmelCase_ : List[str]=12 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : Tuple=30_72 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=5_12 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Tuple=1e-12 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Dict="absolute" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : Union[str, Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Optional[int] =vocab_size A__ : Any =hidden_size A__ : Optional[Any] =num_hidden_layers A__ : Optional[int] =num_attention_heads A__ : Optional[int] =hidden_act A__ : Optional[Any] =intermediate_size A__ : Tuple =hidden_dropout_prob A__ : Union[str, Any] =attention_probs_dropout_prob A__ : List[str] =max_position_embeddings A__ : int =type_vocab_size A__ : int =initializer_range A__ : Tuple =layer_norm_eps A__ : Dict =position_embedding_type A__ : List[str] =use_cache A__ : Dict =classifier_dropout class lowerCamelCase ( lowercase_ ): '''simple docstring''' @property def lowercase__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ : Optional[int] ={0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ : List[str] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
134
0
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _lowerCamelCase : Optional[int] = NewType('''DataClass''', Any) _lowerCamelCase : Tuple = NewType('''DataClassType''', Any) def __lowerCamelCase (UpperCAmelCase__ : Tuple ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def __lowerCamelCase (UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = {str(SCREAMING_SNAKE_CASE_ ): choice for choice in choices} return lambda UpperCAmelCase__ : str_to_choice.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase (*, UpperCAmelCase__ : Tuple = None , UpperCAmelCase__ : List[str] = None , UpperCAmelCase__ : List[Any] = dataclasses.MISSING , UpperCAmelCase__ : List[str] = dataclasses.MISSING , UpperCAmelCase__ : Tuple = None , **UpperCAmelCase__ : int , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls SCREAMING_SNAKE_CASE = {} if aliases is not None: SCREAMING_SNAKE_CASE = aliases if help is not None: SCREAMING_SNAKE_CASE = help return dataclasses.field(metadata=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , default_factory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class lowercase ( a ): lowercase__ : Iterable[DataClassType] def __init__( self : Tuple , _UpperCamelCase : Tuple , **_UpperCamelCase : Union[str, Any] ) -> Dict: '''simple docstring''' if "formatter_class" not in kwargs: SCREAMING_SNAKE_CASE = ArgumentDefaultsHelpFormatter super().__init__(**_lowercase ) if dataclasses.is_dataclass(_lowercase ): SCREAMING_SNAKE_CASE = [dataclass_types] SCREAMING_SNAKE_CASE = list(_lowercase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_lowercase ) @staticmethod def __snake_case( _UpperCamelCase : List[str] , _UpperCamelCase : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = F"--{field.name}" SCREAMING_SNAKE_CASE = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _lowercase ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) SCREAMING_SNAKE_CASE = kwargs.pop("aliases" , [] ) if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE = [aliases] SCREAMING_SNAKE_CASE = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(_lowercase , "UnionType" ) and isinstance(_lowercase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_lowercase ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." F" Problem encountered in field '{field.name}'." ) if type(_lowercase ) not in field.type.__args__: # filter `str` in Union SCREAMING_SNAKE_CASE = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] SCREAMING_SNAKE_CASE = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) SCREAMING_SNAKE_CASE = ( field.type.__args__[0] if isinstance(_lowercase , field.type.__args__[1] ) else field.type.__args__[1] ) SCREAMING_SNAKE_CASE = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) SCREAMING_SNAKE_CASE = {} if origin_type is Literal or (isinstance(field.type , _lowercase ) and issubclass(field.type , _lowercase )): if origin_type is Literal: SCREAMING_SNAKE_CASE = field.type.__args__ else: SCREAMING_SNAKE_CASE = [x.value for x in field.type] SCREAMING_SNAKE_CASE = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE = field.default else: SCREAMING_SNAKE_CASE = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument SCREAMING_SNAKE_CASE = copy(_lowercase ) # Hack because type=bool in argparse does not behave as we want. SCREAMING_SNAKE_CASE = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. SCREAMING_SNAKE_CASE = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way SCREAMING_SNAKE_CASE = default # This tells argparse we accept 0 or 1 value after --field_name SCREAMING_SNAKE_CASE = "?" # This is the value that will get picked if we do --field_name (without value) SCREAMING_SNAKE_CASE = True elif isclass(_lowercase ) and issubclass(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE = field.type.__args__[0] SCREAMING_SNAKE_CASE = "+" if field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE = field.default_factory() elif field.default is dataclasses.MISSING: SCREAMING_SNAKE_CASE = True else: SCREAMING_SNAKE_CASE = field.type if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE = field.default elif field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE = field.default_factory() else: SCREAMING_SNAKE_CASE = True parser.add_argument(_lowercase , *_lowercase , **_lowercase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): SCREAMING_SNAKE_CASE = False parser.add_argument(F"--no_{field.name}" , action="store_false" , dest=field.name , **_lowercase ) def __snake_case( self : List[Any] , _UpperCamelCase : Tuple ) -> Any: '''simple docstring''' if hasattr(_lowercase , "_argument_group_name" ): SCREAMING_SNAKE_CASE = self.add_argument_group(dtype._argument_group_name ) else: SCREAMING_SNAKE_CASE = self try: SCREAMING_SNAKE_CASE = get_type_hints(_lowercase ) except NameError: raise RuntimeError( F"Type resolution failed for {dtype}. Try declaring the class in global scope or " "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_lowercase ): SCREAMING_SNAKE_CASE = ".".join(map(_lowercase , sys.version_info[:3] ) ) raise RuntimeError( F"Type resolution failed for {dtype} on Python {python_version}. Try removing " "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(_lowercase ): if not field.init: continue SCREAMING_SNAKE_CASE = type_hints[field.name] self._parse_dataclass_field(_lowercase , _lowercase ) def __snake_case( self : List[Any] , _UpperCamelCase : Dict=None , _UpperCamelCase : Union[str, Any]=False , _UpperCamelCase : Tuple=True , _UpperCamelCase : List[Any]=None , _UpperCamelCase : str=None , ) -> Tuple[DataClass, ...]: '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): SCREAMING_SNAKE_CASE = [] if args_filename: args_files.append(Path(_lowercase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values SCREAMING_SNAKE_CASE = ArgumentParser() args_file_parser.add_argument(_lowercase , type=_lowercase , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = args_file_parser.parse_known_args(args=_lowercase ) SCREAMING_SNAKE_CASE = vars(_lowercase ).get(args_file_flag.lstrip("-" ) , _lowercase ) if cmd_args_file_paths: args_files.extend([Path(_lowercase ) for p in cmd_args_file_paths] ) SCREAMING_SNAKE_CASE = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last SCREAMING_SNAKE_CASE = file_args + args if args is not None else file_args + sys.argv[1:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.parse_known_args(args=_lowercase ) SCREAMING_SNAKE_CASE = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE = {f.name for f in dataclasses.fields(_lowercase ) if f.init} SCREAMING_SNAKE_CASE = {k: v for k, v in vars(_lowercase ).items() if k in keys} for k in keys: delattr(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE = dtype(**_lowercase ) outputs.append(_lowercase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_lowercase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"Some specified arguments are not used by the HfArgumentParser: {remaining_args}" ) return (*outputs,) def __snake_case( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] = False ) -> Tuple[DataClass, ...]: '''simple docstring''' SCREAMING_SNAKE_CASE = set(args.keys() ) SCREAMING_SNAKE_CASE = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE = {f.name for f in dataclasses.fields(_lowercase ) if f.init} SCREAMING_SNAKE_CASE = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) SCREAMING_SNAKE_CASE = dtype(**_lowercase ) outputs.append(_lowercase ) if not allow_extra_keys and unused_keys: raise ValueError(F"Some keys are not used by the HfArgumentParser: {sorted(_lowercase )}" ) return tuple(_lowercase ) def __snake_case( self : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] = False ) -> Tuple[DataClass, ...]: '''simple docstring''' with open(Path(_lowercase ) , encoding="utf-8" ) as open_json_file: SCREAMING_SNAKE_CASE = json.loads(open_json_file.read() ) SCREAMING_SNAKE_CASE = self.parse_dict(_lowercase , allow_extra_keys=_lowercase ) return tuple(_lowercase ) def __snake_case( self : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] = False ) -> Tuple[DataClass, ...]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.parse_dict(yaml.safe_load(Path(_lowercase ).read_text() ) , allow_extra_keys=_lowercase ) return tuple(_lowercase )
366
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase ( a ): lowercase__ : Dict = (UniPCMultistepScheduler,) lowercase__ : Optional[int] = (("""num_inference_steps""", 25),) def __snake_case( self : List[str] , **_UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1_000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**_UpperCamelCase ) return config def __snake_case( self : List[str] , _UpperCamelCase : Dict=0 , **_UpperCamelCase : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_UpperCamelCase ) new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sample, sample for t in range(_UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : Any , _UpperCamelCase : Union[str, Any]=0 , **_UpperCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : List[str] , _UpperCamelCase : Tuple=None , **_UpperCamelCase : List[Any] ) -> str: '''simple docstring''' if scheduler is None: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample return sample def __snake_case( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(_UpperCamelCase ) elif num_inference_steps is not None and not hasattr(_UpperCamelCase , "set_timesteps" ): SCREAMING_SNAKE_CASE = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] SCREAMING_SNAKE_CASE = scheduler.timesteps[5] SCREAMING_SNAKE_CASE = scheduler.timesteps[6] SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case( self : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = UniPCMultistepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __snake_case( self : Optional[int] ) -> List[Any]: '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def __snake_case( self : Tuple ) -> Union[str, Any]: '''simple docstring''' self.check_over_configs(thresholding=_UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_UpperCamelCase , prediction_type=_UpperCamelCase , sample_max_value=_UpperCamelCase , solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , ) def __snake_case( self : Tuple ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def __snake_case( self : Dict ) -> int: '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , prediction_type=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = self.full_loop( solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , prediction_type=_UpperCamelCase , ) assert not torch.isnan(_UpperCamelCase ).any(), "Samples have nan numbers" def __snake_case( self : List[str] ) -> Tuple: '''simple docstring''' self.check_over_configs(lower_order_final=_UpperCamelCase ) self.check_over_configs(lower_order_final=_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> List[Any]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=_UpperCamelCase , time_step=0 ) def __snake_case( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop() SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __snake_case( self : List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def __snake_case( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(thresholding=_UpperCamelCase , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter.half() scheduler.set_timesteps(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def __snake_case( self : List[str] , **_UpperCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
206
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[int] = FlaxAutoencoderKL @property def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 4 SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = (32, 32) SCREAMING_SNAKE_CASE_: Dict = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE_: List[str] = jax.random.uniform(lowerCAmelCase__ , ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } SCREAMING_SNAKE_CASE_: Any = self.dummy_input return init_dict, inputs_dict
13
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
13
1
import flax.linen as nn import jax import jax.numpy as jnp class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = hidden_states.shape __UpperCAmelCase : Dict = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) __UpperCAmelCase : Dict = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __UpperCAmelCase : Any = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: int = None lowerCamelCase__: float = 0.0 lowerCamelCase__: bool = None lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels __UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob ) __UpperCAmelCase : Tuple = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCAmelCase : List[Any] = None if use_nin_shortcut: __UpperCAmelCase : Dict = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]: __UpperCAmelCase : Dict = hidden_states __UpperCAmelCase : int = self.norma(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase ) __UpperCAmelCase : Tuple = self.conva(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) __UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) __UpperCAmelCase : List[str] = hidden_states + temb __UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase ) __UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase ) __UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: __UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
355
