code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class A__ ( _lowerCamelCase , _lowerCamelCase): A_ : Optional[int] = 1 @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE=20_00 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=20 , _SCREAMING_SNAKE_CASE=1E-3 ): __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : List[Any] = None __lowerCAmelCase : Tuple = None def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): __lowerCAmelCase : Dict = torch.linspace(1 , self.config.sampling_eps , _SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowerCAmelCase : str = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowerCAmelCase : Tuple = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowerCAmelCase : Optional[int] = std.flatten() while len(std.shape ) < len(score.shape ): __lowerCAmelCase : Tuple = std.unsqueeze(-1 ) __lowerCAmelCase : int = -score / std # compute __lowerCAmelCase : List[str] = -1.0 / len(self.timesteps ) __lowerCAmelCase : Any = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowerCAmelCase : Optional[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowerCAmelCase : Any = beta_t.unsqueeze(-1 ) __lowerCAmelCase : int = -0.5 * beta_t * x __lowerCAmelCase : Dict = torch.sqrt(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = drift - diffusion**2 * score __lowerCAmelCase : Tuple = x + drift * dt # add noise __lowerCAmelCase : int = randn_tensor(x.shape , layout=x.layout , generator=_SCREAMING_SNAKE_CASE , device=x.device , dtype=x.dtype ) __lowerCAmelCase : List[str] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): return self.config.num_train_timesteps
86
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase__ = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): for attribute in key.split('.' ): __lowerCAmelCase : str = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: __lowerCAmelCase : Tuple = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: __lowerCAmelCase : Dict = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowerCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": __lowerCAmelCase : List[Any] = value elif weight_type == "weight_v": __lowerCAmelCase : Any = value elif weight_type == "bias": __lowerCAmelCase : List[str] = value else: __lowerCAmelCase : List[Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Any = [] __lowerCAmelCase : Optional[int] = fairseq_model.state_dict() __lowerCAmelCase : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) __lowerCAmelCase : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCAmelCase : int = True if "*" in mapped_key: __lowerCAmelCase : List[str] = name.split(_UpperCamelCase )[0].split('.' )[-2] __lowerCAmelCase : Optional[Any] = mapped_key.replace('*' , _UpperCamelCase ) if "weight_g" in name: __lowerCAmelCase : Union[str, Any] = 'weight_g' elif "weight_v" in name: __lowerCAmelCase : int = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __lowerCAmelCase : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase : List[str] = 'weight' else: __lowerCAmelCase : Optional[Any] = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[Any] = full_name.split('conv_layers.' )[-1] __lowerCAmelCase : Any = name.split('.' ) __lowerCAmelCase : List[Any] = int(items[0] ) __lowerCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowerCAmelCase : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowerCAmelCase : int = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __lowerCAmelCase : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __lowerCAmelCase : Any = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): # load the pre-trained checkpoints __lowerCAmelCase : Any = torch.load(_UpperCamelCase ) __lowerCAmelCase : List[str] = WavLMConfigOrig(checkpoint['cfg'] ) __lowerCAmelCase : Optional[Any] = WavLMOrig(_UpperCamelCase ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __lowerCAmelCase : Dict = WavLMConfig.from_pretrained(_UpperCamelCase ) else: __lowerCAmelCase : List[str] = WavLMConfig() __lowerCAmelCase : List[str] = WavLMModel(_UpperCamelCase ) recursively_load_weights(_UpperCamelCase , _UpperCamelCase ) hf_wavlm.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
86
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase: Dict = { "configuration_mvp": ["MVP_PRETRAINED_CONFIG_ARCHIVE_MAP", "MvpConfig", "MvpOnnxConfig"], "tokenization_mvp": ["MvpTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: str = ["MvpTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: int = [ "MVP_PRETRAINED_MODEL_ARCHIVE_LIST", "MvpForCausalLM", "MvpForConditionalGeneration", "MvpForQuestionAnswering", "MvpForSequenceClassification", "MvpModel", "MvpPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _lowercase: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
71
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _lowercase : """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=99 , lowerCamelCase_=32 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=512 , lowerCamelCase_=16 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=None , ): """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope def UpperCamelCase_ (self ): """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ (self ): """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = LlamaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) a = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): """simple docstring""" a = True a = LlamaModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , ) a = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , ) a = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): """simple docstring""" a = LlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): """simple docstring""" a = True a = True a = LlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass a = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_ , ) a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a = torch.cat([input_ids, next_tokens] , dim=-1 ) a = torch.cat([input_mask, next_mask] , dim=-1 ) a = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )["hidden_states"][0] a = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )["hidden_states"][0] # select random slice a = ids_tensor((1,) , output_from_past.shape[-1] ).item() a = output_from_no_past[:, -3:, random_slice_idx].detach() a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ) ) def UpperCamelCase_ (self ): """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __A = (LlamaForCausalLM,) if is_torch_available() else () __A = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __A = False __A = False def UpperCamelCase_ (self ): """simple docstring""" a = LlamaModelTester(self ) a = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def UpperCamelCase_ (self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = input_dict["input_ids"] a = input_ids.ne(1 ).to(lowerCamelCase_ ) a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ (self ): """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = "single_label_classification" a = input_dict["input_ids"] a = input_ids.ne(1 ).to(lowerCamelCase_ ) a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ (self ): """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = "multi_label_classification" a = input_dict["input_ids"] a = input_ids.ne(1 ).to(lowerCamelCase_ ) a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) a = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() a = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def UpperCamelCase_ (self ): """simple docstring""" pass @parameterized.expand([("linear",), ("dynamic",)] ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = ids_tensor([1, 10] , config.vocab_size ) a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a = LlamaModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() a = original_model(lowerCamelCase_ ).last_hidden_state a = original_model(lowerCamelCase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a = {"type": scaling_type, "factor": 10.0} a = LlamaModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() a = scaled_model(lowerCamelCase_ ).last_hidden_state a = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-5 ) ) @require_torch class _lowercase ( unittest.TestCase ): """simple docstring""" @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = [1, 306, 4658, 278, 6593, 310, 2834, 338] a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) a = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 a = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off a = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = [1, 306, 4658, 278, 6593, 310, 2834, 338] a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) a = model(torch.tensor(lowerCamelCase_ ) ) # Expected mean on dim = -1 a = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off a = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = [1, 306, 4658, 278, 6593, 310, 2834, 338] a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) a = model(torch.tensor(lowerCamelCase_ ) ) # Expected mean on dim = -1 a = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off a = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = [1, 306, 4658, 278, 6593, 310, 2834, 338] a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) a = model(torch.tensor(lowerCamelCase_ ) ) a = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1E-2 , rtol=1E-2 ) # fmt: off a = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Model is curently gated" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" a = "Simply put, the theory of relativity states that " a = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) a = tokenizer.encode(lowerCamelCase_ , return_tensors="pt" ) a = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=lowerCamelCase_ ) # greedy generation outputs a = model.generate(lowerCamelCase_ , max_new_tokens=64 , top_p=lowerCamelCase_ , temperature=1 , do_sample=lowerCamelCase_ ) a = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
71
1
'''simple docstring''' import math def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): if ( not isinstance(UpperCAmelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): if ( not isinstance(UpperCAmelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
198
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __a: List[str] = logging.get_logger(__name__) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "encoder-decoder" SCREAMING_SNAKE_CASE = True def __init__( self , **__lowerCAmelCase ) -> int: super().__init__(**__lowerCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowercase__ : Optional[int] = kwargs.pop('''encoder''' ) lowercase__ : Union[str, Any] = encoder_config.pop('''model_type''' ) lowercase__ : Any = kwargs.pop('''decoder''' ) lowercase__ : Any = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__ : Union[str, Any] = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : Optional[Any] = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : Tuple = True @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) -> PretrainedConfig: logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) lowercase__ : Union[str, Any] = True lowercase__ : Any = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Any: lowercase__ : Any = copy.deepcopy(self.__dict__ ) lowercase__ : Optional[Any] = self.encoder.to_dict() lowercase__ : Tuple = self.decoder.to_dict() lowercase__ : Dict = self.__class__.model_type return output
198
1
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : Optional[int] ={ "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """xlnet""" __lowercase = ["""mems"""] __lowercase = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self :int , lowercase_ :Any=3_20_00 , lowercase_ :Optional[int]=10_24 , lowercase_ :Optional[Any]=24 , lowercase_ :Optional[Any]=16 , lowercase_ :Union[str, Any]=40_96 , lowercase_ :Dict="gelu" , lowercase_ :int=True , lowercase_ :int="bi" , lowercase_ :Dict=0.0_2 , lowercase_ :str=1E-12 , lowercase_ :Optional[int]=0.1 , lowercase_ :Tuple=5_12 , lowercase_ :Tuple=None , lowercase_ :Any=True , lowercase_ :Tuple=False , lowercase_ :List[Any]=False , lowercase_ :int=-1 , lowercase_ :Tuple=False , lowercase_ :Optional[Any]="last" , lowercase_ :str=True , lowercase_ :Tuple="tanh" , lowercase_ :List[Any]=0.1 , lowercase_ :Optional[int]=5 , lowercase_ :Dict=5 , lowercase_ :int=5 , lowercase_ :Dict=1 , lowercase_ :List[Any]=2 , **lowercase_ :Optional[int] , )-> Dict: A__ = vocab_size A__ = d_model A__ = n_layer A__ = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) A__ = d_model // n_head A__ = ff_activation A__ = d_inner A__ = untie_r A__ = attn_type A__ = initializer_range A__ = layer_norm_eps A__ = dropout A__ = mem_len A__ = reuse_len A__ = bi_data A__ = clamp_len A__ = same_length A__ = summary_type A__ = summary_use_proj A__ = summary_activation A__ = summary_last_dropout A__ = start_n_top A__ = end_n_top A__ = bos_token_id A__ = pad_token_id A__ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , lowercase_ , ) A__ = kwargs["use_cache"] A__ = use_mems_eval A__ = use_mems_train super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self :Any )-> List[Any]: logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def UpperCAmelCase_ ( self :Tuple , lowercase_ :str )-> int: # Message copied from Transformer-XL documentation raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
371
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCAmelCase : Optional[Any] ="\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __lowerCAmelCase : Union[str, Any] ="\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __lowerCAmelCase : str ="\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCamelCase ( _lowerCamelCase : List[Any] ): def remove_articles(_lowerCamelCase : Dict ): A__ = re.compile(r"\b(a|an|the)\b" , re.UNICODE ) return re.sub(_lowerCamelCase , " " , _lowerCamelCase ) def white_space_fix(_lowerCamelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase : int ): A__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase ) ) ) ) def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] ): return int(normalize_answer(_lowerCamelCase ) == normalize_answer(_lowerCamelCase ) ) def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : List[Any] ): A__ = [any(compute_exact(_lowerCamelCase , _lowerCamelCase ) for ref in refs ) for pred, refs in zip(_lowerCamelCase , _lowerCamelCase )] return (sum(_lowerCamelCase ) / len(_lowerCamelCase )) * 1_00 def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str ): A__ = [rgram for rgrams in rgramslist for rgram in rgrams] A__ = Counter(_lowerCamelCase ) A__ = Counter(_lowerCamelCase ) A__ = Counter() for sgram, scount in sgramcounter.items(): A__ = scount * numref A__ = Counter(_lowerCamelCase ) A__ = Counter() for cgram, ccount in cgramcounter.items(): A__ = ccount * numref # KEEP A__ = sgramcounter_rep & cgramcounter_rep A__ = keepgramcounter_rep & rgramcounter A__ = sgramcounter_rep & rgramcounter A__ = 0 A__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 A__ = 1 if len(_lowerCamelCase ) > 0: A__ = keeptmpscorea / len(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) A__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) A__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: A__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION A__ = sgramcounter_rep - cgramcounter_rep A__ = delgramcounter_rep - rgramcounter A__ = sgramcounter_rep - rgramcounter A__ = 0 A__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 if len(_lowerCamelCase ) > 0: A__ = deltmpscorea / len(_lowerCamelCase ) # ADDITION A__ = set(_lowerCamelCase ) - set(_lowerCamelCase ) A__ = set(_lowerCamelCase ) & set(_lowerCamelCase ) A__ = set(_lowerCamelCase ) - set(_lowerCamelCase ) A__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 A__ = 1 if len(_lowerCamelCase ) > 0: A__ = addtmpscore / len(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: A__ = addtmpscore / len(_lowerCamelCase ) A__ = 0 if addscore_precision > 0 or addscore_recall > 0: A__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): A__ = len(_lowerCamelCase ) A__ = ssent.split(" " ) A__ = csent.split(" " ) A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] for rsent in rsents: A__ = rsent.split(" " ) A__ = [] A__ = [] A__ = [] ragramslist.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: A__ = ragrams[i] + " " + ragrams[i + 1] ragrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: A__ = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: A__ = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: A__ = sagrams[i] + " " + sagrams[i + 1] sagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: A__ = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: A__ = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: A__ = cagrams[i] + " " + cagrams[i + 1] cagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: A__ = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: A__ = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(_lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 A__ = sum([delascore, delascore, delascore, delascore] ) / 4 A__ = sum([addascore, addascore, addascore, addascore] ) / 4 A__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : bool = True , _lowerCamelCase : str = "13a" , _lowerCamelCase : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: A__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: A__ = sacrebleu.metrics.bleu._get_tokenizer(_lowerCamelCase )()(_lowerCamelCase ) else: A__ = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCamelCase ) elif tokenizer == "moses": A__ = sacremoses.MosesTokenizer().tokenize(_lowerCamelCase , return_str=_lowerCamelCase , escape=_lowerCamelCase ) elif tokenizer == "penn": A__ = sacremoses.MosesTokenizer().penn_tokenize(_lowerCamelCase , return_str=_lowerCamelCase ) else: A__ = sentence if not return_str: A__ = normalized_sent.split() return normalized_sent def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] ): if not (len(_lowerCamelCase ) == len(_lowerCamelCase ) == len(_lowerCamelCase )): raise ValueError("Sources length must match predictions and references lengths." ) A__ = 0 for src, pred, refs in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): sari_score += SARIsent(normalize(_lowerCamelCase ) , normalize(_lowerCamelCase ) , [normalize(_lowerCamelCase ) for sent in refs] ) A__ = sari_score / len(_lowerCamelCase ) return 1_00 * sari_score def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : List[Any]="exp" , _lowerCamelCase : int=None , _lowerCamelCase : str=False , _lowerCamelCase : List[str]=False , _lowerCamelCase : Dict=False , ): A__ = len(references[0] ) if any(len(_lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A__ = [[refs[i] for refs in references] for i in range(_lowerCamelCase )] A__ = sacrebleu.corpus_bleu( _lowerCamelCase , _lowerCamelCase , smooth_method=_lowerCamelCase , smooth_value=_lowerCamelCase , force=_lowerCamelCase , lowercase=_lowerCamelCase , use_effective_order=_lowerCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def UpperCAmelCase_ ( self :Any )-> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def UpperCAmelCase_ ( self :str , lowercase_ :Dict , lowercase_ :List[Any] , lowercase_ :int )-> int: A__ = {} result.update({"sari": compute_sari(sources=lowercase_ , predictions=lowercase_ , references=lowercase_ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=lowercase_ , references=lowercase_ )} ) result.update({"exact": compute_em(predictions=lowercase_ , references=lowercase_ )} ) return result
123
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Any = '''Hello, World!''' lowerCamelCase : int = '''en_XX''' def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : int ): __lowercase : List[Any] = Path("""data_bin""" ) __lowercase : List[Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(snake_case__ ).parent ) , checkpoint_file=Path(snake_case__ ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(snake_case__ ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(snake_case__ ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(snake_case__ ) __lowercase : str = xmod.model.encoder.sentence_encoder __lowercase : Optional[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase : Union[str, Any] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , snake_case__ ) __lowercase : int = XmodForSequenceClassification(snake_case__ ) if classification_head else XmodForMaskedLM(snake_case__ ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase : List[Any] = xmod_sent_encoder.embed_tokens.weight __lowercase : Dict = xmod_sent_encoder.embed_positions.weight __lowercase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase : Tuple = xmod_sent_encoder.layernorm_embedding.weight __lowercase : Optional[Any] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase : Tuple = model.roberta.encoder.layer[i] __lowercase : int = xmod_sent_encoder.layers[i] # self attention __lowercase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) __lowercase : Optional[Any] = xmod_layer.self_attn.q_proj.weight __lowercase : Optional[int] = xmod_layer.self_attn.q_proj.bias __lowercase : List[Any] = xmod_layer.self_attn.k_proj.weight __lowercase : Union[str, Any] = xmod_layer.self_attn.k_proj.bias __lowercase : Optional[int] = xmod_layer.self_attn.v_proj.weight __lowercase : Tuple = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase : List[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) __lowercase : List[str] = xmod_layer.self_attn.out_proj.weight __lowercase : Optional[Any] = xmod_layer.self_attn.out_proj.bias __lowercase : Optional[int] = xmod_layer.self_attn_layer_norm.weight __lowercase : Union[str, Any] = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase : int = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) __lowercase : Union[str, Any] = xmod_layer.fca.weight __lowercase : Dict = xmod_layer.fca.bias # output __lowercase : Optional[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) __lowercase : str = xmod_layer.fca.weight __lowercase : List[Any] = xmod_layer.fca.bias __lowercase : Any = xmod_layer.final_layer_norm.weight __lowercase : List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase : str = xmod_layer.adapter_layer_norm.weight __lowercase : Union[str, Any] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase : str = bert_output.adapter_modules[lang_code] __lowercase : Any = xmod_layer.adapter_modules[lang_code] __lowercase : Optional[int] = from_adapter.fca.weight __lowercase : Any = from_adapter.fca.bias __lowercase : Union[str, Any] = from_adapter.fca.weight __lowercase : List[str] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase : Optional[Any] = xmod_sent_encoder.layer_norm.weight __lowercase : int = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase : Union[str, Any] = xmod.model.classification_heads["""mnli"""].dense.weight __lowercase : Union[str, Any] = xmod.model.classification_heads["""mnli"""].dense.bias __lowercase : Optional[int] = xmod.model.classification_heads["""mnli"""].out_proj.weight __lowercase : Optional[Any] = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __lowercase : Union[str, Any] = xmod.model.encoder.lm_head.dense.weight __lowercase : List[Any] = xmod.model.encoder.lm_head.dense.bias __lowercase : str = xmod.model.encoder.lm_head.layer_norm.weight __lowercase : Optional[int] = xmod.model.encoder.lm_head.layer_norm.bias __lowercase : Optional[Any] = xmod.model.encoder.lm_head.weight __lowercase : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase : str = xmod.encode(snake_case__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(snake_case__ ) __lowercase : Any = model(snake_case__ )[0] if classification_head: __lowercase : List[str] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(snake_case__ ) ) else: __lowercase : List[Any] = xmod.model(snake_case__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase : int = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __lowercase : Tuple = torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(snake_case__ ).mkdir(parents=snake_case__ , exist_ok=snake_case__ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) lowerCamelCase : List[Any] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
233
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str: if isinstance(snake_case__ , snake_case__ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if isinstance(snake_case__ , snake_case__ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if num == 0: return "0b0" lowerCAmelCase = False if num < 0: lowerCAmelCase = True lowerCAmelCase = -num lowerCAmelCase = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(snake_case__ ) for e in binary ) return "0b" + "".join(str(snake_case__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
338
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _a ( _lowerCAmelCase ): A = 42 class _a ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__(self, SCREAMING_SNAKE_CASE_ = 16, SCREAMING_SNAKE_CASE_ = 88, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = 0.0, SCREAMING_SNAKE_CASE_ = 32, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "geglu", SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = True, ) -> Optional[int]: super().__init__() UpperCAmelCase_: Tuple = num_attention_heads UpperCAmelCase_: str = attention_head_dim UpperCAmelCase_: Optional[int] = num_attention_heads * attention_head_dim UpperCAmelCase_: str = in_channels UpperCAmelCase_: str = torch.nn.GroupNorm(num_groups=SCREAMING_SNAKE_CASE_, num_channels=SCREAMING_SNAKE_CASE_, eps=1E-6, affine=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = nn.Linear(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # 3. Define transformers blocks UpperCAmelCase_: int = nn.ModuleList( [ BasicTransformerBlock( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dropout=SCREAMING_SNAKE_CASE_, cross_attention_dim=SCREAMING_SNAKE_CASE_, activation_fn=SCREAMING_SNAKE_CASE_, attention_bias=SCREAMING_SNAKE_CASE_, double_self_attention=SCREAMING_SNAKE_CASE_, norm_elementwise_affine=SCREAMING_SNAKE_CASE_, ) for d in range(SCREAMING_SNAKE_CASE_ ) ] ) UpperCAmelCase_: str = nn.Linear(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_ = True, ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: int = hidden_states.shape UpperCAmelCase_: Optional[int] = batch_frames // num_frames UpperCAmelCase_: List[Any] = hidden_states UpperCAmelCase_: int = hidden_states[None, :].reshape(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = hidden_states.permute(0, 2, 1, 3, 4 ) UpperCAmelCase_: Any = self.norm(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = hidden_states.permute(0, 3, 4, 2, 1 ).reshape(batch_size * height * width, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = self.proj_in(SCREAMING_SNAKE_CASE_ ) # 2. Blocks for block in self.transformer_blocks: UpperCAmelCase_: List[Any] = block( SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, timestep=SCREAMING_SNAKE_CASE_, cross_attention_kwargs=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_, ) # 3. Output UpperCAmelCase_: int = self.proj_out(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = ( hidden_states[None, None, :] .reshape(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) .permute(0, 3, 4, 1, 2 ) .contiguous() ) UpperCAmelCase_: str = hidden_states.reshape(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=SCREAMING_SNAKE_CASE_ )
82
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a : Tuple = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _a ( unittest.TestCase ): A = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: A = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: A = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: Dict = ZeroShotClassificationPipeline( model=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_, candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: Dict = classifier("""Who are you voting for in 2020?""", candidate_labels="""politics""" ) self.assertEqual(SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ )]} ) # No kwarg UpperCAmelCase_: Optional[int] = classifier("""Who are you voting for in 2020?""", ["""politics"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ )]} ) UpperCAmelCase_: Optional[int] = classifier("""Who are you voting for in 2020?""", candidate_labels=["""politics"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ )]} ) UpperCAmelCase_: List[Any] = classifier("""Who are you voting for in 2020?""", candidate_labels="""politics, public health""" ) self.assertEqual( SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ), 1.0 ) UpperCAmelCase_: Tuple = classifier("""Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health"""] ) self.assertEqual( SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ), 1.0 ) UpperCAmelCase_: str = classifier( """Who are you voting for in 2020?""", candidate_labels="""politics""", hypothesis_template="""This text is about {}""" ) self.assertEqual(SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ )]} ) # https://github.com/huggingface/transformers/issues/13846 UpperCAmelCase_: Union[str, Any] = classifier(["""I am happy"""], ["""positive""", """negative"""] ) self.assertEqual( SCREAMING_SNAKE_CASE_, [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} for i in range(1 ) ], ) UpperCAmelCase_: Dict = classifier(["""I am happy""", """I am sad"""], ["""positive""", """negative"""] ) self.assertEqual( SCREAMING_SNAKE_CASE_, [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} for i in range(2 ) ], ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier("""""", candidate_labels="""politics""" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier(SCREAMING_SNAKE_CASE_, candidate_labels="""politics""" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier("""Who are you voting for in 2020?""", candidate_labels="""""" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier("""Who are you voting for in 2020?""", candidate_labels=SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier( """Who are you voting for in 2020?""", candidate_labels="""politics""", hypothesis_template="""Not formatting template""", ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier( """Who are you voting for in 2020?""", candidate_labels="""politics""", hypothesis_template=SCREAMING_SNAKE_CASE_, ) self.run_entailment_id(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: int = zero_shot_classifier.model.config UpperCAmelCase_: Optional[int] = config.labelaid UpperCAmelCase_: str = zero_shot_classifier.entailment_id UpperCAmelCase_: Union[str, Any] = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1 ) UpperCAmelCase_: int = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0 ) UpperCAmelCase_: Dict = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0 ) UpperCAmelCase_: Tuple = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2 ) UpperCAmelCase_: Any = original_labelaid self.assertEqual(SCREAMING_SNAKE_CASE_, zero_shot_classifier.entailment_id ) @require_torch def __snake_case (self ) -> str: UpperCAmelCase_: Any = pipeline( """zero-shot-classification""", model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""", framework="""pt""", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 100, candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: str = pipeline( """zero-shot-classification""", model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""", framework="""pt""", ) UpperCAmelCase_: Tuple = zero_shot_classifier( """Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3], }, ) @require_tf def __snake_case (self ) -> int: UpperCAmelCase_: List[Any] = pipeline( """zero-shot-classification""", model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""", framework="""tf""", ) UpperCAmelCase_: Optional[Any] = zero_shot_classifier( """Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3], }, ) @slow @require_torch def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[Any] = pipeline("""zero-shot-classification""", model="""roberta-large-mnli""", framework="""pt""" ) UpperCAmelCase_: Optional[int] = zero_shot_classifier( """Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9], }, ) UpperCAmelCase_: Optional[Any] = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""", candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""], multi_label=SCREAMING_SNAKE_CASE_, ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], }, ) @slow @require_tf def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[str] = pipeline("""zero-shot-classification""", model="""roberta-large-mnli""", framework="""tf""" ) UpperCAmelCase_: Optional[Any] = zero_shot_classifier( """Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9], }, ) UpperCAmelCase_: Any = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""", candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""], multi_label=SCREAMING_SNAKE_CASE_, ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], }, )
82
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class _UpperCamelCase ( unittest.TestCase ): def __init__( self :List[str] , lowerCamelCase :Any , lowerCamelCase :List[Any]=13 , lowerCamelCase :Tuple=7 , lowerCamelCase :List[str]=True , lowerCamelCase :List[Any]=True , lowerCamelCase :List[str]=True , lowerCamelCase :Dict=True , lowerCamelCase :Tuple=99 , lowerCamelCase :List[str]=32 , lowerCamelCase :Dict=5 , lowerCamelCase :List[str]=4 , lowerCamelCase :Optional[Any]=37 , lowerCamelCase :Optional[Any]="gelu" , lowerCamelCase :Optional[int]=0.1 , lowerCamelCase :Union[str, Any]=0.1 , lowerCamelCase :Union[str, Any]=512 , lowerCamelCase :List[str]=16 , lowerCamelCase :int=2 , lowerCamelCase :str=0.02 , lowerCamelCase :int=4 , ) -> Optional[Any]: UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCAmelCase_ ( self :Dict ) -> Optional[int]: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ ( self :Optional[int] ) -> Tuple: UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def UpperCAmelCase_ ( self :Optional[int] ) -> int: UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _UpperCamelCase ( lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ = True UpperCAmelCase_ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase_ ( self :Optional[int] ) -> Optional[Any]: UpperCAmelCase__ = FlaxBertModelTester(self ) @slow def UpperCAmelCase_ ( self :Optional[int] ) -> Union[str, Any]: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. UpperCAmelCase__ = FlaxBertModel.from_pretrained("bert-base-cased" ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase )
169
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class _UpperCamelCase ( lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ = FlaxAutoencoderKL @property def UpperCAmelCase_ ( self :int ) -> Optional[int]: UpperCAmelCase__ = 4 UpperCAmelCase__ = 3 UpperCAmelCase__ = (32, 32) UpperCAmelCase__ = jax.random.PRNGKey(0 ) UpperCAmelCase__ = jax.random.uniform(lowerCamelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCAmelCase_ ( self :Optional[Any] ) -> Any: UpperCAmelCase__ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } UpperCAmelCase__ = self.dummy_input return init_dict, inputs_dict
169
1
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan __SCREAMING_SNAKE_CASE : str = 6_3_7_8_1_3_7.0 __SCREAMING_SNAKE_CASE : Optional[Any] = 6_3_5_6_7_5_2.3_1_4_2_4_5 __SCREAMING_SNAKE_CASE : Any = 6_3_7_8_1_3_7 def __UpperCAmelCase ( snake_case_ : float , snake_case_ : float , snake_case_ : float , snake_case_ : float ) -> float: """simple docstring""" _lowerCAmelCase = (AXIS_A - AXIS_B) / AXIS_A _lowerCAmelCase = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _lowerCAmelCase = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _lowerCAmelCase = radians(snake_case_ ) _lowerCAmelCase = radians(snake_case_ ) # Equation _lowerCAmelCase = sin((phi_a - phi_a) / 2 ) _lowerCAmelCase = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _lowerCAmelCase = sqrt(sin_sq_phi + (cos(snake_case_ ) * cos(snake_case_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 600851475143 ) -> int: """simple docstring""" try: _lowerCAmelCase = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: while n % i == 0: _lowerCAmelCase = i n //= i i += 1 if n > 1: _lowerCAmelCase = n return int(snake_case_ ) if __name__ == "__main__": print(F'{solution() = }')
317
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _UpperCAmelCase ( _lowerCamelCase : Tuple ) -> Dict: _lowerCAmelCase : List[str] = os.path.join(args.tf_model_dir , """parameters.json""" ) _lowerCAmelCase : Tuple = json.loads(open(lowercase__ ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith(""".pt""" ): _lowerCAmelCase : List[Any] = args.output + """.pt""" _lowerCAmelCase : Optional[int] = OrderedDict() with tf.device("""/CPU:0""" ): _lowerCAmelCase : Tuple = tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase : List[Any] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase : List[str] = reader.get_tensor(lowercase__ ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): _lowerCAmelCase : Dict = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): _lowerCAmelCase : Any = 8 _lowerCAmelCase : Tuple = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : List[Any] = torch.tensor(lowercase__ ) elif key_name.startswith("""model/moe""" ): _lowerCAmelCase : Optional[Any] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): _lowerCAmelCase : int = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player _lowerCAmelCase : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Union[str, Any] = torch.tensor(lowercase__ ) elif key_name.endswith("""/softmlp/kernel""" ): _lowerCAmelCase : Tuple = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player _lowerCAmelCase : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Any = torch.tensor(lowercase__ ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): _lowerCAmelCase : Tuple = key_name[-9:-7] for i in range(16 ): _lowerCAmelCase : Dict = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) _lowerCAmelCase : Optional[Any] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase : List[str] = torch.tensor(lowercase__ ) elif key_name.startswith("""model/mlp""" ): _lowerCAmelCase : Optional[Any] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): _lowerCAmelCase : List[str] = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player _lowerCAmelCase : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Dict = torch.tensor(lowercase__ ) elif key_name.endswith("""/p1/bias""" ): _lowerCAmelCase : Tuple = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player _lowerCAmelCase : List[str] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : Any = torch.tensor(lowercase__ ) elif key_name.endswith("""/p2/kernel""" ): _lowerCAmelCase : List[Any] = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player _lowerCAmelCase : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : List[Any] = torch.tensor(lowercase__ ) elif key_name.endswith("""/p2/bias""" ): _lowerCAmelCase : Any = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player _lowerCAmelCase : List[Any] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : Tuple = torch.tensor(lowercase__ ) elif key_name.startswith("""model/ln""" ): _lowerCAmelCase : str = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): _lowerCAmelCase : Dict = """model.blocks.%d.feed_forward.norm.bias""" % player _lowerCAmelCase : List[Any] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : List[Any] = torch.tensor(lowercase__ ) elif key_name.endswith("""/g""" ): _lowerCAmelCase : Tuple = """model.blocks.%d.feed_forward.norm.weight""" % player _lowerCAmelCase : Tuple = vnp.copy() # same because it is one dimensional _lowerCAmelCase : List[str] = torch.tensor(lowercase__ ) elif key_name.startswith("""model/att""" ): _lowerCAmelCase : Optional[Any] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): _lowerCAmelCase : Any = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase : str = state[:, 0, :, :] _lowerCAmelCase : int = state[:, 1, :, :] _lowerCAmelCase : Dict = state[:, 2, :, :] _lowerCAmelCase : Any = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Dict = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Dict = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Optional[Any] = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player _lowerCAmelCase : List[str] = torch.tensor(lowercase__ ) _lowerCAmelCase : List[str] = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player _lowerCAmelCase : Union[str, Any] = torch.tensor(lowercase__ ) _lowerCAmelCase : str = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player _lowerCAmelCase : Optional[int] = torch.tensor(lowercase__ ) elif key_name.endswith("""/o/kernel""" ): _lowerCAmelCase : List[Any] = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player _lowerCAmelCase : int = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Optional[int] = torch.tensor(lowercase__ ) elif key_name.startswith("""model/an""" ): _lowerCAmelCase : Any = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): _lowerCAmelCase : Any = """model.blocks.%d.self_attn.norm.bias""" % player _lowerCAmelCase : Optional[int] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : List[Any] = torch.tensor(lowercase__ ) elif key_name.endswith("""/g""" ): _lowerCAmelCase : Dict = """model.blocks.%d.self_attn.norm.weight""" % player _lowerCAmelCase : Dict = vnp.copy() # same because it is one dimensional _lowerCAmelCase : Tuple = torch.tensor(lowercase__ ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): _lowerCAmelCase : Optional[Any] = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] _lowerCAmelCase : str = """model.%s.weight""" % nlayer _lowerCAmelCase : Union[str, Any] = vnp.copy() # same in embedded _lowerCAmelCase : Optional[Any] = torch.tensor(lowercase__ ) if key_name.startswith("""model/wte""" ): _lowerCAmelCase : Optional[Any] = """lm_head.weight""" _lowerCAmelCase : int = vnp.copy() # same in embedded _lowerCAmelCase : int = torch.tensor(lowercase__ ) elif key_name.startswith("""model/wob""" ): _lowerCAmelCase : Union[str, Any] = """final_logits_bias""" _lowerCAmelCase : Tuple = vnp.copy() # same in embedded _lowerCAmelCase : int = state.reshape((1, -1) ) _lowerCAmelCase : Optional[int] = torch.tensor(lowercase__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase : Optional[int] = """model.last_project.weight""" _lowerCAmelCase : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : List[str] = torch.tensor(lowercase__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase : Tuple = """model.last_project.bias""" _lowerCAmelCase : List[str] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : List[Any] = torch.tensor(lowercase__ ) torch.save(lowercase__ , args.output ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") UpperCamelCase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