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case = pytest.mark.integration @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() __UpperCAmelCase : int = dset.map( lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase ) __UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self: List[str] ) -> int: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: from elasticsearch import Elasticsearch __UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : int = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __UpperCAmelCase : Any = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: List[str] ) -> Optional[int]: import faiss __UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] ) __UpperCAmelCase : Dict = [scores[0] for scores in total_scores] __UpperCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: import faiss __UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: import faiss __UpperCAmelCase : str = faiss.IndexFlat(5 ) __UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: import faiss __UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: import faiss __UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __UpperCAmelCase : Optional[Any] = "index.faiss" __UpperCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : str = np.zeros(5, dtype=np.floataa ) __UpperCAmelCase : Any = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _lowercase ): def _lowerCamelCase ( self: str ) -> Union[str, Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : Optional[Any] = Elasticsearch() __UpperCAmelCase : Dict = {"acknowledged": True} __UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __UpperCAmelCase : Dict = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase : int = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase : int = ["foo", "bar", "foobar"] __UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase ) __UpperCAmelCase : Tuple = [scores[0] for scores in total_scores] __UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase ) # batched queries with timeout __UpperCAmelCase : str = ["foo", "bar", "foobar"] __UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 ) __UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] __UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase )
342
0
"""simple docstring""" def __lowerCamelCase ( ) -> Optional[Any]: for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def __lowerCamelCase ( a_ : Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE :List[Any] = 1 __SCREAMING_SNAKE_CASE :List[str] = 2 while i * i <= n: __SCREAMING_SNAKE_CASE :Union[str, Any] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def __lowerCamelCase ( ) -> Any: return next(i for i in triangle_number_generator() if count_divisors(a_ ) > 5_00 ) if __name__ == "__main__": print(solution())
191
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : str = '''beit''' def __init__( self ,SCREAMING_SNAKE_CASE__=81_92 ,SCREAMING_SNAKE_CASE__=7_68 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=30_72 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-12 ,SCREAMING_SNAKE_CASE__=2_24 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=[3, 5, 7, 11] ,SCREAMING_SNAKE_CASE__=[1, 2, 3, 6] ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=0.4 ,SCREAMING_SNAKE_CASE__=2_56 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=2_55 ,**SCREAMING_SNAKE_CASE__ ,) -> Optional[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = vocab_size __SCREAMING_SNAKE_CASE :Dict = hidden_size __SCREAMING_SNAKE_CASE :Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE :List[str] = num_attention_heads __SCREAMING_SNAKE_CASE :Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE :Optional[int] = hidden_act __SCREAMING_SNAKE_CASE :Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE :Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE :str = layer_norm_eps __SCREAMING_SNAKE_CASE :int = image_size __SCREAMING_SNAKE_CASE :Tuple = patch_size __SCREAMING_SNAKE_CASE :Any = num_channels __SCREAMING_SNAKE_CASE :Any = use_mask_token __SCREAMING_SNAKE_CASE :Union[str, Any] = use_absolute_position_embeddings __SCREAMING_SNAKE_CASE :Union[str, Any] = use_relative_position_bias __SCREAMING_SNAKE_CASE :Union[str, Any] = use_shared_relative_position_bias __SCREAMING_SNAKE_CASE :List[str] = layer_scale_init_value __SCREAMING_SNAKE_CASE :Optional[Any] = drop_path_rate __SCREAMING_SNAKE_CASE :str = use_mean_pooling # decode head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE :Dict = out_indices __SCREAMING_SNAKE_CASE :Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE :Optional[int] = use_auxiliary_head __SCREAMING_SNAKE_CASE :Union[str, Any] = auxiliary_loss_weight __SCREAMING_SNAKE_CASE :Dict = auxiliary_channels __SCREAMING_SNAKE_CASE :Optional[int] = auxiliary_num_convs __SCREAMING_SNAKE_CASE :List[str] = auxiliary_concat_input __SCREAMING_SNAKE_CASE :List[Any] = semantic_loss_ignore_index class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : List[Any] = version.parse('''1.11''' ) @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _UpperCamelCase ( self ) -> float: """simple docstring""" return 1E-4
191
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_lowerCAmelCase ) class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCAmelCase : ClassVar[Features] = Features({"audio": Audio()} ) UpperCAmelCase : ClassVar[Features] = Features({"labels": ClassLabel} ) UpperCAmelCase : str = "audio" UpperCAmelCase : str = "labels" def __snake_case ( self , A_ ) -> Dict: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , A_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) lowerCAmelCase = copy.deepcopy(self ) lowerCAmelCase = self.label_schema.copy() lowerCAmelCase = features[self.label_column] lowerCAmelCase = label_schema return task_template @property def __snake_case ( self ) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
361
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __snake_case( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ) -> List[str]: lowerCAmelCase = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) lowerCAmelCase = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(A_ ) from datasets import load_dataset lowerCAmelCase = load_dataset("""nielsr/rvlcdip-demo""" ) lowerCAmelCase = dataset["""train"""][0]["""image"""].convert("""RGB""" ) lowerCAmelCase = image_processor(A_ , return_tensors="""pt""" ).to(A_ ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**A_ ) lowerCAmelCase = outputs.logits lowerCAmelCase = torch.Size((1, 16) ) self.assertEqual(logits.shape , A_ ) lowerCAmelCase = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=A_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
187
0
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json''' ), } class _snake_case ( a__ ): snake_case__ = "xlm-prophetnet" snake_case__ = ["past_key_values"] snake_case__ = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self : str , UpperCAmelCase : Optional[float] = 0.1 , UpperCAmelCase : Optional[Union[str, Callable]] = "gelu" , UpperCAmelCase : Optional[int] = 30522 , UpperCAmelCase : Optional[int] = 1024 , UpperCAmelCase : Optional[int] = 4096 , UpperCAmelCase : Optional[int] = 12 , UpperCAmelCase : Optional[int] = 16 , UpperCAmelCase : Optional[int] = 4096 , UpperCAmelCase : Optional[int] = 12 , UpperCAmelCase : Optional[int] = 16 , UpperCAmelCase : Optional[float] = 0.1 , UpperCAmelCase : Optional[float] = 0.1 , UpperCAmelCase : Optional[int] = 512 , UpperCAmelCase : Optional[float] = 0.0_2 , UpperCAmelCase : Optional[bool] = True , UpperCAmelCase : Optional[bool] = True , UpperCAmelCase : Optional[int] = 0 , UpperCAmelCase : Optional[int] = 2 , UpperCAmelCase : Optional[int] = 32 , UpperCAmelCase : Optional[int] = 128 , UpperCAmelCase : Optional[bool] = False , UpperCAmelCase : Optional[float] = 0.0 , UpperCAmelCase : Optional[bool] = True , UpperCAmelCase : Optional[int] = 0 , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : Optional[int] = 2 , **UpperCAmelCase : List[str] , ): __lowerCamelCase : str = vocab_size __lowerCamelCase : str = hidden_size __lowerCamelCase : List[Any] = encoder_ffn_dim __lowerCamelCase : List[str] = num_encoder_layers __lowerCamelCase : Dict = num_encoder_attention_heads __lowerCamelCase : List[Any] = decoder_ffn_dim __lowerCamelCase : int = num_decoder_layers __lowerCamelCase : Optional[int] = num_decoder_attention_heads __lowerCamelCase : Optional[Any] = max_position_embeddings __lowerCamelCase : Optional[Any] = init_std # Normal(0, this parameter) __lowerCamelCase : Any = activation_function # parameters for xlmprophetnet __lowerCamelCase : List[str] = ngram __lowerCamelCase : Union[str, Any] = num_buckets __lowerCamelCase : Any = relative_max_distance __lowerCamelCase : Optional[int] = disable_ngram_loss __lowerCamelCase : List[Any] = eps # 3 Types of Dropout __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : Optional[int] = activation_dropout __lowerCamelCase : Optional[int] = dropout __lowerCamelCase : Union[str, Any] = use_cache super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , add_cross_attention=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , **UpperCAmelCase , ) @property def lowerCamelCase__ ( self : Union[str, Any] ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def lowerCamelCase__ ( self : int , UpperCAmelCase : Any ): raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`." )
135
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
135
1
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def lowerCamelCase (a_ :Tuple , a_ :Dict) -> Dict: lowercase :Tuple = tmp_path_factory.mktemp('''dset_infos_dir''') if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''') as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''') if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''') as f: f.write('''''') # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''') as f: f.write('''{"default": {"dataset_size": 42}}''') lowercase :Union[str, Any] = DatasetInfosDict.from_directory(a_) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''')}) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def lowerCamelCase (a_ :Dict , a_ :DatasetInfo) -> Tuple: lowercase :Optional[int] = str(a_) dataset_info.write_to_directory(a_) lowercase :Optional[Any] = DatasetInfo.from_directory(a_) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_ , '''dataset_info.json''')) def lowerCamelCase () -> Optional[Any]: lowercase :Union[str, Any] = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''')}) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) lowercase :Dict = dataset_info._to_yaml_dict() assert sorted(a_) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str)) lowercase :List[str] = yaml.safe_dump(a_) lowercase :List[str] = yaml.safe_load(a_) assert dataset_info_yaml_dict == reloaded def lowerCamelCase () -> List[Any]: lowercase :Tuple = DatasetInfo() lowercase :Any = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()}), DatasetInfosDict({'''my_config_name''': DatasetInfo()}), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''')}) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) }), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42), '''v2''': DatasetInfo(dataset_size=1337), }), ] , ) def lowerCamelCase (a_ :str , a_ :DatasetInfosDict) -> int: lowercase :Optional[int] = str(a_) dataset_infos_dict.write_to_directory(a_) lowercase :List[Any] = DatasetInfosDict.from_directory(a_) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowercase :Union[str, Any] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowercase :int = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict()) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_ , '''README.md'''))
172
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCamelCase (a_ :int) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCamelCase () -> Optional[int]: with parallel_backend('''spark'''): assert ParallelBackendConfig.backend_name == "spark" lowercase :Optional[int] = [1, 2, 3] with pytest.raises(a_): with parallel_backend('''unsupported backend'''): map_nested(a_ , a_ , num_proc=2) with pytest.raises(a_): with parallel_backend('''unsupported backend'''): map_nested(a_ , a_ , num_proc=-1) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1]) def lowerCamelCase (a_ :Union[str, Any]) -> Optional[Any]: lowercase :Optional[Any] = [1, 2] lowercase :int = {'''a''': 1, '''b''': 2} lowercase :List[Any] = {'''a''': [1, 2], '''b''': [3, 4]} lowercase :Optional[int] = {'''a''': {'''1''': 1}, '''b''': 2} lowercase :List[Any] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowercase :Optional[int] = [2, 3] lowercase :Tuple = {'''a''': 2, '''b''': 3} lowercase :Union[str, Any] = {'''a''': [2, 3], '''b''': [4, 5]} lowercase :List[str] = {'''a''': {'''1''': 2}, '''b''': 3} lowercase :Union[str, Any] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark'''): assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa assert map_nested(a_ , a_ , num_proc=a_) == expected_map_nested_sa
172
1
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __UpperCamelCase ( a__ ): lowerCamelCase : Tuple ="""""" lowerCamelCase : Union[str, Any] ="""hf-legacy""" # "hf://"" is reserved for hffs def __init__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Optional[int]: super().__init__(self , **lowerCAmelCase__ ) a : Any = repo_info a : str = token a : Any = None def __a ( self ) -> str: if self.dir_cache is None: a : Union[str, Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes a : Optional[int] = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(lowerCAmelCase__ ): {"name": str(lowerCAmelCase__ ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = "rb" , **lowerCAmelCase__ , ) -> Tuple: if not isinstance(self.repo_info , lowerCAmelCase__ ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) a : Union[str, Any] = hf_hub_url(self.repo_info.id , lowerCAmelCase__ , revision=self.repo_info.sha ) return fsspec.open( lowerCAmelCase__ , mode=lowerCAmelCase__ , headers=get_authentication_headers_for_url(lowerCAmelCase__ , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def __a ( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: self._get_dirs() a : Dict = self._strip_protocol(lowerCAmelCase__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> List[Any]: self._get_dirs() a : Union[str, Any] = PurePosixPath(path.strip("/" ) ) a : Optional[Any] = {} for p, f in self.dir_cache.items(): a : Union[str, Any] = PurePosixPath(p.strip("/" ) ) a : Tuple = p.parent if root == path: a : Optional[Any] = f a : int = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
105
'''simple docstring''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): def count_of_possible_combinations(snake_case__ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): def count_of_possible_combinations_with_dp_array( snake_case__ , snake_case__ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __UpperCamelCase : Any = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __UpperCamelCase : List[str] = answer return answer __UpperCamelCase : Optional[int] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Optional[int] = [0] * (target + 1) __UpperCamelCase : Tuple = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = 3 _lowerCAmelCase = 5 _lowerCAmelCase = [1, 2, 5] print(combination_sum_iv(n, array, target))