309
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :str = "levit" def __init__( self , __A=224 , __A=3 , __A=3 , __A=2 , __A=1 , __A=16 , __A=[128, 256, 384] , __A=[4, 8, 12] , __A=[4, 4, 4] , __A=[16, 16, 16] , __A=0 , __A=[2, 2, 2] , __A=[2, 2, 2] , __A=0.0_2 , **__A , ) -> Any: super().__init__(**__A ) lowerCAmelCase_ :Tuple = image_size lowerCAmelCase_ :Optional[int] = num_channels lowerCAmelCase_ :Union[str, Any] = kernel_size lowerCAmelCase_ :Optional[Any] = stride lowerCAmelCase_ :Optional[int] = padding lowerCAmelCase_ :Optional[Any] = hidden_sizes lowerCAmelCase_ :Optional[int] = num_attention_heads lowerCAmelCase_ :int = depths lowerCAmelCase_ :List[str] = key_dim lowerCAmelCase_ :str = drop_path_rate lowerCAmelCase_ :Optional[int] = patch_size lowerCAmelCase_ :Union[str, Any] = attention_ratio lowerCAmelCase_ :Dict = mlp_ratio lowerCAmelCase_ :Any = initializer_range lowerCAmelCase_ :Optional[int] = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Tuple = version.parse("1.11" ) @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __lowerCAmelCase ( self ) -> float: return 1E-4
84
0
def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ): __a : Any = len(lowerCAmelCase__ ) __a : Union[str, Any] = [] for i in range(len(lowerCAmelCase__ ) - pat_len + 1 ): __a : List[Any] = True for j in range(lowerCAmelCase__ ): if s[i + j] != pattern[j]: __a : Union[str, Any] = False break if match_found: position.append(lowerCAmelCase__ ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
90
def __UpperCamelCase ( lowerCAmelCase__ : int = 1_0_0_0 ): __a : int = -1 __a : Any = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __a : List[Any] = (n * n - 2 * a * n) // (2 * n - 2 * a) __a : Union[str, Any] = n - a - b if c * c == (a * a + b * b): __a : Union[str, Any] = a * b * c if candidate >= product: __a : List[Any] = candidate return product if __name__ == "__main__": print(F"""{solution() = }""")
90
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _lowercase : Optional[int] = r"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''rag''' UpperCamelCase__ = True def __init__( self : str , lowercase_ : Any=None , lowercase_ : List[Any]=True , lowercase_ : str=None , lowercase_ : int=None , lowercase_ : Tuple=None , lowercase_ : Tuple=None , lowercase_ : Optional[Any]=None , lowercase_ : Any=" / " , lowercase_ : Tuple=" // " , lowercase_ : List[Any]=5 , lowercase_ : List[str]=300 , lowercase_ : List[Any]=768 , lowercase_ : Dict=8 , lowercase_ : Any="wiki_dpr" , lowercase_ : List[Any]="train" , lowercase_ : Optional[Any]="compressed" , lowercase_ : Any=None , lowercase_ : Union[str, Any]=None , lowercase_ : Any=False , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=0.0 , lowercase_ : Optional[int]=True , lowercase_ : Optional[Any]=False , lowercase_ : Dict=False , lowercase_ : Union[str, Any]=False , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=None , **lowercase_ : int , ): super().__init__( bos_token_id=lowercase_ , pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , prefix=lowercase_ , vocab_size=lowercase_ , **lowercase_ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase_ : Optional[int] = kwargs.pop("""question_encoder""" ) lowercase_ : str = question_encoder_config.pop("""model_type""" ) lowercase_ : Optional[Any] = kwargs.pop("""generator""" ) lowercase_ : Any = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig lowercase_ : Optional[int] = AutoConfig.for_model(lowercase_ , **lowercase_ ) lowercase_ : Any = AutoConfig.for_model(lowercase_ , **lowercase_ ) lowercase_ : Dict = reduce_loss lowercase_ : Union[str, Any] = label_smoothing lowercase_ : int = exclude_bos_score lowercase_ : List[Any] = do_marginalize lowercase_ : int = title_sep lowercase_ : Any = doc_sep lowercase_ : Dict = n_docs lowercase_ : Optional[int] = max_combined_length lowercase_ : List[str] = dataset lowercase_ : Optional[Any] = dataset_split lowercase_ : Dict = index_name lowercase_ : List[Any] = retrieval_vector_size lowercase_ : str = retrieval_batch_size lowercase_ : Any = passages_path lowercase_ : Union[str, Any] = index_path lowercase_ : str = use_dummy_dataset lowercase_ : List[Any] = output_retrieved lowercase_ : int = do_deduplication lowercase_ : List[str] = use_cache if self.forced_eos_token_id is None: lowercase_ : Optional[Any] = getattr(self.generator , """forced_eos_token_id""" , lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , lowercase_ : PretrainedConfig , lowercase_ : PretrainedConfig , **lowercase_ : int ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : int = copy.deepcopy(self.__dict__ ) lowercase_ : List[Any] = self.question_encoder.to_dict() lowercase_ : Optional[int] = self.generator.to_dict() lowercase_ : str = self.__class__.model_type return output
239
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Dict = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
239
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class A__ ( unittest.TestCase , UpperCamelCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = load_tool("text-classification" ) self.tool.setup() _UpperCAmelCase : Any = load_tool("text-classification" , remote=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(lowerCAmelCase__ , "positive" ) def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(lowerCAmelCase__ , "positive" ) def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(lowerCAmelCase__ , "positive" ) def _lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(lowerCAmelCase__ , "positive" )
354
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _a = '''.''' if __name__ == "__main__": _a = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') _a = [] _a = [] with open(doctest_file_path) as fp: for line in fp: _a = line.strip() _a = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _a = '''\n'''.join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
39
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _SCREAMING_SNAKE_CASE : Optional[int] = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class a ( unittest.TestCase , __snake_case ): def UpperCamelCase ( self : int ) -> Optional[int]: lowerCamelCase_ = load_tool('text-question-answering' ) self.tool.setup() lowerCamelCase_ = load_tool('text-question-answering' , remote=__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Dict ) -> Tuple: lowerCamelCase_ = self.tool(__SCREAMING_SNAKE_CASE , 'What did Hugging Face do in April 2021?' ) self.assertEqual(__SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop' ) def UpperCamelCase ( self : List[Any] ) -> Optional[int]: lowerCamelCase_ = self.remote_tool(__SCREAMING_SNAKE_CASE , 'What did Hugging Face do in April 2021?' ) self.assertEqual(__SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop' ) def UpperCamelCase ( self : List[str] ) -> Optional[int]: lowerCamelCase_ = self.tool(text=__SCREAMING_SNAKE_CASE , question='What did Hugging Face do in April 2021?' ) self.assertEqual(__SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop' ) def UpperCamelCase ( self : Union[str, Any] ) -> int: lowerCamelCase_ = self.remote_tool(text=__SCREAMING_SNAKE_CASE , question='What did Hugging Face do in April 2021?' ) self.assertEqual(__SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop' )
183
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str = " " ): """simple docstring""" __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Dict = 0 for index, char in enumerate(lowerCAmelCase__ ): if char == separator: split_words.append(string[last_index:index] ) __UpperCAmelCase : Union[str, Any] = index + 1 elif index + 1 == len(lowerCAmelCase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
16
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( lowerCAmelCase__ : List[str] ): """simple docstring""" if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : int = size if size is not None else {"""shortest_edge""": 256} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : Any = crop_size __UpperCAmelCase : Optional[Any] = resample __UpperCAmelCase : Dict = do_rescale __UpperCAmelCase : List[str] = rescale_factor __UpperCAmelCase : Dict = offset __UpperCAmelCase : List[str] = do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: __UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size["""shortest_edge"""] , default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: __UpperCAmelCase : Any = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = image.astype(np.floataa ) if offset: __UpperCAmelCase : Tuple = image - (scale / 2) return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Optional[Any] = to_numpy_array(__UpperCAmelCase ) if do_resize: __UpperCAmelCase : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) if do_center_crop: __UpperCAmelCase : Optional[int] = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase ) if do_rescale: __UpperCAmelCase : int = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , offset=__UpperCAmelCase ) if do_normalize: __UpperCAmelCase : List[str] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) return image def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : List[Any] = resample if resample is not None else self.resample __UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[Any] = offset if offset is not None else self.offset __UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : int = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : str = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __UpperCAmelCase : int = make_batched(__UpperCAmelCase ) __UpperCAmelCase : Tuple = [ [ self._preprocess_image( image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , offset=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , ) for img in video ] for video in videos ] __UpperCAmelCase : Tuple = {"""pixel_values""": videos} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
16
1
"""simple docstring""" import math def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase ( UpperCAmelCase_ : int = 1_00_01 ) -> int: '''simple docstring''' try: __snake_case : Dict = int(UpperCAmelCase_ ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) __snake_case : list[int] = [] __snake_case : Tuple = 2 while len(UpperCAmelCase_ ) < nth: if is_prime(UpperCAmelCase_ ): primes.append(UpperCAmelCase_ ) num += 1 else: num += 1 return primes[len(UpperCAmelCase_ ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
172
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : Union[str, Any]) -> Optional[Any]: __snake_case : int = 0 def _lowercase (self : Union[str, Any]) -> Optional[Any]: __snake_case : int = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32') self.assertIsInstance(_A , _A) def _lowercase (self : Any) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Union[str, Any] = Path(_A) / 'preprocessor_config.json' __snake_case : Optional[Any] = Path(_A) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) __snake_case : Tuple = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : List[Any]) -> List[str]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[Any] = Path(_A) / 'preprocessor_config.json' __snake_case : Dict = Path(_A) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) __snake_case : Any = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : List[str]) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : int = CLIPConfig() # Create a dummy config file with image_proceesor_type __snake_case : int = Path(_A) / 'preprocessor_config.json' __snake_case : Dict = Path(_A) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __snake_case : List[Any] = AutoImageProcessor.from_pretrained(_A).to_dict() config_dict.pop('image_processor_type') __snake_case : Dict = CLIPImageProcessor(**_A) # save in new folder model_config.save_pretrained(_A) config.save_pretrained(_A) __snake_case : Tuple = AutoImageProcessor.from_pretrained(_A) # make sure private variable is not incorrectly saved __snake_case : Optional[int] = json.loads(config.to_json_string()) self.assertTrue('_processor_class' not in dict_as_saved) self.assertIsInstance(_A , _A) def _lowercase (self : Union[str, Any]) -> str: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : int = Path(_A) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) __snake_case : Any = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : List[Any]) -> str: with self.assertRaisesRegex( _A , 'clip-base is not a local folder and is not a valid model identifier'): __snake_case : Tuple = AutoImageProcessor.from_pretrained('clip-base') def _lowercase (self : Optional[int]) -> int: with self.assertRaisesRegex( _A , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __snake_case : int = AutoImageProcessor.from_pretrained(_A , revision='aaaaaa') def _lowercase (self : Tuple) -> Optional[int]: with self.assertRaisesRegex( _A , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __snake_case : Any = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model') def _lowercase (self : Tuple) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_A): __snake_case : Optional[Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') # If remote code is disabled, we can't load this config. with self.assertRaises(_A): __snake_case : Any = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) __snake_case : Any = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A) __snake_case : Dict = AutoImageProcessor.from_pretrained(_A , trust_remote_code=_A) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor') def _lowercase (self : int) -> str: try: AutoConfig.register('custom' , _A) AutoImageProcessor.register(_A , _A) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A): AutoImageProcessor.register(_A , _A) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Optional[Any] = Path(_A) / 'preprocessor_config.json' __snake_case : Optional[Any] = Path(_A) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) __snake_case : Tuple = CustomImageProcessor.from_pretrained(_A) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A) __snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowercase (self : int) -> str: class UpperCamelCase ( lowercase ): UpperCAmelCase : List[str] = True try: AutoConfig.register('custom' , _A) AutoImageProcessor.register(_A , _A) # If remote code is not set, the default is to use local __snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. __snake_case : Tuple = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub __snake_case : Tuple = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(not hasattr(_A , 'is_local')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
172
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __lowercase ( __lowerCAmelCase : str ): a__ = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 1_8, 2] a__ = True if 'large' in model_name or 'huge' in model_name else False a__ = True if 'large' in model_name or 'huge' in model_name else False a__ = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a__ = [3, 3, 3, 3] a__ = [5, 5, 5, 5] elif "fl4" in model_name: a__ = [4, 4, 4, 4] a__ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a__ = [3, 3, 3, 3] if "lrf" in model_name: a__ = [3, 3, 3, 3] else: a__ = [2, 2, 2, 2] if "tiny" in model_name: a__ = 9_6 elif "small" in model_name: a__ = 9_6 elif "base" in model_name: a__ = 1_2_8 elif "large" in model_name: a__ = 1_9_2 elif "xlarge" in model_name: a__ = 2_5_6 elif "huge" in model_name: a__ = 3_5_2 # set label information a__ = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: a__ = 'imagenet-22k-id2label.json' else: a__ = 'imagenet-1k-id2label.json' a__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) a__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} a__ = {v: k for k, v in idalabel.items()} a__ = FocalNetConfig( embed_dim=__lowerCAmelCase , depths=__lowerCAmelCase , focal_levels=__lowerCAmelCase , focal_windows=__lowerCAmelCase , use_conv_embed=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase , use_post_layernorm=__lowerCAmelCase , use_layerscale=__lowerCAmelCase , ) return config def __lowercase ( __lowerCAmelCase : Optional[int] ): if "patch_embed.proj" in name: a__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a__ = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: a__ = 'encoder.' + name if "encoder.layers" in name: a__ = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: a__ = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: a__ = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a__ = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a__ = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a__ = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": a__ = 'layernorm.weight' if name == "norm.bias": a__ = 'layernorm.bias' if "head" in name: a__ = name.replace('head' , 'classifier' ) else: a__ = 'focalnet.' + name return name def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict=False ): # fmt: off a__ = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on a__ = model_name_to_url[model_name] print('Checkpoint URL: ' , __lowerCAmelCase ) a__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): a__ = state_dict.pop(__lowerCAmelCase ) a__ = val a__ = get_focalnet_config(__lowerCAmelCase ) a__ = FocalNetForImageClassification(__lowerCAmelCase ) model.eval() # load state dict model.load_state_dict(__lowerCAmelCase ) # verify conversion a__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' a__ = BitImageProcessor( do_resize=__lowerCAmelCase , size={'shortest_edge': 2_5_6} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCAmelCase , crop_size=2_2_4 , do_normalize=__lowerCAmelCase , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase , ) a__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) a__ = processor(images=__lowerCAmelCase , return_tensors='pt' ) a__ = transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a__ = image_transforms(__lowerCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCAmelCase , atol=1E-4 ) a__ = model(**__lowerCAmelCase ) a__ = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a__ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": a__ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": a__ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": a__ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": a__ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": a__ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor of {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print(F'Pushing model and processor of {model_name} to the hub...' ) model.push_to_hub(F'{model_name}' ) processor.push_to_hub(F'{model_name}' ) if __name__ == "__main__": snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) snake_case : Union[str, Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
109
from collections import defaultdict from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 , __lowerCAmelCase : int = 1_0 ): a__ = defaultdict(__lowerCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: a__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: a__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__lowerCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(f"""{solution() = }""")
109
1
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() __A : Optional[int] = logging.get_logger(__name__) __A : Optional[Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } __A : int = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' for attribute in key.split('''.''' ): _UpperCAmelCase = getattr(a__ , a__ ) if weight_type is not None: _UpperCAmelCase = getattr(a__ , a__ ).shape else: _UpperCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _UpperCAmelCase = value elif weight_type == "weight_g": _UpperCAmelCase = value elif weight_type == "weight_v": _UpperCAmelCase = value elif weight_type == "bias": _UpperCAmelCase = value else: _UpperCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = fairseq_model.state_dict() _UpperCAmelCase = hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCAmelCase = True if "*" in mapped_key: _UpperCAmelCase = name.split(a__ )[0].split('''.''' )[-2] _UpperCAmelCase = mapped_key.replace('''*''' , a__ ) if "weight_g" in name: _UpperCAmelCase = '''weight_g''' elif "weight_v" in name: _UpperCAmelCase = '''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: _UpperCAmelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase = '''weight''' else: _UpperCAmelCase = None set_recursively(a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(f'Unused weights: {unused_weights}' ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = full_name.split('''conv_layers.''' )[-1] _UpperCAmelCase = name.split('''.''' ) _UpperCAmelCase = int(items[0] ) _UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(a__ ) @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str=None ): '''simple docstring''' _UpperCAmelCase = torch.load(a__ ) _UpperCAmelCase = WavLMConfigOrig(checkpoint['''cfg'''] ) _UpperCAmelCase = WavLMOrig(a__ ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: _UpperCAmelCase = WavLMConfig.from_pretrained(a__ ) else: _UpperCAmelCase = WavLMConfig() _UpperCAmelCase = WavLMModel(a__ ) recursively_load_weights(a__ , a__ ) hf_wavlm.save_pretrained(a__ ) if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __A : int = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
260
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : int = MBartConfig UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : Union[str, Any] = '''gelu''' def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=False , _A=99 , _A=32 , _A=2 , _A=4 , _A=37 , _A=0.1 , _A=0.1 , _A=20 , _A=2 , _A=1 , _A=0 , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(_A , _A , _A ) return config, inputs_dict def _A ( self , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFMBartModel(config=_A ).get_decoder() __SCREAMING_SNAKE_CASE = inputs_dict['input_ids'] __SCREAMING_SNAKE_CASE = input_ids[:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['attention_mask'][:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['head_mask'] __SCREAMING_SNAKE_CASE = 1 # first forward pass __SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() __SCREAMING_SNAKE_CASE = past_key_values[1] def __lowercase ( a__ , a__ , a__ , a__=None , a__=None , a__=None , a__=None , a__=None , ) -> str: if attention_mask is None: __SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(a__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Any = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () UpperCamelCase__ : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () UpperCamelCase__ : Optional[Any] = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase__ : List[str] = True UpperCamelCase__ : Tuple = False UpperCamelCase__ : Union[str, Any] = False def _A ( self , _A , _A , _A , _A , _A ): '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFMBartModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_A ) def _A ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Any = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] UpperCamelCase__ : str = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] UpperCamelCase__ : List[str] = '''facebook/mbart-large-en-ro''' @cached_property def _A ( self ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _A ( self , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.translate_src_text(**_A ) self.assertListEqual(self.expected_text , _A ) def _A ( self , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **_A , return_tensors='tf' ) __SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(_A , skip_special_tokens=_A ) return generated_words @slow def _A ( self ): '''simple docstring''' self._assert_generated_batch_equal_expected()
257
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="attention" ) -> Tuple: """simple docstring""" lowerCamelCase__ : Dict = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) lowerCamelCase__ : Tuple = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowerCamelCase__ : Union[str, Any] = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) lowerCamelCase__ : Optional[int] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowerCamelCase__ : List[Any] = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) lowerCamelCase__ : Any = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowerCamelCase__ : Optional[Any] = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) lowerCamelCase__ : Any = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> str: """simple docstring""" if split_mlp_wi: lowerCamelCase__ : Tuple = params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] lowerCamelCase__ : str = params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] lowerCamelCase__ : Optional[int] = (wi_a, wi_a) else: lowerCamelCase__ : int = params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] lowerCamelCase__ : Any = params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i] def _a ( UpperCAmelCase , *, UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) -> List[str]: """simple docstring""" lowerCamelCase__ : Optional[int] = traverse_util.flatten_dict(variables['''target'''] ) lowerCamelCase__ : Any = {'''/'''.join(UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCamelCase__ : Any = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' , UpperCAmelCase ) lowerCamelCase__ : Any = collections.OrderedDict() # Shared embeddings. lowerCamelCase__ : int = old['''token_embedder/embedding'''] # Encoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). lowerCamelCase__ : str = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , '''pre_attention_layer_norm''' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , '''attention''' ) lowerCamelCase__ : Dict = layer_norm lowerCamelCase__ : List[str] = k.T lowerCamelCase__ : str = o.T lowerCamelCase__ : Union[str, Any] = q.T lowerCamelCase__ : List[str] = v.T # Block i, layer 1 (MLP). lowerCamelCase__ : Union[str, Any] = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , '''pre_mlp_layer_norm''' ) lowerCamelCase__ , lowerCamelCase__ : str = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , '''encoder''' , UpperCAmelCase ) lowerCamelCase__ : Any = layer_norm if split_mlp_wi: lowerCamelCase__ : Optional[Any] = wi[0].T lowerCamelCase__ : Any = wi[1].T else: lowerCamelCase__ : Any = wi.T lowerCamelCase__ : Dict = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase__ : Dict = tax_relpos_bias_lookup( UpperCAmelCase , UpperCAmelCase , '''encoder''' ).T lowerCamelCase__ : Tuple = old['''encoder/encoder_norm/scale'''] if not scalable_attention: lowerCamelCase__ : Optional[Any] = tax_relpos_bias_lookup( UpperCAmelCase , 0 , '''encoder''' ).T lowerCamelCase__ : Optional[Any] = tax_relpos_bias_lookup( UpperCAmelCase , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). lowerCamelCase__ : Optional[int] = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''pre_self_attention_layer_norm''' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''self_attention''' ) lowerCamelCase__ : Optional[Any] = layer_norm lowerCamelCase__ : List[Any] = k.T lowerCamelCase__ : List[Any] = o.T lowerCamelCase__ : Any = q.T lowerCamelCase__ : List[str] = v.T # Block i, layer 1 (Cross Attention). lowerCamelCase__ : Any = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''pre_cross_attention_layer_norm''' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''encoder_decoder_attention''' ) lowerCamelCase__ : Dict = layer_norm lowerCamelCase__ : Optional[int] = k.T lowerCamelCase__ : List[Any] = o.T lowerCamelCase__ : str = q.T lowerCamelCase__ : Dict = v.T # Block i, layer 2 (MLP). lowerCamelCase__ : List[str] = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , '''pre_mlp_layer_norm''' ) lowerCamelCase__ , lowerCamelCase__ : List[str] = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' , UpperCAmelCase ) lowerCamelCase__ : int = layer_norm if split_mlp_wi: lowerCamelCase__ : Dict = wi[0].T lowerCamelCase__ : str = wi[1].T else: lowerCamelCase__ : Dict = wi.T lowerCamelCase__ : Union[str, Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCamelCase__ : Optional[int] = tax_relpos_bias_lookup(UpperCAmelCase , UpperCAmelCase , '''decoder''' ).T lowerCamelCase__ : Tuple = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCamelCase__ : Optional[Any] = old['''decoder/logits_dense/kernel'''].T return new def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" lowerCamelCase__ : Union[str, Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCamelCase__ : str = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCamelCase__ : Dict = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) lowerCamelCase__ : Any = state_dict['''shared.weight'''] return state_dict def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" lowerCamelCase__ : int = checkpoints.load_tax_checkpoint(UpperCAmelCase ) lowerCamelCase__ : Dict = convert_tax_to_pytorch( UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase , scalable_attention=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = make_state_dict(UpperCAmelCase , UpperCAmelCase ) model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = False , ) -> List[str]: """simple docstring""" lowerCamelCase__ : Optional[int] = MTaConfig.from_json_file(UpperCAmelCase ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCamelCase__ : Any = UMTaEncoderModel(UpperCAmelCase ) else: lowerCamelCase__ : Optional[Any] = UMTaForConditionalGeneration(UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase ) print('''Done''' ) if __name__ == "__main__": _A : List[Any] = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) _A : Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
265
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Optional[int] , A : Union[str, Any] , A : Any=7 , A : Optional[int]=3 , A : Tuple=3_0 , A : List[Any]=4_0_0 , A : str=True , A : Optional[int]=None , A : Tuple=True , A : Union[str, Any]=1 / 2_5_5 , A : Any=True , A : Optional[int]=[0.5, 0.5, 0.5] , A : Optional[int]=[0.5, 0.5, 0.5] , A : str=True , ) ->List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCamelCase__ : Union[str, Any] = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} lowerCamelCase__ : List[str] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : int = num_channels lowerCamelCase__ : Optional[Any] = min_resolution lowerCamelCase__ : List[Any] = max_resolution lowerCamelCase__ : int = do_resize lowerCamelCase__ : List[str] = size lowerCamelCase__ : Union[str, Any] = do_rescale lowerCamelCase__ : Optional[int] = rescale_factor lowerCamelCase__ : List[str] = do_normalize lowerCamelCase__ : Tuple = image_mean lowerCamelCase__ : str = image_std lowerCamelCase__ : List[Any] = do_pad def __lowerCamelCase ( self : List[str] ) ->Dict: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __lowerCamelCase ( self : Tuple , A : int , A : List[str]=False ) ->int: if not batched: lowerCamelCase__ : Union[str, Any] = image_inputs[0] if isinstance(A , Image.Image ): lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = image.size else: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = image.shape[1], image.shape[2] if w < h: lowerCamelCase__ : List[Any] = int(self.size['''shortest_edge'''] * h / w ) lowerCamelCase__ : List[Any] = self.size['''shortest_edge'''] elif w > h: lowerCamelCase__ : List[Any] = self.size['''shortest_edge'''] lowerCamelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: lowerCamelCase__ : List[Any] = self.size['''shortest_edge'''] lowerCamelCase__ : Any = self.size['''shortest_edge'''] else: lowerCamelCase__ : Optional[Any] = [] for image in image_inputs: lowerCamelCase__ , lowerCamelCase__ : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase__ : Dict = max(A , key=lambda A : item[0] )[0] lowerCamelCase__ : Dict = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Optional[Any] = DetrImageProcessor if is_vision_available() else None def __lowerCamelCase ( self : Optional[int] ) ->Dict: lowerCamelCase__ : Optional[int] = DetrImageProcessingTester(self ) @property def __lowerCamelCase ( self : Dict ) ->Any: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self : int ) ->Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_rescale''' ) ) self.assertTrue(hasattr(A , '''rescale_factor''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) self.assertTrue(hasattr(A , '''do_pad''' ) ) def __lowerCamelCase ( self : int ) ->Union[str, Any]: lowerCamelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , A ) lowerCamelCase__ : str = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , A ) def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[Any]: pass def __lowerCamelCase ( self : str ) ->Optional[Any]: # Initialize image_processing lowerCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input lowerCamelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : str = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ , lowerCamelCase__ : int = self.image_processor_tester.get_expected_values(A , batched=A ) lowerCamelCase__ : Any = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self : List[str] ) ->List[str]: # Initialize image_processing lowerCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input lowerCamelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : str = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ : List[Any] = image_processing(A , return_tensors='''pt''' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self : Any ) ->Any: # Initialize image_processing lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input lowerCamelCase__ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : str = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ : str = image_processing(A , return_tensors='''pt''' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : str = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowerCamelCase ( self : Tuple ) ->List[Any]: # prepare image and target lowerCamelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowerCamelCase__ : Union[str, Any] = json.loads(f.read() ) lowerCamelCase__ : List[str] = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them lowerCamelCase__ : Optional[int] = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) lowerCamelCase__ : List[Any] = image_processing(images=A , annotations=A , return_tensors='''pt''' ) # verify pixel values lowerCamelCase__ : Optional[int] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowerCamelCase__ : Any = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area lowerCamelCase__ : Dict = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowerCamelCase__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowerCamelCase__ : str = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1e-3 ) ) # verify image_id lowerCamelCase__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowerCamelCase__ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowerCamelCase__ : List[Any] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify orig_size lowerCamelCase__ : str = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowerCamelCase__ : str = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) ) @slow def __lowerCamelCase ( self : Optional[Any] ) ->List[str]: # prepare image, target and masks_path lowerCamelCase__ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowerCamelCase__ : Optional[Any] = json.loads(f.read() ) lowerCamelCase__ : Union[str, Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} lowerCamelCase__ : List[Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCamelCase__ : Any = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) lowerCamelCase__ : Tuple = image_processing(images=A , annotations=A , masks_path=A , return_tensors='''pt''' ) # verify pixel values lowerCamelCase__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowerCamelCase__ : str = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area lowerCamelCase__ : int = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowerCamelCase__ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowerCamelCase__ : Optional[Any] = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1e-3 ) ) # verify image_id lowerCamelCase__ : int = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowerCamelCase__ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowerCamelCase__ : int = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify masks lowerCamelCase__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A ) # verify orig_size lowerCamelCase__ : List[Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowerCamelCase__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) )
265
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding='utf-8', check=snake_case__, ) assert hasattr(self, 'env' ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_=1 ) -> Tuple: return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-single""", instance_count=snake_case__, instance_type=self.instance_type, debugger_hook_config=snake_case__, hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path}, metric_definitions=self.env.metric_definitions, py_version='py36', ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any: TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = self.create_estimator() # run training estimator.fit() # result dataframe UpperCamelCase : str = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase : int = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) UpperCamelCase : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds', 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""", 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss}, snake_case__ )
119