298
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = AltDiffusionPipeline __snake_case = TEXT_TO_IMAGE_PARAMS __snake_case = TEXT_TO_IMAGE_BATCH_PARAMS __snake_case = TEXT_TO_IMAGE_IMAGE_PARAMS __snake_case = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) A__ : List[Any] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A__ : Union[str, Any] =DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) torch.manual_seed(0 ) A__ : Dict =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) A__ : Optional[int] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_02 , ) A__ : Tuple =CLIPTextModel(lowerCAmelCase_ ) A__ : Dict =XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) A__ : List[str] =77 A__ : Tuple ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int]=0 ) -> Optional[int]: '''simple docstring''' if str(lowerCAmelCase_ ).startswith("""mps""" ): A__ : Optional[Any] =torch.manual_seed(lowerCAmelCase_ ) else: A__ : Any =torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) A__ : int ={ """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : str ) -> str: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' A__ : str ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Union[str, Any] =self.get_dummy_components() torch.manual_seed(0 ) A__ : Any =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder A__ : int =RobertaSeriesModelWithTransformation(lowerCAmelCase_ ) A__ : int =text_encoder A__ : Dict =AltDiffusionPipeline(**lowerCAmelCase_ ) A__ : Dict =alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : List[str] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Dict ="""A photo of an astronaut""" A__ : Dict =alt_pipe(**lowerCAmelCase_ ) A__ : List[Any] =output.images A__ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ : Union[str, Any] =np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' A__ : int ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Any =self.get_dummy_components() A__ : str =PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) A__ : Any =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder A__ : List[Any] =RobertaSeriesModelWithTransformation(lowerCAmelCase_ ) A__ : List[Any] =text_encoder A__ : int =AltDiffusionPipeline(**lowerCAmelCase_ ) A__ : Union[str, Any] =alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Dict =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : List[Any] =alt_pipe(**lowerCAmelCase_ ) A__ : Dict =output.images A__ : str =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ : Optional[int] =np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' # make sure here that pndm scheduler skips prk A__ : List[str] =AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=lowerCAmelCase_ ) A__ : List[str] =alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Union[str, Any] ="""A painting of a squirrel eating a burger""" A__ : Optional[int] =torch.manual_seed(0 ) A__ : Optional[Any] =alt_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) A__ : Tuple =output.images A__ : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : Tuple =np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' A__ : Any =DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) A__ : List[str] =AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) A__ : int =alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Optional[int] ="""A painting of a squirrel eating a burger""" A__ : List[Any] =torch.manual_seed(0 ) A__ : List[Any] =alt_pipe([prompt] , generator=lowerCAmelCase_ , num_inference_steps=2 , output_type="""numpy""" ) A__ : List[Any] =output.images A__ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : List[str] =np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
136
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) __snake_case : Optional[Any] = None __snake_case : Optional[Any] = { '7B': 1_1008, '13B': 1_3824, '30B': 1_7920, '65B': 2_2016, '70B': 2_8672, } __snake_case : Union[str, Any] = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : str=1, __snake_case : Tuple=256 ) -> str: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def __lowerCamelCase ( __snake_case : Tuple ) -> Tuple: """simple docstring""" with open(__snake_case, """r""" ) as f: return json.load(__snake_case ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Tuple ) -> Dict: """simple docstring""" with open(__snake_case, """w""" ) as f: json.dump(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Any, __snake_case : Any, __snake_case : Tuple=True ) -> Any: """simple docstring""" os.makedirs(__snake_case, exist_ok=__snake_case ) A__ : List[Any] =os.path.join(__snake_case, """tmp""" ) os.makedirs(__snake_case, exist_ok=__snake_case ) A__ : Dict =read_json(os.path.join(__snake_case, """params.json""" ) ) A__ : Dict =NUM_SHARDS[model_size] A__ : List[str] =params["""n_layers"""] A__ : int =params["""n_heads"""] A__ : str =n_heads // num_shards A__ : Tuple =params["""dim"""] A__ : Union[str, Any] =dim // n_heads A__ : str =1_00_00.0 A__ : Any =1.0 / (base ** (torch.arange(0, __snake_case, 2 ).float() / dims_per_head)) if "n_kv_heads" in params: A__ : Optional[Any] =params["""n_kv_heads"""] # for GQA / MQA A__ : int =n_heads_per_shard // num_key_value_heads A__ : int =dim // num_key_value_heads else: # compatibility with other checkpoints A__ : List[Any] =n_heads A__ : List[str] =n_heads_per_shard A__ : Dict =dim # permute for sliced rotary def permute(__snake_case : Tuple, __snake_case : Optional[int]=n_heads, __snake_case : int=dim, __snake_case : Optional[Any]=dim ): return w.view(__snake_case, dima // n_heads // 2, 2, __snake_case ).transpose(1, 2 ).reshape(__snake_case, __snake_case ) print(f"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) A__ : List[str] =torch.load(os.path.join(__snake_case, """consolidated.00.pth""" ), map_location="""cpu""" ) else: # Sharded A__ : Optional[Any] =[ torch.load(os.path.join(__snake_case, f"consolidated.{i:02d}.pth" ), map_location="""cpu""" ) for i in range(__snake_case ) ] A__ : Optional[Any] =0 A__ : str ={"""weight_map""": {}} for layer_i in range(__snake_case ): A__ : Dict =f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded A__ : Dict ={ f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wq.weight"] ), f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wk.weight"] ), f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. A__ : Any ={ f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ].clone(), f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ f"layers.{layer_i}.ffn_norm.weight" ].clone(), } A__ : Optional[Any] =permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(__snake_case, __snake_case, __snake_case ) for i in range(__snake_case ) ], dim=0, ).reshape(__snake_case, __snake_case ) ) A__ : int =permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( __snake_case, __snake_case, __snake_case ) for i in range(__snake_case ) ], dim=0, ).reshape(__snake_case, __snake_case ), __snake_case, __snake_case, __snake_case, ) A__ : int =torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view( __snake_case, __snake_case, __snake_case ) for i in range(__snake_case ) ], dim=0, ).reshape(__snake_case, __snake_case ) A__ : List[str] =torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(__snake_case )], dim=1 ) A__ : Optional[int] =torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(__snake_case )], dim=0 ) A__ : str =torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(__snake_case )], dim=1 ) A__ : List[str] =torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(__snake_case )], dim=0 ) A__ : List[Any] =inv_freq for k, v in state_dict.items(): A__ : Optional[Any] =filename param_count += v.numel() torch.save(__snake_case, os.path.join(__snake_case, __snake_case ) ) A__ : Tuple =f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded A__ : Tuple ={ """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: A__ : Any ={ """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__snake_case )], dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__snake_case )], dim=0 ), } for k, v in state_dict.items(): A__ : int =filename param_count += v.numel() torch.save(__snake_case, os.path.join(__snake_case, __snake_case ) ) # Write configs A__ : Union[str, Any] ={"""total_size""": param_count * 2} write_json(__snake_case, os.path.join(__snake_case, """pytorch_model.bin.index.json""" ) ) A__ : Optional[Any] =params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 A__ : List[Any] =params["""multiple_of"""] if """multiple_of""" in params else 256 A__ : int =LlamaConfig( hidden_size=__snake_case, intermediate_size=compute_intermediate_size(__snake_case, __snake_case, __snake_case ), num_attention_heads=params["""n_heads"""], num_hidden_layers=params["""n_layers"""], rms_norm_eps=params["""norm_eps"""], num_key_value_heads=__snake_case, ) config.save_pretrained(__snake_case ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) A__ : List[Any] =LlamaForCausalLM.from_pretrained(__snake_case, torch_dtype=torch.floataa, low_cpu_mem_usage=__snake_case ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__snake_case, safe_serialization=__snake_case ) shutil.rmtree(__snake_case ) def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Dict ) -> Tuple: """simple docstring""" A__ : List[Any] =LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) A__ : List[str] =tokenizer_class(__snake_case ) tokenizer.save_pretrained(__snake_case ) def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =argparse.ArgumentParser() parser.add_argument( """--input_dir""", help="""Location of LLaMA weights, which contains tokenizer.model and model folders""", ) parser.add_argument( """--model_size""", choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""], ) parser.add_argument( """--output_dir""", help="""Location to write HF model and tokenizer""", ) parser.add_argument("""--safe_serialization""", type=__snake_case, help="""Whether or not to save using `safetensors`.""" ) A__ : Any =parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir, input_base_path=os.path.join(args.input_dir, args.model_size ), model_size=args.model_size, safe_serialization=args.safe_serialization, ) A__ : List[Any] =os.path.join(args.input_dir, """tokenizer.model""" ) write_tokenizer(args.output_dir, __snake_case ) if __name__ == "__main__": main()
136
1
from __future__ import annotations def snake_case_ ( snake_case , snake_case = None , snake_case = None ) -> None: if start is None: lowercase__: str = 0 if end is None: lowercase__: Union[str, Any] = len(snake_case ) - 1 if start >= end: return lowercase__: Optional[Any] = (start + end) // 2 slowsort(snake_case , snake_case , snake_case ) slowsort(snake_case , mid + 1 , snake_case ) if sequence[end] < sequence[mid]: lowercase__ , lowercase__: Optional[Any] = sequence[mid], sequence[end] slowsort(snake_case , snake_case , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
196
def snake_case_ ( snake_case ) -> int: if n == 1 or not isinstance(snake_case , snake_case ): return 0 elif n == 2: return 1 else: lowercase__: Optional[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def snake_case_ ( snake_case ) -> int: lowercase__: int = 0 lowercase__: int = 2 while digits < n: index += 1 lowercase__: Tuple = len(str(fibonacci(snake_case ) ) ) return index def snake_case_ ( snake_case = 10_00 ) -> int: return fibonacci_digits_index(snake_case ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
196
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __UpperCAmelCase = pytest.mark.integration __UpperCAmelCase = {'''comet'''} __UpperCAmelCase = importlib.util.find_spec('''fairseq''') is not None __UpperCAmelCase = {'''code_eval'''} __UpperCAmelCase = os.name == '''nt''' __UpperCAmelCase = {'''bertscore''', '''frugalscore''', '''perplexity'''} __UpperCAmelCase = importlib.util.find_spec('''transformers''') is not None def __lowerCamelCase ( __magic_name__ : str ): @wraps(__magic_name__ ) def wrapper(self : List[Any] , __magic_name__ : Optional[Any] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , __magic_name__ ) return wrapper def __lowerCamelCase ( __magic_name__ : str ): @wraps(__magic_name__ ) def wrapper(self : Tuple , __magic_name__ : List[str] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , __magic_name__ ) return wrapper def __lowerCamelCase ( __magic_name__ : Dict ): @wraps(__magic_name__ ) def wrapper(self : str , __magic_name__ : Tuple ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , __magic_name__ ) return wrapper def __lowerCamelCase ( ): a__: Dict =[metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _a , _a , _a ) @local class lowerCamelCase__ ( parameterized.TestCase ): _lowerCAmelCase = {} _lowerCAmelCase = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def _lowerCamelCase ( self : List[str] , _a : Optional[int] ): a__: Optional[Any] ="[...]" a__: Optional[int] =importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , _a ) ).module_path ) a__: Union[str, Any] =datasets.load.import_main_class(metric_module.__name__ , dataset=_a ) # check parameters a__: Dict =inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_a , metric_module.__name__ ): with self.use_local_metrics(): try: a__: Optional[int] =doctest.testmod(_a , verbose=_a , raise_on_error=_a ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def _lowerCamelCase ( self : Optional[int] , _a : Union[str, Any] ): a__: Dict ="[...]" a__: str =importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , _a ) ).module_path ) # run doctest with self.use_local_metrics(): a__: int =doctest.testmod(_a , verbose=_a , raise_on_error=_a ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def _lowerCamelCase ( self : List[Any] , _a : Tuple , _a : str ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_a ): yield else: yield @contextmanager def _lowerCamelCase ( self : Optional[int] ): def load_local_metric(_a : Optional[int] , *_a : List[Any] , **_a : int ): return load_metric(os.path.join("metrics" , _a ) , *_a , **_a ) with patch("datasets.load_metric" ) as mock_load_metric: a__: str =load_local_metric yield @classmethod def _lowerCamelCase ( cls : Tuple , _a : int ): def wrapper(_a : Optional[Any] ): a__: Union[str, Any] =contextmanager(_a ) a__: Dict =patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def __lowerCamelCase ( __magic_name__ : str ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class lowerCamelCase__ ( _a ): def _lowerCamelCase ( self : List[Any] , _a : int ): assert len(input_dict["input_ids"] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: a__: int =MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def __lowerCamelCase ( __magic_name__ : Optional[int] ): import torch def bert_cos_score_idf(__magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , *__magic_name__ : Optional[int] , **__magic_name__ : Optional[Any] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__magic_name__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: a__: List[str] =bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def __lowerCamelCase ( __magic_name__ : Any ): def load_from_checkpoint(__magic_name__ : Optional[Any] ): class lowerCamelCase__ : def _lowerCamelCase ( self : str , _a : int , *_a : List[Any] , **_a : Optional[Any] ): assert len(_a ) == 2 a__: Optional[Any] =[0.1_9, 0.9_2] return scores, sum(_a ) / len(_a ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: a__: Union[str, Any] =None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: a__: Any =load_from_checkpoint yield def __lowerCamelCase ( ): a__: Any =load_metric(os.path.join("metrics" , "seqeval" ) ) a__: List[str] ="ERROR" a__: List[str] =F"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(__magic_name__ , match=re.escape(__magic_name__ ) ): metric.compute(predictions=[] , references=[] , scheme=__magic_name__ )