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCAmelCase : List[Any] =logging.get_logger(__name__) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): return [ int(10_00 * (box[0] / width)), int(10_00 * (box[1] / height)), int(10_00 * (box[2] / width)), int(10_00 * (box[3] / height)), ] def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None): UpperCamelCase_ = tesseract_config if tesseract_config is not None else "" # apply OCR UpperCamelCase_ = to_pil_image(_lowerCAmelCase) UpperCamelCase_ , UpperCamelCase_ = pil_image.size UpperCamelCase_ = pytesseract.image_to_data(_lowerCAmelCase , lang=_lowerCAmelCase , output_type="dict" , config=_lowerCAmelCase) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates UpperCamelCase_ = [idx for idx, word in enumerate(_lowerCAmelCase) if not word.strip()] UpperCamelCase_ = [word for idx, word in enumerate(_lowerCAmelCase) if idx not in irrelevant_indices] UpperCamelCase_ = [coord for idx, coord in enumerate(_lowerCAmelCase) if idx not in irrelevant_indices] UpperCamelCase_ = [coord for idx, coord in enumerate(_lowerCAmelCase) if idx not in irrelevant_indices] UpperCamelCase_ = [coord for idx, coord in enumerate(_lowerCAmelCase) if idx not in irrelevant_indices] UpperCamelCase_ = [coord for idx, coord in enumerate(_lowerCAmelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCamelCase_ = [] for x, y, w, h in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = [x, y, x + w, y + h] actual_boxes.append(_lowerCAmelCase) # finally, normalize the bounding boxes UpperCamelCase_ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)) assert len(_lowerCAmelCase) == len(_lowerCAmelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class _lowercase (a_ ): '''simple docstring''' lowercase__ = ["""pixel_values"""] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = True , snake_case__ = None , snake_case__ = "" , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCamelCase_ = size if size is not None else {"height": 224, "width": 224} UpperCamelCase_ = get_size_dict(snake_case__ ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = resample UpperCamelCase_ = apply_ocr UpperCamelCase_ = ocr_lang UpperCamelCase_ = tesseract_config def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = None , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) UpperCamelCase_ = (size["height"], size["width"]) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _lowerCamelCase ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(snake_case__ ) UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCamelCase_ = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCamelCase_ = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCamelCase_ = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(snake_case__ ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) UpperCamelCase_ = [] UpperCamelCase_ = [] for image in images: UpperCamelCase_ , UpperCamelCase_ = apply_tesseract(snake_case__ , snake_case__ , snake_case__ ) words_batch.append(snake_case__ ) boxes_batch.append(snake_case__ ) if do_resize: UpperCamelCase_ = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) UpperCamelCase_ = [flip_channel_order(snake_case__ ) for image in images] UpperCamelCase_ = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] UpperCamelCase_ = BatchFeature(data={"pixel_values": images} , tensor_type=snake_case__ ) if apply_ocr: UpperCamelCase_ = words_batch UpperCamelCase_ = boxes_batch return data
128
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase : Optional[Any] =logging.get_logger(__name__) class __a ( A__ ): def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , SCREAMING_SNAKE_CASE , ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
368
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __a ( unittest.TestCase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any]=7 , SCREAMING_SNAKE_CASE : str=3 , SCREAMING_SNAKE_CASE : Dict=18 , SCREAMING_SNAKE_CASE : str=30 , SCREAMING_SNAKE_CASE : Union[str, Any]=4_00 , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : Any=32 , SCREAMING_SNAKE_CASE : int=True , ): '''simple docstring''' UpperCamelCase__ : Optional[int] = parent UpperCamelCase__ : Dict = batch_size UpperCamelCase__ : Optional[Any] = num_channels UpperCamelCase__ : int = image_size UpperCamelCase__ : Dict = min_resolution UpperCamelCase__ : List[str] = max_resolution UpperCamelCase__ : Union[str, Any] = do_resize UpperCamelCase__ : Optional[Any] = size_divisor UpperCamelCase__ : int = do_rescale def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __a ( A__ , unittest.TestCase ): _lowerCAmelCase : List[Any] = GLPNImageProcessor if is_vision_available() else None def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Tuple = GLPNImageProcessingTester(self ) @property def __lowercase ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size_divisor" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "resample" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_rescale" ) ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
196
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class lowerCamelCase_ (snake_case__ , snake_case__ ): '''simple docstring''' __UpperCamelCase: Tuple = "resnet" __UpperCamelCase: Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Tuple , A : Optional[int]=3 , A : Union[str, Any]=64 , A : Dict=[256, 512, 1024, 2048] , A : Tuple=[3, 4, 6, 3] , A : Optional[Any]="bottleneck" , A : int="relu" , A : List[Any]=False , A : Optional[int]=None , A : Union[str, Any]=None , **A : List[Any] , ): super().__init__(**A ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : int = embedding_size _UpperCAmelCase : Union[str, Any] = hidden_sizes _UpperCAmelCase : int = depths _UpperCAmelCase : Any = layer_type _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : Union[str, Any] = downsample_in_first_stage _UpperCAmelCase : Dict = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(A ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : str = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: List[str] = version.parse("1.11" ) @property def _A ( self : Dict ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _A ( self : Dict ): return 1E-3
31
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets a ="""\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ a ="""\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ a =""" Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: __lowerCamelCase : Optional[Any] = simple_accuracy(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Tuple = float(fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : Any = np.array(lowerCamelCase__ ) __lowerCamelCase : List[Any] = np.array(lowerCamelCase__ ) __lowerCamelCase : Any = en_sentvecs.shape[0] # mean centering __lowerCamelCase : Union[str, Any] = en_sentvecs - np.mean(lowerCamelCase__ , axis=0 ) __lowerCamelCase : Dict = in_sentvecs - np.mean(lowerCamelCase__ , axis=0 ) __lowerCamelCase : Optional[int] = cdist(lowerCamelCase__ , lowerCamelCase__ , 'cosine' ) __lowerCamelCase : Optional[Any] = np.array(range(lowerCamelCase__ ) ) __lowerCamelCase : Dict = sim.argsort(axis=1 )[:, :1_0] __lowerCamelCase : Optional[int] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowerCAmelCase ( self : Optional[Any]): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]') return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), 'references': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), }) ,codebase_urls=[] ,reference_urls=[] ,format='numpy' if self.config_name != 'cvit-mkb-clsr' else None ,) def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[Any]): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)} elif self.config_name in ["wiki-ner"]: return acc_and_fa(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]')
73
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : '''simple docstring''' def __init__( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any]=13 , __lowerCAmelCase : Union[str, Any]=32 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Optional[Any]=4 , __lowerCAmelCase : Optional[int]=[10, 20, 30, 40] , __lowerCAmelCase : int=[2, 2, 3, 2] , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : str=10 , __lowerCAmelCase : str=0.0_2 , __lowerCAmelCase : Tuple=["stage2", "stage3", "stage4"] , __lowerCAmelCase : Tuple=[2, 3, 4] , __lowerCAmelCase : Tuple=None , ) -> List[str]: """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_stages A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = intermediate_size A__ = hidden_act A__ = num_labels A__ = initializer_range A__ = out_features A__ = out_indices A__ = scope def a_ ( self : Any ) -> Dict: """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def a_ ( self : int ) -> List[Any]: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a_ ( self : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict ) -> Dict: """simple docstring""" A__ = ConvNextModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> str: """simple docstring""" A__ = ConvNextForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" A__ = ConvNextBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A__ = None A__ = ConvNextBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A__ = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a_ ( self : str ) -> List[str]: """simple docstring""" A__ = self.prepare_config_and_inputs() A__ = config_and_inputs A__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A (_a , _a , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __lowerCamelCase : str = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) __lowerCamelCase : List[str] = True __lowerCamelCase : Any = False __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Dict = False def a_ ( self : Optional[int] ) -> Dict: """simple docstring""" A__ = ConvNextModelTester(self ) A__ = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def a_ ( self : Optional[int] ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a_ ( self : Any ) -> Dict: """simple docstring""" return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def a_ ( self : Dict ) -> Dict: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def a_ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def a_ ( self : Tuple ) -> Optional[int]: """simple docstring""" pass def a_ ( self : Union[str, Any] ) -> str: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(__lowerCamelCase ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def a_ ( self : str ) -> Tuple: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def a_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase ) def a_ ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(__lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] ): A__ = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def a_ ( self : Any ) -> List[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def a_ ( self : Dict ) -> Optional[Any]: """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = ConvNextModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __lowerCamelCase ( ) -> str: """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A (unittest.TestCase ): '''simple docstring''' @cached_property def a_ ( self : List[Any] ) -> Tuple: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def a_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" A__ = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(__lowerCamelCase ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=__lowerCamelCase , return_tensors="""pt""" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): A__ = model(**__lowerCamelCase ) # verify the logits A__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) A__ = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) @require_torch class A (unittest.TestCase , _a ): '''simple docstring''' __lowerCamelCase : List[str] = (ConvNextBackbone,) if is_torch_available() else () __lowerCamelCase : int = ConvNextConfig __lowerCamelCase : Dict = False def a_ ( self : Any ) -> List[Any]: """simple docstring""" A__ = ConvNextModelTester(self )
368
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( __a :int ) -> int: """simple docstring""" A__ = prime_factors(__a ) if is_square_free(__a ): return -1 if len(__a ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
276
0
class UpperCAmelCase : def __init__(self : int ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = {} def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' print(self.vertex ) for i in self.vertex: print(UpperCAmelCase__ , " -> " , " -> ".join([str(UpperCAmelCase__ ) for j in self.vertex[i]] ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : int , snake_case__ : int ) -> List[Any]: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCAmelCase__ ) else: # else make a new vertex snake_case : List[Any] = [to_vertex] def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCAmelCase__ , UpperCAmelCase__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : int , snake_case__ : list ) -> int: '''simple docstring''' snake_case : List[str] = True print(UpperCAmelCase__ , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
59
"""simple docstring""" def _A ( UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase ,__lowercase = [], [] while len(UpperCamelCase_) > 1: __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) start.append(UpperCamelCase_) end.append(UpperCamelCase_) collection.remove(UpperCamelCase_) collection.remove(UpperCamelCase_) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
0
def lowerCAmelCase_ ( __lowerCAmelCase )-> Dict: '''simple docstring''' UpperCAmelCase : Optional[Any] =[] UpperCAmelCase : int =[] UpperCAmelCase : str ={ '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator UpperCAmelCase : Tuple =len(__lowerCAmelCase ) if (len(__lowerCAmelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(__lowerCAmelCase ) , '''Postfix'''.center(__lowerCAmelCase ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCAmelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCAmelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCAmelCase ) == 0: stack.append(__lowerCAmelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCAmelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCAmelCase ) # push x to stack print( x.center(8 ) , (''''''.join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , (''''''.join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=''' | ''' , ) # Output in tabular format while len(__lowerCAmelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , (''''''.join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=''' | ''' , ) # Output in tabular format return "".join(__lowerCAmelCase ) # return Postfix as str def lowerCAmelCase_ ( __lowerCAmelCase )-> Any: '''simple docstring''' UpperCAmelCase : List[Any] =list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCAmelCase ) ): if infix[i] == "(": UpperCAmelCase : Optional[Any] =''')''' # change "(" to ")" elif infix[i] == ")": UpperCAmelCase : int ='''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCAmelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __snake_case = input('''\nEnter an Infix Equation = ''') # Input an Infix equation __snake_case = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
78
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Dict = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Dict = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : str = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Dict = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[int] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[str] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[Any] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : str = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) def lowerCAmelCase_ ( *__lowerCAmelCase , **__lowerCAmelCase )-> List[str]: '''simple docstring''' requires_backends(__lowerCAmelCase , ['''torch'''] ) def lowerCAmelCase_ ( *__lowerCAmelCase , **__lowerCAmelCase )-> Tuple: '''simple docstring''' requires_backends(__lowerCAmelCase , ['''torch'''] ) def lowerCAmelCase_ ( *__lowerCAmelCase , **__lowerCAmelCase )-> List[str]: '''simple docstring''' requires_backends(__lowerCAmelCase , ['''torch'''] ) def lowerCAmelCase_ ( *__lowerCAmelCase , **__lowerCAmelCase )-> Optional[int]: '''simple docstring''' requires_backends(__lowerCAmelCase , ['''torch'''] ) def lowerCAmelCase_ ( *__lowerCAmelCase , **__lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' requires_backends(__lowerCAmelCase , ['''torch'''] ) def lowerCAmelCase_ ( *__lowerCAmelCase , **__lowerCAmelCase )-> Optional[int]: '''simple docstring''' requires_backends(__lowerCAmelCase , ['''torch'''] ) def lowerCAmelCase_ ( *__lowerCAmelCase , **__lowerCAmelCase )-> List[Any]: '''simple docstring''' requires_backends(__lowerCAmelCase , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : int = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[Any] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Dict = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[int] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[str] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : int = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : str = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[Any] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Dict = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[int] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Tuple = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[str] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Tuple = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Tuple = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[str] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Dict = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Dict = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Tuple = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[str] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[str] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Tuple = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[int] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[str] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[int] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : int = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : int = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Tuple = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : str = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : int = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : str = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Any = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Dict = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : str = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Tuple = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[str] = ["""torch"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def UpperCAmelCase__ ( cls , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] )
78
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = " " ) -> list: lowercase__ : Optional[int] = [] lowercase__ : Union[str, Any] = 0 for index, char in enumerate(__lowerCamelCase ): if char == separator: split_words.append(string[last_index:index] ) lowercase__ : Union[str, Any] = index + 1 elif index + 1 == len(__lowerCamelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
16
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : '''simple docstring''' lowerCAmelCase : List[str] lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="Translation" ,init=A_ ,repr=A_ ) def __call__( self : List[str] ) -> Any: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __A : '''simple docstring''' lowerCAmelCase : Optional[List] = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[str] = None # Automatically constructed lowerCAmelCase : ClassVar[str] = "dict" lowerCAmelCase : ClassVar[Any] = None lowerCAmelCase : str = field(default="TranslationVariableLanguages" ,init=A_ ,repr=A_ ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = sorted(set(self.languages ) ) if self.languages else None lowercase__ : Dict = len(self.languages ) if self.languages else None def __call__( self : List[Any] ) -> List[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ) -> int: """simple docstring""" lowercase__ : List[Any] = set(self.languages ) if self.languages and set(_snake_case ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(_snake_case ) - lang_set ) )}) are not in valid set ({", ".join(_snake_case )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowercase__ : str = [] for lang, text in translation_dict.items(): if isinstance(_snake_case ,_snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowercase__ , lowercase__ : Optional[Any] = zip(*sorted(_snake_case ) ) return {"language": languages, "translation": translations} def UpperCAmelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
16
1
from __future__ import annotations from collections.abc import Callable __UpperCamelCase : List[Any] = list[list[float | int]] def __A ( __lowerCamelCase , __lowerCamelCase ) -> Matrix: a = len(__lowerCamelCase ) a = [[0 for _ in range(size + 1 )] for _ in range(__lowerCamelCase )] a = 42 a = 42 a = 42 a = 42 a = 42 a = 42 for row in range(__lowerCamelCase ): for col in range(__lowerCamelCase ): a = matrix[row][col] a = vector[row][0] a = 0 a = 0 while row < size and col < size: # pivoting a = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCamelCase , __lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: a , a = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCamelCase ): a = augmented[rowa][col] / augmented[row][col] a = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCamelCase ): for row in range(__lowerCamelCase ): a = augmented[row][col] / augmented[col][col] for cola in range(__lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCamelCase ) ] def __A ( __lowerCamelCase ) -> Callable[[int], int]: a = len(__lowerCamelCase ) a = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] a = [[0] for _ in range(__lowerCamelCase )] a = 42 a = 42 a = 42 a = 42 for x_val, y_val in enumerate(__lowerCamelCase ): for col in range(__lowerCamelCase ): a = (x_val + 1) ** (size - col - 1) a = y_val a = solve(__lowerCamelCase , __lowerCamelCase ) def interpolated_func(__lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCamelCase ) ) return interpolated_func def __A ( __lowerCamelCase ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __A ( __lowerCamelCase = question_function , __lowerCamelCase = 10 ) -> int: a = [func(__lowerCamelCase ) for x_val in range(1 , order + 1 )] a = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] a = 0 a = 42 a = 42 for poly in polynomials: a = 1 while func(__lowerCamelCase ) == poly(__lowerCamelCase ): x_val += 1 ret += poly(__lowerCamelCase ) return ret if __name__ == "__main__": print(F'{solution() = }')
347
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
347
1
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder snake_case__ : str = '''base_with_context''' def _snake_case ( _snake_case : str , _snake_case : List[Any] ): lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) lowerCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=_snake_case ) for lyr_num, lyr in enumerate(model.encoders ): lowerCAmelCase : List[Any] = weights[f'''layers_{lyr_num}'''] lowerCAmelCase : Any = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) lowerCAmelCase : Dict = ly_weight['''attention'''] lowerCAmelCase : str = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCAmelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCAmelCase : str = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCAmelCase : str = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCAmelCase : Any = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _snake_case ( _snake_case : int , _snake_case : Optional[int] ): lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) lowerCAmelCase : str = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=_snake_case ) for lyr_num, lyr in enumerate(model.encoders ): lowerCAmelCase : Tuple = weights[f'''layers_{lyr_num}'''] lowerCAmelCase : int = ly_weight['''attention'''] lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCAmelCase : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) lowerCAmelCase : str = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCAmelCase : str = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _snake_case ( _snake_case : List[str] , _snake_case : str ): lowerCAmelCase : Any = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) lowerCAmelCase : Tuple = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=_snake_case ) lowerCAmelCase : Any = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCAmelCase : int = weights[f'''layers_{lyr_num}'''] lowerCAmelCase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) lowerCAmelCase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) lowerCAmelCase : Any = ly_weight['''self_attention'''] lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCAmelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCAmelCase : str = ly_weight['''MultiHeadDotProductAttention_0'''] lowerCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowerCAmelCase : int = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) lowerCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowerCAmelCase : Any = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) lowerCAmelCase : str = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowerCAmelCase : str = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowerCAmelCase : str = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def _snake_case ( _snake_case : Tuple ): lowerCAmelCase : int = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCAmelCase : Any = jnp.tree_util.tree_map(onp.array , _snake_case ) lowerCAmelCase : Union[str, Any] = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] lowerCAmelCase : List[Any] = os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) lowerCAmelCase : List[Any] = inference.parse_training_gin_file(_snake_case , _snake_case ) lowerCAmelCase : List[Any] = inference.InferenceModel(args.checkpoint_path , _snake_case ) lowerCAmelCase : Any = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) lowerCAmelCase : Optional[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) lowerCAmelCase : Tuple = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) lowerCAmelCase : Any = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowerCAmelCase : Union[str, Any] = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , _snake_case ) lowerCAmelCase : Dict = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , _snake_case ) lowerCAmelCase : Tuple = load_decoder(ta_checkpoint['''target''']['''decoder'''] , _snake_case ) lowerCAmelCase : int = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) lowerCAmelCase : Tuple = SpectrogramDiffusionPipeline( notes_encoder=_snake_case , continuous_encoder=_snake_case , decoder=_snake_case , scheduler=_snake_case , melgan=_snake_case , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": snake_case__ : Any = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help='''Path to the original jax model checkpoint.''', ) snake_case__ : Dict = parser.parse_args() main(args)
60
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : int , UpperCamelCase_ : VQModel , UpperCamelCase_ : UNetaDModel , UpperCamelCase_ : DDIMScheduler ): super().__init__() self.register_modules(vqvae=UpperCamelCase_ , unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , **UpperCamelCase_ : Optional[int] , ): lowerCAmelCase : Dict = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=UpperCamelCase_ , ) lowerCAmelCase : Optional[int] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase : List[str] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCamelCase_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature lowerCAmelCase : Any = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase : List[str] = {} if accepts_eta: lowerCAmelCase : List[Any] = eta for t in self.progress_bar(self.scheduler.timesteps ): lowerCAmelCase : List[str] = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) # predict the noise residual lowerCAmelCase : Tuple = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase : Optional[Any] = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample # decode the image latents with the VAE lowerCAmelCase : Dict = self.vqvae.decode(UpperCamelCase_ ).sample lowerCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : List[str] = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
60
1
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __UpperCamelCase , unittest.TestCase ): a = FunnelTokenizer a = FunnelTokenizerFast a = True a = True def lowerCamelCase_ ( self: Any ): super().setUp() lowerCamelCase__ : Tuple = [ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCamelCase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCamelCase_ ( self: List[Any] , **UpperCamelCase__: Any ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple , **UpperCamelCase__: Tuple ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: int ): lowerCamelCase__ : Optional[Any] = 'UNwant\u00E9d,running' lowerCamelCase__ : str = 'unwanted, running' return input_text, output_text def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Union[str, Any] = self.tokenizer_class(self.vocab_file ) lowerCamelCase__ : List[str] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(UpperCamelCase__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [7, 4, 5, 10, 8, 9] ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : List[Any] = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: lowerCamelCase__ : Optional[int] = tokenizer("""UNwant\u00E9d,running""" ) lowerCamelCase__ : List[str] = len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len ) lowerCamelCase__ : Tuple = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
351
'''simple docstring''' from collections import deque class _lowercase : def __init__( self: int , UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: int ): lowerCamelCase__ : int = process_name # process name lowerCamelCase__ : int = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCamelCase__ : List[str] = arrival_time lowerCamelCase__ : Tuple = burst_time # remaining burst time lowerCamelCase__ : str = 0 # total time of the process wait in ready queue lowerCamelCase__ : Optional[Any] = 0 # time from arrival time to completion time class _lowercase : def __init__( self: Any , UpperCamelCase__: int , UpperCamelCase__: list[int] , UpperCamelCase__: deque[Process] , UpperCamelCase__: int , ): # total number of mlfq's queues lowerCamelCase__ : Tuple = number_of_queues # time slice of queues that round robin algorithm applied lowerCamelCase__ : List[Any] = time_slices # unfinished process is in this ready_queue lowerCamelCase__ : int = queue # current time lowerCamelCase__ : Optional[int] = current_time # finished process is in this sequence queue lowerCamelCase__ : deque[Process] = deque() def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Union[str, Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: list[Process] ): lowerCamelCase__ : int = [] for i in range(len(UpperCamelCase__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCamelCase_ ( self: Any , UpperCamelCase__: list[Process] ): lowerCamelCase__ : Optional[int] = [] for i in range(len(UpperCamelCase__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: list[Process] ): lowerCamelCase__ : List[Any] = [] for i in range(len(UpperCamelCase__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCamelCase_ ( self: int , UpperCamelCase__: deque[Process] ): return [q.burst_time for q in queue] def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: deque[Process] ): lowerCamelCase__ : deque[Process] = deque() # sequence deque of finished process while len(UpperCamelCase__ ) != 0: lowerCamelCase__ : List[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(UpperCamelCase__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCamelCase__ : Dict = 0 # set the process's turnaround time because it is finished lowerCamelCase__ : List[str] = self.current_time - cp.arrival_time # set the completion time lowerCamelCase__ : int = self.current_time # add the process to queue that has finished queue finished.append(UpperCamelCase__ ) self.finish_queue.extend(UpperCamelCase__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: deque[Process] , UpperCamelCase__: int ): lowerCamelCase__ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(UpperCamelCase__ ) ): lowerCamelCase__ : Optional[int] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(UpperCamelCase__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCamelCase__ : Dict = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(UpperCamelCase__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCamelCase__ : Any = 0 # set the finish time lowerCamelCase__ : List[Any] = self.current_time # update the process' turnaround time because it is finished lowerCamelCase__ : Any = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(UpperCamelCase__ ) self.finish_queue.extend(UpperCamelCase__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCamelCase_ ( self: Tuple ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCamelCase__ , lowerCamelCase__ : str = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _A : Optional[Any] =Process('''P1''', 0, 53) _A : List[Any] =Process('''P2''', 0, 17) _A : Any =Process('''P3''', 0, 68) _A : Tuple =Process('''P4''', 0, 24) _A : int =3 _A : Tuple =[17, 25] _A : List[Any] =deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) _A : Dict =Process('''P1''', 0, 53) _A : Union[str, Any] =Process('''P2''', 0, 17) _A : int =Process('''P3''', 0, 68) _A : Dict =Process('''P4''', 0, 24) _A : List[str] =3 _A : List[Any] =[17, 25] _A : Any =deque([Pa, Pa, Pa, Pa]) _A : List[str] =MLFQ(number_of_queues, time_slices, queue, 0) _A : Union[str, Any] =mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
129
0
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_337 , num_examples=42 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_337 , num_examples=42 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : List[Any] = split_dict._to_yaml_list() assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) snake_case__ : List[Any] = SplitDict._from_yaml_list(_lowerCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump snake_case__ : Optional[int] = None # the split name of split_dict takes over the name of the split info object snake_case__ : List[Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowerCAmelCase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __snake_case( _lowerCAmelCase ) -> Dict: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files snake_case__ : Any = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
35
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = GPTSanJapaneseTokenizer lowercase = False lowercase = {"do_clean_text": False, "add_prefix_space": False} def lowerCamelCase ( self : str ): super().setUp() # fmt: off snake_case__ : Optional[Any] = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on snake_case__ : int = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 snake_case__ : List[Any] = {"""unk_token""": """<unk>"""} snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(snake_case_ ) ) def lowerCamelCase ( self : Any , **snake_case_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : str ): snake_case__ : Union[str, Any] = """こんにちは、世界。 \nこんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def lowerCamelCase ( self : Any , snake_case_ : Dict ): snake_case__ , snake_case__ : int = self.get_input_output_texts(snake_case_ ) snake_case__ : int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : List[str] = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return text, ids def lowerCamelCase ( self : Optional[Any] ): pass # TODO add if relevant def lowerCamelCase ( self : Union[str, Any] ): pass # TODO add if relevant def lowerCamelCase ( self : List[str] ): pass # TODO add if relevant def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = self.get_tokenizer() # Testing tokenization snake_case__ : int = """こんにちは、世界。 こんばんは、㔺界。""" snake_case__ : Optional[int] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] snake_case__ : Dict = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens snake_case__ : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] snake_case__ : List[Any] = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens snake_case__ : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case__ : Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] snake_case__ : Any = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = self.get_tokenizer() # Testing tokenization snake_case__ : Union[str, Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" snake_case__ : Optional[int] = """こんにちは、、、、世界。こんばんは、、、、世界。""" snake_case__ : Any = tokenizer.encode(snake_case_ ) snake_case__ : int = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Tuple = """こんにちは、世界。""" snake_case__ : Optional[Any] = """こんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。こんばんは、世界。😀""" snake_case__ : Dict = tokenizer.encode(prefix_text + input_text ) snake_case__ : Dict = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) snake_case__ : int = tokenizer.encode(snake_case_ , prefix_text=snake_case_ ) snake_case__ : Optional[Any] = tokenizer.decode(snake_case_ ) snake_case__ : Union[str, Any] = tokenizer.decode(snake_case_ ) snake_case__ : str = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Dict = """こんにちは、世界。""" snake_case__ : Optional[int] = """こんばんは、㔺界。😀""" snake_case__ : Any = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : Optional[int] = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : List[str] = [1] + [0] * (len_prefix + len_text + 1) snake_case__ : Optional[int] = [1] * (len_prefix + len_text + 1) + [0] snake_case__ : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) snake_case__ : Any = tokenizer(prefix_text + input_text ).token_type_ids snake_case__ : str = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids snake_case__ : Optional[Any] = tokenizer(snake_case_ , prefix_text=snake_case_ ).token_type_ids self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : Union[str, Any] = tokenizer.encode("""あンいワ""" ) snake_case__ : int = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) snake_case__ : Dict = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase ( self : Any ): snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : int = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] snake_case__ : Optional[Any] = tokenizer(snake_case_ , padding=snake_case_ ) snake_case__ : Tuple = tokenizer.batch_encode_plus(snake_case_ , padding=snake_case_ ) # fmt: off snake_case__ : Optional[Any] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] snake_case__ : Optional[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] snake_case__ : Optional[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case_ ) self.assertListEqual(x_token.token_type_ids , snake_case_ ) self.assertListEqual(x_token.attention_mask , snake_case_ ) self.assertListEqual(x_token_a.input_ids , snake_case_ ) self.assertListEqual(x_token_a.token_type_ids , snake_case_ ) self.assertListEqual(x_token_a.attention_mask , snake_case_ ) def lowerCamelCase ( self : Any ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase ( self : List[str] ): # tokenizer has no padding token pass
35
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase_ = { "configuration_bridgetower": [ "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP", "BridgeTowerConfig", "BridgeTowerTextConfig", "BridgeTowerVisionConfig", ], "processing_bridgetower": ["BridgeTowerProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["BridgeTowerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST", "BridgeTowerForContrastiveLearning", "BridgeTowerForImageAndTextRetrieval", "BridgeTowerForMaskedLM", "BridgeTowerModel", "BridgeTowerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
370
"""simple docstring""" def __lowerCamelCase ( a_ : int = 10 , a_ : int = 22 ) -> int: __SCREAMING_SNAKE_CASE :Optional[int] = range(1 , a_ ) __SCREAMING_SNAKE_CASE :List[Any] = range(1 , a_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'{solution(1_0, 2_2) = }')
239
0
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=0) -> Union[str, Any]: '''simple docstring''' if name is None: __UpperCamelCase : Any = None else: __UpperCamelCase : Optional[int] = '.' * max(0 , spaces - 2) + '# {:' + str(50 - spaces) + 's}' __UpperCamelCase : Tuple = fmt.format(_lowerCamelCase) # Print and recurse (if needed). if isinstance(_lowerCamelCase , _lowerCamelCase): if msg is not None: print(_lowerCamelCase) for k in val.keys(): recursive_print(_lowerCamelCase , val[k] , spaces + 2) elif isinstance(_lowerCamelCase , torch.Tensor): print(_lowerCamelCase , ":" , val.size()) else: print(_lowerCamelCase , ":" , _lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : List[Any]) -> List[str]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] __UpperCamelCase : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] __UpperCamelCase : Dict = param.view(*_lowerCamelCase) __UpperCamelCase : str = param.transpose(0 , 2) __UpperCamelCase : Any = param.transpose(1 , 2).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] __UpperCamelCase : Dict = (num_heads, num_splits, hidden_size) + input_shape[1:] __UpperCamelCase : Optional[int] = param.view(*_lowerCamelCase) __UpperCamelCase : List[str] = param.transpose(0 , 1).contiguous() __UpperCamelCase : List[Any] = param.view(*_lowerCamelCase) return param def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple) -> Tuple: '''simple docstring''' __UpperCamelCase : Optional[Any] = {} # old versions did not store training args __UpperCamelCase : Union[str, Any] = input_state_dict.get("args" , _lowerCamelCase) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) __UpperCamelCase : Optional[Any] = ds_args.padded_vocab_size __UpperCamelCase : List[Any] = ds_args.max_position_embeddings __UpperCamelCase : Dict = ds_args.hidden_size __UpperCamelCase : List[Any] = ds_args.num_layers __UpperCamelCase : str = ds_args.num_attention_heads __UpperCamelCase : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. __UpperCamelCase : Optional[Any] = config.n_head # The hidden_size per head. __UpperCamelCase : str = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): __UpperCamelCase : Optional[int] = input_state_dict['checkpoint_version'] else: __UpperCamelCase : List[str] = 0.0 # The model. __UpperCamelCase : Tuple = input_state_dict['model'] # The language model. __UpperCamelCase : List[Any] = model['language_model'] # The embeddings. __UpperCamelCase : Union[str, Any] = lm['embedding'] # The word embeddings. __UpperCamelCase : Optional[int] = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. __UpperCamelCase : Union[str, Any] = word_embeddings[: config.vocab_size, :] __UpperCamelCase : Dict = word_embeddings # The position embeddings. __UpperCamelCase : int = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] __UpperCamelCase : Dict = pos_embeddings.size(0) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match') # Store the position embeddings. __UpperCamelCase : Optional[Any] = pos_embeddings # The transformer. __UpperCamelCase : int = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. __UpperCamelCase : Dict = re.compile(R"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)") # The simple map of names for "automated" rules. __UpperCamelCase : int = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. __UpperCamelCase : Union[str, Any] = layer_re.match(_lowerCamelCase) # Stop if that's not a layer if m is None: break # The index of the layer. __UpperCamelCase : int = int(m.group(1)) # The name of the operation. __UpperCamelCase : List[Any] = m.group(2) # Is it a weight or a bias? __UpperCamelCase : List[Any] = m.group(3) # The name of the layer. __UpperCamelCase : Tuple = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm"): __UpperCamelCase : Optional[Any] = 'ln_1' if op_name.startswith("input") else 'ln_2' __UpperCamelCase : str = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. __UpperCamelCase : Optional[int] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa)).view( 1 , 1 , _lowerCamelCase , _lowerCamelCase) __UpperCamelCase : Dict = causal_mask # Insert a "dummy" tensor for masked_bias. __UpperCamelCase : List[Any] = torch.tensor(-1e4 , dtype=torch.floataa) __UpperCamelCase : Union[str, Any] = masked_bias __UpperCamelCase : List[Any] = fix_query_key_value_ordering(_lowerCamelCase , _lowerCamelCase , 3 , _lowerCamelCase , _lowerCamelCase) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. __UpperCamelCase : Any = out_val.transpose(0 , 1).contiguous() # Store. __UpperCamelCase : List[str] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": __UpperCamelCase : Union[str, Any] = fix_query_key_value_ordering(_lowerCamelCase , _lowerCamelCase , 3 , _lowerCamelCase , _lowerCamelCase) # Store. No change of shape. __UpperCamelCase : Optional[int] = out_val # Transpose the weights. elif weight_or_bias == "weight": __UpperCamelCase : List[Any] = megatron_to_transformers[op_name] __UpperCamelCase : str = val.transpose(0 , 1) # Copy the bias. elif weight_or_bias == "bias": __UpperCamelCase : Union[str, Any] = megatron_to_transformers[op_name] __UpperCamelCase : Optional[int] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. __UpperCamelCase : str = transformer['final_layernorm.weight'] __UpperCamelCase : str = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. __UpperCamelCase : Optional[int] = word_embeddings # It should be done! return output_state_dict def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true") parser.add_argument( "path_to_checkpoint" , type=_lowerCamelCase , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=_lowerCamelCase , help="An optional config json file describing the pre-trained model." , ) __UpperCamelCase : List[Any] = parser.parse_args() # Extract the basename. __UpperCamelCase : Dict = os.path.dirname(args.path_to_checkpoint) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}') if args.path_to_checkpoint.endswith(".zip"): with zipfile.ZipFile(args.path_to_checkpoint , "r") as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt") as pytorch_dict: __UpperCamelCase : List[str] = torch.load(_lowerCamelCase , map_location="cpu") else: __UpperCamelCase : str = torch.load(args.path_to_checkpoint , map_location="cpu") __UpperCamelCase : List[str] = input_state_dict.get("args" , _lowerCamelCase) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: __UpperCamelCase : int = 'gelu_fast' elif ds_args.openai_gelu: __UpperCamelCase : str = 'gelu_new' else: __UpperCamelCase : Optional[int] = 'gelu' else: # in the very early days this used to be "gelu_new" __UpperCamelCase : List[str] = 'gelu_new' # Spell out all parameters in case the defaults change. __UpperCamelCase : str = GPTaConfig( vocab_size=50_257 , n_positions=1_024 , n_embd=1_024 , n_layer=24 , n_head=16 , n_inner=4_096 , activation_function=_lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.0_2 , summary_type="cls_index" , summary_use_proj=_lowerCamelCase , summary_activation=_lowerCamelCase , summary_proj_to_labels=_lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=_lowerCamelCase , use_cache=_lowerCamelCase , bos_token_id=50_256 , eos_token_id=50_256 , ) else: __UpperCamelCase : List[str] = GPTaConfig.from_json_file(args.config_file) __UpperCamelCase : Optional[int] = ['GPT2LMHeadModel'] # Convert. print("Converting") __UpperCamelCase : Tuple = convert_megatron_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_lowerCamelCase , _lowerCamelCase) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: __UpperCamelCase : Any = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": __UpperCamelCase : Optional[int] = 'gpt2' elif tokenizer_type == "PretrainedFromHF": __UpperCamelCase : Any = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}') else: __UpperCamelCase : Any = 'gpt2' __UpperCamelCase : Tuple = AutoTokenizer.from_pretrained(_lowerCamelCase) __UpperCamelCase : Union[str, Any] = type(_lowerCamelCase).__name__ __UpperCamelCase : List[str] = tokenizer_class # Store the config to file. print("Saving config") config.save_pretrained(_lowerCamelCase) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files') tokenizer.save_pretrained(_lowerCamelCase) # Store the state_dict to file. __UpperCamelCase : int = os.path.join(_lowerCamelCase , "pytorch_model.bin") print(F'Saving checkpoint to \"{output_checkpoint_file}\"') torch.save(_lowerCamelCase , _lowerCamelCase) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
232
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : int ) -> str: """simple docstring""" super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) UpperCamelCase_ : str = 'A painting of a squirrel eating a burger' UpperCamelCase_ : Any = jax.device_count() UpperCamelCase_ : List[str] = num_samples * [prompt] UpperCamelCase_ : List[Any] = sd_pipe.prepare_inputs(snake_case ) UpperCamelCase_ : Dict = replicate(snake_case ) UpperCamelCase_ : Optional[Any] = shard(snake_case ) UpperCamelCase_ : Dict = jax.random.PRNGKey(0 ) UpperCamelCase_ : Tuple = jax.random.split(snake_case , jax.device_count() ) UpperCamelCase_ : Optional[Any] = sd_pipe(snake_case , snake_case , snake_case , num_inference_steps=2_5 , jit=snake_case )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) UpperCamelCase_ : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase_ : Tuple = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] UpperCamelCase_ : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase_ : List[str] = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Tuple = 'stabilityai/stable-diffusion-2' UpperCamelCase_, UpperCamelCase_ : Tuple = FlaxDPMSolverMultistepScheduler.from_pretrained(snake_case , subfolder='scheduler' ) UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( snake_case , scheduler=snake_case , revision='bf16' , dtype=jnp.bfloataa , ) UpperCamelCase_ : Optional[int] = scheduler_params UpperCamelCase_ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase_ : Union[str, Any] = jax.device_count() UpperCamelCase_ : Union[str, Any] = num_samples * [prompt] UpperCamelCase_ : Tuple = sd_pipe.prepare_inputs(snake_case ) UpperCamelCase_ : List[Any] = replicate(snake_case ) UpperCamelCase_ : Optional[Any] = shard(snake_case ) UpperCamelCase_ : Tuple = jax.random.PRNGKey(0 ) UpperCamelCase_ : str = jax.random.split(snake_case , jax.device_count() ) UpperCamelCase_ : str = sd_pipe(snake_case , snake_case , snake_case , num_inference_steps=2_5 , jit=snake_case )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) UpperCamelCase_ : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase_ : int = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] UpperCamelCase_ : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase_ : Union[str, Any] = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
175
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin snake_case : Tuple = logging.get_logger(__name__) enable_full_determinism() class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = UNetaDModel UpperCAmelCase__ : str = '''sample''' @property def lowerCamelCase__( self :Optional[int] ) -> List[str]: a__ = 4 a__ = 3 a__ = (32, 32) a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor([10] ).to(__snake_case ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__( self :Tuple ) -> Tuple: return (3, 32, 32) @property def lowerCamelCase__( self :List[str] ) -> Optional[Any]: return (3, 32, 32) def lowerCamelCase__( self :str ) -> Tuple: a__ = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } a__ = self.dummy_input return init_dict, inputs_dict class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : int = UNetaDModel UpperCAmelCase__ : Any = '''sample''' @property def lowerCamelCase__( self :Dict ) -> List[str]: a__ = 4 a__ = 4 a__ = (32, 32) a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor([10] ).to(__snake_case ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__( self :Any ) -> str: return (4, 32, 32) @property def lowerCamelCase__( self :Any ) -> Dict: return (4, 32, 32) def lowerCamelCase__( self :int ) -> int: a__ = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } a__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__( self :str ) -> Any: a__ , a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info['missing_keys'] ) ,0 ) model.to(__snake_case ) a__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' ,'This test is supposed to run on GPU' ) def lowerCamelCase__( self :Tuple ) -> Optional[int]: a__ , a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ) model.to(__snake_case ) a__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' ,'This test is supposed to run on GPU' ) def lowerCamelCase__( self :Union[str, Any] ) -> int: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` a__ , a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ) model_accelerate.to(__snake_case ) model_accelerate.eval() a__ = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) a__ = noise.to(__snake_case ) a__ = torch.tensor([10] * noise.shape[0] ).to(__snake_case ) a__ = model_accelerate(__snake_case ,__snake_case )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() a__ , a__ = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ,low_cpu_mem_usage=__snake_case ) model_normal_load.to(__snake_case ) model_normal_load.eval() a__ = model_normal_load(__snake_case ,__snake_case )['sample'] assert torch_all_close(__snake_case ,__snake_case ,rtol=1E-3 ) def lowerCamelCase__( self :str ) -> Union[str, Any]: a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(__snake_case ) a__ = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) a__ = noise.to(__snake_case ) a__ = torch.tensor([10] * noise.shape[0] ).to(__snake_case ) with torch.no_grad(): a__ = model(__snake_case ,__snake_case ).sample a__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off a__ = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(__snake_case ,__snake_case ,rtol=1E-3 ) ) class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Dict = UNetaDModel UpperCAmelCase__ : Optional[Any] = '''sample''' @property def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any]=(32, 32) ) -> Optional[int]: a__ = 4 a__ = 3 a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=__snake_case ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__( self :Tuple ) -> Optional[int]: return (3, 32, 32) @property def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: return (3, 32, 32) def lowerCamelCase__( self :Optional[Any] ) -> List[str]: a__ = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } a__ = self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase__( self :str ) -> Tuple: a__ , a__ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ,output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info['missing_keys'] ) ,0 ) model.to(__snake_case ) a__ = self.dummy_input a__ = floats_tensor((4, 3) + (2_56, 2_56) ).to(__snake_case ) a__ = noise a__ = model(**__snake_case ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase__( self :Union[str, Any] ) -> Dict: a__ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(__snake_case ) a__ = 4 a__ = 3 a__ = (2_56, 2_56) a__ = torch.ones((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor(batch_size * [1E-4] ).to(__snake_case ) with torch.no_grad(): a__ = model(__snake_case ,__snake_case ).sample a__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off a__ = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(__snake_case ,__snake_case ,rtol=1E-2 ) ) def lowerCamelCase__( self :Dict ) -> int: a__ = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(__snake_case ) a__ = 4 a__ = 3 a__ = (32, 32) a__ = torch.ones((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor(batch_size * [1E-4] ).to(__snake_case ) with torch.no_grad(): a__ = model(__snake_case ,__snake_case ).sample a__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off a__ = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(__snake_case ,__snake_case ,rtol=1E-2 ) ) def lowerCamelCase__( self :int ) -> str: # not required for this model pass
109
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : Tuple = torch.device('''cpu''') def __lowercase ( ): a__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' a__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im def __lowercase ( __lowerCAmelCase : List[str] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3E0_0, 2.1_1_0_7E0_0, -2.0_8_1_1E0_0, 8.8_6_8_5E-0_1, 2.4_3_6_0E-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6E-0_1, 2.3_4_7_8E-0_1, -1.6_9_6_3E0_0, -1.7_3_8_1E0_0, -8.6_3_3_7E-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8E-0_1, -4.7_4_2_9E-0_1, -1.0_8_9_7E0_0, -1.0_2_4_8E0_0, 3.5_5_2_3E-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0E-0_1, 2.4_2_1_1E-0_1, -6.0_1_8_5E-0_1, -8.2_7_8_9E-0_1, -6.0_4_4_6E-0_2] ) def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str ): a__ = dct.pop(__lowerCAmelCase ) a__ = val def __lowercase ( __lowerCAmelCase : int ): a__ = [] for k in state_dict.keys(): a__ = k if ".pwconv" in k: a__ = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: a__ = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: a__ = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: a__ = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: a__ = k_new.split('.' ) if ls[2].isdigit(): a__ = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: a__ = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : str ): a__ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a__ = 1_0_0_0 a__ = 'huggingface/label-files' a__ = 'imagenet-1k-id2label.json' a__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) a__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a__ = [3, 3, 6, 4] a__ = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": a__ = [3, 3, 9, 6] a__ = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": a__ = [4, 3, 1_0, 5] a__ = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": a__ = [4, 4, 1_2, 6] a__ = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): a__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='cpu' , check_hash=__lowerCAmelCase ) else: a__ = torch.load(__lowerCAmelCase , map_location='cpu' ) a__ = checkpoint a__ = create_rename_keys(__lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model a__ = SwiftFormerForImageClassification(__lowerCAmelCase ).eval() hf_model.load_state_dict(__lowerCAmelCase ) # prepare test inputs a__ = prepare_img() a__ = ViTImageProcessor.from_pretrained('preprocessor_config' ) a__ = processor(images=__lowerCAmelCase , return_tensors='pt' ) # compare outputs from both models a__ = get_expected_output(__lowerCAmelCase ) a__ = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , __lowerCAmelCase , atol=1E-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') snake_case : Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
109
1
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _a = logging.get_logger('''transformers.models.speecht5''') def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any ) -> Any: """simple docstring""" hf_model.apply_weight_norm() __lowerCAmelCase: Optional[Any] = checkpoint['input_conv.weight_g'] __lowerCAmelCase: List[str] = checkpoint['input_conv.weight_v'] __lowerCAmelCase: Any = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): __lowerCAmelCase: List[str] = checkpoint[f'''upsamples.{i}.1.weight_g'''] __lowerCAmelCase: int = checkpoint[f'''upsamples.{i}.1.weight_v'''] __lowerCAmelCase: Union[str, Any] = checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __lowerCAmelCase: Tuple = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] __lowerCAmelCase: Optional[Any] = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] __lowerCAmelCase: List[str] = checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] __lowerCAmelCase: Any = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] __lowerCAmelCase: Optional[Any] = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] __lowerCAmelCase: Union[str, Any] = checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] __lowerCAmelCase: int = checkpoint['output_conv.1.weight_g'] __lowerCAmelCase: int = checkpoint['output_conv.1.weight_v'] __lowerCAmelCase: str = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , ) -> List[Any]: """simple docstring""" if config_path is not None: __lowerCAmelCase: Optional[int] = SpeechTaHifiGanConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Dict = SpeechTaHifiGanConfig() __lowerCAmelCase: Tuple = SpeechTaHifiGan(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Tuple = torch.load(SCREAMING_SNAKE_CASE ) load_weights(orig_checkpoint['model']['generator'] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = np.load(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[Any] = stats[0].reshape(-1 ) __lowerCAmelCase: Any = stats[1].reshape(-1 ) __lowerCAmelCase: List[str] = torch.from_numpy(SCREAMING_SNAKE_CASE ).float() __lowerCAmelCase: Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE ).float() model.save_pretrained(SCREAMING_SNAKE_CASE ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) _a = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
322
import os from datetime import datetime as dt from github import Github _a = [ '''good first issue''', '''feature request''', '''wip''', ] def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Dict = Github(os.environ['GITHUB_TOKEN'] ) __lowerCAmelCase: Tuple = g.get_repo('huggingface/accelerate' ) __lowerCAmelCase: str = repo.get_issues(state='open' ) for issue in open_issues: __lowerCAmelCase: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None __lowerCAmelCase: Tuple = dt.utcnow() __lowerCAmelCase: Optional[int] = (current_time - issue.updated_at).days __lowerCAmelCase: str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
322
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Optional[int] = u for i in range(1 , __a ): snake_case_ : Optional[Any] = temp * (u - i) return temp def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Dict = int(input('enter the numbers of values: ' ) ) snake_case_ : list[list[float]] = [] for _ in range(__a ): y.append([] ) for i in range(__a ): for j in range(__a ): y[i].append(__a ) snake_case_ : str = 0 print('enter the values of parameters in a list: ' ) snake_case_ : int = list(map(__a , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(__a ): snake_case_ : Union[str, Any] = float(input() ) snake_case_ : int = int(input('enter the value to interpolate: ' ) ) snake_case_ : List[Any] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __a ): for j in range(n - i ): snake_case_ : int = y[j + 1][i - 1] - y[j][i - 1] snake_case_ : str = y[0][0] for i in range(1 , __a ): summ += (ucal(__a , __a ) * y[0][i]) / math.factorial(__a ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
88
0
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __A ( )-> int: """simple docstring""" print('Making key files...' ) make_key_files('rsa' , 1_024 ) print('Key files generation successful.' ) def __A ( __lowerCAmelCase )-> int: """simple docstring""" print('Generating prime p...' ) _UpperCAmelCase = rabinMiller.generate_large_prime(_SCREAMING_SNAKE_CASE ) print('Generating prime q...' ) _UpperCAmelCase = rabinMiller.generate_large_prime(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: _UpperCAmelCase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) _UpperCAmelCase = cryptoMath.find_mod_inverse(_SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) _UpperCAmelCase = (n, e) _UpperCAmelCase = (n, d) return (public_key, private_key) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> str: """simple docstring""" if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() _UpperCAmelCase , _UpperCAmelCase = generate_key(_SCREAMING_SNAKE_CASE ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
39
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: UpperCamelCase = _modexpt(_SCREAMING_SNAKE_CASE , exponent // 2 , _SCREAMING_SNAKE_CASE ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_SCREAMING_SNAKE_CASE , exponent - 1 , _SCREAMING_SNAKE_CASE )) % modulo_value def a__ ( _SCREAMING_SNAKE_CASE = 1_777 , _SCREAMING_SNAKE_CASE = 1_855 , _SCREAMING_SNAKE_CASE = 8 ): """simple docstring""" UpperCamelCase = base for _ in range(1 , _SCREAMING_SNAKE_CASE ): UpperCamelCase = _modexpt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
153
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _UpperCAmelCase ( unittest.TestCase ): def a ( self : int ): __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = BlipImageProcessor() __UpperCAmelCase = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) __UpperCAmelCase = BlipaProcessor(_lowercase , _lowercase ) processor.save_pretrained(self.tmpdirname ) def a ( self : Dict , **_lowercase : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).tokenizer def a ( self : int , **_lowercase : Union[str, Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).image_processor def a ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def a ( self : Any ): __UpperCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __UpperCAmelCase = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a ( self : str ): __UpperCAmelCase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __UpperCAmelCase = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) __UpperCAmelCase = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = BlipaProcessor(tokenizer=_lowercase , image_processor=_lowercase ) __UpperCAmelCase = self.prepare_image_inputs() __UpperCAmelCase = image_processor(_lowercase , return_tensors='''np''' ) __UpperCAmelCase = processor(images=_lowercase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a ( self : List[str] ): __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = BlipaProcessor(tokenizer=_lowercase , image_processor=_lowercase ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = processor(text=_lowercase ) __UpperCAmelCase = tokenizer(_lowercase , return_token_type_ids=_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : str ): __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = BlipaProcessor(tokenizer=_lowercase , image_processor=_lowercase ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = self.prepare_image_inputs() __UpperCAmelCase = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def a ( self : int ): __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = BlipaProcessor(tokenizer=_lowercase , image_processor=_lowercase ) __UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase = processor.batch_decode(_lowercase ) __UpperCAmelCase = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.get_image_processor() __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = BlipaProcessor(tokenizer=_lowercase , image_processor=_lowercase ) __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = self.prepare_image_inputs() __UpperCAmelCase = processor(text=_lowercase , images=_lowercase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
86
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
86
1
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): # Base Case if curr_ind == len(_UpperCAmelCase): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_UpperCAmelCase)): if valid_connection(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): # Insert current vertex into path as next transition SCREAMING_SNAKE_CASE = next_ver # Validate created path if util_hamilton_cycle(_UpperCAmelCase , _UpperCAmelCase , curr_ind + 1): return True # Backtrack SCREAMING_SNAKE_CASE = -1 return False def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = 0): SCREAMING_SNAKE_CASE = [-1] * (len(_UpperCAmelCase) + 1) # initialize start and end of path with starting index SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_UpperCAmelCase , _UpperCAmelCase , 1) else []
137
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger a_ : List[Any] = get_logger(__name__) class _snake_case ( enum.Enum ): _lowercase : Any = '''all_checks''' _lowercase : str = '''basic_checks''' _lowercase : str = '''no_checks''' class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None): if expected_checksums is None: logger.info('Unable to verify checksums.') return if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise ExpectedMoreDownloadedFiles(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise UnexpectedDownloadedFile(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) SCREAMING_SNAKE_CASE = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] SCREAMING_SNAKE_CASE = ' for ' + verification_name if verification_name is not None else '' if len(_UpperCAmelCase) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error') logger.info('All the checksums matched successfully' + for_verification_name) class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): if expected_splits is None: logger.info('Unable to verify splits sizes.') return if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise ExpectedMoreSplits(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise UnexpectedSplits(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) SCREAMING_SNAKE_CASE = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_UpperCAmelCase) > 0: raise NonMatchingSplitsSizesError(str(_UpperCAmelCase)) logger.info('All the splits matched successfully.') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = True): if record_checksum: SCREAMING_SNAKE_CASE = shaaaa() with open(_UpperCAmelCase , 'rb') as f: for chunk in iter(lambda: f.read(1 << 20) , B''): m.update(_UpperCAmelCase) SCREAMING_SNAKE_CASE = m.hexdigest() else: SCREAMING_SNAKE_CASE = None return {"num_bytes": os.path.getsize(_UpperCAmelCase), "checksum": checksum} def lowerCamelCase__ (_UpperCAmelCase): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
137
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __UpperCamelCase ( lowercase__ ): lowercase : Tuple = ['image_processor', 'tokenizer'] lowercase : Any = 'ViTImageProcessor' lowercase : str = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self :Optional[int] ,_UpperCamelCase :int=None ,_UpperCamelCase :List[Any]=None ,**_UpperCamelCase :Tuple ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,lowerCamelCase_ ,) snake_case_ : Dict = kwargs.pop("""feature_extractor""" ) snake_case_ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase_ ,lowerCamelCase_ ) def __call__( self :Dict ,_UpperCamelCase :int=None ,_UpperCamelCase :str=None ,_UpperCamelCase :str=None ,_UpperCamelCase :Optional[Any]=None ,**_UpperCamelCase :int ): if text is None and visual_prompt is None and images is None: raise ValueError("""You have to specify either text, visual prompt or images.""" ) if text is not None and visual_prompt is not None: raise ValueError("""You have to specify exactly one type of prompt. Either text or visual prompt.""" ) if text is not None: snake_case_ : Union[str, Any] = self.tokenizer(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if visual_prompt is not None: snake_case_ : str = self.image_processor(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if visual_prompt is not None and images is not None: snake_case_ : List[Any] = { """pixel_values""": image_features.pixel_values, """conditional_pixel_values""": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: snake_case_ : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: snake_case_ : Any = { """conditional_pixel_values""": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) ,tensor_type=lowerCamelCase_ ) def a__ ( self :Tuple ,*_UpperCamelCase :Optional[Any] ,**_UpperCamelCase :Optional[Any] ): return self.tokenizer.batch_decode(*lowerCamelCase_ ,**lowerCamelCase_ ) def a__ ( self :List[Any] ,*_UpperCamelCase :Optional[int] ,**_UpperCamelCase :Tuple ): return self.tokenizer.decode(*lowerCamelCase_ ,**lowerCamelCase_ ) @property def a__ ( self :Any ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,lowerCamelCase_ ,) return self.image_processor_class @property def a__ ( self :str ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,lowerCamelCase_ ,) return self.image_processor
354
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __A : Dict = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class __UpperCamelCase ( lowercase__ ): lowercase : Optional[int] = 'ernie_m' lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self :Optional[Any] ,_UpperCamelCase :int = 2_5_0_0_0_2 ,_UpperCamelCase :int = 7_6_8 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 3_0_7_2 ,_UpperCamelCase :str = "gelu" ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :int = 5_1_4 ,_UpperCamelCase :float = 0.02 ,_UpperCamelCase :int = 1 ,_UpperCamelCase :float = 1E-0_5 ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Optional[int]=0.0 ,**_UpperCamelCase :List[Any] ,): super().__init__(pad_token_id=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Optional[int] = vocab_size snake_case_ : Any = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Any = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : int = initializer_range snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : Union[str, Any] = classifier_dropout snake_case_ : Tuple = is_decoder snake_case_ : int = act_dropout
8
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase__ ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =field(default="""audio-classification""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) __UpperCAmelCase : ClassVar[Features] =Features({"""audio""": Audio()} ) __UpperCAmelCase : ClassVar[Features] =Features({"""labels""": ClassLabel} ) __UpperCAmelCase : str ="audio" __UpperCAmelCase : str ="labels" def snake_case ( self , __a ): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , __a ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) __lowerCAmelCase = copy.deepcopy(self ) __lowerCAmelCase = self.label_schema.copy() __lowerCAmelCase = features[self.label_column] __lowerCAmelCase = label_schema return task_template @property def snake_case ( self ): return { self.audio_column: "audio", self.label_column: "labels", }
57
"""simple docstring""" import argparse import os import re import packaging.version A : Any = "examples/" A : Optional[Any] = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } A : Optional[int] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } A : List[Any] = "README.md" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' with open(_UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase , __lowerCAmelCase = REPLACE_PATTERNS[pattern] __lowerCAmelCase = replace.replace("VERSION" , _UpperCamelCase ) __lowerCAmelCase = re_pattern.sub(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' for folder, directories, fnames in os.walk(_UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase , pattern="examples" ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not patch: update_version_in_examples(_UpperCamelCase ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "🤗 Transformers currently provides the following architectures" __lowerCAmelCase = "1. Want to contribute a new model?" with open(_UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.readlines() # Find the start of the list. __lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): __lowerCAmelCase = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(_UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_UpperCamelCase ) def _lowerCamelCase ( ): '''simple docstring''' with open(REPLACE_FILES["init"] , "r" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase = REPLACE_PATTERNS["init"][0].search(_UpperCamelCase ).groups()[0] return packaging.version.parse(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase=False ): '''simple docstring''' __lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: __lowerCAmelCase = default_version.base_version elif patch: __lowerCAmelCase = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __lowerCAmelCase = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __lowerCAmelCase = input(f"Which version are you releasing? [{default_version}]" ) if len(_UpperCamelCase ) == 0: __lowerCAmelCase = default_version print(f"Updating version to {version}." ) global_version_update(_UpperCamelCase , patch=_UpperCamelCase ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = get_version() __lowerCAmelCase = f"{current_version.major}.{current_version.minor + 1}.0.dev0" __lowerCAmelCase = current_version.base_version # Check with the user we got that right. __lowerCAmelCase = input(f"Which version are we developing now? [{dev_version}]" ) if len(_UpperCamelCase ) == 0: __lowerCAmelCase = dev_version print(f"Updating version to {version}." ) global_version_update(_UpperCamelCase ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") A : Dict = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
57
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowercase : List[str] = 2_5_0_0_0_4 _lowercase : str = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = MBartTokenizer lowerCAmelCase_ = MBartTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True def _snake_case ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase_ : Any = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) lowercase_ : Any = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase_ : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase_ : int = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowercase_ : Tuple = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _snake_case ( self ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowercase_ : int = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : str = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : str = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : int = tempfile.mkdtemp() lowercase_ : Union[str, Any] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) lowercase_ : int = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowercase_ : Union[str, Any] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way lowercase_ : Dict = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) lowercase_ : int = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True lowercase_ : str = tempfile.mkdtemp() lowercase_ : Optional[Any] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way lowercase_ : Optional[Any] = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) lowercase_ : str = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False lowercase_ : List[Any] = tempfile.mkdtemp() lowercase_ : Optional[Any] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowercase_ : Dict = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) lowercase_ : str = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = '''facebook/mbart-large-en-ro''' lowerCAmelCase_ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] lowerCAmelCase_ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] lowerCAmelCase_ = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def _snake_case ( cls ): """simple docstring""" lowercase_ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) lowercase_ : str = 1 return cls def _snake_case ( self ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) lowercase_ : Union[str, Any] = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] lowercase_ : Optional[int] = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , __SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = 10 lowercase_ : Dict = self.tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_26, 25_00_01] ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = tempfile.mkdtemp() lowercase_ : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = MBartTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __SCREAMING_SNAKE_CASE ) @require_torch def _snake_case ( self ): """simple docstring""" lowercase_ : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) lowercase_ : int = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowercase_ : int = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowercase_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = self.tokenizer(self.src_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors='''pt''' ) lowercase_ : Dict = self.tokenizer( text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=10 , return_tensors='''pt''' ) lowercase_ : List[Any] = targets['''input_ids'''] lowercase_ : Optional[Any] = shift_tokens_right(__SCREAMING_SNAKE_CASE , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _snake_case ( self ): """simple docstring""" lowercase_ : int = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 30_34, 2, 25_00_04]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
356