42
from __future__ import annotations def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : str ): # noqa: E741 while r - l > 1: a__: Any =(l + r) // 2 if v[m] >= key: a__: Any =m else: a__: Optional[int] =m # noqa: E741 return r def __lowerCamelCase ( __magic_name__ : list[int] ): if len(__magic_name__ ) == 0: return 0 a__: Tuple =[0] * len(__magic_name__ ) a__: Optional[int] =1 a__: Optional[Any] =v[0] for i in range(1 , len(__magic_name__ ) ): if v[i] < tail[0]: a__: Union[str, Any] =v[i] elif v[i] > tail[length - 1]: a__: Optional[int] =v[i] length += 1 else: a__: Dict =v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
42
1
import re def A_ ( a ): """simple docstring""" if len(re.findall('[ATCG]' , a ) ) != len(a ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
253
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : List[str] = logging.get_logger(__name__) class _A ( __magic_name__ , __magic_name__): SCREAMING_SNAKE_CASE : Dict = '''maskformer-swin''' SCREAMING_SNAKE_CASE : Dict = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=96 , _SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE=[3, 6, 12, 24] , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = image_size SCREAMING_SNAKE_CASE_ : List[str] = patch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : List[Any] = embed_dim SCREAMING_SNAKE_CASE_ : Dict = depths SCREAMING_SNAKE_CASE_ : Dict = len(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = num_heads SCREAMING_SNAKE_CASE_ : List[Any] = window_size SCREAMING_SNAKE_CASE_ : List[Any] = mlp_ratio SCREAMING_SNAKE_CASE_ : Tuple = qkv_bias SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = drop_path_rate SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Dict = use_absolute_embeddings SCREAMING_SNAKE_CASE_ : int = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ : str = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE ) - 1) ) SCREAMING_SNAKE_CASE_ : List[str] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(_SCREAMING_SNAKE_CASE ) + 1 )] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
253
1
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _snake_case = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: Optional[Any] , *__lowerCamelCase: Any , **__lowerCamelCase: str ) -> Optional[int]: super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) self.check_model_type(UpperCamelCase__ ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[Any]=None , __lowerCamelCase: int=None , __lowerCamelCase: Optional[Any]=None , **__lowerCamelCase: int ) -> Dict: __UpperCAmelCase : Any = {}, {} if padding is not None: __UpperCAmelCase : str = padding if truncation is not None: __UpperCAmelCase : Optional[int] = truncation if top_k is not None: __UpperCAmelCase : Any = top_k return preprocess_params, {}, postprocess_params def __call__( self: Union[str, Any] , __lowerCamelCase: Union["Image.Image", str] , __lowerCamelCase: str = None , **__lowerCamelCase: Dict ) -> Tuple: if isinstance(UpperCamelCase__ , (Image.Image, str) ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase : Any = {'''image''': image, '''question''': question} else: __UpperCAmelCase : Tuple = image __UpperCAmelCase : Union[str, Any] = super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) return results def _lowerCamelCase ( self: str , __lowerCamelCase: str , __lowerCamelCase: Optional[Any]=False , __lowerCamelCase: List[Any]=False ) -> List[str]: __UpperCAmelCase : Optional[int] = load_image(inputs["image"] ) __UpperCAmelCase : Tuple = self.tokenizer( inputs["question"] , return_tensors=self.framework , padding=UpperCamelCase__ , truncation=UpperCamelCase__ ) __UpperCAmelCase : Tuple = self.image_processor(images=UpperCamelCase__ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase__ ) return model_inputs def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[int] ) -> Tuple: __UpperCAmelCase : Any = self.model(**UpperCamelCase__ ) return model_outputs def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int]=5 ) -> Any: if top_k > self.model.config.num_labels: __UpperCAmelCase : List[str] = self.model.config.num_labels if self.framework == "pt": __UpperCAmelCase : Optional[Any] = model_outputs.logits.sigmoid()[0] __UpperCAmelCase : Union[str, Any] = probs.topk(UpperCamelCase__ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) __UpperCAmelCase : List[Any] = scores.tolist() __UpperCAmelCase : Optional[int] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase__ , UpperCamelCase__ )]
367
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
0
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowerCAmelCase__ ( a__: List[str] , a__: Any , a__: int=[] ) -> int: '''simple docstring''' _UpperCAmelCase = size[0] - overlap_pixels * 2 _UpperCAmelCase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _UpperCAmelCase = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_5_5 _UpperCAmelCase = np.pad(lowerCamelCase_ , mode='linear_ramp' , pad_width=lowerCamelCase_ , end_values=0 ) if "l" in remove_borders: _UpperCAmelCase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _UpperCAmelCase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _UpperCAmelCase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _UpperCAmelCase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowerCAmelCase__ ( a__: List[Any] , a__: Tuple , a__: Union[str, Any] ) -> Any: '''simple docstring''' return max(lowerCamelCase_ , min(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCAmelCase__ ( a__: [int] , a__: [int] , a__: [int] ) -> Optional[int]: '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowerCAmelCase__ ( a__: [int] , a__: int , a__: [int] ) -> List[str]: '''simple docstring''' _UpperCAmelCase = list(lowerCamelCase_ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _UpperCAmelCase = clamp_rect(lowerCamelCase_ , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowerCAmelCase__ ( a__: List[Any] , a__: Dict , a__: Optional[int] , a__: str ) -> int: '''simple docstring''' _UpperCAmelCase = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(lowerCamelCase_ , (original_slice, 0) ) return result def lowerCAmelCase__ ( a__: Union[str, Any] , a__: Dict ) -> Any: '''simple docstring''' _UpperCAmelCase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) _UpperCAmelCase = tile.crop(lowerCamelCase_ ) return tile def lowerCAmelCase__ ( a__: Union[str, Any] , a__: Tuple ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = n % d return n - divisor class __a ( lowerCamelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 350 , ) -> List[str]: """simple docstring""" super().__init__( vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , max_noise_level=__lowerCamelCase , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) _UpperCAmelCase = add_overlap_rect(__lowerCamelCase , __lowerCamelCase , image.size ) _UpperCAmelCase = image.crop(__lowerCamelCase ) _UpperCAmelCase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _UpperCAmelCase = translated_slice_x - (original_image_slice / 2) _UpperCAmelCase = max(0 , __lowerCamelCase ) _UpperCAmelCase = squeeze_tile(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase = to_input.size _UpperCAmelCase = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) _UpperCAmelCase = super(__lowerCamelCase , self ).__call__(image=__lowerCamelCase , **__lowerCamelCase ).images[0] _UpperCAmelCase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) _UpperCAmelCase = unsqueeze_tile(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) _UpperCAmelCase = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) _UpperCAmelCase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__lowerCamelCase ) , mode='L' , ) final_image.paste( __lowerCamelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __lowerCamelCase ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 75 , _SCREAMING_SNAKE_CASE = 9.0 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 32 , ) -> List[str]: """simple docstring""" _UpperCAmelCase = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) _UpperCAmelCase = math.ceil(image.size[0] / tile_size ) _UpperCAmelCase = math.ceil(image.size[1] / tile_size ) _UpperCAmelCase = tcx * tcy _UpperCAmelCase = 0 for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): self._process_tile( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prompt=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , noise_level=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def lowerCAmelCase__ ( ) -> str: '''simple docstring''' _UpperCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler''' _UpperCAmelCase = StableDiffusionTiledUpscalePipeline.from_pretrained(lowerCamelCase_ , revision='fp16' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to('cuda' ) _UpperCAmelCase = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(a__: Union[str, Any] ): print(F'''progress: {obj["progress"]:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) _UpperCAmelCase = pipe(image=lowerCamelCase_ , prompt='Black font, white background, vector' , noise_level=4_0 , callback=lowerCamelCase_ ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
329
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""Speech2TextFeatureExtractor""" snake_case_ ="""Speech2TextTokenizer""" def __init__(self ,__lowerCamelCase ,__lowerCamelCase ) -> str: """simple docstring""" super().__init__(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : int = self.feature_extractor lowerCAmelCase__ : List[str] = False def __call__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Dict: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase ,**__lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowerCAmelCase__ : Optional[Any] = kwargs.pop('''raw_speech''' ) else: lowerCAmelCase__ : str = kwargs.pop('''audio''' ,__lowerCamelCase ) lowerCAmelCase__ : List[str] = kwargs.pop('''sampling_rate''' ,__lowerCamelCase ) lowerCAmelCase__ : List[str] = kwargs.pop('''text''' ,__lowerCamelCase ) if len(__lowerCamelCase ) > 0: lowerCAmelCase__ : Union[str, Any] = args[0] lowerCAmelCase__ : str = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowerCAmelCase__ : str = self.feature_extractor(__lowerCamelCase ,*__lowerCamelCase ,sampling_rate=__lowerCamelCase ,**__lowerCamelCase ) if text is not None: lowerCAmelCase__ : Any = self.tokenizer(__lowerCamelCase ,**__lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase__ : str = encodings['''input_ids'''] return inputs def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__lowerCamelCase ,**__lowerCamelCase ) @contextmanager def lowerCAmelCase__ (self ) -> Any: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowerCAmelCase__ : int = True lowerCAmelCase__ : Union[str, Any] = self.tokenizer yield lowerCAmelCase__ : List[str] = self.feature_extractor lowerCAmelCase__ : Any = False
129
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'luke' def __init__( self : Dict ,__lowerCamelCase : Optional[Any]=5_02_67 ,__lowerCamelCase : str=50_00_00 ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : int=2_56 ,__lowerCamelCase : Optional[int]=12 ,__lowerCamelCase : Tuple=12 ,__lowerCamelCase : Any=30_72 ,__lowerCamelCase : Any="gelu" ,__lowerCamelCase : Any=0.1 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : Tuple=5_12 ,__lowerCamelCase : int=2 ,__lowerCamelCase : Optional[int]=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : Any=1 ,__lowerCamelCase : Dict=0 ,__lowerCamelCase : Any=2 ,**__lowerCamelCase : str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase ) a = vocab_size a = entity_vocab_size a = hidden_size a = entity_emb_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = use_entity_aware_attention a = classifier_dropout
368
from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str | Literal[False]: """simple docstring""" a = list(snake_case_ ) a = list(snake_case_ ) a = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 a = '''_''' if count > 1: return False else: return "".join(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[str]: """simple docstring""" a = [] while True: a = ['''$'''] * len(snake_case_ ) a = [] for i in range(len(snake_case_ ) ): for j in range(i + 1, len(snake_case_ ) ): a = compare_string(binary[i], binary[j] ) if k is False: a = '''*''' a = '''*''' temp.append('''X''' ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi a = list(set(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]: """simple docstring""" a = [] for minterm in minterms: a = '''''' for _ in range(snake_case_ ): a = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> bool: """simple docstring""" a = list(snake_case_ ) a = list(snake_case_ ) a = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]: """simple docstring""" a = [] a = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): a = 0 a = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 a = j if count == 1: a = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): a = 0 temp.append(prime_implicants[i] ) while True: a = 0 a = -1 a = 0 for i in range(len(snake_case_ ) ): a = chart[i].count(1 ) if count_n > max_n: a = count_n a = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): a = 0 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[list[int]]: """simple docstring""" a = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): a = prime_implicants[i].count('''_''' ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i], binary[j], snake_case_ ): a = 1 return chart def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" a = int(input('''Enter the no. of variables\n''' ) ) a = [ float(snake_case_ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] a = decimal_to_binary(snake_case_, snake_case_ ) a = check(snake_case_ ) print('''Prime Implicants are:''' ) print(snake_case_ ) a = prime_implicant_chart(snake_case_, snake_case_ ) a = selection(snake_case_, snake_case_ ) print('''Essential Prime Implicants are:''' ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
330
0
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Any = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( _A , unittest.TestCase ): '''simple docstring''' a__ = GPTSwaTokenizer a__ = False a__ = True a__ = False def _lowercase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __magic_name__ = GPTSwaTokenizer(UpperCamelCase__ , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : int , UpperCamelCase__ : List[str] ) -> Dict: """simple docstring""" __magic_name__ = """This is a test""" __magic_name__ = """This is a test""" return input_text, output_text def _lowercase ( self : Optional[int] ) -> Tuple: """simple docstring""" __magic_name__ = """<s>""" __magic_name__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def _lowercase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __magic_name__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(UpperCamelCase__ ) , 2000 ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def _lowercase ( self : Any ) -> str: """simple docstring""" __magic_name__ = GPTSwaTokenizer(UpperCamelCase__ ) __magic_name__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [465, 287, 265, 631, 842] ) __magic_name__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( UpperCamelCase__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on __magic_name__ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) __magic_name__ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) # fmt: off self.assertListEqual( UpperCamelCase__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" __magic_name__ = GPTSwaTokenizer(UpperCamelCase__ ) __magic_name__ = ["""This is a test""", """I was born in 92000, and this is falsé."""] __magic_name__ = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertListEqual(tokenizer.encode_fast(UpperCamelCase__ ) , UpperCamelCase__ ) # Test that decode_fast returns the input text for text, token_ids in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(tokenizer.decode_fast(UpperCamelCase__ ) , UpperCamelCase__ ) @slow def _lowercase ( self : Dict ) -> Optional[Any]: """simple docstring""" __magic_name__ = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off __magic_name__ = {"""input_ids""": [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=UpperCamelCase__ , )
88
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) SCREAMING_SNAKE_CASE__:Any = logging.getLogger(__name__) def _lowerCamelCase( a ): __a = git.Repo(search_parent_directories=a ) __a = { "repo_id": str(a ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(a , "git_log.json" ) , "w" ) as f: json.dump(a , a , indent=4 ) def _lowerCamelCase( a ): if params.n_gpu <= 0: __a = 0 __a = -1 __a = True __a = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __a = int(os.environ["WORLD_SIZE"] ) __a = int(os.environ["N_GPU_NODE"] ) __a = int(os.environ["RANK"] ) # number of nodes / node ID __a = params.world_size // params.n_gpu_per_node __a = params.global_rank // params.n_gpu_per_node __a = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __a = 1 __a = 0 __a = 0 __a = 0 __a = 1 __a = 1 __a = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __a = params.node_id == 0 and params.local_rank == 0 __a = params.n_nodes > 1 # summary __a = F"--- Global rank: {params.global_rank} - " logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def _lowerCamelCase( a ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
261
0
from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCamelCase__( )->List[str]: A__ = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=_lowercase ) A__ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=_lowercase ) env_command_parser(subparsers=_lowercase ) launch_command_parser(subparsers=_lowercase ) tpu_command_parser(subparsers=_lowercase ) test_command_parser(subparsers=_lowercase ) # Let's go A__ = parser.parse_args() if not hasattr(_lowercase , '''func''' ): parser.print_help() exit(1 ) # Run args.func(_lowercase ) if __name__ == "__main__": main()
362
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) __SCREAMING_SNAKE_CASE = '''CIDAS/clipseg-rd64-refined''' __SCREAMING_SNAKE_CASE = '''image_segmenter''' __SCREAMING_SNAKE_CASE = CLIPSegForImageSegmentation __SCREAMING_SNAKE_CASE = ['''image''', '''text'''] __SCREAMING_SNAKE_CASE = ['''image'''] def __init__( self,*__lowerCamelCase,**__lowerCamelCase ): requires_backends(self,['''vision'''] ) super().__init__(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): return self.pre_processor(text=[label],images=[image],padding=__lowerCamelCase,return_tensors='''pt''' ) def UpperCamelCase ( self,__lowerCamelCase ): with torch.no_grad(): A__ = self.model(**__lowerCamelCase ).logits return logits def UpperCamelCase ( self,__lowerCamelCase ): A__ = outputs.cpu().detach().numpy() A__ = 0 A__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
39
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase: Tuple = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Dict = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] _lowercase: List[str] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] _lowercase: Union[str, Any] = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): _lowercase: Optional[int] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _lowercase: List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
227
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] lowercase__ = [] lowercase__ = [] for rt in rc.restypes: lowercase__ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowercase__ = {name: i for i, name in enumerate(lowerCamelCase_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) lowercase__ = torch.tensor( lowerCamelCase_ , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase__ = torch.tensor( lowerCamelCase_ , dtype=torch.intaa , device=protein['''aatype'''].device , ) lowercase__ = torch.tensor( lowerCamelCase_ , dtype=torch.floataa , device=protein['''aatype'''].device , ) lowercase__ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowercase__ = restype_atomaa_to_atomaa[protein_aatype] lowercase__ = restype_atomaa_mask[protein_aatype] lowercase__ = residx_atomaa_mask lowercase__ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowercase__ = restype_atomaa_to_atomaa[protein_aatype] lowercase__ = residx_atomaa_to_atomaa.long() # create the corresponding mask lowercase__ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): lowercase__ = rc.restype_atoa[restype_letter] lowercase__ = rc.residue_atoms[restype_name] for atom_name in atom_names: lowercase__ = rc.atom_order[atom_name] lowercase__ = 1 lowercase__ = restype_atomaa_mask[protein_aatype] lowercase__ = residx_atomaa_mask return protein def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = tree_map(lambda lowerCamelCase_ : torch.tensor(lowerCamelCase_ , device=batch['''aatype'''].device ) , lowerCamelCase_ , np.ndarray ) lowercase__ = tensor_tree_map(lambda lowerCamelCase_ : np.array(lowerCamelCase_ ) , make_atomaa_masks(lowerCamelCase_ ) ) return out
207
0
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" try: with open(A__ , 'rb' ) as flax_state_f: UpperCamelCase = from_bytes(A__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(A__ ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(A__ , A__ ) def __lowerCamelCase ( A__ , A__ ) -> int: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights UpperCamelCase = flatten_dict(jax.tree_util.tree_map(lambda A__ : x.dtype == jnp.bfloataa , A__ ) ).values() if any(A__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) UpperCamelCase = jax.tree_util.tree_map( lambda A__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , A__ ) UpperCamelCase = '' UpperCamelCase = flatten_dict(A__ , sep='.' ) UpperCamelCase = pt_model.state_dict() # keep track of unexpected & missing keys UpperCamelCase = [] UpperCamelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: UpperCamelCase = flax_key_tuple_array[:-1] + ['weight'] UpperCamelCase = jnp.transpose(A__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": UpperCamelCase = flax_key_tuple_array[:-1] + ['weight'] UpperCamelCase = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": UpperCamelCase = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(A__ ): UpperCamelCase = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) UpperCamelCase = '.'.join(A__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict UpperCamelCase = np.asarray(A__ ) if not isinstance(A__ , np.ndarray ) else flax_tensor UpperCamelCase = torch.from_numpy(A__ ) # remove from missing keys missing_keys.remove(A__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(A__ ) pt_model.load_state_dict(A__ ) # re-transform missing_keys to list UpperCamelCase = list(A__ ) if len(A__ ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(A__ ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ' use it for predictions and inference.' ) return pt_model
249
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase__ : int , **UpperCamelCase__ : List[str] ): """simple docstring""" warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
249
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _snake_case ( A__ , A__ , A__ , unittest.TestCase ): _lowercase : int = StableUnCLIPImgaImgPipeline _lowercase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowercase : Union[str, Any] = frozenset([] ) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = 32 SCREAMING_SNAKE_CASE = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE = CLIPImageProcessor(crop_size=32 , size=32) torch.manual_seed(0) SCREAMING_SNAKE_CASE = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=a , projection_dim=a , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , )) # regular denoising components torch.manual_seed(0) SCREAMING_SNAKE_CASE = StableUnCLIPImageNormalizer(embedding_dim=a) SCREAMING_SNAKE_CASE = DDPMScheduler(beta_schedule='squaredcos_cap_v2') torch.manual_seed(0) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') torch.manual_seed(0) SCREAMING_SNAKE_CASE = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )) torch.manual_seed(0) SCREAMING_SNAKE_CASE = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a , layers_per_block=1 , upcast_attention=a , use_linear_projection=a , ) torch.manual_seed(0) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='v_prediction' , set_alpha_to_one=a , steps_offset=1 , ) torch.manual_seed(0) SCREAMING_SNAKE_CASE = AutoencoderKL() SCREAMING_SNAKE_CASE = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def SCREAMING_SNAKE_CASE__ ( self , a , a=0 , a=True) -> Tuple: if str(a).startswith('mps'): SCREAMING_SNAKE_CASE = torch.manual_seed(a) else: SCREAMING_SNAKE_CASE = torch.Generator(device=a).manual_seed(a) SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(a)).to(a) if pil_image: SCREAMING_SNAKE_CASE = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = input_image.clamp(0 , 1) SCREAMING_SNAKE_CASE = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() SCREAMING_SNAKE_CASE = DiffusionPipeline.numpy_to_pil(a)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = StableUnCLIPImgaImgPipeline(**a) SCREAMING_SNAKE_CASE = sd_pipe.to(a) sd_pipe.set_progress_bar_config(disable=a) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(a) inputs.update({'image_embeds': None}) SCREAMING_SNAKE_CASE = sd_pipe(**a).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=a) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=a) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=a) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy') SCREAMING_SNAKE_CASE = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa) pipe.to(a) pipe.set_progress_bar_config(disable=a) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE = torch.Generator(device='cpu').manual_seed(0) SCREAMING_SNAKE_CASE = pipe(a , 'anime turle' , generator=a , output_type='np') SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a , a) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy') SCREAMING_SNAKE_CASE = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa) pipe.to(a) pipe.set_progress_bar_config(disable=a) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE = torch.Generator(device='cpu').manual_seed(0) SCREAMING_SNAKE_CASE = pipe(a , 'anime turle' , generator=a , output_type='np') SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a , a) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa) SCREAMING_SNAKE_CASE = pipe.to(a) pipe.set_progress_bar_config(disable=a) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE = pipe( a , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
137
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ : List[Any] = logging.get_logger(__name__) a_ : str = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _snake_case ( A__ ): _lowercase : Any = '''deberta-v2''' def __init__( self , a=12_8100 , a=1536 , a=24 , a=24 , a=6144 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=0 , a=0.02 , a=1E-7 , a=False , a=-1 , a=0 , a=True , a=None , a=0 , a="gelu" , **a , ) -> List[Any]: super().__init__(**a) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = relative_attention SCREAMING_SNAKE_CASE = max_relative_positions SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = position_biased_input # Backwards compatibility if type(a) == str: SCREAMING_SNAKE_CASE = [x.strip() for x in pos_att_type.lower().split('|')] SCREAMING_SNAKE_CASE = pos_att_type SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = kwargs.get('pooler_hidden_size' , a) SCREAMING_SNAKE_CASE = pooler_dropout SCREAMING_SNAKE_CASE = pooler_hidden_act class _snake_case ( A__ ): @property def SCREAMING_SNAKE_CASE__ ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)]) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)]) @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , a , a = -1 , a = -1 , a = -1 , a = False , a = None , a = 3 , a = 40 , a = 40 , a = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE = super().generate_dummy_inputs(preprocessor=a , framework=a) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
137
1