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''vit''' def __init__( self , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=30_72 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-1_2 , __SCREAMING_SNAKE_CASE=2_24 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=16 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = hidden_size lowercase_ : Dict = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = intermediate_size lowercase_ : Union[str, Any] = hidden_act lowercase_ : Dict = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : Any = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : Union[str, Any] = image_size lowercase_ : Tuple = patch_size lowercase_ : Tuple = num_channels lowercase_ : Union[str, Any] = qkv_bias lowercase_ : List[Any] = encoder_stride class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = version.parse('''1.11''' ) @property def _snake_case ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): """simple docstring""" return 1E-4
264
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowercase_ = "bert" def __init__( self : List[str] , _lowerCAmelCase : Union[str, Any]=30_522 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[int]=12 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=3_072 , _lowerCAmelCase : Optional[int]="gelu" , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Dict=512 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : Tuple=1E-12 , _lowerCAmelCase : int=0 , _lowerCAmelCase : Tuple="absolute" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : str , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = classifier_dropout class lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def lowerCAmelCase_ ( self : int ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
225
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCamelCase (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase__ = None lowerCamelCase__ = "utf-8" lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True # deprecated lowerCamelCase__ = None # deprecated lowerCamelCase__ = 1_0 << 2_0 # 10MB lowerCamelCase__ = None class lowerCamelCase (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase__ = JsonConfig def __A ( self : Optional[int] ) -> Optional[int]: if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) SCREAMING_SNAKE_CASE_ = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def __A ( self : List[str] , __magic_name__ : str ) -> Tuple: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__magic_name__ , (str, list, tuple) ): SCREAMING_SNAKE_CASE_ = data_files if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] SCREAMING_SNAKE_CASE_ = [] for split_name, files in data_files.items(): if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(__magic_name__ ) for file in files] splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"files": files} ) ) return splits def __A ( self : str , __magic_name__ : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): SCREAMING_SNAKE_CASE_ = self.config.features.arrow_schema.field(__magic_name__ ).type SCREAMING_SNAKE_CASE_ = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ = table_cast(__magic_name__ , self.config.features.arrow_schema ) return pa_table def __A ( self : List[str] , __magic_name__ : List[str] ) -> int: for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) # We keep only the field we are interested in SCREAMING_SNAKE_CASE_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__magic_name__ , (list, tuple) ): SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE_ = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE_ = dataset SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(__magic_name__ ) yield file_idx, self._cast_table(__magic_name__ ) # If the file has one json object per line else: with open(__magic_name__ , "rb" ) as f: SCREAMING_SNAKE_CASE_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE_ = max(self.config.chunksize // 32 , 16 << 10 ) SCREAMING_SNAKE_CASE_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: SCREAMING_SNAKE_CASE_ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__magic_name__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE_ = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("utf-8" ) try: while True: try: SCREAMING_SNAKE_CASE_ = paj.read_json( io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__magic_name__ , pa.ArrowInvalid ) and "straddling" not in str(__magic_name__ ) or block_size > len(__magic_name__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE_ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE_ = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict(__magic_name__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(__magic_name__ ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__magic_name__ ) batch_idx += 1
118
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A__ ( A__ ): A__ = (DEISMultistepScheduler,) A__ = (('num_inference_steps', 25),) def A ( self : Optional[int] , **_a : str ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE ={ 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**_a ) return config def A ( self : Union[str, Any] , _a : Optional[Any]=0 , **_a : Any ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE =kwargs.pop('num_inference_steps' , _a ) _SCREAMING_SNAKE_CASE =self.dummy_sample _SCREAMING_SNAKE_CASE =0.1 * sample _SCREAMING_SNAKE_CASE =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE =self.get_scheduler_config(**_a ) _SCREAMING_SNAKE_CASE =scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals _SCREAMING_SNAKE_CASE =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) _SCREAMING_SNAKE_CASE =scheduler_class.from_pretrained(_a ) new_scheduler.set_timesteps(_a ) # copy over dummy past residuals _SCREAMING_SNAKE_CASE =dummy_past_residuals[: new_scheduler.config.solver_order] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =sample, sample for t in range(_a , time_step + scheduler.config.solver_order + 1 ): _SCREAMING_SNAKE_CASE =scheduler.step(_a , _a , _a , **_a ).prev_sample _SCREAMING_SNAKE_CASE =new_scheduler.step(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A ( self : Union[str, Any] ) -> Any: '''simple docstring''' pass def A ( self : Optional[int] , _a : List[Any]=0 , **_a : Optional[int] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE =kwargs.pop('num_inference_steps' , _a ) _SCREAMING_SNAKE_CASE =self.dummy_sample _SCREAMING_SNAKE_CASE =0.1 * sample _SCREAMING_SNAKE_CASE =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE =self.get_scheduler_config() _SCREAMING_SNAKE_CASE =scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals (must be after setting timesteps) _SCREAMING_SNAKE_CASE =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) _SCREAMING_SNAKE_CASE =scheduler_class.from_pretrained(_a ) # copy over dummy past residuals new_scheduler.set_timesteps(_a ) # copy over dummy past residual (must be after setting timesteps) _SCREAMING_SNAKE_CASE =dummy_past_residuals[: new_scheduler.config.solver_order] _SCREAMING_SNAKE_CASE =scheduler.step(_a , _a , _a , **_a ).prev_sample _SCREAMING_SNAKE_CASE =new_scheduler.step(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A ( self : int , _a : Optional[Any]=None , **_a : Any ) -> Optional[int]: '''simple docstring''' if scheduler is None: _SCREAMING_SNAKE_CASE =self.scheduler_classes[0] _SCREAMING_SNAKE_CASE =self.get_scheduler_config(**_a ) _SCREAMING_SNAKE_CASE =scheduler_class(**_a ) _SCREAMING_SNAKE_CASE =self.scheduler_classes[0] _SCREAMING_SNAKE_CASE =self.get_scheduler_config(**_a ) _SCREAMING_SNAKE_CASE =scheduler_class(**_a ) _SCREAMING_SNAKE_CASE =10 _SCREAMING_SNAKE_CASE =self.dummy_model() _SCREAMING_SNAKE_CASE =self.dummy_sample_deter scheduler.set_timesteps(_a ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE =model(_a , _a ) _SCREAMING_SNAKE_CASE =scheduler.step(_a , _a , _a ).prev_sample return sample def A ( self : Tuple ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE =kwargs.pop('num_inference_steps' , _a ) for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE =self.get_scheduler_config() _SCREAMING_SNAKE_CASE =scheduler_class(**_a ) _SCREAMING_SNAKE_CASE =self.dummy_sample _SCREAMING_SNAKE_CASE =0.1 * sample if num_inference_steps is not None and hasattr(_a , 'set_timesteps' ): scheduler.set_timesteps(_a ) elif num_inference_steps is not None and not hasattr(_a , 'set_timesteps' ): _SCREAMING_SNAKE_CASE =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _SCREAMING_SNAKE_CASE =[residual + 0.2, residual + 0.15, residual + 0.10] _SCREAMING_SNAKE_CASE =dummy_past_residuals[: scheduler.config.solver_order] _SCREAMING_SNAKE_CASE =scheduler.timesteps[5] _SCREAMING_SNAKE_CASE =scheduler.timesteps[6] _SCREAMING_SNAKE_CASE =scheduler.step(_a , _a , _a , **_a ).prev_sample _SCREAMING_SNAKE_CASE =scheduler.step(_a , _a , _a , **_a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A ( self : Dict ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =DEISMultistepScheduler(**self.get_scheduler_config() ) _SCREAMING_SNAKE_CASE =self.full_loop(scheduler=_a ) _SCREAMING_SNAKE_CASE =torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3 _SCREAMING_SNAKE_CASE =DPMSolverSinglestepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE =DPMSolverMultistepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE =UniPCMultistepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE =DEISMultistepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE =self.full_loop(scheduler=_a ) _SCREAMING_SNAKE_CASE =torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3 def A ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_a ) def A ( self : Optional[int] ) -> Dict: '''simple docstring''' self.check_over_configs(thresholding=_a ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , algorithm_type='deis' , solver_order=_a , solver_type=_a , ) def A ( self : int ) -> List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def A ( self : List[Any] ) -> Tuple: '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_a , solver_type=_a , prediction_type=_a , algorithm_type=_a , ) _SCREAMING_SNAKE_CASE =self.full_loop( solver_order=_a , solver_type=_a , prediction_type=_a , algorithm_type=_a , ) assert not torch.isnan(_a ).any(), "Samples have nan numbers" def A ( self : Any ) -> str: '''simple docstring''' self.check_over_configs(lower_order_final=_a ) self.check_over_configs(lower_order_final=_a ) def A ( self : List[str] ) -> List[Any]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_a , time_step=0 ) def A ( self : List[Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.full_loop() _SCREAMING_SNAKE_CASE =torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3 def A ( self : Optional[Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.full_loop(prediction_type='v_prediction' ) _SCREAMING_SNAKE_CASE =torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.0_91 ) < 1e-3 def A ( self : Tuple ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.scheduler_classes[0] _SCREAMING_SNAKE_CASE =self.get_scheduler_config(thresholding=_a , dynamic_thresholding_ratio=0 ) _SCREAMING_SNAKE_CASE =scheduler_class(**_a ) _SCREAMING_SNAKE_CASE =10 _SCREAMING_SNAKE_CASE =self.dummy_model() _SCREAMING_SNAKE_CASE =self.dummy_sample_deter.half() scheduler.set_timesteps(_a ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE =model(_a , _a ) _SCREAMING_SNAKE_CASE =scheduler.step(_a , _a , _a ).prev_sample assert sample.dtype == torch.floataa
47
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase : List[Any] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowerCamelCase : Any = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowerCamelCase : Optional[Any] = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowerCamelCase : Optional[Any] = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def A ( self : Tuple ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def A ( self : Union[str, Any] , _a : Union[str, Any] ) -> Optional[int]: '''simple docstring''' import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def A ( self : int , _a : Tuple , _a : List[str] , _a : List[str]=0.9 , _a : Dict=3 , _a : Optional[int]=0.5 ) -> Optional[int]: '''simple docstring''' if NLTK_VERSION >= version.Version('3.6.5' ): _SCREAMING_SNAKE_CASE =[ meteor_score.single_meteor_score( word_tokenize(_a ) , word_tokenize(_a ) , alpha=_a , beta=_a , gamma=_a ) for ref, pred in zip(_a , _a ) ] else: _SCREAMING_SNAKE_CASE =[ meteor_score.single_meteor_score(_a , _a , alpha=_a , beta=_a , gamma=_a ) for ref, pred in zip(_a , _a ) ] return {"meteor": np.mean(_a )}
47
1
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class _lowerCamelCase ( a_ , unittest.TestCase ): _lowerCamelCase :Any = PriorTransformer _lowerCamelCase :List[Any] = "hidden_states" @property def _lowerCAmelCase ( self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Dict = 8 lowerCAmelCase__ : Dict = 7 lowerCAmelCase__ : str = floats_tensor((batch_size, embedding_dim) ).to(UpperCamelCase ) lowerCAmelCase__ : str = floats_tensor((batch_size, embedding_dim) ).to(UpperCamelCase ) lowerCAmelCase__ : Any = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(UpperCamelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _lowerCAmelCase ( self , UpperCamelCase=0 ) -> Tuple: """simple docstring""" torch.manual_seed(UpperCamelCase ) lowerCAmelCase__ : Dict = 4 lowerCAmelCase__ : Union[str, Any] = 8 lowerCAmelCase__ : List[Any] = 7 lowerCAmelCase__ : str = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCamelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return (4, 8) @property def _lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" return (4, 8) def _lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[str] = { """num_attention_heads""": 2, """attention_head_dim""": 4, """num_layers""": 2, """embedding_dim""": 8, """num_embeddings""": 7, """additional_embeddings""": 4, } lowerCAmelCase__ : Dict = self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = PriorTransformer.from_pretrained( """hf-internal-testing/prior-dummy""" , output_loading_info=UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCamelCase ) lowerCAmelCase__ : int = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Dict = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase__ : Tuple = self.model_class(**UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : List[str] = [*signature.parameters.keys()] lowerCAmelCase__ : str = ["""hidden_states""", """timestep"""] self.assertListEqual(arg_names[:2] , UpperCamelCase ) def _lowerCAmelCase ( self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Any = PriorTransformer.from_pretrained("""hf-internal-testing/prior-dummy""" ) lowerCAmelCase__ : Union[str, Any] = model.to(UpperCamelCase ) if hasattr(UpperCamelCase , """set_default_attn_processor""" ): model.set_default_attn_processor() lowerCAmelCase__ : str = self.get_dummy_seed_input() with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(**UpperCamelCase )[0] lowerCAmelCase__ : Any = output[0, :5].flatten().cpu() print(UpperCamelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowerCAmelCase__ : List[str] = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(UpperCamelCase , UpperCamelCase , rtol=1E-2 ) ) @slow class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self , UpperCamelCase=1 , UpperCamelCase=7_68 , UpperCamelCase=77 , UpperCamelCase=0 ) -> Optional[Any]: """simple docstring""" torch.manual_seed(UpperCamelCase ) lowerCAmelCase__ : List[str] = batch_size lowerCAmelCase__ : List[Any] = embedding_dim lowerCAmelCase__ : Union[str, Any] = num_embeddings lowerCAmelCase__ : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase ) lowerCAmelCase__ : Any = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCamelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _lowerCAmelCase ( self ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def _lowerCAmelCase ( self , UpperCamelCase , UpperCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase__ : Optional[int] = PriorTransformer.from_pretrained("""kandinsky-community/kandinsky-2-1-prior""" , subfolder="""prior""" ) model.to(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = self.get_dummy_seed_input(seed=UpperCamelCase ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(**UpperCamelCase )[0] assert list(sample.shape ) == [1, 7_68] lowerCAmelCase__ : Optional[int] = sample[0, :8].flatten().cpu() print(UpperCamelCase ) lowerCAmelCase__ : Dict = torch.tensor(UpperCamelCase ) assert torch_all_close(UpperCamelCase , UpperCamelCase , atol=1E-3 )
361
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Dict ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase__ : Union[str, Any] = Vector() def _lowerCAmelCase ( self : Union[str, Any] ) -> None: """simple docstring""" lowerCAmelCase__ : str = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCamelCase ) , """(0,0,0,0,0,1)""" ) def _lowerCAmelCase ( self : Any ) -> None: """simple docstring""" lowerCAmelCase__ : List[Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCamelCase ) , 4 ) def _lowerCAmelCase ( self : List[str] ) -> None: """simple docstring""" lowerCAmelCase__ : str = Vector([1, 2] ) lowerCAmelCase__ : Optional[int] = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase__ : Union[str, Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase__ : List[Any] = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def _lowerCAmelCase ( self : Any ) -> None: """simple docstring""" lowerCAmelCase__ : int = Vector([1, 2, 3] ) lowerCAmelCase__ : Optional[Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def _lowerCAmelCase ( self : Optional[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = Vector([1, 2, 3] ) lowerCAmelCase__ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def _lowerCAmelCase ( self : Optional[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Any = Vector([1, 2, 3] ) lowerCAmelCase__ : Any = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase__ : Any = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def _lowerCAmelCase ( self : int ) -> None: """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def _lowerCAmelCase ( self : Tuple ) -> None: """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def _lowerCAmelCase ( self : Optional[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Vector([1, 2, 3] ) lowerCAmelCase__ : Optional[Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCamelCase , UpperCamelCase ) ) , """(3,4,7)""" ) def _lowerCAmelCase ( self : Optional[int] ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase__ : Any = x.copy() self.assertEqual(str(UpperCamelCase ) , str(UpperCamelCase ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCamelCase ) , """(0,1,0)""" ) def _lowerCAmelCase ( self : int ) -> None: """simple docstring""" lowerCAmelCase__ : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCamelCase ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase__ : Dict = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCamelCase , UpperCamelCase ) ) def _lowerCAmelCase ( self : List[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase__ : int = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCamelCase , UpperCamelCase ) ) def _lowerCAmelCase ( self : int ) -> None: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def _lowerCAmelCase ( self : int ) -> None: """simple docstring""" lowerCAmelCase__ : Optional[Any] = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase__ : Tuple = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def _lowerCAmelCase ( self : str ) -> None: """simple docstring""" lowerCAmelCase__ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCamelCase ) ) def _lowerCAmelCase ( self : Tuple ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def _lowerCAmelCase ( self : Any ) -> None: """simple docstring""" lowerCAmelCase__ : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase__ : List[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def _lowerCAmelCase ( self : List[Any] ) -> None: """simple docstring""" lowerCAmelCase__ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase__ : Dict = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> None: """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
212
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Any = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase : str = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase : Tuple = { '''squeezebert/squeezebert-uncased''': 5_12, '''squeezebert/squeezebert-mnli''': 5_12, '''squeezebert/squeezebert-mnli-headless''': 5_12, } UpperCAmelCase : Optional[Any] = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class _A( snake_case__ ): """simple docstring""" UpperCamelCase : str = VOCAB_FILES_NAMES UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : List[str] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Optional[int] = SqueezeBertTokenizer def __init__( self , _A=None , _A=None , _A=True , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , _A=True , _A=None , **_A , ): super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) __A : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): __A : Any = getattr(_A , normalizer_state.pop('type' ) ) __A : Union[str, Any] = do_lower_case __A : List[str] = strip_accents __A : Optional[int] = tokenize_chinese_chars __A : Union[str, Any] = normalizer_class(**_A ) __A : Dict = do_lower_case def UpperCAmelCase_ ( self , _A , _A=None ): __A : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self , _A , _A = None ): __A : Optional[int] = [self.sep_token_id] __A : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self , _A , _A = None ): __A : List[str] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
280
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def _SCREAMING_SNAKE_CASE ( a , a ) -> Optional[Any]: __A : Any = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 10_24, 'hidden_size': 7_68, 'max_length': 5_12, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 10_24, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } __A : str = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __A : Optional[int] = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=a , output_all_encodings=a , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , a ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __A : Union[str, Any] = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __A : Any = os.path.join(get_home_dir() , 'models' ) __A : List[Any] = _load_vocab(a , a , a , cls=a ) __A : Dict = nlp.model.BERTModel( a , len(a ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=a , use_token_type_embed=a , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=a , use_decoder=a , ) original_bort.load_parameters(a , cast_dtype=a , ignore_extra=a ) __A : Union[str, Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 __A : Any = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(a ), } __A : int = BertConfig.from_dict(a ) __A : Union[str, Any] = BertForMaskedLM(a ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(a ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(a , a ): __A : Tuple = hf_param.shape __A : str = to_torch(params[gluon_param] ) __A : Union[str, Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), F"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param __A : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __A : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __A : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __A : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __A : Tuple = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __A : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __A : BertSelfAttention = layer.attention.self __A : Optional[Any] = check_and_map_params( self_attn.key.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) __A : Optional[int] = check_and_map_params( self_attn.key.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) __A : Union[str, Any] = check_and_map_params( self_attn.query.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) __A : Optional[Any] = check_and_map_params( self_attn.query.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) __A : Union[str, Any] = check_and_map_params( self_attn.value.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) __A : Optional[int] = check_and_map_params( self_attn.value.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output __A : BertSelfOutput = layer.attention.output __A : Tuple = check_and_map_params( self_output.dense.bias , F"""encoder.transformer_cells.{i}.proj.bias""" ) __A : int = check_and_map_params( self_output.dense.weight , F"""encoder.transformer_cells.{i}.proj.weight""" ) __A : List[Any] = check_and_map_params( self_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.layer_norm.beta""" ) __A : str = check_and_map_params( self_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate __A : BertIntermediate = layer.intermediate __A : int = check_and_map_params( intermediate.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) __A : List[Any] = check_and_map_params( intermediate.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output __A : BertOutput = layer.output __A : List[Any] = check_and_map_params( bert_output.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) __A : Dict = check_and_map_params( bert_output.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) __A : Optional[int] = check_and_map_params( bert_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) __A : Dict = check_and_map_params( bert_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __A : Any = RobertaTokenizer.from_pretrained('roberta-base' ) __A : List[str] = tokenizer.encode_plus(a )['input_ids'] # Get gluon output __A : List[str] = mx.nd.array([input_ids] ) __A : Union[str, Any] = original_bort(inputs=a , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(a ) __A : Optional[Any] = BertModel.from_pretrained(a ) hf_bort_model.eval() __A : Tuple = tokenizer.encode_plus(a , return_tensors='pt' ) __A : Any = hf_bort_model(**a )[0] __A : Union[str, Any] = output_gluon[0].asnumpy() __A : Tuple = output_hf[0].detach().numpy() __A : int = np.max(np.abs(hf_layer - gluon_layer ) ).item() __A : int = np.allclose(a , a , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , a ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase : Dict = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
280
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def SCREAMING_SNAKE_CASE_ ( __A : int ) -> List[str]: _SCREAMING_SNAKE_CASE = SwinvaConfig() _SCREAMING_SNAKE_CASE = swinva_name.split("_" ) _SCREAMING_SNAKE_CASE = name_split[1] if "to" in name_split[3]: _SCREAMING_SNAKE_CASE = int(name_split[3][-3:] ) else: _SCREAMING_SNAKE_CASE = int(name_split[3] ) if "to" in name_split[2]: _SCREAMING_SNAKE_CASE = int(name_split[2][-2:] ) else: _SCREAMING_SNAKE_CASE = int(name_split[2][6:] ) if model_size == "tiny": _SCREAMING_SNAKE_CASE = 96 _SCREAMING_SNAKE_CASE = (2, 2, 6, 2) _SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "small": _SCREAMING_SNAKE_CASE = 96 _SCREAMING_SNAKE_CASE = (2, 2, 18, 2) _SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "base": _SCREAMING_SNAKE_CASE = 1_28 _SCREAMING_SNAKE_CASE = (2, 2, 18, 2) _SCREAMING_SNAKE_CASE = (4, 8, 16, 32) else: _SCREAMING_SNAKE_CASE = 1_92 _SCREAMING_SNAKE_CASE = (2, 2, 18, 2) _SCREAMING_SNAKE_CASE = (6, 12, 24, 48) if "to" in swinva_name: _SCREAMING_SNAKE_CASE = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _SCREAMING_SNAKE_CASE = 2_18_41 _SCREAMING_SNAKE_CASE = "huggingface/label-files" _SCREAMING_SNAKE_CASE = "imagenet-22k-id2label.json" _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__A , __A , repo_type="dataset" ) , "r" ) ) _SCREAMING_SNAKE_CASE = {int(__A ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} else: _SCREAMING_SNAKE_CASE = 10_00 _SCREAMING_SNAKE_CASE = "huggingface/label-files" _SCREAMING_SNAKE_CASE = "imagenet-1k-id2label.json" _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__A , __A , repo_type="dataset" ) , "r" ) ) _SCREAMING_SNAKE_CASE = {int(__A ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = img_size _SCREAMING_SNAKE_CASE = num_classes _SCREAMING_SNAKE_CASE = embed_dim _SCREAMING_SNAKE_CASE = depths _SCREAMING_SNAKE_CASE = num_heads _SCREAMING_SNAKE_CASE = window_size return config def SCREAMING_SNAKE_CASE_ ( __A : str ) -> List[Any]: if "patch_embed.proj" in name: _SCREAMING_SNAKE_CASE = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _SCREAMING_SNAKE_CASE = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: _SCREAMING_SNAKE_CASE = "encoder." + name if "attn.proj" in name: _SCREAMING_SNAKE_CASE = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _SCREAMING_SNAKE_CASE = name.replace("attn" , "attention.self" ) if "norm1" in name: _SCREAMING_SNAKE_CASE = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _SCREAMING_SNAKE_CASE = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _SCREAMING_SNAKE_CASE = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _SCREAMING_SNAKE_CASE = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: _SCREAMING_SNAKE_CASE = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: _SCREAMING_SNAKE_CASE = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: _SCREAMING_SNAKE_CASE = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: _SCREAMING_SNAKE_CASE = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": _SCREAMING_SNAKE_CASE = "layernorm.weight" if name == "norm.bias": _SCREAMING_SNAKE_CASE = "layernorm.bias" if "head" in name: _SCREAMING_SNAKE_CASE = name.replace("head" , "classifier" ) else: _SCREAMING_SNAKE_CASE = "swinv2." + name return name def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : List[str] ) -> Dict: for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE = orig_state_dict.pop(__A ) if "mask" in key: continue elif "qkv" in key: _SCREAMING_SNAKE_CASE = key.split("." ) _SCREAMING_SNAKE_CASE = int(key_split[1] ) _SCREAMING_SNAKE_CASE = int(key_split[3] ) _SCREAMING_SNAKE_CASE = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = val return orig_state_dict def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : Union[str, Any] ) -> List[str]: _SCREAMING_SNAKE_CASE = timm.create_model(__A , pretrained=__A ) timm_model.eval() _SCREAMING_SNAKE_CASE = get_swinva_config(__A ) _SCREAMING_SNAKE_CASE = SwinvaForImageClassification(__A ) model.eval() _SCREAMING_SNAKE_CASE = convert_state_dict(timm_model.state_dict() , __A ) model.load_state_dict(__A ) _SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" _SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) _SCREAMING_SNAKE_CASE = Image.open(requests.get(__A , stream=__A ).raw ) _SCREAMING_SNAKE_CASE = image_processor(images=__A , return_tensors="pt" ) _SCREAMING_SNAKE_CASE = timm_model(inputs["pixel_values"] ) _SCREAMING_SNAKE_CASE = model(**__A ).logits assert torch.allclose(__A , __A , atol=1e-3 ) print(f"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__A ) model.push_to_hub( repo_path_or_name=Path(__A , __A ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swinv2_name', default='swinv2_tiny_patch4_window8_256', type=str, help='Name of the Swinv2 timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCamelCase_ = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
111
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def SCREAMING_SNAKE_CASE_ ( __A : Dict ) -> Dict: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__A ) def SCREAMING_SNAKE_CASE_ ( __A : List[Any] ) -> str: from diffusers.utils.testing_utils import pytest_terminal_summary_main _SCREAMING_SNAKE_CASE = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(__A , id=__A )
111
1
def _a ( UpperCamelCase_ : int = 1 , UpperCamelCase_ : int = 1_000 ) -> int: """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = 0 for divide_by_number in range(UpperCamelCase_ , digit + 1 ): lowerCAmelCase__ = [] lowerCAmelCase__ = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(UpperCamelCase_ ): lowerCAmelCase__ = len(UpperCamelCase_ ) lowerCAmelCase__ = divide_by_number else: has_been_divided.append(UpperCamelCase_ ) lowerCAmelCase__ = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
340
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase__ ( _UpperCAmelCase ): a_ ="""xlnet""" a_ =["""mems"""] a_ ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int: '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCAmelCase__ = d_model // n_head lowerCAmelCase__ = ff_activation lowerCAmelCase__ = d_inner lowerCAmelCase__ = untie_r lowerCAmelCase__ = attn_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = dropout lowerCAmelCase__ = mem_len lowerCAmelCase__ = reuse_len lowerCAmelCase__ = bi_data lowerCAmelCase__ = clamp_len lowerCAmelCase__ = same_length lowerCAmelCase__ = summary_type lowerCAmelCase__ = summary_use_proj lowerCAmelCase__ = summary_activation lowerCAmelCase__ = summary_last_dropout lowerCAmelCase__ = start_n_top lowerCAmelCase__ = end_n_top lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs["use_cache"] lowerCAmelCase__ = use_mems_eval lowerCAmelCase__ = use_mems_train super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
340
1
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
1
import random from .binary_exp_mod import bin_exp_mod def A ( a_ ,a_=1_000 ) -> Optional[Any]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __UpperCamelCase : List[Any] =n - 1 __UpperCamelCase : Dict =0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __UpperCamelCase : Optional[Any] =0 while count < prec: __UpperCamelCase : Dict =random.randint(2 ,n - 1 ) __UpperCamelCase : Optional[Any] =bin_exp_mod(a_ ,a_ ,a_ ) if b != 1: __UpperCamelCase : List[str] =True for _ in range(a_ ): if b == n - 1: __UpperCamelCase : Tuple =False break __UpperCamelCase : Dict =b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": A_ :str = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
71
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 10001 ): try: snake_case_ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) snake_case_ = [] snake_case_ = 2 while len(SCREAMING_SNAKE_CASE__ ) < nth: if is_prime(SCREAMING_SNAKE_CASE__ ): primes.append(SCREAMING_SNAKE_CASE__ ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE__ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
8
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Optional[int] = [0 for i in range(r + 1 )] # nc0 = 1 A : Tuple = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. A : int = min(a__ , a__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
369
'''simple docstring''' from __future__ import annotations from random import random class A : def __init__( self , SCREAMING_SNAKE_CASE = None ) -> Tuple: """simple docstring""" A : Optional[Any] = value A : Any = random() A : Node | None = None A : Node | None = None def __repr__( self ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return F'\'{self.value}: {self.prior:.5}\'' else: return pformat( {F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 ) def __str__( self ) -> str: """simple docstring""" A : Optional[Any] = str(self.value ) + ''' ''' A : Union[str, Any] = str(self.left or '''''' ) A : Any = str(self.right or '''''' ) return value + left + right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: A, A : Any = split(root.left , snake_case__ ) return left, root else: A, A : Optional[int] = split(root.right , snake_case__ ) return root, right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: A : List[str] = merge(left.right , snake_case__ ) return left else: A : Tuple = merge(snake_case__ , right.left ) return right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = Node(snake_case__ ) A, A : Tuple = split(snake_case__ , snake_case__ ) return merge(merge(snake_case__ , snake_case__ ) , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A, A : Dict = split(snake_case__ , value - 1 ) A, A : Any = split(snake_case__ , snake_case__ ) return merge(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for arg in args.split(): if arg[0] == "+": A : int = insert(snake_case__ , int(arg[1:] ) ) elif arg[0] == "-": A : int = erase(snake_case__ , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def lowerCAmelCase_ ( ): '''simple docstring''' A : Union[str, Any] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) A : Optional[int] = input() while args != "q": A : str = interact_treap(snake_case__ , snake_case__ ) print(snake_case__ ) A : Union[str, Any] = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
311
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : str ) -> Union[str, Any]: _lowerCAmelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _lowerCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) _lowerCAmelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _lowerCAmelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase = os.path.join(self.tmpdirname , lowercase_ ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase_ ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase_ ) + """\n""" ) # load decoder from hub _lowerCAmelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def lowercase__ ( self : Any , **__snake_case : Optional[Any] ) -> Tuple: _lowerCAmelCase = self.add_kwargs_tokens_map.copy() kwargs.update(lowercase_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def lowercase__ ( self : str , **__snake_case : Dict ) -> Union[str, Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **lowercase_ ) def lowercase__ ( self : Union[str, Any] , **__snake_case : int ) -> int: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **lowercase_ ) def lowercase__ ( self : Tuple ) -> Dict: shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Optional[int] ) -> List[str]: _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = self.get_decoder() _lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , lowercase_ ) def lowercase__ ( self : int ) -> Dict: _lowerCAmelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _lowerCAmelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase__ ( self : Dict ) -> Any: _lowerCAmelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(lowercase_ , """include""" ): WavaVecaProcessorWithLM( tokenizer=lowercase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_decoder() _lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) _lowerCAmelCase = floats_list((3, 10_00) ) _lowerCAmelCase = feature_extractor(lowercase_ , return_tensors="""np""" ) _lowerCAmelCase = processor(lowercase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Optional[int] ) -> str: _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_decoder() _lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) _lowerCAmelCase = '''This is a test string''' _lowerCAmelCase = processor(text=lowercase_ ) _lowerCAmelCase = tokenizer(lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : List[str] , __snake_case : Any=(2, 10, 16) , __snake_case : str=77 ) -> List[str]: np.random.seed(lowercase_ ) return np.random.rand(*lowercase_ ) def lowercase__ ( self : Optional[Any] ) -> Dict: _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_decoder() _lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) _lowerCAmelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _lowerCAmelCase = processor.decode(lowercase_ ) _lowerCAmelCase = decoder.decode_beams(lowercase_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowercase__ ( self : Optional[Any] , __snake_case : Union[str, Any] ) -> Any: _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_decoder() _lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) _lowerCAmelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _lowerCAmelCase = processor.batch_decode(lowercase_ ) else: with get_context(lowercase_ ).Pool() as pool: _lowerCAmelCase = processor.batch_decode(lowercase_ , lowercase_ ) _lowerCAmelCase = list(lowercase_ ) with get_context("""fork""" ).Pool() as p: _lowerCAmelCase = decoder.decode_beams_batch(lowercase_ , lowercase_ ) _lowerCAmelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowercase_ , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(lowercase_ , decoded_processor.logit_score ) self.assertListEqual(lowercase_ , decoded_processor.lm_score ) def lowercase__ ( self : List[str] ) -> List[str]: _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_decoder() _lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) _lowerCAmelCase = self._get_dummy_logits() _lowerCAmelCase = 15 _lowerCAmelCase = -20.0 _lowerCAmelCase = -4.0 _lowerCAmelCase = processor.batch_decode( lowercase_ , beam_width=lowercase_ , beam_prune_logp=lowercase_ , token_min_logp=lowercase_ , ) _lowerCAmelCase = decoded_processor_out.text _lowerCAmelCase = list(lowercase_ ) with get_context("""fork""" ).Pool() as pool: _lowerCAmelCase = decoder.decode_beams_batch( lowercase_ , lowercase_ , beam_width=lowercase_ , beam_prune_logp=lowercase_ , token_min_logp=lowercase_ , ) _lowerCAmelCase = [d[0][0] for d in decoded_decoder_out] _lowerCAmelCase = [d[0][2] for d in decoded_decoder_out] _lowerCAmelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , lowercase_ ) self.assertTrue(np.array_equal(lowercase_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , lowercase_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(lowercase_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , lowercase_ , atol=1E-3 ) ) def lowercase__ ( self : List[Any] ) -> List[str]: _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_decoder() _lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) _lowerCAmelCase = self._get_dummy_logits() _lowerCAmelCase = 2.0 _lowerCAmelCase = 5.0 _lowerCAmelCase = -20.0 _lowerCAmelCase = True _lowerCAmelCase = processor.batch_decode( lowercase_ , alpha=lowercase_ , beta=lowercase_ , unk_score_offset=lowercase_ , lm_score_boundary=lowercase_ , ) _lowerCAmelCase = decoded_processor_out.text _lowerCAmelCase = list(lowercase_ ) decoder.reset_params( alpha=lowercase_ , beta=lowercase_ , unk_score_offset=lowercase_ , lm_score_boundary=lowercase_ , ) with get_context("""fork""" ).Pool() as pool: _lowerCAmelCase = decoder.decode_beams_batch( lowercase_ , lowercase_ , ) _lowerCAmelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , lowercase_ ) _lowerCAmelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , lowercase_ ) def lowercase__ ( self : Dict ) -> int: _lowerCAmelCase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _lowerCAmelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCAmelCase = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _lowerCAmelCase = os.listdir(lowercase_ ) _lowerCAmelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowercase_ , lowercase_ ) def lowercase__ ( self : Union[str, Any] ) -> Dict: _lowerCAmelCase = snapshot_download("""hf-internal-testing/processor_with_lm""" ) _lowerCAmelCase = WavaVecaProcessorWithLM.from_pretrained(lowercase_ ) _lowerCAmelCase = processor.decoder.model_container[processor.decoder._model_key] _lowerCAmelCase = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() _lowerCAmelCase = os.listdir(lowercase_ ) _lowerCAmelCase = os.listdir(lowercase_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowercase_ , lowercase_ ) def lowercase__ ( self : str ) -> Any: _lowerCAmelCase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _lowerCAmelCase = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _lowerCAmelCase = floats_list((3, 10_00) ) _lowerCAmelCase = processor_wavaveca(lowercase_ , return_tensors="""np""" ) _lowerCAmelCase = processor_auto(lowercase_ , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _lowerCAmelCase = self._get_dummy_logits() _lowerCAmelCase = processor_wavaveca.batch_decode(lowercase_ ) _lowerCAmelCase = processor_auto.batch_decode(lowercase_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_decoder() _lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowercase__ ( __snake_case : Tuple , __snake_case : str ) -> int: _lowerCAmelCase = [d[key] for d in offsets] return retrieved_list def lowercase__ ( self : str ) -> List[Any]: _lowerCAmelCase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _lowerCAmelCase = self._get_dummy_logits()[0] _lowerCAmelCase = processor.decode(lowercase_ , output_word_offsets=lowercase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowercase__ ( self : Optional[int] ) -> Any: _lowerCAmelCase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) _lowerCAmelCase = self._get_dummy_logits() _lowerCAmelCase = processor.batch_decode(lowercase_ , output_word_offsets=lowercase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(lowercase_ , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase__ ( self : int ) -> Union[str, Any]: import torch _lowerCAmelCase = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=lowercase_ ) _lowerCAmelCase = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) _lowerCAmelCase = iter(lowercase_ ) _lowerCAmelCase = next(lowercase_ ) _lowerCAmelCase = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) _lowerCAmelCase = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _lowerCAmelCase = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): _lowerCAmelCase = model(lowercase_ ).logits.cpu().numpy() _lowerCAmelCase = processor.decode(logits[0] , output_word_offsets=lowercase_ ) _lowerCAmelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _lowerCAmelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _lowerCAmelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(""" """.join(self.get_from_offsets(lowercase_ , """word""" ) ) , lowercase_ ) self.assertEqual(""" """.join(self.get_from_offsets(lowercase_ , """word""" ) ) , output.text ) # output times _lowerCAmelCase = torch.tensor(self.get_from_offsets(lowercase_ , """start_time""" ) ) _lowerCAmelCase = torch.tensor(self.get_from_offsets(lowercase_ , """end_time""" ) ) # fmt: off _lowerCAmelCase = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) _lowerCAmelCase = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=0.01 ) ) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=0.01 ) )
70
"""simple docstring""" import os from datetime import datetime as dt from github import Github lowercase__ : int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def __lowercase ( ): snake_case_ : Optional[Any] = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case_ : Any = g.get_repo('''huggingface/diffusers''' ) snake_case_ : Any = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case_ : str = sorted(issue.get_comments() , key=lambda _a : i.created_at , reverse=_a ) snake_case_ : Dict = comments[0] if len(_a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
264
0
import argparse import collections import json import os import re import string import sys import numpy as np __A = re.compile(R'\b(a|an|the)\b', re.UNICODE) __A = None def __A ( ): '''simple docstring''' _A = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=lowercase_ , default=1.0 , help='''Predict \"\" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=lowercase_ , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __A ( _lowercase ): '''simple docstring''' _A = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _A = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def __A ( _lowercase ): '''simple docstring''' def remove_articles(_lowercase ): return ARTICLES_REGEX.sub(''' ''' , lowercase_ ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): _A = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase_ ) ) ) ) def __A ( _lowercase ): '''simple docstring''' if not s: return [] return normalize_answer(lowercase_ ).split() def __A ( _lowercase , _lowercase ): '''simple docstring''' return int(normalize_answer(lowercase_ ) == normalize_answer(lowercase_ ) ) def __A ( _lowercase , _lowercase ): '''simple docstring''' _A = get_tokens(lowercase_ ) _A = get_tokens(lowercase_ ) _A = collections.Counter(lowercase_ ) & collections.Counter(lowercase_ ) _A = sum(common.values() ) if len(lowercase_ ) == 0 or len(lowercase_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _A = 1.0 * num_same / len(lowercase_ ) _A = 1.0 * num_same / len(lowercase_ ) _A = (2 * precision * recall) / (precision + recall) return fa def __A ( _lowercase , _lowercase ): '''simple docstring''' _A = {} _A = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _A = qa['''id'''] _A = [t for t in qa['''answers''']['''text'''] if normalize_answer(lowercase_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _A = [''''''] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue _A = preds[qid] # Take max over all gold answers _A = max(compute_exact(lowercase_ , lowercase_ ) for a in gold_answers ) _A = max(compute_fa(lowercase_ , lowercase_ ) for a in gold_answers ) return exact_scores, fa_scores def __A ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = {} for qid, s in scores.items(): _A = na_probs[qid] > na_prob_thresh if pred_na: _A = float(not qid_to_has_ans[qid] ) else: _A = s return new_scores def __A ( _lowercase , _lowercase , _lowercase=None ): '''simple docstring''' if not qid_list: _A = len(lowercase_ ) return collections.OrderedDict( [ ('''exact''', 1_00.0 * sum(exact_scores.values() ) / total), ('''f1''', 1_00.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: _A = len(lowercase_ ) return collections.OrderedDict( [ ('''exact''', 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' for k in new_eval: _A = new_eval[k] def __A ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' plt.step(lowercase_ , lowercase_ , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(lowercase_ , lowercase_ , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(lowercase_ ) plt.savefig(lowercase_ ) plt.clf() def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None ): '''simple docstring''' _A = sorted(lowercase_ , key=lambda _lowercase : na_probs[k] ) _A = 0.0 _A = 1.0 _A = 0.0 _A = [1.0] _A = [0.0] _A = 0.0 for i, qid in enumerate(lowercase_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] _A = true_pos / float(i + 1 ) _A = true_pos / float(lowercase_ ) if i == len(lowercase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowercase_ ) recalls.append(lowercase_ ) if out_image: plot_pr_curve(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return {"ap": 1_00.0 * avg_prec} def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if out_image_dir and not os.path.exists(lowercase_ ): os.makedirs(lowercase_ ) _A = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _A = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) _A = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) _A = {k: float(lowercase_ ) for k, v in qid_to_has_ans.items()} _A = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(lowercase_ , lowercase_ , '''pr_exact''' ) merge_eval(lowercase_ , lowercase_ , '''pr_f1''' ) merge_eval(lowercase_ , lowercase_ , '''pr_oracle''' ) def __A ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not qid_list: return _A = [na_probs[k] for k in qid_list] _A = np.ones_like(lowercase_ ) / float(len(lowercase_ ) ) plt.hist(lowercase_ , weights=lowercase_ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(lowercase_ , f"""na_prob_hist_{name}.png""" ) ) plt.clf() def __A ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _A = num_no_ans _A = cur_score _A = 0.0 _A = sorted(lowercase_ , key=lambda _lowercase : na_probs[k] ) for i, qid in enumerate(lowercase_ ): if qid not in scores: continue if qid_to_has_ans[qid]: _A = scores[qid] else: if preds[qid]: _A = -1 else: _A = 0 cur_score += diff if cur_score > best_score: _A = cur_score _A = na_probs[qid] return 1_00.0 * best_score / len(lowercase_ ), best_thresh def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A ,_A = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) _A ,_A = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) _A = best_exact _A = exact_thresh _A = best_fa _A = fa_thresh def __A ( ): '''simple docstring''' with open(OPTS.data_file ) as f: _A = json.load(lowercase_ ) _A = dataset_json['''data'''] with open(OPTS.pred_file ) as f: _A = json.load(lowercase_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _A = json.load(lowercase_ ) else: _A = {k: 0.0 for k in preds} _A = make_qid_to_has_ans(lowercase_ ) # maps qid to True/False _A = [k for k, v in qid_to_has_ans.items() if v] _A = [k for k, v in qid_to_has_ans.items() if not v] _A ,_A = get_raw_scores(lowercase_ , lowercase_ ) _A = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh ) _A = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh ) _A = make_eval_dict(lowercase_ , lowercase_ ) if has_ans_qids: _A = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ ) merge_eval(lowercase_ , lowercase_ , '''HasAns''' ) if no_ans_qids: _A = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ ) merge_eval(lowercase_ , lowercase_ , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , OPTS.out_image_dir ) histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(lowercase_ , lowercase_ ) else: print(json.dumps(lowercase_ , indent=2 ) ) if __name__ == "__main__": __A = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
362
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __A ( self: Union[str, Any] ) -> Union[str, Any]: _A = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _A = dict(zip(__A , range(len(__A ) ) ) ) _A = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _A = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _A = tempfile.mkdtemp() _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join(self.tmpdirname , __A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) # load decoder from hub _A = '''hf-internal-testing/ngram-beam-search-decoder''' def __A ( self: Tuple , **__A: str ) -> str: _A = self.add_kwargs_tokens_map.copy() kwargs.update(__A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__A ) def __A ( self: Any , **__A: List[Any] ) -> Union[str, Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__A ) def __A ( self: List[Any] , **__A: Union[str, Any] ) -> int: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__A ) def __A ( self: List[str] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __A ( self: List[str] ) -> Optional[Any]: _A = self.get_tokenizer() _A = self.get_feature_extractor() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) processor.save_pretrained(self.tmpdirname ) _A = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __A ) def __A ( self: Optional[int] ) -> Union[str, Any]: _A = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _A = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __A ( self: str ) -> Any: _A = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(__A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=__A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __A ( self: List[str] ) -> str: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = floats_list((3, 10_00) ) _A = feature_extractor(__A , return_tensors='''np''' ) _A = processor(__A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self: Union[str, Any] ) -> Optional[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = '''This is a test string''' _A = processor(text=__A ) _A = tokenizer(__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self: List[str] , __A: Optional[int]=(2, 10, 16) , __A: Optional[int]=77 ) -> List[Any]: np.random.seed(__A ) return np.random.rand(*__A ) def __A ( self: List[Any] ) -> Optional[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _A = processor.decode(__A ) _A = decoder.decode_beams(__A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def __A ( self: str , __A: Any ) -> int: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _A = processor.batch_decode(__A ) else: with get_context(__A ).Pool() as pool: _A = processor.batch_decode(__A , __A ) _A = list(__A ) with get_context('''fork''' ).Pool() as p: _A = decoder.decode_beams_batch(__A , __A ) _A ,_A ,_A = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(__A , decoded_processor.logit_score ) self.assertListEqual(__A , decoded_processor.lm_score ) def __A ( self: Optional[Any] ) -> int: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits() _A = 15 _A = -20.0 _A = -4.0 _A = processor.batch_decode( __A , beam_width=__A , beam_prune_logp=__A , token_min_logp=__A , ) _A = decoded_processor_out.text _A = list(__A ) with get_context('''fork''' ).Pool() as pool: _A = decoder.decode_beams_batch( __A , __A , beam_width=__A , beam_prune_logp=__A , token_min_logp=__A , ) _A = [d[0][0] for d in decoded_decoder_out] _A = [d[0][2] for d in decoded_decoder_out] _A = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__A , __A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , __A ) self.assertTrue(np.array_equal(__A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __A , atol=1e-3 ) ) self.assertTrue(np.array_equal(__A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , __A , atol=1e-3 ) ) def __A ( self: Optional[int] ) -> Dict: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits() _A = 2.0 _A = 5.0 _A = -20.0 _A = True _A = processor.batch_decode( __A , alpha=__A , beta=__A , unk_score_offset=__A , lm_score_boundary=__A , ) _A = decoded_processor_out.text _A = list(__A ) decoder.reset_params( alpha=__A , beta=__A , unk_score_offset=__A , lm_score_boundary=__A , ) with get_context('''fork''' ).Pool() as pool: _A = decoder.decode_beams_batch( __A , __A , ) _A = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__A , __A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , __A ) _A = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __A ) def __A ( self: int ) -> Optional[Any]: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _A = os.listdir(__A ) _A = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__A , __A ) def __A ( self: Tuple ) -> Any: _A = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _A = WavaVecaProcessorWithLM.from_pretrained(__A ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _A = os.listdir(__A ) _A = os.listdir(__A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__A , __A ) def __A ( self: List[str] ) -> Tuple: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = floats_list((3, 10_00) ) _A = processor_wavaveca(__A , return_tensors='''np''' ) _A = processor_auto(__A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) _A = self._get_dummy_logits() _A = processor_wavaveca.batch_decode(__A ) _A = processor_auto.batch_decode(__A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __A ( self: Optional[int] ) -> Any: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def __A ( __A: int , __A: List[str] ) -> Union[str, Any]: _A = [d[key] for d in offsets] return retrieved_list def __A ( self: Optional[Any] ) -> int: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = self._get_dummy_logits()[0] _A = processor.decode(__A , output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__A , __A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def __A ( self: Optional[Any] ) -> Tuple: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = self._get_dummy_logits() _A = processor.batch_decode(__A , output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__A , __A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(__A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __A ( self: Optional[Any] ) -> Optional[Any]: import torch _A = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=__A ) _A = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _A = iter(__A ) _A = next(__A ) _A = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _A = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _A = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _A = model(__A ).logits.cpu().numpy() _A = processor.decode(logits[0] , output_word_offsets=__A ) _A = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _A = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _A = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(__A , '''word''' ) ) , __A ) self.assertEqual(''' '''.join(self.get_from_offsets(__A , '''word''' ) ) , output.text ) # output times _A = torch.tensor(self.get_from_offsets(__A , '''start_time''' ) ) _A = torch.tensor(self.get_from_offsets(__A , '''end_time''' ) ) # fmt: off _A = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) _A = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__A , __A , atol=0.01 ) ) self.assertTrue(torch.allclose(__A , __A , atol=0.01 ) )
75
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger() @dataclass class snake_case__ : a_ = 42 a_ = field(default_factory=__a) a_ = field(default_factory=__a) def A ( self : Optional[Any] , _A : List[str] , _A : List[Any] , _A : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase__ , nn.Convad ) or isinstance(lowerCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCAmelCase__ ) def __call__( self : List[str] , _A : Union[str, Any] ) -> Union[str, Any]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCAmelCase__ ) [x.remove() for x in self.handles] return self @property def A ( self : List[str] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _A : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class snake_case__ : a_ = 42 a_ = 42 a_ = 0 a_ = field(default_factory=__a) a_ = field(default_factory=__a) def __call__( self : Optional[Any] , _A : str ) -> str: UpperCAmelCase_ : Union[str, Any] = Tracker(self.dest )(lowerCAmelCase__ ).parametrized UpperCAmelCase_ : int = Tracker(self.src )(lowerCAmelCase__ ).parametrized UpperCAmelCase_ : Tuple = list(filter(lambda _A : type(lowerCAmelCase__ ) not in self.src_skip , lowerCAmelCase__ ) ) UpperCAmelCase_ : List[Any] = list(filter(lambda _A : type(lowerCAmelCase__ ) not in self.dest_skip , lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise Exception( F"Numbers of operations are different. Source module has {len(lowerCAmelCase__ )} operations while" F" destination module has {len(lowerCAmelCase__ )}." ) for dest_m, src_m in zip(lowerCAmelCase__ , lowerCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"Transfered from={src_m} to={dest_m}" ) def __UpperCAmelCase ( A : str , A : Dict , A : str , A : Any = True ) -> str: print(F"Converting {name}..." ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = timm.create_model(UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval() UpperCAmelCase_ : int = ResNetForImageClassification(UpperCamelCase_ ).eval() UpperCAmelCase_ : int = ModuleTransfer(src=UpperCamelCase_ , dest=UpperCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCamelCase_ ) assert torch.allclose(from_model(UpperCamelCase_ ) , our_model(UpperCamelCase_ ).logits ), "The model logits don't match the original one." UpperCAmelCase_ : Tuple = F"resnet{'-'.join(name.split('resnet' ) )}" print(UpperCamelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=UpperCamelCase_ , ) # we can use the convnext one UpperCAmelCase_ : Optional[int] = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=UpperCamelCase_ , ) print(F"Pushed {checkpoint_name}" ) def __UpperCAmelCase ( A : Optional[int] , A : Dict = None , A : Optional[Any] = True ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = '''imagenet-1k-id2label.json''' UpperCAmelCase_ : Dict = 1_0_0_0 UpperCAmelCase_ : Tuple = (1, num_labels) UpperCAmelCase_ : Dict = '''huggingface/label-files''' UpperCAmelCase_ : Any = num_labels UpperCAmelCase_ : Optional[Any] = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ : Optional[Any] = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = idalabel UpperCAmelCase_ : List[Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Union[str, Any] = partial(UpperCamelCase_ , num_labels=UpperCamelCase_ , idalabel=UpperCamelCase_ , labelaid=UpperCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(UpperCamelCase_ , names_to_config[model_name] , UpperCamelCase_ , UpperCamelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, expected_shape if __name__ == "__main__": _UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _UpperCamelCase : List[Any] = parser.parse_args() _UpperCamelCase : Any = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
304
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Optional[Any] = XLNetTokenizer __lowercase : List[str] = XLNetTokenizerFast __lowercase : List[Any] = True __lowercase : int = True def snake_case_ ( self): super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XLNetTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """<s>""" __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<unk>""") self.assertEqual(vocab_keys[1] , """<s>""") self.assertEqual(vocab_keys[-1] , """<eod>""") self.assertEqual(len(lowerCAmelCase__) , 1_0_0_6) def snake_case_ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""This is a test""") self.assertListEqual(lowerCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4]) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""▁he""", """ll""", """o"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = XLNetTokenizer.from_pretrained("""xlnet-base-cased""") __SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def snake_case_ ( self): # fmt: off __SCREAMING_SNAKE_CASE = {"""input_ids""": [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
100
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase ( A_ )-> int: '''simple docstring''' a : Tuple = filter(lambda A_ : p.requires_grad , model.parameters() ) a : List[str] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __lowercase = logging.getLogger(__name__) def lowercase ( A_ , A_ )-> Optional[int]: '''simple docstring''' if metric == "rouge2": a : List[str] = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": a : List[Any] = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": a : List[Any] = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' " function." ) a : Dict = ModelCheckpoint( dirpath=A_ , filename=A_ , monitor=F'''val_{metric}''' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowercase ( A_ , A_ )-> Union[str, Any]: '''simple docstring''' return EarlyStopping( monitor=F'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=A_ , verbose=A_ , ) class _A ( pl.Callback ): """simple docstring""" def __snake_case ( self : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str): a : Any = {f'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(__UpperCAmelCase) @rank_zero_only def __snake_case ( self : int , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule , __UpperCAmelCase : str , __UpperCAmelCase : List[str]=True): logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''') a : str = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]}) # Log results a : str = Path(pl_module.hparams.output_dir) if type_path == "test": a : Optional[Any] = od / "test_results.txt" a : Union[str, Any] = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. a : Tuple = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' a : List[Any] = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=__UpperCAmelCase) generations_file.parent.mkdir(exist_ok=__UpperCAmelCase) with open(__UpperCAmelCase , "a+") as writer: for key in sorted(__UpperCAmelCase): if key in ["log", "progress_bar", "preds"]: continue a : Union[str, Any] = metrics[key] if isinstance(__UpperCAmelCase , torch.Tensor): a : List[Any] = val.item() a : Any = f'''{key}: {val:.6f}\n''' writer.write(__UpperCAmelCase) if not save_generations: return if "preds" in metrics: a : Dict = "\n".join(metrics["preds"]) generations_file.open("w+").write(__UpperCAmelCase) @rank_zero_only def __snake_case ( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any]): try: a : int = pl_module.model.model.num_parameters() except AttributeError: a : int = pl_module.model.num_parameters() a : Union[str, Any] = count_trainable_parameters(__UpperCAmelCase) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6}) @rank_zero_only def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule): save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(__UpperCAmelCase , __UpperCAmelCase , "test") @rank_zero_only def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : str): save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
226
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
226
1
"""simple docstring""" from __future__ import annotations __SCREAMING_SNAKE_CASE : Dict = tuple[int, int, int] __SCREAMING_SNAKE_CASE : Optional[int] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase __SCREAMING_SNAKE_CASE : List[Any] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- __SCREAMING_SNAKE_CASE : int = 'EGZWVONAHDCLFQMSIPJBYUKXTR' __SCREAMING_SNAKE_CASE : Any = 'FOBHMDKEXQNRAULPGSJVTYICZW' __SCREAMING_SNAKE_CASE : str = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- __SCREAMING_SNAKE_CASE : int = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- __SCREAMING_SNAKE_CASE : Optional[Any] = 'RMDJXFUWGISLHVTCQNKYPBEZOA' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'SGLCPQWZHKXAREONTFBVIYJUDM' __SCREAMING_SNAKE_CASE : Any = 'HVSICLTYKQUBXDWAJZOMFGPREN' __SCREAMING_SNAKE_CASE : Optional[Any] = 'RZWQHFMVDBKICJLNTUXAGYPSOE' __SCREAMING_SNAKE_CASE : List[Any] = 'LFKIJODBEGAMQPXVUHYSTCZRWN' __SCREAMING_SNAKE_CASE : Tuple = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: # Checks if there are 3 unique rotors if (unique_rotsel := len(set(_SCREAMING_SNAKE_CASE ) )) < 3: snake_case_ = f"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(_SCREAMING_SNAKE_CASE ) # Checks if rotor positions are valid snake_case_ , snake_case_ , snake_case_ = rotpos if not 0 < rotorposa <= len(_SCREAMING_SNAKE_CASE ): snake_case_ = f"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(_SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(_SCREAMING_SNAKE_CASE ): snake_case_ = f"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(_SCREAMING_SNAKE_CASE ) if not 0 < rotorposa <= len(_SCREAMING_SNAKE_CASE ): snake_case_ = f"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(_SCREAMING_SNAKE_CASE ) # Validates string and returns dict snake_case_ = _plugboard(_SCREAMING_SNAKE_CASE ) return rotpos, rotsel, pbdict def _a ( _SCREAMING_SNAKE_CASE ) -> dict[str, str]: # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = f"""Plugboard setting isn't type string ({type(_SCREAMING_SNAKE_CASE )})""" raise TypeError(_SCREAMING_SNAKE_CASE ) elif len(_SCREAMING_SNAKE_CASE ) % 2 != 0: snake_case_ = f"""Odd number of symbols ({len(_SCREAMING_SNAKE_CASE )})""" raise Exception(_SCREAMING_SNAKE_CASE ) elif pbstring == "": return {} pbstring.replace(""" """ , """""" ) # Checks if all characters are unique snake_case_ = set() for i in pbstring: if i not in abc: snake_case_ = f"""'{i}' not in list of symbols""" raise Exception(_SCREAMING_SNAKE_CASE ) elif i in tmppbl: snake_case_ = f"""Duplicate symbol ({i})""" raise Exception(_SCREAMING_SNAKE_CASE ) else: tmppbl.add(_SCREAMING_SNAKE_CASE ) del tmppbl # Created the dictionary snake_case_ = {} for j in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 , 2 ): snake_case_ = pbstring[j + 1] snake_case_ = pbstring[j] return pb def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (rotora, rotora, rotora) , _SCREAMING_SNAKE_CASE = "" , ) -> str: snake_case_ = text.upper() snake_case_ , snake_case_ , snake_case_ = _validator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , plugb.upper() ) snake_case_ , snake_case_ , snake_case_ = rotor_position snake_case_ , snake_case_ , snake_case_ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 snake_case_ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: snake_case_ = plugboard[symbol] # rotor ra -------------------------- snake_case_ = abc.index(_SCREAMING_SNAKE_CASE ) + rotorposa snake_case_ = rotora[index % len(_SCREAMING_SNAKE_CASE )] # rotor rb -------------------------- snake_case_ = abc.index(_SCREAMING_SNAKE_CASE ) + rotorposa snake_case_ = rotora[index % len(_SCREAMING_SNAKE_CASE )] # rotor rc -------------------------- snake_case_ = abc.index(_SCREAMING_SNAKE_CASE ) + rotorposa snake_case_ = rotora[index % len(_SCREAMING_SNAKE_CASE )] # reflector -------------------------- # this is the reason you don't need another machine to decipher snake_case_ = reflector[symbol] # 2nd rotors snake_case_ = abc[rotora.index(_SCREAMING_SNAKE_CASE ) - rotorposa] snake_case_ = abc[rotora.index(_SCREAMING_SNAKE_CASE ) - rotorposa] snake_case_ = abc[rotora.index(_SCREAMING_SNAKE_CASE ) - rotorposa] # 2nd plugboard if symbol in plugboard: snake_case_ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_SCREAMING_SNAKE_CASE ): snake_case_ = 0 rotorposa += 1 if rotorposa >= len(_SCREAMING_SNAKE_CASE ): snake_case_ = 0 rotorposa += 1 if rotorposa >= len(_SCREAMING_SNAKE_CASE ): snake_case_ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any = 'This is my Python script that emulates the Enigma machine from WWII.' __SCREAMING_SNAKE_CASE : Dict = (1, 1, 1) __SCREAMING_SNAKE_CASE : Dict = 'pictures' __SCREAMING_SNAKE_CASE : str = (rotora, rotora, rotora) __SCREAMING_SNAKE_CASE : Any = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
347
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __A (snake_case__): '''simple docstring''' __lowercase: Optional[int] = """beit""" def __init__( self : List[str] , UpperCAmelCase_ : List[Any]=8_192 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : List[Any]=3_072 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Optional[Any]=1E-12 , UpperCAmelCase_ : int=224 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Dict=[3, 5, 7, 11] , UpperCAmelCase_ : Tuple=[1, 2, 3, 6] , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[Any]=0.4 , UpperCAmelCase_ : Optional[Any]=256 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Tuple=255 , **UpperCAmelCase_ : List[str] , ) ->Optional[Any]: """simple docstring""" super().__init__(**UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = use_mask_token snake_case_ = use_absolute_position_embeddings snake_case_ = use_relative_position_bias snake_case_ = use_shared_relative_position_bias snake_case_ = layer_scale_init_value snake_case_ = drop_path_rate snake_case_ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case_ = out_indices snake_case_ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = semantic_loss_ignore_index class __A (snake_case__): '''simple docstring''' __lowercase: List[Any] = version.parse("""1.11""") @property def lowerCAmelCase ( self : Dict ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase ( self : Any ) ->float: """simple docstring""" return 1E-4
347
1
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : int ,lowercase__ : Union[str, Any]=1_3 ,lowercase__ : Tuple=7 ,lowercase__ : Tuple=False ,lowercase__ : Tuple=True ,lowercase__ : Union[str, Any]=False ,lowercase__ : str=False ,lowercase__ : Tuple=1_9 ,lowercase__ : Optional[int]=3_2 ,lowercase__ : List[str]=5 ,lowercase__ : Optional[int]=4 ,lowercase__ : str=3_7 ,lowercase__ : int="gelu" ,lowercase__ : str=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : Optional[int]=5_1_2 ,lowercase__ : int=1_6 ,lowercase__ : int=2 ,lowercase__ : Dict=0.0_2 ,lowercase__ : str=3 ,lowercase__ : int=4 ,lowercase__ : Any=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = EsmConfig( vocab_size=3_3 ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,is_folding_model=lowercase__ ,esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} ,) return config def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Any ,lowercase__ : Tuple ): __lowercase = EsmForProteinFolding(config=lowercase__ ).float() model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ) __lowercase = model(lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.positions.shape ,(8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape ,(8, self.batch_size, self.seq_length, 7, 2) ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Tuple = (EsmForProteinFolding,) if is_torch_available() else () SCREAMING_SNAKE_CASE : str = () SCREAMING_SNAKE_CASE : Tuple = {} if is_torch_available() else {} SCREAMING_SNAKE_CASE : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = EsmFoldModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) @unittest.skip('''Does not support attention outputs''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): pass @unittest.skip def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip('''Esm does not support embedding resizing''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip('''Esm does not support embedding resizing''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def SCREAMING_SNAKE_CASE ( self : str ): pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def SCREAMING_SNAKE_CASE ( self : str ): pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip('''ESMFold only has one output format.''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @unittest.skip('''ESMFold does not support input chunking.''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): pass @require_torch class lowercase_ (lowerCamelCase__ ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() __lowercase = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) __lowercase = model(lowercase__ )['''positions'''] __lowercase = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] ,dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] ,lowercase__ ,atol=1e-4 ) )
52
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 'luke' def __init__( self : int ,lowercase__ : Tuple=5_0_2_6_7 ,lowercase__ : str=5_0_0_0_0_0 ,lowercase__ : Union[str, Any]=7_6_8 ,lowercase__ : Any=2_5_6 ,lowercase__ : int=1_2 ,lowercase__ : Dict=1_2 ,lowercase__ : List[Any]=3_0_7_2 ,lowercase__ : Dict="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : List[Any]=5_1_2 ,lowercase__ : Tuple=2 ,lowercase__ : Any=0.0_2 ,lowercase__ : Tuple=1e-1_2 ,lowercase__ : Optional[int]=True ,lowercase__ : Optional[int]=None ,lowercase__ : Tuple=1 ,lowercase__ : int=0 ,lowercase__ : Tuple=2 ,**lowercase__ : Dict ,): super().__init__(pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) __lowercase = vocab_size __lowercase = entity_vocab_size __lowercase = hidden_size __lowercase = entity_emb_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = use_entity_aware_attention __lowercase = classifier_dropout
52
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase: str = None lowerCAmelCase: Optional[Any] = logging.get_logger(__name__) lowerCAmelCase: List[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase: List[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase: List[Any] = { """facebook/nllb-large-en-ro""": 1_0_2_4, """facebook/nllb-200-distilled-600M""": 1_0_2_4, } # fmt: off lowerCAmelCase: Tuple = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class a__( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = ['''input_ids''', '''attention_mask'''] lowercase__ = NllbTokenizer lowercase__ = [] lowercase__ = [] def __init__( self : int , __snake_case : str=None , __snake_case : Dict=None , __snake_case : Dict="<s>" , __snake_case : int="</s>" , __snake_case : Any="</s>" , __snake_case : int="<s>" , __snake_case : Dict="<unk>" , __snake_case : Tuple="<pad>" , __snake_case : Optional[Any]="<mask>" , __snake_case : Optional[Any]=None , __snake_case : List[str]=None , __snake_case : Union[str, Any]=None , __snake_case : Dict=False , **__snake_case : Any , ): a : Optional[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token a : str = legacy_behaviour super().__init__( vocab_file=__snake_case , tokenizer_file=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case , additional_special_tokens=__snake_case , legacy_behaviour=__snake_case , **__snake_case , ) a : Optional[int] = vocab_file a : str = False if not self.vocab_file else True a : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) a : Any = { lang_code: self.convert_tokens_to_ids(__snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES } a : str = src_lang if src_lang is not None else 'eng_Latn' a : int = self.convert_tokens_to_ids(self._src_lang ) a : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowercase_ ( self : List[str] ): return self._src_lang @src_lang.setter def lowercase_ ( self : Tuple , __snake_case : Optional[Any] ): a : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase_ ( self : Union[str, Any] , __snake_case : Dict , __snake_case : Any = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase_ ( self : str , __snake_case : Dict , __snake_case : str = None ): a : Optional[int] = [self.sep_token_id] a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self : List[str] , __snake_case : List[Any] , __snake_case : int , __snake_case : int , __snake_case : Union[str, Any] , **__snake_case : List[Any] ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) a : List[str] = src_lang a : Any = self(__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , **__snake_case ) a : Optional[int] = self.convert_tokens_to_ids(__snake_case ) a : List[str] = tgt_lang_id return inputs def lowercase_ ( self : Tuple , __snake_case : Tuple , __snake_case : List[str] = "eng_Latn" , __snake_case : Optional[int] = None , __snake_case : List[Any] = "fra_Latn" , **__snake_case : List[Any] , ): a : Any = src_lang a : str = tgt_lang return super().prepare_seqaseq_batch(__snake_case , __snake_case , **__snake_case ) def lowercase_ ( self : Union[str, Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def lowercase_ ( self : Dict ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase_ ( self : Optional[int] , __snake_case : Optional[int] ): a : List[str] = self.convert_tokens_to_ids(__snake_case ) if self.legacy_behaviour: a : Optional[Any] = [] a : Optional[Any] = [self.eos_token_id, self.cur_lang_code] else: a : int = [self.cur_lang_code] a : Union[str, Any] = [self.eos_token_id] a : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) a : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) a : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowercase_ ( self : List[str] , __snake_case : List[Any] ): a : Optional[Any] = self.convert_tokens_to_ids(__snake_case ) if self.legacy_behaviour: a : int = [] a : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: a : Dict = [self.cur_lang_code] a : List[Any] = [self.eos_token_id] a : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) a : int = self.convert_ids_to_tokens(self.suffix_tokens ) a : int = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowercase_ ( self : Optional[int] , __snake_case : List[Any] , __snake_case : List[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return a : Any = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