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _a ( _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') __UpperCAmelCase : Union[str, Any] = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(UpperCAmelCase__ ): os.makedirs(UpperCAmelCase__ ) __UpperCAmelCase : List[Any] = model.state_dict() def to_tf_var_name(_lowercase : Union[str, Any] ): for patt, repl in iter(UpperCAmelCase__ ): __UpperCAmelCase : Any = name.replace(UpperCAmelCase__ , UpperCAmelCase__ ) return F'bert/{name}' def create_tf_var(_lowercase : int , _lowercase : Tuple , _lowercase : Optional[Any] ): __UpperCAmelCase : List[Any] = tf.dtypes.as_dtype(tensor.dtype ) __UpperCAmelCase : Tuple = tf.get_variable(dtype=UpperCAmelCase__ , shape=tensor.shape , name=UpperCAmelCase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCAmelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __UpperCAmelCase : Union[str, Any] = to_tf_var_name(UpperCAmelCase__ ) __UpperCAmelCase : Dict = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __UpperCAmelCase : Optional[Any] = torch_tensor.T __UpperCAmelCase : List[str] = create_tf_var(tensor=UpperCAmelCase__ , name=UpperCAmelCase__ , session=UpperCAmelCase__ ) tf.keras.backend.set_value(UpperCAmelCase__ , UpperCAmelCase__ ) __UpperCAmelCase : List[str] = session.run(UpperCAmelCase__ ) print(F'Successfully created {tf_name}: {np.allclose(UpperCAmelCase__ , UpperCAmelCase__ )}' ) __UpperCAmelCase : Any = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def _a ( _lowercase : int=None ): '''simple docstring''' __UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , required=UpperCAmelCase__ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='''Directory in which to save tensorflow model''' ) __UpperCAmelCase : Any = parser.parse_args(UpperCAmelCase__ ) __UpperCAmelCase : Dict = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCAmelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
363
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a : """simple docstring""" def __init__( self : Any , snake_case : Any , snake_case : Optional[int]=13 , snake_case : List[str]=7 , snake_case : List[str]=True , snake_case : List[Any]=True , snake_case : int=True , snake_case : Tuple=True , snake_case : int=99 , snake_case : Any=16 , snake_case : Dict=36 , snake_case : Any=6 , snake_case : Dict=6 , snake_case : Dict=6 , snake_case : int=37 , snake_case : int="gelu" , snake_case : str=0.1 , snake_case : Any=0.1 , snake_case : Dict=512 , snake_case : List[Any]=16 , snake_case : Any=2 , snake_case : Any=0.02 , snake_case : Optional[int]=3 , snake_case : List[Any]=4 , snake_case : List[str]=None , ) -> Union[str, Any]: __UpperCAmelCase : str = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : int = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : List[str] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Optional[int] = embedding_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : List[Any] = num_hidden_groups __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : Dict = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : Union[str, Any] = scope def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : int = None if self.use_input_mask: __UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Dict = None if self.use_token_type_ids: __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : int = None __UpperCAmelCase : List[str] = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCamelCase__ ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : int ) -> Optional[int]: __UpperCAmelCase : List[Any] = AlbertModel(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Tuple = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) __UpperCAmelCase : List[str] = model(snake_case , token_type_ids=snake_case ) __UpperCAmelCase : str = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self : List[str] , snake_case : str , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Dict , snake_case : Optional[int] ) -> Optional[int]: __UpperCAmelCase : str = AlbertForPreTraining(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Union[str, Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , sentence_order_label=snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCamelCase__ ( self : Dict , snake_case : Union[str, Any] , snake_case : Dict , snake_case : Any , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Any , snake_case : Tuple ) -> Union[str, Any]: __UpperCAmelCase : Dict = AlbertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , snake_case : Tuple , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Tuple ) -> int: __UpperCAmelCase : Optional[Any] = AlbertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Optional[Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Tuple , snake_case : List[str] , snake_case : Dict , snake_case : Optional[int] , snake_case : Dict , snake_case : int , snake_case : Optional[int] , snake_case : Optional[Any] ) -> Any: __UpperCAmelCase : Optional[int] = self.num_labels __UpperCAmelCase : Any = AlbertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Tuple , snake_case : Tuple , snake_case : List[Any] , snake_case : Optional[int] , snake_case : str , snake_case : Dict , snake_case : Union[str, Any] , snake_case : List[str] ) -> int: __UpperCAmelCase : Optional[int] = self.num_labels __UpperCAmelCase : Optional[int] = AlbertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Tuple , snake_case : Tuple , snake_case : List[Any] , snake_case : Dict , snake_case : int , snake_case : List[Any] , snake_case : List[Any] , snake_case : Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[int] = self.num_choices __UpperCAmelCase : List[Any] = AlbertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( _a , _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Any = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Any = True def lowerCamelCase__ ( self : Optional[int] , snake_case : Any , snake_case : Dict , snake_case : Tuple=False ) -> Optional[Any]: __UpperCAmelCase : Any = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class in get_values(snake_case ): __UpperCAmelCase : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case ) __UpperCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def lowerCamelCase__ ( self : Dict ) -> int: __UpperCAmelCase : List[Any] = AlbertModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Any ) -> Any: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> str: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def lowerCamelCase__ ( self : List[str] ) -> Tuple: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def lowerCamelCase__ ( self : str ) -> Any: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Tuple = type self.model_tester.create_and_check_model(*snake_case ) @slow def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = AlbertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase : Optional[int] = AlbertModel.from_pretrained('''albert-base-v2''' ) __UpperCAmelCase : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCAmelCase : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(snake_case , attention_mask=snake_case )[0] __UpperCAmelCase : Any = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , snake_case ) __UpperCAmelCase : int = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case , atol=1E-4 ) )
240
0
def UpperCamelCase ( lowerCAmelCase__ = 100_0000 ): '''simple docstring''' lowercase = set(range(3 , lowerCAmelCase__ , 2 ) ) primes.add(2 ) for p in range(3 , lowerCAmelCase__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCAmelCase__ , lowerCAmelCase__ ) ) ) lowercase = [float(lowerCAmelCase__ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCAmelCase__ , limit + 1 , lowerCAmelCase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'{solution() = }')
101
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case_ = TypeVar('''T''') snake_case_ = TypeVar('''U''') class SCREAMING_SNAKE_CASE__ (Generic[T, U] ): def __init__( self , a , a): lowercase__ : List[Any] = key lowercase__ : List[Any] = val lowercase__ : DoubleLinkedListNode[T, U] | None = None lowercase__ : DoubleLinkedListNode[T, U] | None = None def __repr__( self): return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next)}, has prev: {bool(self.prev)}""" ) class SCREAMING_SNAKE_CASE__ (Generic[T, U] ): def __init__( self): lowercase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(a , a) lowercase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(a , a) lowercase__ , lowercase__ : Union[str, Any] = self.rear, self.head def __repr__( self): lowercase__ : Any = ['DoubleLinkedList'] lowercase__ : List[str] = self.head while node.next is not None: rep.append(str(a)) lowercase__ : Tuple = node.next rep.append(str(self.rear)) return ",\n ".join(a) def snake_case_ ( self , a): lowercase__ : Optional[Any] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowercase__ : Dict = node lowercase__ : int = previous lowercase__ : Union[str, Any] = node lowercase__ : Optional[int] = self.rear def snake_case_ ( self , a): if node.prev is None or node.next is None: return None lowercase__ : Union[str, Any] = node.next lowercase__ : Tuple = node.prev lowercase__ : Union[str, Any] = None lowercase__ : List[Any] = None return node class SCREAMING_SNAKE_CASE__ (Generic[T, U] ): __lowerCamelCase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , a): lowercase__ : DoubleLinkedList[T, U] = DoubleLinkedList() lowercase__ : Optional[Any] = capacity lowercase__ : Union[str, Any] = 0 lowercase__ : Tuple = 0 lowercase__ : int = 0 lowercase__ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self): return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self , a): return key in self.cache def snake_case_ ( self , a): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 lowercase__ : DoubleLinkedListNode[T, U] = self.cache[key] lowercase__ : str = self.list.remove(self.cache[key]) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(a) return node.val self.miss += 1 return None def snake_case_ ( self , a , a): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowercase__ : Optional[int] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(a) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowercase__ : Optional[Any] = DoubleLinkedListNode(a , a) self.list.add(self.cache[key]) self.num_keys += 1 else: # bump node to the end of the list, update value lowercase__ : Any = self.list.remove(self.cache[key]) assert node is not None # node guaranteed to be in list lowercase__ : Union[str, Any] = value self.list.add(a) @classmethod def snake_case_ ( cls , a = 128): def cache_decorator_inner(a) -> Callable[..., U]: def cache_decorator_wrapper(*a) -> U: if func not in cls.decorator_function_to_instance_map: lowercase__ : Dict = LRUCache(a) lowercase__ : str = cls.decorator_function_to_instance_map[func].get(args[0]) if result is None: lowercase__ : str = func(*a) cls.decorator_function_to_instance_map[func].put(args[0] , a) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(a , 'cache_info' , a) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
214
0
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> bool: '''simple docstring''' __UpperCamelCase : Dict = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
151
lowercase : Optional[int] = 9.8_0_6_6_5 def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float = g) -> float: '''simple docstring''' if fluid_density <= 0: raise ValueError("Impossible fluid density") if volume < 0: raise ValueError("Impossible Object volume") if gravity <= 0: raise ValueError("Impossible Gravity") return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
151
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
def _A ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): # Return True if there is node that has not iterated. UpperCamelCase :Tuple = [False] * len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Tuple = [] queue.append(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :int = True while queue: UpperCamelCase :Optional[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Union[str, Any] = True UpperCamelCase :Optional[int] = u return visited[t] def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ): # This array is filled by BFS and to store path UpperCamelCase :Optional[int] = [-1] * (len(SCREAMING_SNAKE_CASE__ )) UpperCamelCase :Optional[int] = 0 while bfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Dict = float('''Inf''' ) UpperCamelCase :str = sink while s != source: # Find the minimum value in select path UpperCamelCase :Optional[Any] = min(SCREAMING_SNAKE_CASE__ , graph[parent[s]][s] ) UpperCamelCase :Any = parent[s] max_flow += path_flow UpperCamelCase :Tuple = sink while v != source: UpperCamelCase :List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCamelCase :Any = parent[v] return max_flow __snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __snake_case , __snake_case = 0, 5 print(ford_fulkerson(graph, source, sink))
259
0
"""simple docstring""" from __future__ import annotations import time lowercase__ = list[tuple[int, int]] lowercase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowerCamelCase : '''simple docstring''' def __init__( self : Optional[int] , a_ : int , a_ : int , a_ : int , a_ : int , a_ : Node | None ): lowerCAmelCase_ : Optional[Any] = pos_x lowerCAmelCase_ : Any = pos_y lowerCAmelCase_ : List[Any] = (pos_y, pos_x) lowerCAmelCase_ : List[str] = goal_x lowerCAmelCase_ : Dict = goal_y lowerCAmelCase_ : List[Any] = parent class __lowerCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , a_ : tuple[int, int] , a_ : tuple[int, int] ): lowerCAmelCase_ : int = Node(start[1] , start[0] , goal[1] , goal[0] , a_ ) lowerCAmelCase_ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , a_ ) lowerCAmelCase_ : int = [self.start] lowerCAmelCase_ : List[str] = False def lowerCamelCase ( self : int ): while self.node_queue: lowerCAmelCase_ : Optional[int] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowerCAmelCase_ : List[Any] = True return self.retrace_path(a_ ) lowerCAmelCase_ : Any = self.get_successors(a_ ) for node in successors: self.node_queue.append(a_ ) if not self.reached: return [self.start.pos] return None def lowerCamelCase ( self : List[str] , a_ : Node ): lowerCAmelCase_ : Any = [] for action in delta: lowerCAmelCase_ : List[str] = parent.pos_x + action[1] lowerCAmelCase_ : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(a_ , a_ , self.target.pos_y , self.target.pos_x , a_ ) ) return successors def lowerCamelCase ( self : str , a_ : Node | None ): lowerCAmelCase_ : int = node lowerCAmelCase_ : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase_ : int = current_node.parent path.reverse() return path class __lowerCamelCase : '''simple docstring''' def __init__( self : List[Any] , a_ : List[str] , a_ : str ): lowerCAmelCase_ : Tuple = BreadthFirstSearch(a_ , a_ ) lowerCAmelCase_ : Optional[Any] = BreadthFirstSearch(a_ , a_ ) lowerCAmelCase_ : Dict = False def lowerCamelCase ( self : List[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCAmelCase_ : Tuple = self.fwd_bfs.node_queue.pop(0 ) lowerCAmelCase_ : int = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowerCAmelCase_ : List[Any] = True return self.retrace_bidirectional_path( a_ , a_ ) lowerCAmelCase_ : Tuple = current_bwd_node lowerCAmelCase_ : Tuple = current_fwd_node lowerCAmelCase_ : List[str] = { self.fwd_bfs: self.fwd_bfs.get_successors(a_ ), self.bwd_bfs: self.bwd_bfs.get_successors(a_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(a_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCamelCase ( self : Optional[Any] , a_ : Node , a_ : Node ): lowerCAmelCase_ : Dict = self.fwd_bfs.retrace_path(a_ ) lowerCAmelCase_ : List[str] = self.bwd_bfs.retrace_path(a_ ) bwd_path.pop() bwd_path.reverse() lowerCAmelCase_ : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowercase__ = (0, 0) lowercase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase__ = time.time() lowercase__ = BreadthFirstSearch(init, goal) lowercase__ = bfs.search() lowercase__ = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) lowercase__ = time.time() lowercase__ = BidirectionalBreadthFirstSearch(init, goal) lowercase__ = bd_bfs.search() lowercase__ = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
161
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase__ = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
161
1
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=64 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): _lowerCamelCase : List[Any] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Dict = is_training _lowerCamelCase : int = use_input_mask _lowerCamelCase : List[Any] = use_token_type_ids _lowerCamelCase : int = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : str = hidden_size _lowerCamelCase : Any = embedding_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : List[Any] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : List[Any] = type_sequence_label_size _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : str = num_labels _lowerCamelCase : int = num_choices _lowerCamelCase : Any = scope def A_ ( self ): _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : int = None if self.use_input_mask: _lowerCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[Any] = None if self.use_token_type_ids: _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : Dict = None _lowerCamelCase : Any = None _lowerCamelCase : Union[str, Any] = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = MobileBertModel(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[int] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) _lowerCamelCase : Union[str, Any] = model(lowercase , token_type_ids=lowercase ) _lowerCamelCase : List[str] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = MobileBertForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : List[Any] = MobileBertForNextSentencePrediction(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : List[str] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : str = MobileBertForPreTraining(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : int = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , next_sentence_label=lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Any = MobileBertForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : str = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = self.num_labels _lowerCamelCase : List[str] = MobileBertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : str = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Dict = self.num_labels _lowerCamelCase : Optional[int] = MobileBertForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : List[str] = self.num_choices _lowerCamelCase : Optional[int] = MobileBertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : Tuple = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self ): _lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : Union[str, Any] = config_and_inputs _lowerCamelCase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True def A_ ( self , lowercase , lowercase , lowercase=False ): _lowerCamelCase : Optional[int] = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class in get_values(lowercase ): _lowerCamelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase ) _lowerCamelCase : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def A_ ( self ): _lowerCamelCase : int = MobileBertModelTester(self ) _lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowercase ) def A_ ( self ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowercase ) def A_ ( self ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowercase ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowercase ) def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowercase ) def A_ ( self ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowercase ) def A_ ( self ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowercase ) def _snake_case ( lowercase__ ): return torch.tensor( lowercase__ , dtype=torch.long , device=lowercase__ , ) lowercase__ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Optional[int] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowercase ) _lowerCamelCase : Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): _lowerCamelCase : Any = model(lowercase )[0] _lowerCamelCase : Tuple = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[Any] = torch.tensor( [ [ [-2.473_6526E07, 8.269_1656E04, 1.652_1838E05], [-5.754_1704E-01, 3.905_6022E00, 4.401_1507E00], [2.604_7359E00, 1.567_7652E00, -1.732_4188E-01], ] ] , device=lowercase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE _lowerCamelCase : Any = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) _lowerCamelCase : str = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
96
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase : List[str] = logging.get_logger(__name__) class lowerCAmelCase__ ( a , a ): """simple docstring""" lowerCAmelCase__ = "maskformer-swin" lowerCAmelCase__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : str , __SCREAMING_SNAKE_CASE : Tuple=224 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=96 , __SCREAMING_SNAKE_CASE : Optional[Any]=[2, 2, 6, 2] , __SCREAMING_SNAKE_CASE : Any=[3, 6, 12, 24] , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : Dict=4.0 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=1E-5 , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Tuple: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embed_dim __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = num_heads __SCREAMING_SNAKE_CASE = window_size __SCREAMING_SNAKE_CASE = mlp_ratio __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = use_absolute_embeddings __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __SCREAMING_SNAKE_CASE = int(embed_dim * 2 ** (len(__SCREAMING_SNAKE_CASE ) - 1) ) __SCREAMING_SNAKE_CASE = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
267
0
import math def UpperCamelCase ( __lowercase : int = 1_00 ): '''simple docstring''' A_ : List[Any] = sum(i * i for i in range(1 ,n + 1 ) ) A_ : int = int(math.pow(sum(range(1 ,n + 1 ) ) ,2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
192
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _UpperCAmelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Tuple ,__lowercase : str ,__lowercase : List[Any] ,__lowercase : Optional[int] ): '''simple docstring''' for attribute in key.split('.' ): A_ : List[Any] = getattr(__lowercase ,__lowercase ) if weight_type is not None: A_ : Dict = getattr(__lowercase ,__lowercase ).shape else: A_ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A_ : Dict = value elif weight_type == "weight_g": A_ : str = value elif weight_type == "weight_v": A_ : int = value elif weight_type == "bias": A_ : int = value else: A_ : List[Any] = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Union[str, Any] ): '''simple docstring''' A_ : List[Any] = [] A_ : int = fairseq_model.state_dict() A_ : Optional[Any] = hf_model.feature_extractor A_ : List[str] = hf_model.adapter for name, value in fairseq_dict.items(): A_ : Tuple = False if "conv_layers" in name: load_conv_layer( __lowercase ,__lowercase ,__lowercase ,__lowercase ,hf_model.config.feat_extract_norm == 'group' ,) A_ : Optional[Any] = True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(__lowercase ,__lowercase ,__lowercase ,__lowercase ) A_ : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: A_ : Tuple = True if "*" in mapped_key: A_ : Optional[Any] = name.split(__lowercase )[0].split('.' )[-2] A_ : List[Any] = mapped_key.replace('*' ,__lowercase ) if "weight_g" in name: A_ : Optional[int] = 'weight_g' elif "weight_v" in name: A_ : Union[str, Any] = 'weight_v' elif "bias" in name: A_ : Any = 'bias' elif "weight" in name: A_ : str = 'weight' else: A_ : Optional[Any] = None set_recursively(__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def UpperCamelCase ( __lowercase : Dict ,__lowercase : List[Any] ,__lowercase : Tuple ,__lowercase : Dict ,__lowercase : Any ): '''simple docstring''' A_ : List[Any] = full_name.split('conv_layers.' )[-1] A_ : Optional[int] = name.split('.' ) A_ : Tuple = int(items[0] ) A_ : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A_ : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A_ : str = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) A_ : List[str] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A_ : List[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowercase ) def UpperCamelCase ( __lowercase : Any ,__lowercase : Tuple ,__lowercase : Optional[Any] ,__lowercase : Union[str, Any] ): '''simple docstring''' A_ : Union[str, Any] = full_name.split('adaptor.' )[-1] A_ : List[Any] = name.split('.' ) if items[1].isdigit(): A_ : Union[str, Any] = int(items[1] ) else: A_ : Tuple = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' A_ : Dict = value logger.info(f'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' A_ : int = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' A_ : Dict = value logger.info(f'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' A_ : Tuple = value logger.info(f'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__lowercase ,__lowercase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' A_ : Tuple = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' A_ : str = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__lowercase ) def UpperCamelCase ( __lowercase : List[Any] ): '''simple docstring''' A_ , A_ : Any = emb.weight.shape A_ : Tuple = nn.Linear(__lowercase ,__lowercase ,bias=__lowercase ) A_ : Optional[Any] = emb.weight.data return lin_layer @torch.no_grad() def UpperCamelCase ( __lowercase : Any ,__lowercase : Optional[int] ,__lowercase : Any ,__lowercase : str ,__lowercase : Dict ,__lowercase : Dict ,__lowercase : Tuple ,__lowercase : Optional[int] ,__lowercase : List[str] ,__lowercase : List[Any] ,__lowercase : str ,): '''simple docstring''' A_ : Optional[int] = WavaVecaConfig.from_pretrained( __lowercase ,add_adapter=__lowercase ,adapter_stride=__lowercase ,adapter_kernel_size=__lowercase ,use_auth_token=__lowercase ,output_hidden_size=__lowercase ,) A_ : Any = MBartConfig.from_pretrained(__lowercase ) # load model A_ , A_ , A_ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } ,) A_ : Union[str, Any] = model[0].eval() # load feature extractor A_ : Any = WavaVecaFeatureExtractor.from_pretrained(__lowercase ,use_auth_token=__lowercase ) # set weights for wav2vec2 encoder A_ : Optional[Any] = WavaVecaModel(__lowercase ) recursively_load_weights_wavaveca(model.encoder ,__lowercase ) # load decoder weights A_ : Dict = MBartForCausalLM(__lowercase ) A_ , A_ : Union[str, Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() ,strict=__lowercase ) logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) A_ : Optional[int] = SpeechEncoderDecoderModel(encoder=__lowercase ,decoder=__lowercase ) A_ : Any = False A_ : List[Any] = MBartaaTokenizer(__lowercase ) tokenizer.save_pretrained(__lowercase ) A_ : Dict = hf_wavavec.config.to_dict() A_ : Any = tokenizer.pad_token_id A_ : Optional[Any] = tokenizer.bos_token_id A_ : Union[str, Any] = tokenizer.eos_token_id A_ : Dict = 'mbart50' A_ : str = 'wav2vec2' A_ : int = tokenizer.eos_token_id A_ : List[str] = 25_00_04 A_ : int = tokenizer.eos_token_id A_ : Optional[Any] = SpeechEncoderDecoderConfig.from_dict(__lowercase ) hf_wavavec.save_pretrained(__lowercase ) feature_extractor.save_pretrained(__lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=250004, type=int, help="""`decoder_start_token_id` of model config""") _UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
192
1
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class _a ( unittest.TestCase): """simple docstring""" @slow def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__: List[Any] = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base" ) UpperCamelCase__: str = AutoTokenizer.from_pretrained("xlm-roberta-base" ) UpperCamelCase__: int = """The dog is cute and lives in the garden house""" UpperCamelCase__: Any = jnp.array([tokenizer.encode(SCREAMING_SNAKE_CASE__ )] ) UpperCamelCase__: Dict = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__: Optional[int] = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) UpperCamelCase__: Optional[Any] = model(SCREAMING_SNAKE_CASE__ )["""last_hidden_state"""] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
149
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : int = '''yolos''' def __init__(self , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=[5_12, 8_64] , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=1_00 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : int = num_hidden_layers SCREAMING_SNAKE_CASE__ : str = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE__ : Dict = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[str] = image_size SCREAMING_SNAKE_CASE__ : Optional[Any] = patch_size SCREAMING_SNAKE_CASE__ : List[str] = num_channels SCREAMING_SNAKE_CASE__ : List[str] = qkv_bias SCREAMING_SNAKE_CASE__ : Optional[int] = num_detection_tokens SCREAMING_SNAKE_CASE__ : Optional[Any] = use_mid_position_embeddings SCREAMING_SNAKE_CASE__ : List[str] = auxiliary_loss # Hungarian matcher SCREAMING_SNAKE_CASE__ : Optional[Any] = class_cost SCREAMING_SNAKE_CASE__ : List[str] = bbox_cost SCREAMING_SNAKE_CASE__ : List[Any] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ : Optional[Any] = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ : List[str] = giou_loss_coefficient SCREAMING_SNAKE_CASE__ : int = eos_coefficient class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __magic_name__ (self ) -> float: """simple docstring""" return 1E-4 @property def __magic_name__ (self ) -> int: """simple docstring""" return 12
25
0