297
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=30 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=None , ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = parent a__ : List[str] = batch_size a__ : List[str] = image_size a__ : Dict = patch_size a__ : Optional[Any] = num_channels a__ : List[Any] = is_training a__ : str = use_labels a__ : Dict = hidden_size a__ : Tuple = num_hidden_layers a__ : Tuple = num_attention_heads a__ : Union[str, Any] = intermediate_size a__ : List[str] = hidden_act a__ : List[str] = hidden_dropout_prob a__ : Any = attention_probs_dropout_prob a__ : Dict = type_sequence_label_size a__ : Tuple = initializer_range a__ : Optional[int] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : List[str] = (image_size // patch_size) ** 2 a__ : Any = num_patches + 1 def __lowercase ( self) -> int: '''simple docstring''' a__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : Tuple = None if self.use_labels: a__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> Optional[int]: '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' a__ : int = ViTMSNModel(config=lowercase) model.to(lowercase) model.eval() a__ : int = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowercase ( self , lowercase , lowercase , lowercase) -> Tuple: '''simple docstring''' a__ : Optional[Any] = self.type_sequence_label_size a__ : List[str] = ViTMSNForImageClassification(lowercase) model.to(lowercase) model.eval() a__ : int = model(lowercase , labels=lowercase) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}') print('Labels: {labels}') self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a__ : List[str] = 1 a__ : Optional[int] = ViTMSNForImageClassification(lowercase) model.to(lowercase) model.eval() a__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a__ : Dict = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[Any] = self.prepare_config_and_inputs() a__ , a__ , a__ : Optional[Any] = config_and_inputs a__ : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Any = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __A : Tuple = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __A : List[str] = False __A : Optional[Any] = False __A : Union[str, Any] = False __A : Any = False def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Optional[int] = ViTMSNModelTester(self) a__ : Union[str, Any] = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37) def __lowercase ( self) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds') def __lowercase ( self) -> Any: '''simple docstring''' pass def __lowercase ( self) -> Tuple: '''simple docstring''' a__ , a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Union[str, Any] = model_class(lowercase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear)) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ , a__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Dict = model_class(lowercase) a__ : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : str = [*signature.parameters.keys()] a__ : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> str: '''simple docstring''' a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> str: '''simple docstring''' a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase) @slow def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Tuple = ViTMSNModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def A_ ( ) -> Dict: a__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self) -> List[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small') if is_vision_available() else None @slow def __lowercase ( self) -> List[Any]: '''simple docstring''' torch.manual_seed(2) a__ : List[str] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small').to(lowercase) a__ : Any = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Optional[Any] = image_processor(images=lowercase , return_tensors='pt').to(lowercase) # forward pass with torch.no_grad(): a__ : Tuple = model(**lowercase) # verify the logits a__ : Union[str, Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Any = torch.tensor([-0.08_03, -0.44_54, -0.23_75]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4))
99
0
from collections.abc import Iterable from typing import Any class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , __UpperCAmelCase : int | None = None ) ->Optional[Any]: """simple docstring""" a = value a = None # Added in order to delete a node easier a = None a = None def __repr__( self : int ) ->str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Node | None = None ) ->str: """simple docstring""" a = root def __str__( self : Dict ) ->str: """simple docstring""" return str(self.root ) def __lowerCAmelCase ( self : str , __UpperCAmelCase : Node , __UpperCAmelCase : Node | None ) ->None: """simple docstring""" if new_children is not None: # reset its kids a = node.parent if node.parent is not None: # reset its parent if self.is_right(__UpperCAmelCase ): # If it is the right children a = new_children else: a = new_children else: a = new_children def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Node ) ->bool: """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def __lowerCAmelCase ( self : Optional[int] ) ->bool: """simple docstring""" return self.root is None def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict ) ->None: """simple docstring""" a = Node(__UpperCAmelCase ) # create a new Node if self.empty(): # if Tree is empty a = new_node # set its root else: # Tree is not empty a = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: a = new_node # We insert the new node in a leaf break else: a = parent_node.left else: if parent_node.right is None: a = new_node break else: a = parent_node.right a = parent_node def __lowerCAmelCase ( self : List[Any] , *__UpperCAmelCase : str ) ->None: """simple docstring""" for value in values: self.__insert(__UpperCAmelCase ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : List[str] ) ->Node | None: """simple docstring""" if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: a = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: a = node.left if value < node.value else node.right return node def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Node | None = None ) ->Node | None: """simple docstring""" if node is None: if self.root is None: return None a = self.root if not self.empty(): while node.right is not None: a = node.right return node def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Node | None = None ) ->Node | None: """simple docstring""" if node is None: a = self.root if self.root is None: return None if not self.empty(): a = self.root while node.left is not None: a = node.left return node def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int ) ->None: """simple docstring""" a = self.search(__UpperCAmelCase ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__UpperCAmelCase , __UpperCAmelCase ) elif node.left is None: # Has only right children self.__reassign_nodes(__UpperCAmelCase , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__UpperCAmelCase , node.left ) else: a = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore a = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Node | None ) ->Iterable: """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str=None ) ->Any: """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __lowerCAmelCase ( self : str , __UpperCAmelCase : list , __UpperCAmelCase : Node | None ) ->None: """simple docstring""" if node: self.inorder(__UpperCAmelCase , node.left ) arr.append(node.value ) self.inorder(__UpperCAmelCase , node.right ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Node ) ->int: """simple docstring""" a = [] self.inorder(__UpperCAmelCase , __UpperCAmelCase ) # append all values to list using inorder traversal return arr[k - 1] def _a ( a :Node | None ) -> list[Node]: a = [] if curr_node is not None: a = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _a ( ) -> None: a = (8, 3, 6, 1, 10, 14, 13, 4, 7) a = BinarySearchTree() for i in testlist: t.insert(a ) # Prints all the elements of the list in order traversal print(a ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(a ) print(a ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
26
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() a = BlipImageProcessor() a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) a = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) a = InstructBlipProcessor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def __lowerCAmelCase ( self : int , **__UpperCAmelCase : str ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).qformer_tokenizer def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) a = qformer_tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
26
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } lowerCAmelCase__ = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } lowerCAmelCase__ = '''▁''' class __snake_case ( _lowercase): snake_case__ : int = VOCAB_FILES_NAMES snake_case__ : Any = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any]="<s>" , __lowerCAmelCase : Dict="</s>" , __lowerCAmelCase : Optional[int]="</s>" , __lowerCAmelCase : Optional[int]="<s>" , __lowerCAmelCase : Optional[int]="<unk>" , __lowerCAmelCase : str="<pad>" , __lowerCAmelCase : Optional[Any]="<mask>" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Optional[int] , ): """simple docstring""" _lowerCamelCase : Dict = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _lowerCamelCase : Dict = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} _lowerCamelCase : int = len(self.sp_model ) - 1 _lowerCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase : List[str] = [self.cls_token_id] _lowerCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ): """simple docstring""" _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : int = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : str ): """simple docstring""" return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : List[str] ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCamelCase : List[Any] = self.sp_model.PieceToId(__lowerCAmelCase ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : str ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Tuple = [] _lowerCamelCase : Tuple = '''''' _lowerCamelCase : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCAmelCase ) + token _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : List[Any] = [] else: current_sub_tokens.append(__lowerCAmelCase ) _lowerCamelCase : List[str] = False out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def __getstate__( self : List[str] ): """simple docstring""" _lowerCamelCase : Dict = self.__dict__.copy() _lowerCamelCase : int = None return state def __setstate__( self : int , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCamelCase : Any = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _lowerCamelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,)
72
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __snake_case : def __init__( self : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Optional[Any]=1_0 , __lowerCAmelCase : List[str]=3 , __lowerCAmelCase : int=3_2 * 4 , __lowerCAmelCase : Dict=3_2 * 6 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : List[str]=3_2 , ): """simple docstring""" _lowerCamelCase : List[str] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Dict = is_training _lowerCamelCase : str = use_auxiliary_loss _lowerCamelCase : Any = num_queries _lowerCamelCase : List[Any] = num_channels _lowerCamelCase : int = min_size _lowerCamelCase : Any = max_size _lowerCamelCase : int = num_labels _lowerCamelCase : List[str] = mask_feature_size def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __lowerCAmelCase ) _lowerCamelCase : List[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__lowerCAmelCase ) > 0.5 ).float() _lowerCamelCase : Optional[int] = (torch.rand((self.batch_size, self.num_labels) , device=__lowerCAmelCase ) > 0.5).long() _lowerCamelCase : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = self.prepare_config_and_inputs() _lowerCamelCase : List[str] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = output.encoder_hidden_states _lowerCamelCase : Tuple = output.pixel_decoder_hidden_states _lowerCamelCase : Dict = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) , config.decoder_config.decoder_layers ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=False ): """simple docstring""" with torch.no_grad(): _lowerCamelCase : Optional[int] = MaskFormerModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Tuple = model(pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase ) _lowerCamelCase : List[str] = model(__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : str = MaskFormerForInstanceSegmentation(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() def comm_check_on_output(__lowerCAmelCase : Dict ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _lowerCamelCase : str = model(pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) _lowerCamelCase : List[str] = model( pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : Dict = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () snake_case__ : Any = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : List[str] = False snake_case__ : Optional[int] = False snake_case__ : Dict = False def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Optional[int] = MaskFormerModelTester(self ) _lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__lowerCAmelCase , **__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__lowerCAmelCase ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Dict = [*signature.parameters.keys()] _lowerCamelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: _lowerCamelCase : Union[str, Any] = MaskFormerModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[Any] = (self.model_tester.min_size,) * 2 _lowerCamelCase : Union[str, Any] = { '''pixel_values''': torch.randn((2, 3, *size) , device=__lowerCAmelCase ), '''mask_labels''': torch.randn((2, 1_0, *size) , device=__lowerCAmelCase ), '''class_labels''': torch.zeros(2 , 1_0 , device=__lowerCAmelCase ).long(), } _lowerCamelCase : int = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__lowerCAmelCase , **__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ).to(__lowerCAmelCase ) _lowerCamelCase : List[str] = model(**__lowerCAmelCase , output_attentions=__lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _lowerCamelCase : Union[str, Any] = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : Any = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() _lowerCamelCase : List[Any] = model(__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : int = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCamelCase : Tuple = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _lowerCamelCase : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCamelCase : Optional[int] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCAmelCase__ = 1E-4 def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __snake_case ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : str = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(__lowerCAmelCase ) _lowerCamelCase : Any = self.default_image_processor _lowerCamelCase : List[Any] = prepare_img() _lowerCamelCase : Any = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : Any = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _lowerCamelCase : int = model(**__lowerCAmelCase ) _lowerCamelCase : str = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__lowerCAmelCase ) .eval() ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : str = prepare_img() _lowerCamelCase : int = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : str = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**__lowerCAmelCase ) # masks_queries_logits _lowerCamelCase : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCamelCase : List[str] = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] _lowerCamelCase : Any = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) # class_queries_logits _lowerCamelCase : List[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCamelCase : str = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Any = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(__lowerCAmelCase ) .eval() ) _lowerCamelCase : Tuple = self.default_image_processor _lowerCamelCase : Tuple = prepare_img() _lowerCamelCase : Optional[Any] = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : List[Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**__lowerCAmelCase ) # masks_queries_logits _lowerCamelCase : List[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCamelCase : int = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] _lowerCamelCase : List[Any] = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) # class_queries_logits _lowerCamelCase : Dict = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCamelCase : Any = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : str = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__lowerCAmelCase ) .eval() ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : List[str] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='''pt''' , ) _lowerCamelCase : Union[str, Any] = inputs['''pixel_values'''].to(__lowerCAmelCase ) _lowerCamelCase : Dict = [el.to(__lowerCAmelCase ) for el in inputs['''mask_labels''']] _lowerCamelCase : Optional[Any] = [el.to(__lowerCAmelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _lowerCamelCase : Tuple = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
72
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = ['''image_processor''', '''tokenizer'''] __snake_case = '''LayoutLMv3ImageProcessor''' __snake_case = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self : Tuple , __UpperCAmelCase : int=None , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) a = kwargs.pop('''feature_extractor''' ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , __UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , __UpperCAmelCase : bool = True , __UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , __UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : int = 0 , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , **__UpperCAmelCase : Tuple , ) ->BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor a = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = [text] # add batch dimension (as the image processor always adds a batch dimension) a = features['''words'''] a = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) # add pixel values a = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: a = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) a = images return encoded_inputs def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str ) ->Optional[int]: """simple docstring""" a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F""" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}""" ) return images_with_overflow def __lowerCAmelCase ( self : Union[str, Any] , *__UpperCAmelCase : int , **__UpperCAmelCase : str ) ->Any: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : List[Any] ) ->Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : List[str] ) ->Optional[int]: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self : List[str] ) ->Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , ) return self.image_processor
26
from math import ceil, sqrt def _a ( a :int = 1_000_000 ) -> int: a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
26
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = """""" else: _UpperCAmelCase = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase ,lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = dct.pop(lowercase ) _UpperCAmelCase = val def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = ViTConfig() _UpperCAmelCase = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _UpperCAmelCase = True _UpperCAmelCase = int(vit_name[-12:-10] ) _UpperCAmelCase = int(vit_name[-9:-6] ) else: _UpperCAmelCase = 10_00 _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = int(vit_name[-6:-4] ) _UpperCAmelCase = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): _UpperCAmelCase = 1_92 _UpperCAmelCase = 7_68 _UpperCAmelCase = 12 _UpperCAmelCase = 3 elif vit_name[9:].startswith("""small""" ): _UpperCAmelCase = 3_84 _UpperCAmelCase = 15_36 _UpperCAmelCase = 12 _UpperCAmelCase = 6 else: pass else: if vit_name[4:].startswith("""small""" ): _UpperCAmelCase = 7_68 _UpperCAmelCase = 23_04 _UpperCAmelCase = 8 _UpperCAmelCase = 8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): _UpperCAmelCase = 10_24 _UpperCAmelCase = 40_96 _UpperCAmelCase = 24 _UpperCAmelCase = 16 elif vit_name[4:].startswith("""huge""" ): _UpperCAmelCase = 12_80 _UpperCAmelCase = 51_20 _UpperCAmelCase = 32 _UpperCAmelCase = 16 # load original model from timm _UpperCAmelCase = timm.create_model(lowercase ,pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(lowercase ) _UpperCAmelCase = create_rename_keys(lowercase ,lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_q_k_v(lowercase ,lowercase ,lowercase ) # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCAmelCase = ViTModel(lowercase ).eval() else: _UpperCAmelCase = ViTForImageClassification(lowercase ).eval() model.load_state_dict(lowercase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _UpperCAmelCase = DeiTImageProcessor(size=config.image_size ) else: _UpperCAmelCase = ViTImageProcessor(size=config.image_size ) _UpperCAmelCase = image_processor(images=prepare_img() ,return_tensors="""pt""" ) _UpperCAmelCase = encoding["""pixel_values"""] _UpperCAmelCase = model(lowercase ) if base_model: _UpperCAmelCase = timm_model.forward_features(lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase ,outputs.pooler_output ,atol=1E-3 ) else: _UpperCAmelCase = timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase ,outputs.logits ,atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
289
"""simple docstring""" UpperCAmelCase__ = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" # Return True if there is node that has not iterated. _UpperCAmelCase = [False] * len(lowercase ) _UpperCAmelCase = [s] _UpperCAmelCase = True while queue: _UpperCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase ) _UpperCAmelCase = True _UpperCAmelCase = u return visited[t] def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [-1] * (len(lowercase )) _UpperCAmelCase = 0 _UpperCAmelCase = [] _UpperCAmelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase ,lowercase ,lowercase ,lowercase ): _UpperCAmelCase = float("""Inf""" ) _UpperCAmelCase = sink while s != source: # Find the minimum value in select path _UpperCAmelCase = min(lowercase ,graph[parent[s]][s] ) _UpperCAmelCase = parent[s] max_flow += path_flow _UpperCAmelCase = sink while v != source: _UpperCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCAmelCase = parent[v] for i in range(len(lowercase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
289
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=_UpperCamelCase ).to(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained('google/mt5-small' ) UpperCAmelCase_ : str = tokenizer('Hello there' , return_tensors='pt' ).input_ids UpperCAmelCase_ : Optional[int] = tokenizer('Hi I am' , return_tensors='pt' ).input_ids UpperCAmelCase_ : str = model(input_ids.to(_UpperCamelCase ) , labels=labels.to(_UpperCamelCase ) ).loss UpperCAmelCase_ : Dict = -(labels.shape[-1] * loss.item()) UpperCAmelCase_ : int = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
145
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '▁' __UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __UpperCAmelCase = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } __UpperCAmelCase = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off __UpperCAmelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : List[Any] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = ['''input_ids''', '''attention_mask'''] _snake_case : List[int] = [] _snake_case : List[int] = [] def __init__( self , _UpperCamelCase , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=None , **_UpperCamelCase , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : List[Any] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token UpperCAmelCase_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenizer_file=_UpperCamelCase , src_lang=_UpperCamelCase , tgt_lang=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) UpperCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) UpperCAmelCase_ : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ : List[str] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Optional[int] = len(self.sp_model ) UpperCAmelCase_ : str = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCamelCase ) } UpperCAmelCase_ : int = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase_ : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase_ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase_ : int = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase_ : Any = src_lang if src_lang is not None else 'en_XX' UpperCAmelCase_ : Any = self.lang_code_to_id[self._src_lang] UpperCAmelCase_ : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Dict: UpperCAmelCase_ : Optional[int] = self.__dict__.copy() UpperCAmelCase_ : str = None UpperCAmelCase_ : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase_ : Any = {} UpperCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __UpperCAmelCase ( self ) -> Tuple: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __UpperCAmelCase ( self ) -> str: return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) UpperCAmelCase_ : Tuple = [1] * len(self.prefix_tokens ) UpperCAmelCase_ : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCamelCase )) + ([0] * len(_UpperCamelCase )) + suffix_ones def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : int = [self.sep_token_id] UpperCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> int: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) UpperCAmelCase_ : Optional[int] = src_lang UpperCAmelCase_ : Dict = self(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : int = self.convert_tokens_to_ids(_UpperCamelCase ) UpperCAmelCase_ : Any = tgt_lang_id return inputs def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : str = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : Dict = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCAmelCase ( self , _UpperCamelCase ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = ''.join(_UpperCamelCase ).replace(_UpperCamelCase , ' ' ).strip() return out_string def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase_ : List[Any] = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , 'wb' ) as fi: UpperCAmelCase_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = "en_XX" , _UpperCamelCase = None , _UpperCamelCase = "ro_RO" , **_UpperCamelCase , ) -> BatchEncoding: UpperCAmelCase_ : Union[str, Any] = src_lang UpperCAmelCase_ : Dict = tgt_lang return super().prepare_seqaseq_batch(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Any = self.lang_code_to_id[src_lang] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [self.eos_token_id, self.cur_lang_code] def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Any = self.lang_code_to_id[lang] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : int = [self.eos_token_id, self.cur_lang_code]
145
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> None: __lowerCamelCase , __lowerCamelCase : Dict = analyze_text(lowerCamelCase__ ) __lowerCamelCase : List[Any] = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. __lowerCamelCase : int = sum(single_char_strings.values() ) # one length string __lowerCamelCase : Optional[int] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __lowerCamelCase : str = single_char_strings[ch] __lowerCamelCase : Dict = my_str / all_sum my_fir_sum += prob * math.loga(lowerCamelCase__ ) # entropy formula. # print entropy print(F"{round(-1 * my_fir_sum ):.1f}" ) # two len string __lowerCamelCase : Tuple = sum(two_char_strings.values() ) __lowerCamelCase : Any = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __lowerCamelCase : str = cha + cha if sequence in two_char_strings: __lowerCamelCase : str = two_char_strings[sequence] __lowerCamelCase : Optional[int] = int(lowerCamelCase__ ) / all_sum my_sec_sum += prob * math.loga(lowerCamelCase__ ) # print second entropy print(F"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(F"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> tuple[dict, dict]: __lowerCamelCase : List[str] = Counter() # type: ignore __lowerCamelCase : Union[str, Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCamelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def SCREAMING_SNAKE_CASE__ ( ) -> Dict: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
73
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None ) -> str: if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __lowerCamelCase : int = quote(lowerCamelCase__ ) return hfh.hf_hub_url(lowerCamelCase__ , lowerCamelCase__ , repo_type='dataset' , revision=lowerCamelCase__ )
73
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {"""vocab_file""": """spiece.model"""} lowerCamelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } lowerCamelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) lowerCamelCase = 0 lowerCamelCase = 1 lowerCamelCase = 2 lowerCamelCase = 3 lowerCamelCase = 4 class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = """left""" def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : Any="<s>" , _lowerCAmelCase : Union[str, Any]="</s>" , _lowerCAmelCase : int="<unk>" , _lowerCAmelCase : Union[str, Any]="<sep>" , _lowerCAmelCase : Union[str, Any]="<pad>" , _lowerCAmelCase : Union[str, Any]="<cls>" , _lowerCAmelCase : List[Any]="<mask>" , _lowerCAmelCase : List[Any]=["<eop>", "<eod>"] , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : str , ): '''simple docstring''' __lowercase =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase) if isinstance(_lowerCAmelCase , _lowerCAmelCase) else mask_token __lowercase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __lowercase =3 __lowercase =do_lower_case __lowercase =remove_space __lowercase =keep_accents __lowercase =vocab_file __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowerCAmelCase) @property def __lowerCamelCase ( self : str): '''simple docstring''' return len(self.sp_model) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase ={self.convert_ids_to_tokens(_lowerCAmelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : str): '''simple docstring''' __lowercase =self.__dict__.copy() __lowercase =None return state def __setstate__( self : List[Any] , _lowerCAmelCase : List[str]): '''simple docstring''' __lowercase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __lowercase ={} __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : Any): '''simple docstring''' if self.remove_space: __lowercase =' '.join(inputs.strip().split()) else: __lowercase =inputs __lowercase =outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: __lowercase =unicodedata.normalize('NFKD' , _lowerCAmelCase) __lowercase =''.join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase)]) if self.do_lower_case: __lowercase =outputs.lower() return outputs def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : str): '''simple docstring''' __lowercase =self.preprocess_text(_lowerCAmelCase) __lowercase =self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase) __lowercase =[] for piece in pieces: if len(_lowerCAmelCase) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): __lowercase =self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __lowercase =cur_pieces[1:] else: __lowercase =cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowerCAmelCase) else: new_pieces.append(_lowerCAmelCase) return new_pieces def __lowerCamelCase ( self : Any , _lowerCAmelCase : Optional[int]): '''simple docstring''' return self.sp_model.PieceToId(_lowerCAmelCase) def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[str]): '''simple docstring''' return self.sp_model.IdToPiece(_lowerCAmelCase) def __lowerCamelCase ( self : Any , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase =''.join(_lowerCAmelCase).replace(_lowerCAmelCase , ' ').strip() return out_string def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = None , _lowerCAmelCase : bool = True , **_lowerCAmelCase : List[Any] , ): '''simple docstring''' __lowercase =kwargs.pop('use_source_tokenizer' , _lowerCAmelCase) __lowercase =self.convert_ids_to_tokens(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowercase =[] __lowercase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase)) __lowercase =[] sub_texts.append(_lowerCAmelCase) else: current_sub_text.append(_lowerCAmelCase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __lowercase =''.join(_lowerCAmelCase) __lowercase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowercase =self.clean_up_tokenization(_lowerCAmelCase) return clean_text else: return text def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None): '''simple docstring''' __lowercase =[self.sep_token_id] __lowercase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None , _lowerCAmelCase : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase)) + [1] + ([0] * len(_lowerCAmelCase)) + [1, 1] return ([0] * len(_lowerCAmelCase)) + [1, 1] def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None): '''simple docstring''' __lowercase =[self.sep_token_id] __lowercase =[2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None): '''simple docstring''' if not os.path.isdir(_lowerCAmelCase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __lowercase =os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCAmelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowerCAmelCase) elif not os.path.isfile(self.vocab_file): with open(_lowerCAmelCase , 'wb') as fi: __lowercase =self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase) return (out_vocab_file,)
48
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowerCamelCase = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =EfficientNetConfig() __lowercase =CONFIG_MAP[model_name]['hidden_dim'] __lowercase =CONFIG_MAP[model_name]['width_coef'] __lowercase =CONFIG_MAP[model_name]['depth_coef'] __lowercase =CONFIG_MAP[model_name]['image_size'] __lowercase =CONFIG_MAP[model_name]['dropout_rate'] __lowercase =CONFIG_MAP[model_name]['dw_padding'] __lowercase ='huggingface/label-files' __lowercase ='imagenet-1k-id2label.json' __lowercase =1_000 __lowercase =json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) __lowercase ={int(_lowerCAmelCase ): v for k, v in idalabel.items()} __lowercase =idalabel __lowercase ={v: k for k, v in idalabel.items()} return config def _A ( ): """simple docstring""" __lowercase ='http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase =Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =CONFIG_MAP[model_name]['image_size'] __lowercase =EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=_lowerCAmelCase , ) return preprocessor def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =[v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] __lowercase =sorted(set(_lowerCAmelCase ) ) __lowercase =len(_lowerCAmelCase ) __lowercase ={b: str(_lowerCAmelCase ) for b, i in zip(_lowerCAmelCase , range(_lowerCAmelCase ) )} __lowercase =[] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: __lowercase =block_name_mapping[b] rename_keys.append((f"""block{b}_expand_conv/kernel:0""", f"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((f"""block{b}_expand_bn/gamma:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((f"""block{b}_expand_bn/beta:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (f"""block{b}_dwconv/depthwise_kernel:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((f"""block{b}_bn/gamma:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((f"""block{b}_bn/beta:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (f"""block{b}_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (f"""block{b}_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((f"""block{b}_se_reduce/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((f"""block{b}_se_reduce/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((f"""block{b}_se_expand/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((f"""block{b}_se_expand/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (f"""block{b}_project_conv/kernel:0""", f"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((f"""block{b}_project_bn/gamma:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((f"""block{b}_project_bn/beta:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (f"""block{b}_project_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (f"""block{b}_project_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) __lowercase ={} for item in rename_keys: if item[0] in original_param_names: __lowercase ='efficientnet.' + item[1] __lowercase ='classifier.weight' __lowercase ='classifier.bias' return key_mapping def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue __lowercase =key_mapping[key] if "_conv" in key and "kernel" in key: __lowercase =torch.from_numpy(_lowerCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __lowercase =torch.from_numpy(_lowerCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __lowercase =torch.from_numpy(np.transpose(_lowerCAmelCase ) ) else: __lowercase =torch.from_numpy(_lowerCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_lowerCAmelCase ) @torch.no_grad() def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =model_classes[model_name]( include_top=_lowerCAmelCase , weights='imagenet' , input_tensor=_lowerCAmelCase , input_shape=_lowerCAmelCase , pooling=_lowerCAmelCase , classes=1_000 , classifier_activation='softmax' , ) __lowercase =original_model.trainable_variables __lowercase =original_model.non_trainable_variables __lowercase ={param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __lowercase =param.numpy() __lowercase =list(tf_params.keys() ) # Load HuggingFace model __lowercase =get_efficientnet_config(_lowerCAmelCase ) __lowercase =EfficientNetForImageClassification(_lowerCAmelCase ).eval() __lowercase =hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) __lowercase =rename_keys(_lowerCAmelCase ) replace_params(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Initialize preprocessor and preprocess input image __lowercase =convert_image_processor(_lowerCAmelCase ) __lowercase =preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): __lowercase =hf_model(**_lowerCAmelCase ) __lowercase =outputs.logits.detach().numpy() # Original model inference __lowercase =False __lowercase =CONFIG_MAP[model_name]['image_size'] __lowercase =prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __lowercase =image.img_to_array(_lowerCAmelCase ) __lowercase =np.expand_dims(_lowerCAmelCase , axis=0 ) __lowercase =original_model.predict(_lowerCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(_lowerCAmelCase ): os.mkdir(_lowerCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(_lowerCAmelCase ) preprocessor.save_pretrained(_lowerCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f"""Pushing converted {model_name} to the hub...""" ) __lowercase =f"""efficientnet-{model_name}""" preprocessor.push_to_hub(_lowerCAmelCase ) hf_model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowerCamelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