from __future__ import annotations def UpperCamelCase ( _a , _a ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) (lowercase_) :Dict = extended_euclid(_a , a % b ) lowercase_ :Any = a // b return (y, x - k * y) def UpperCamelCase ( _a , _a , _a , _a ) -> int: '''simple docstring''' (lowercase_) :Union[str, Any] = extended_euclid(_a , _a ) lowercase_ :Optional[Any] = na * na lowercase_ :Dict = ra * x * na + ra * y * na return (n % m + m) % m def UpperCamelCase ( _a , _a ) -> int: '''simple docstring''' (lowercase_) :Union[str, Any] = extended_euclid(_a , _a ) if b < 0: lowercase_ :Dict = (b % n + n) % n return b def UpperCamelCase ( _a , _a , _a , _a ) -> int: '''simple docstring''' lowercase_ :str = invert_modulo(_a , _a ), invert_modulo(_a , _a ) lowercase_ :Optional[int] = na * na lowercase_ :Optional[int] = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
368
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Union[str, Any] ="""naver-clova-ix/donut-base-finetuned-docvqa""" lowercase : Optional[int] =( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) lowercase : Dict ="""document_qa""" lowercase : List[Any] =AutoProcessor lowercase : Tuple =VisionEncoderDecoderModel lowercase : Optional[int] =["""image""", """text"""] lowercase : Any =["""text"""] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :str = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' lowercase_ :Optional[int] = task_prompt.replace('''{user_input}''' , UpperCamelCase_ ) lowercase_ :List[Any] = self.pre_processor.tokenizer( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors='''pt''' ).input_ids lowercase_ :Dict = self.pre_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCamelCase ( self , UpperCamelCase_ ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=UpperCamelCase_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=UpperCamelCase_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=UpperCamelCase_ , ).sequences def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Any = self.pre_processor.batch_decode(UpperCamelCase_ )[0] lowercase_ :Any = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) lowercase_ :int = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) lowercase_ :Dict = re.sub(R'''<.*?>''' , '''''' , UpperCamelCase_ , count=1 ).strip() # remove first task start token lowercase_ :Dict = self.pre_processor.tokenajson(UpperCamelCase_ ) return sequence["answer"]
252
0
'''simple docstring''' def snake_case__ ( _A: int , _A: int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
272
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
1
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = (IPNDMScheduler,) __lowerCamelCase = (('num_inference_steps', 50),) def UpperCAmelCase ( self :Optional[int] , **_lowercase :Dict ): '''simple docstring''' lowercase__ = {"num_train_timesteps": 10_00} config.update(**_lowercase ) return config def UpperCAmelCase ( self :Optional[Any] , _lowercase :Dict=0 , **_lowercase :Optional[Any] ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps" , _lowercase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_lowercase ) lowercase__ = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) lowercase__ = scheduler_class.from_pretrained(_lowercase ) new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase__ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase__ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' pass def UpperCAmelCase ( self :Tuple , _lowercase :Any=0 , **_lowercase :Any ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps" , _lowercase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_lowercase ) scheduler.set_timesteps(_lowercase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase ) lowercase__ = scheduler_class.from_pretrained(_lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase__ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase__ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self :Optional[Any] , **_lowercase :List[str] ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_lowercase ) lowercase__ = scheduler_class(**_lowercase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_lowercase , _lowercase ) lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_lowercase , _lowercase ) lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample return sample def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps" , _lowercase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_lowercase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , "set_timesteps" ): scheduler.set_timesteps(_lowercase ) elif num_inference_steps is not None and not hasattr(_lowercase , "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample lowercase__ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase ( self :int ): '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowercase , time_step=_lowercase ) def UpperCAmelCase ( self :int ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=_lowercase , time_step=_lowercase ) def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_lowercase ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
201
import math def _A ( __magic_name__ ): lowercase__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__magic_name__ ) def _A ( __magic_name__ = 1 / 1_2345 ): lowercase__ = 0 lowercase__ = 0 lowercase__ = 3 while True: lowercase__ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__magic_name__ ): lowercase__ = int(__magic_name__ ) total_partitions += 1 if check_partition_perfect(__magic_name__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__magic_name__ ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
201
1
from pathlib import Path import numpy as np from PIL import Image def lowerCamelCase__ ( __lowerCamelCase : np.ndarray ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def lowerCamelCase__ ( __lowerCamelCase : np.ndarray ): return (gray > 127) & (gray <= 255) def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : np.ndarray ): __UpperCAmelCase : int = np.zeros_like(__lowerCamelCase ) __UpperCAmelCase : str = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __UpperCAmelCase : Tuple = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __UpperCAmelCase : Optional[int] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __UpperCAmelCase : Tuple = int(summation > 0 ) return output if __name__ == "__main__": # read original image a : Optional[Any] = Path(__file__).resolve().parent / "image_data" / "lena.jpg" a : Dict = np.array(Image.open(lena_path)) # kernel to be applied a : Any = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) a : Optional[Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image a : Union[str, Any] = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
114
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowercase__ ) class a ( lowercase__ ): """simple docstring""" a : str = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) a : ClassVar[Features] = Features({'audio': Audio()} ) a : ClassVar[Features] = Features({'transcription': Value('string' )} ) a : str = "audio" a : str = "transcription" def UpperCAmelCase ( self : Optional[Any] , __lowercase : Optional[int] ) -> str: if self.audio_column not in features: raise ValueError(f"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , __lowercase ): raise ValueError(f"""Column {self.audio_column} is not an Audio type.""" ) __UpperCAmelCase : int = copy.deepcopy(self ) __UpperCAmelCase : str = self.input_schema.copy() __UpperCAmelCase : List[str] = features[self.audio_column] __UpperCAmelCase : Optional[Any] = input_schema return task_template @property def UpperCAmelCase ( self : Union[str, Any] ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
114
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __snake_case = logging.get_logger(__name__) __snake_case = { """Helsinki-NLP/opus-mt-en-de""": """https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json""", # See all Marian models at https://huggingface.co/models?filter=marian } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : List[Any] = '''marian''' __UpperCAmelCase : int = ['''past_key_values'''] __UpperCAmelCase : str = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , UpperCamelCase__=5_8101 , UpperCamelCase__=None , UpperCamelCase__=1024 , UpperCamelCase__=12 , UpperCamelCase__=4096 , UpperCamelCase__=16 , UpperCamelCase__=12 , UpperCamelCase__=4096 , UpperCamelCase__=16 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__="gelu" , UpperCamelCase__=1024 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=5_8100 , UpperCamelCase__=False , UpperCamelCase__=5_8100 , UpperCamelCase__=0 , UpperCamelCase__=0 , UpperCamelCase__=True , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' snake_case : Any = vocab_size snake_case : List[str] = decoder_vocab_size or vocab_size snake_case : str = max_position_embeddings snake_case : str = d_model snake_case : str = encoder_ffn_dim snake_case : int = encoder_layers snake_case : List[Any] = encoder_attention_heads snake_case : str = decoder_ffn_dim snake_case : List[str] = decoder_layers snake_case : Any = decoder_attention_heads snake_case : Any = dropout snake_case : str = attention_dropout snake_case : Optional[int] = activation_dropout snake_case : int = activation_function snake_case : Union[str, Any] = init_std snake_case : str = encoder_layerdrop snake_case : List[Any] = decoder_layerdrop snake_case : Any = use_cache snake_case : int = encoder_layers snake_case : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True snake_case : Optional[int] = share_encoder_decoder_embeddings super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class _lowerCAmelCase ( snake_case_ ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: snake_case : Dict = {0: "batch"} snake_case : str = {0: "batch", 1: "past_decoder_sequence + sequence"} else: snake_case : str = {0: "batch", 1: "decoder_sequence"} snake_case : str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: snake_case ,snake_case : List[str] = self.num_layers for i in range(UpperCamelCase__ ): snake_case : Tuple = {0: "batch", 2: "past_sequence + sequence"} snake_case : Dict = {0: "batch", 2: "past_sequence + sequence"} else: snake_case : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case : str = super().outputs else: snake_case : Tuple = super(UpperCamelCase__ , self ).outputs if self.use_past: snake_case ,snake_case : Dict = self.num_layers for i in range(UpperCamelCase__ ): snake_case : int = {0: "batch", 2: "past_sequence + sequence"} snake_case : int = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case : List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs snake_case : List[Any] = seq_length if not self.use_past else 1 snake_case : List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[Any] = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} snake_case : Dict = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case ,snake_case : Optional[Any] = common_inputs["input_ids"].shape snake_case : Optional[Any] = common_inputs["decoder_input_ids"].shape[1] snake_case ,snake_case : List[Any] = self.num_attention_heads snake_case : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case : Any = decoder_seq_length + 3 snake_case : Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case : Tuple = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) snake_case : Tuple = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case ,snake_case : Dict = self.num_layers snake_case : Dict = min(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[Any] = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers snake_case : Optional[int] = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. snake_case : Union[str, Any] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case : Optional[int] = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case ,snake_case : List[str] = common_inputs["input_ids"].shape # Not using the same length for past_key_values snake_case : List[str] = seqlen + 2 snake_case ,snake_case : Tuple = self.num_layers snake_case ,snake_case : Optional[Any] = self.num_attention_heads snake_case : List[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case : int = common_inputs["attention_mask"].dtype snake_case : List[str] = torch.cat( [common_inputs["attention_mask"], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) snake_case : Union[str, Any] = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case : Optional[Any] = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case : Optional[Any] = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) snake_case : Union[str, Any] = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence snake_case : int = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case : Optional[int] = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case : int = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: snake_case : Optional[Any] = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case : Union[str, Any] = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: snake_case : int = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @property def lowerCamelCase ( self ) -> float: '''simple docstring''' return 1e-4
112
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __snake_case = data_utils.TransfoXLTokenizer __snake_case = data_utils.TransfoXLCorpus __snake_case = data_utils __snake_case = data_utils def __lowerCAmelCase ( lowercase : Optional[int] , lowercase : int , lowercase : List[Any] , lowercase : Union[str, Any] ) -> List[Any]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(lowercase , "rb" ) as fp: snake_case : int = pickle.load(lowercase , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) snake_case : int = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) snake_case : str = corpus.vocab.__dict__ torch.save(lowercase , lowercase ) snake_case : str = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , lowercase ) snake_case : Dict = pytorch_dump_folder_path + "/" + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(lowercase , lowercase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model snake_case : Union[str, Any] = os.path.abspath(lowercase ) snake_case : str = os.path.abspath(lowercase ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": snake_case : int = TransfoXLConfig() else: snake_case : Optional[int] = TransfoXLConfig.from_json_file(lowercase ) print(F'Building PyTorch model from configuration: {config}' ) snake_case : str = TransfoXLLMHeadModel(lowercase ) snake_case : str = load_tf_weights_in_transfo_xl(lowercase , lowercase , lowercase ) # Save pytorch-model snake_case : Union[str, Any] = os.path.join(lowercase , lowercase ) snake_case : Optional[Any] = os.path.join(lowercase , lowercase ) print(F'Save PyTorch model to {os.path.abspath(lowercase )}' ) torch.save(model.state_dict() , lowercase ) print(F'Save configuration file to {os.path.abspath(lowercase )}' ) with open(lowercase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) __snake_case = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
112
1