48
1
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE__ = FlaxAutoModelForSeqaSeqLM.from_config(config=_A ) SCREAMING_SNAKE_CASE__ = checkpoints.load_tax_checkpoint(_A ) SCREAMING_SNAKE_CASE__ = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": SCREAMING_SNAKE_CASE__ = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": SCREAMING_SNAKE_CASE__ = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE__ = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): SCREAMING_SNAKE_CASE__ = F'''layers_{str(_A )}''' # Self-Attention SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning SCREAMING_SNAKE_CASE__ = flax_model.params['''encoder''']['''block'''][str(_A )]['''layer'''] SCREAMING_SNAKE_CASE__ = tax_attention_key SCREAMING_SNAKE_CASE__ = tax_attention_out SCREAMING_SNAKE_CASE__ = tax_attention_query SCREAMING_SNAKE_CASE__ = tax_attention_value SCREAMING_SNAKE_CASE__ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE__ = tax_global_layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE__ = tax_mlp_wi_a SCREAMING_SNAKE_CASE__ = tax_mlp_wi_a else: SCREAMING_SNAKE_CASE__ = tax_mlp_wi SCREAMING_SNAKE_CASE__ = tax_mlp_wo SCREAMING_SNAKE_CASE__ = tax_mlp_layer_norm SCREAMING_SNAKE_CASE__ = flax_model_encoder_layer_block # Only for layer 0: SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T SCREAMING_SNAKE_CASE__ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T SCREAMING_SNAKE_CASE__ = tax_encoder_global_rel_embedding # Assigning SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] SCREAMING_SNAKE_CASE__ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): SCREAMING_SNAKE_CASE__ = F'''layers_{str(_A )}''' # Self-Attention SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_module['''key''']['''kernel'''] SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_module['''out''']['''kernel'''] SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_module['''query''']['''kernel'''] SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning SCREAMING_SNAKE_CASE__ = flax_model.params['''decoder''']['''block'''][str(_A )]['''layer'''] SCREAMING_SNAKE_CASE__ = tax_attention_key SCREAMING_SNAKE_CASE__ = tax_attention_out SCREAMING_SNAKE_CASE__ = tax_attention_query SCREAMING_SNAKE_CASE__ = tax_attention_value SCREAMING_SNAKE_CASE__ = tax_pre_attention_layer_norm SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_key SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_out SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_query SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_value SCREAMING_SNAKE_CASE__ = tax_cross_layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE__ = tax_mlp_wi_a SCREAMING_SNAKE_CASE__ = tax_mlp_wi_a else: SCREAMING_SNAKE_CASE__ = tax_mlp_wi SCREAMING_SNAKE_CASE__ = tax_mlp_wo SCREAMING_SNAKE_CASE__ = txa_mlp_layer_norm SCREAMING_SNAKE_CASE__ = flax_model_decoder_layer_block # Decoder Normalization SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] SCREAMING_SNAKE_CASE__ = txa_decoder_norm # Only for layer 0: SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T SCREAMING_SNAKE_CASE__ = tax_decoder_rel_embedding # Token Embeddings SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''token_embedder''']['''embedding'''] SCREAMING_SNAKE_CASE__ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: SCREAMING_SNAKE_CASE__ = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(_A ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) _SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
314
'''simple docstring''' def _lowerCamelCase ( lowercase : int ) -> bool: _a = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
63
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Tuple = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:int = "glpn" def __init__( self , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , _SCREAMING_SNAKE_CASE=[8, 4, 2, 1] , _SCREAMING_SNAKE_CASE=[32, 64, 160, 256] , _SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , _SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , _SCREAMING_SNAKE_CASE=[1, 2, 5, 8] , _SCREAMING_SNAKE_CASE=[4, 4, 4, 4] , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1E-6 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=-1 , **_SCREAMING_SNAKE_CASE , )-> Any: super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =num_channels lowerCamelCase_ =num_encoder_blocks lowerCamelCase_ =depths lowerCamelCase_ =sr_ratios lowerCamelCase_ =hidden_sizes lowerCamelCase_ =patch_sizes lowerCamelCase_ =strides lowerCamelCase_ =mlp_ratios lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =initializer_range lowerCamelCase_ =drop_path_rate lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =decoder_hidden_size lowerCamelCase_ =max_depth lowerCamelCase_ =head_in_index
49
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __UpperCamelCase ( _A : NDArray[floataa] , _A : NDArray[floataa] , _A : list[int] , _A : int , ) ->list[float]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ =coefficient_matrix.shape lowerCamelCase_ , lowerCamelCase_ =constant_matrix.shape if rowsa != colsa: lowerCamelCase_ =f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(_A ) if colsa != 1: lowerCamelCase_ =f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(_A ) if rowsa != rowsa: lowerCamelCase_ =( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(_A ) if len(_A ) != rowsa: lowerCamelCase_ =( """Number of initial values must be equal to number of rows in coefficient """ f'matrix but received {len(_A )} and {rowsa}' ) raise ValueError(_A ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) lowerCamelCase_ =np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCamelCase_ , lowerCamelCase_ =table.shape strictly_diagonally_dominant(_A ) # Iterates the whole matrix for given number of times for _ in range(_A ): lowerCamelCase_ =[] for row in range(_A ): lowerCamelCase_ =0 for col in range(_A ): if col == row: lowerCamelCase_ =table[row][col] elif col == cols - 1: lowerCamelCase_ =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCamelCase_ =(temp + val) / denom new_val.append(_A ) lowerCamelCase_ =new_val return [float(_A ) for i in new_val] def __UpperCamelCase ( _A : NDArray[floataa] ) ->bool: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ =table.shape lowerCamelCase_ =True for i in range(0 , _A ): lowerCamelCase_ =0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
49
1
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): __a : Dict = fname.split(os.path.sep )[-1] return re.search(r'^(.*)_\d+\.jpg$' , _SCREAMING_SNAKE_CASE ).groups()[0] class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , __a , __a=None , __a=None ): '''simple docstring''' __a : Any = file_names __a : List[str] = image_transform __a : List[str] = label_to_id def __len__( self ): '''simple docstring''' return len(self.file_names ) def __getitem__( self , __a ): '''simple docstring''' __a : Dict = self.file_names[idx] __a : Tuple = PIL.Image.open(__a ) __a : int = raw_image.convert('RGB' ) if self.image_transform is not None: __a : List[Any] = self.image_transform(__a ) __a : List[str] = extract_label(__a ) if self.label_to_id is not None: __a : List[Any] = self.label_to_id[label] return {"image": image, "label": label} def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] ): # Initialize accelerator if args.with_tracking: __a : Optional[int] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: __a : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a : Optional[int] = config['lr'] __a : Optional[Any] = int(config['num_epochs'] ) __a : Tuple = int(config['seed'] ) __a : List[str] = int(config['batch_size'] ) __a : Union[str, Any] = config['image_size'] if not isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): __a : Optional[int] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": __a : Optional[int] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __a : Dict = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: __a : Optional[Any] = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __a : List[str] = os.path.split(_SCREAMING_SNAKE_CASE )[-1].split('.' )[0] accelerator.init_trackers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Grab all the image filenames __a : Optional[int] = [os.path.join(args.data_dir , _SCREAMING_SNAKE_CASE ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences __a : List[str] = [extract_label(_SCREAMING_SNAKE_CASE ) for fname in file_names] __a : Tuple = list(set(_SCREAMING_SNAKE_CASE ) ) id_to_label.sort() __a : Optional[Any] = {lbl: i for i, lbl in enumerate(_SCREAMING_SNAKE_CASE )} # Set the seed before splitting the data. np.random.seed(_SCREAMING_SNAKE_CASE ) torch.manual_seed(_SCREAMING_SNAKE_CASE ) torch.cuda.manual_seed_all(_SCREAMING_SNAKE_CASE ) # Split our filenames between train and validation __a : int = np.random.permutation(len(_SCREAMING_SNAKE_CASE ) ) __a : str = int(0.8 * len(_SCREAMING_SNAKE_CASE ) ) __a : List[Any] = random_perm[:cut] __a : int = random_perm[cut:] # For training we use a simple RandomResizedCrop __a : str = Compose([RandomResizedCrop(_SCREAMING_SNAKE_CASE , scale=(0.5, 1.0) ), ToTensor()] ) __a : Dict = PetsDataset( [file_names[i] for i in train_split] , image_transform=_SCREAMING_SNAKE_CASE , label_to_id=_SCREAMING_SNAKE_CASE ) # For evaluation, we use a deterministic Resize __a : Optional[int] = Compose([Resize(_SCREAMING_SNAKE_CASE ), ToTensor()] ) __a : Tuple = PetsDataset([file_names[i] for i in eval_split] , image_transform=_SCREAMING_SNAKE_CASE , label_to_id=_SCREAMING_SNAKE_CASE ) # Instantiate dataloaders. __a : Dict = DataLoader(_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , num_workers=4 ) __a : Optional[Any] = DataLoader(_SCREAMING_SNAKE_CASE , shuffle=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a : List[Any] = create_model('resnet50d' , pretrained=_SCREAMING_SNAKE_CASE , num_classes=len(_SCREAMING_SNAKE_CASE ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __a : Optional[int] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __a : str = False for param in model.get_classifier().parameters(): __a : List[Any] = True # We normalize the batches of images to be a bit faster. __a : List[Any] = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) __a : Dict = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __a : Any = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler __a : Union[str, Any] = OneCycleLR(optimizer=_SCREAMING_SNAKE_CASE , max_lr=_SCREAMING_SNAKE_CASE , epochs=_SCREAMING_SNAKE_CASE , steps_per_epoch=len(_SCREAMING_SNAKE_CASE ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a : List[str] = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over __a : List[Any] = 0 # We also need to keep track of the starting epoch so files are named properly __a : Tuple = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) __a : List[Any] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __a : Any = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __a : Optional[Any] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __a : Optional[int] = os.path.splitext(_SCREAMING_SNAKE_CASE )[0] if "epoch" in training_difference: __a : Optional[int] = int(training_difference.replace('epoch_' , '' ) ) + 1 __a : str = None else: __a : str = int(training_difference.replace('step_' , '' ) ) __a : Union[str, Any] = resume_step // len(_SCREAMING_SNAKE_CASE ) resume_step -= starting_epoch * len(_SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): model.train() if args.with_tracking: __a : Dict = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __a : int = accelerator.skip_first_batches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __a : Any = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __a : int = {k: v.to(accelerator.device ) for k, v in batch.items()} __a : Tuple = (batch['image'] - mean) / std __a : List[str] = model(_SCREAMING_SNAKE_CASE ) __a : List[Any] = torch.nn.functional.cross_entropy(_SCREAMING_SNAKE_CASE , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(_SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a : Optional[int] = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __a : List[Any] = os.path.join(args.output_dir , _SCREAMING_SNAKE_CASE ) accelerator.save_state(_SCREAMING_SNAKE_CASE ) model.eval() __a : str = 0 __a : List[Any] = 0 for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. __a : Dict = {k: v.to(accelerator.device ) for k, v in batch.items()} __a : Tuple = (batch['image'] - mean) / std with torch.no_grad(): __a : List[Any] = model(_SCREAMING_SNAKE_CASE ) __a : str = outputs.argmax(dim=-1 ) __a , __a : Dict = accelerator.gather_for_metrics((predictions, batch['label']) ) __a : Optional[int] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __a : int = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(_SCREAMING_SNAKE_CASE ), 'epoch': epoch, } , step=_SCREAMING_SNAKE_CASE , ) if checkpointing_steps == "epoch": __a : str = F"""epoch_{epoch}""" if args.output_dir is not None: __a : Tuple = os.path.join(args.output_dir , _SCREAMING_SNAKE_CASE ) accelerator.save_state(_SCREAMING_SNAKE_CASE ) if args.with_tracking: accelerator.end_training() def lowerCamelCase (): __a : Optional[int] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=_SCREAMING_SNAKE_CASE , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=_SCREAMING_SNAKE_CASE , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=_SCREAMING_SNAKE_CASE , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) __a : Tuple = parser.parse_args() __a : int = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
27
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _UpperCAmelCase : @staticmethod def lowerCamelCase ( *__UpperCamelCase :List[Any] , **__UpperCamelCase :List[Any] ): pass def A__ ( UpperCamelCase ): A = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCAmelCase ( unittest.TestCase ): UpperCamelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :List[str] , __UpperCamelCase :Optional[int] ): A = DepthEstimationPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase ( self :Dict , __UpperCamelCase :Optional[int] , __UpperCamelCase :Optional[Any] ): A = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , __UpperCamelCase ) import datasets A = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) A = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , __UpperCamelCase , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def lowerCamelCase ( self :Optional[Any] ): pass @slow @require_torch def lowerCamelCase ( self :Optional[Any] ): A = "Intel/dpt-large" A = pipeline("depth-estimation" , model=__UpperCamelCase ) A = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) A = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def lowerCamelCase ( self :Optional[Any] ): # This is highly irregular to have no small tests. self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
292
0
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __UpperCamelCase = random.Random() def _a ( _lowerCamelCase , _lowerCamelCase=1.0 , _lowerCamelCase=None , _lowerCamelCase=None ) -> Optional[int]: """simple docstring""" if rng is None: __snake_case : Union[str, Any] = global_rng __snake_case : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _A ( unittest.TestCase ): def __init__( self : str , __magic_name__ : Optional[Any] , __magic_name__ : List[Any]=7 , __magic_name__ : Union[str, Any]=4_00 , __magic_name__ : Optional[Any]=20_00 , __magic_name__ : List[str]=10 , __magic_name__ : List[str]=1_60 , __magic_name__ : str=8 , __magic_name__ : Any=0.0 , __magic_name__ : str=40_00 , __magic_name__ : Union[str, Any]=False , __magic_name__ : int=True , ) -> Any: """simple docstring""" __snake_case : str = parent __snake_case : List[str] = batch_size __snake_case : Any = min_seq_length __snake_case : Tuple = max_seq_length __snake_case : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case : Any = padding_value __snake_case : Optional[Any] = sampling_rate __snake_case : Optional[int] = return_attention_mask __snake_case : Optional[Any] = do_normalize __snake_case : Optional[int] = feature_size __snake_case : Tuple = chunk_length __snake_case : Optional[int] = hop_length def lowercase__ ( self : Any ) -> int: """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase__ ( self : Tuple , __magic_name__ : List[str]=False , __magic_name__ : List[str]=False ) -> List[Any]: """simple docstring""" def _flatten(__magic_name__ : Tuple ): return list(itertools.chain(*__magic_name__ ) ) if equal_length: __snake_case : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __snake_case : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __snake_case : Tuple = [np.asarray(__magic_name__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _A ( __lowercase , unittest.TestCase ): lowercase__: Dict = WhisperFeatureExtractor if is_speech_available() else None def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : Optional[Any] = WhisperFeatureExtractionTester(self ) def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Optional[int] = feat_extract_first.save_pretrained(__magic_name__ )[0] check_json_file_has_correct_format(__magic_name__ ) __snake_case : List[Any] = self.feature_extraction_class.from_pretrained(__magic_name__ ) __snake_case : int = feat_extract_first.to_dict() __snake_case : str = feat_extract_second.to_dict() __snake_case : str = feat_extract_first.mel_filters __snake_case : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[str] = os.path.join(__magic_name__ , """feat_extract.json""" ) feat_extract_first.to_json_file(__magic_name__ ) __snake_case : Union[str, Any] = self.feature_extraction_class.from_json_file(__magic_name__ ) __snake_case : Dict = feat_extract_first.to_dict() __snake_case : List[str] = feat_extract_second.to_dict() __snake_case : int = feat_extract_first.mel_filters __snake_case : List[str] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __snake_case : str = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : Union[str, Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] # Test feature size __snake_case : Tuple = feature_extractor(__magic_name__ , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __snake_case : List[str] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features __snake_case : str = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) # Test batched __snake_case : Tuple = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features __snake_case : int = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __snake_case : int = np.asarray(__magic_name__ ) __snake_case : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features __snake_case : Tuple = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) # Test truncation required __snake_case : Optional[int] = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] __snake_case : List[str] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] __snake_case : str = [x[: feature_extractor.n_samples] for x in speech_inputs] __snake_case : List[str] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs_truncated] __snake_case : Optional[Any] = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features __snake_case : Any = feature_extractor(__magic_name__ , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) def lowercase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" import torch __snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Optional[Any] = np.random.rand(1_00 , 32 ).astype(np.floataa ) __snake_case : Optional[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __snake_case : List[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __snake_case : List[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : Any = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech __snake_case : str = ds.sort("""id""" ).select(range(__magic_name__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __snake_case : List[str] = self._load_datasamples(1 ) __snake_case : List[str] = WhisperFeatureExtractor() __snake_case : int = feature_extractor(__magic_name__ , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __magic_name__ , atol=1E-4 ) ) def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : str = self._load_datasamples(1 )[0] __snake_case : int = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue __snake_case : List[str] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__magic_name__ )[0] self.assertTrue(np.all(np.mean(__magic_name__ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__magic_name__ ) - 1 ) < 1E-3 ) )
13
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCAmelCase : Optional[Any] = {'tokenization_herbert': ['HerbertTokenizer']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = ['HerbertTokenizerFast'] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
"""simple docstring""" import argparse lowerCAmelCase__ : List[str] = 'docs/source/_static/js/custom.js' def a_ ( lowerCamelCase ): with open(lowerCamelCase , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 UpperCAmelCase__ = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(lowerCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') lowerCAmelCase__ : Optional[int] = parser.parse_args() update_custom_js(args.version)
98
0
import doctest from collections import deque import numpy as np class SCREAMING_SNAKE_CASE_ : def __init__( self : Optional[int] ): """simple docstring""" UpperCamelCase = [2, 1, 2, -1] UpperCamelCase = [1, 2, 3, 4] def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = len(self.first_signal ) UpperCamelCase = len(self.second_signal ) UpperCamelCase = max(lowerCamelCase_ , lowerCamelCase_ ) # create a zero matrix of max_length x max_length UpperCamelCase = [[0] * max_length for i in range(lowerCamelCase_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCamelCase_ ): UpperCamelCase = deque(self.second_signal ) rotated_signal.rotate(lowerCamelCase_ ) for j, item in enumerate(lowerCamelCase_ ): matrix[i][j] += item # multiply the matrix with the first signal UpperCamelCase = np.matmul(np.transpose(lowerCamelCase_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCamelCase_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
165
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off _SCREAMING_SNAKE_CASE = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] _SCREAMING_SNAKE_CASE = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """whisper""" __lowerCAmelCase = ["""past_key_values"""] __lowerCAmelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowerCamelCase_ : Tuple=5_1865 , lowerCamelCase_ : Dict=80 , lowerCamelCase_ : str=6 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : List[str]=6 , lowerCamelCase_ : Optional[int]=4 , lowerCamelCase_ : Optional[int]=1536 , lowerCamelCase_ : int=1536 , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : str=5_0257 , lowerCamelCase_ : Any=True , lowerCamelCase_ : int=True , lowerCamelCase_ : List[str]="gelu" , lowerCamelCase_ : int=256 , lowerCamelCase_ : str=0.0 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Any=0.0_2 , lowerCamelCase_ : str=False , lowerCamelCase_ : List[str]=1500 , lowerCamelCase_ : Dict=448 , lowerCamelCase_ : Tuple=5_0256 , lowerCamelCase_ : Tuple=5_0256 , lowerCamelCase_ : List[Any]=5_0256 , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Optional[int]=[220, 5_0256] , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : Dict=256 , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : List[Any]=0.0_5 , lowerCamelCase_ : Dict=10 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Tuple=0.0 , lowerCamelCase_ : str=10 , lowerCamelCase_ : Dict=0 , lowerCamelCase_ : Optional[int]=7 , **lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = num_mel_bins UpperCamelCase = d_model UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = encoder_ffn_dim UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = encoder_layers UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase = max_source_positions UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks UpperCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , suppress_tokens=lowerCamelCase_ , begin_suppress_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCamelCase = {0: """batch"""} else: UpperCamelCase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction="""inputs""" ) return common_inputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional["TensorType"] = None , lowerCamelCase_ : int = 2_2050 , lowerCamelCase_ : float = 5.0 , lowerCamelCase_ : int = 220 , ): """simple docstring""" UpperCamelCase = OrderedDict() UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase_ , framework=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , time_duration=lowerCamelCase_ , frequency=lowerCamelCase_ , ) UpperCamelCase = encoder_inputs["""input_features"""].shape[2] UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = encoder_inputs.pop("""input_features""" ) UpperCamelCase = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCamelCase = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def lowerCamelCase_ ( self : int ): """simple docstring""" return 1E-3
165
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "swinv2" A__ : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: List[str] ,lowerCamelCase_: List[str]=224 ,lowerCamelCase_: List[str]=4 ,lowerCamelCase_: List[Any]=3 ,lowerCamelCase_: Optional[Any]=96 ,lowerCamelCase_: Any=[2, 2, 6, 2] ,lowerCamelCase_: Dict=[3, 6, 12, 24] ,lowerCamelCase_: str=7 ,lowerCamelCase_: Optional[Any]=4.0 ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: str=False ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: Union[str, Any]=1e-5 ,lowerCamelCase_: str=32 ,**lowerCamelCase_: List[str] ,) -> Tuple: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Tuple = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : List[Any] = embed_dim UpperCAmelCase_ : Dict = depths UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) UpperCAmelCase_ : str = num_heads UpperCAmelCase_ : Tuple = window_size UpperCAmelCase_ : int = mlp_ratio UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : int = drop_path_rate UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : List[str] = use_absolute_embeddings UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCAmelCase_ : Any = (0, 0, 0, 0)
345
from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: int ,**lowerCamelCase_: List[str] ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: List[str] ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: int ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Any = ["flax"] def __init__( self: int ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[str] ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Dict = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[Any] ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: List[Any] ) -> str: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[str] = ["flax"] def __init__( self: str ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Optional[int] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : int = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[Any] ) -> str: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: str ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[int] ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Optional[Any] ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[Any] = ["flax"] def __init__( self: Union[str, Any] ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: int ) -> List[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Dict: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: Any ,**lowerCamelCase_: int ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: Union[str, Any] ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Dict ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : str = ["flax"] def __init__( self: Optional[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: int ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: int ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Union[str, Any] = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Optional[int] ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Dict ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: List[str] ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[Any] = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Optional[int] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Dict ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Optional[Any]: requires_backends(cls ,["""flax"""] )
345
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Optional[Any] ={ 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str =[ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __snake_case : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
def lowerCAmelCase__ ( lowerCamelCase_ : str = "The quick brown fox jumps over the lazy dog" ,): '''simple docstring''' lowerCAmelCase__ : Any = set() # Replace all the whitespace in our sentence lowerCAmelCase__ : List[Any] = input_str.replace(''' ''' ,'''''') for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower()) return len(lowerCamelCase_) == 26 def lowerCAmelCase__ ( lowerCamelCase_ : str = "The quick brown fox jumps over the lazy dog" ,): '''simple docstring''' lowerCAmelCase__ : List[str] = [False] * 26 for char in input_str: if char.islower(): lowerCAmelCase__ : Union[str, Any] = True elif char.isupper(): lowerCAmelCase__ : str = True return all(lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : str = "The quick brown fox jumps over the lazy dog" ,): '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()}) == 26 def lowerCAmelCase__ ( ): '''simple docstring''' from timeit import timeit lowerCAmelCase__ : Optional[Any] = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' ,setup=lowerCamelCase_)) print(timeit('''is_pangram_faster()''' ,setup=lowerCamelCase_)) print(timeit('''is_pangram_fastest()''' ,setup=lowerCamelCase_)) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
94
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCamelCase : Tuple = get_tests_dir('''fixtures''') lowerCamelCase : Any = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') lowerCamelCase : Dict = get_tests_dir('''fixtures/dummy-config.json''') class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Dict = 0 def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase : Dict = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__a , __a ) def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : Optional[int] = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __lowercase : Optional[Any] = AutoFeatureExtractor.from_pretrained(__a ).to_dict() config_dict.pop("""feature_extractor_type""" ) __lowercase : List[Any] = WavaVecaFeatureExtractor(**__a ) # save in new folder model_config.save_pretrained(__a ) config.save_pretrained(__a ) __lowercase : List[str] = AutoFeatureExtractor.from_pretrained(__a ) # make sure private variable is not incorrectly saved __lowercase : int = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : List[str] = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex( __a , """bert-base is not a local folder and is not a valid model identifier""" ): __lowercase : int = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" with self.assertRaisesRegex( __a , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowercase : Dict = AutoFeatureExtractor.from_pretrained(__a , revision="""aaaaaa""" ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" with self.assertRaisesRegex( __a , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __lowercase : Union[str, Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" with self.assertRaises(__a ): __lowercase : List[str] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): __lowercase : Dict = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__a ) __lowercase : Any = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) __lowercase : Optional[Any] = AutoFeatureExtractor.from_pretrained(__a , trust_remote_code=__a ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" try: AutoConfig.register("""custom""" , __a ) AutoFeatureExtractor.register(__a , __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoFeatureExtractor.register(__a , __a ) # Now that the config is registered, it can be used as any other config with the auto-API __lowercase : Dict = CustomFeatureExtractor.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) __lowercase : Optional[Any] = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" class lowerCAmelCase ( __a ): '''simple docstring''' _A : Tuple = True try: AutoConfig.register("""custom""" , __a ) AutoFeatureExtractor.register(__a , __a ) # If remote code is not set, the default is to use local __lowercase : Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __lowercase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __lowercase : Tuple = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(__a , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
233
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , ): if attention_mask is None: __lowercase : Tuple = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowercase : Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowercase : Any = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=lowerCAmelCase_ ) if decoder_head_mask is None: __lowercase : List[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCAmelCase_ ) if cross_attn_head_mask is None: __lowercase : List[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCAmelCase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : str , __a : Tuple=13 , __a : List[Any]=7 , __a : Any=True , __a : List[str]=False , __a : Optional[Any]=99 , __a : Tuple=16 , __a : int=2 , __a : Optional[Any]=4 , __a : int=4 , __a : Any="relu" , __a : Optional[int]=0.1 , __a : List[str]=0.1 , __a : Dict=0.0 , __a : List[str]=0.0 , __a : Union[str, Any]=20 , __a : str=2 , __a : str=1 , __a : Optional[int]=0 , ) -> Optional[int]: """simple docstring""" __lowercase : Any = parent __lowercase : Tuple = batch_size __lowercase : Any = seq_length __lowercase : Tuple = is_training __lowercase : Optional[Any] = use_labels __lowercase : Dict = vocab_size __lowercase : Optional[Any] = hidden_size __lowercase : Dict = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : Union[str, Any] = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Tuple = encoder_layerdrop __lowercase : List[str] = decoder_layerdrop __lowercase : Any = max_position_embeddings __lowercase : Any = eos_token_id __lowercase : Dict = pad_token_id __lowercase : List[str] = bos_token_id def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : str = self.eos_token_id # Eos Token __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowercase : Tuple = input_ids.clamp(self.pad_token_id + 1 ) __lowercase : Optional[int] = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowercase : List[str] = self.get_config() __lowercase : str = prepare_mam_aaa_inputs_dict(__a , __a , __a ) return config, inputs_dict def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase , __lowercase : int = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : int , __a : str , __a : str ) -> int: """simple docstring""" __lowercase : Optional[Any] = MaMaaaModel(config=__a ).get_decoder().to(__a ).eval() __lowercase : List[str] = inputs_dict["""input_ids"""] __lowercase : Dict = inputs_dict["""attention_mask"""] __lowercase : List[Any] = inputs_dict["""head_mask"""] # first forward pass __lowercase : List[str] = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a ) __lowercase , __lowercase : str = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __lowercase : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase : str = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __lowercase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase : Optional[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __lowercase : Optional[int] = model(__a , attention_mask=__a )["""last_hidden_state"""] __lowercase : Union[str, Any] = model(__a , attention_mask=__a , past_key_values=__a )[ """last_hidden_state""" ] # select random slice __lowercase : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase : int = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1E-2 ) ) def lowerCAmelCase ( self : List[str] , __a : Tuple , __a : List[str] ) -> str: """simple docstring""" __lowercase : Dict = MaMaaaModel(config=__a ).to(__a ).eval() __lowercase : Any = model(**__a ) __lowercase : str = outputs.encoder_last_hidden_state __lowercase : Optional[Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : str = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[Any] = MaMaaaEncoder.from_pretrained(__a ).to(__a ) __lowercase : Tuple = encoder(inputs_dict["""input_ids"""] , attention_mask=inputs_dict["""attention_mask"""] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Tuple = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = MaMaaaDecoder.from_pretrained(__a ).to(__a ) __lowercase : Tuple = decoder( input_ids=inputs_dict["""decoder_input_ids"""] , attention_mask=inputs_dict["""decoder_attention_mask"""] , encoder_hidden_states=__a , encoder_attention_mask=inputs_dict["""attention_mask"""] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : int = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _A : int = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _A : Union[str, Any] = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _A : Optional[int] = True _A : Union[str, Any] = True _A : Any = False _A : int = False def lowerCAmelCase ( self : str , __a : Union[str, Any] , __a : Optional[int] , __a : List[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : int = MaMaaaModelTester(self ) __lowercase : Union[str, Any] = ConfigTester(self , config_class=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase , __lowercase : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : str = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __lowercase : Union[str, Any] = model_class(__a ) model.to(__a ) model.eval() __lowercase : Any = copy.deepcopy(self._prepare_for_class(__a , __a ) ) if not self.is_encoder_decoder: __lowercase : int = inputs["""input_ids"""] del inputs["input_ids"] else: __lowercase : Optional[int] = inputs["""input_ids"""] __lowercase : Optional[Any] = inputs.get("""decoder_input_ids""" , __a ) del inputs["input_ids"] inputs.pop("""decoder_input_ids""" , __a ) __lowercase : Union[str, Any] = model.get_input_embeddings() if not self.is_encoder_decoder: __lowercase : Dict = wte(__a ) else: __lowercase : str = wte(__a ) __lowercase : Union[str, Any] = wte(__a ) with torch.no_grad(): model(**__a )[0] def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs() __lowercase : List[str] = input_dict["""input_ids"""] __lowercase : Optional[int] = input_ids.ne(1 ).to(__a ) __lowercase : List[Any] = MaMaaaForConditionalGeneration(__a ).eval().to(__a ) if torch_device == "cuda": model.half() model.generate(__a , attention_mask=__a ) model.generate(num_beams=4 , do_sample=__a , early_stopping=__a , num_return_sequences=3 ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): return torch.tensor(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_ ) lowerCamelCase : Dict = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" __lowercase : List[str] = MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(__a ) __lowercase : Union[str, Any] = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) __lowercase : int = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) __lowercase : int = prepare_mam_aaa_inputs_dict(model.config , __a , __a ) with torch.no_grad(): __lowercase : int = model(**__a )[0] __lowercase : int = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , __a ) # change to expected output here __lowercase : Dict = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=__a ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(__a ) # change to intended input __lowercase : Any = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) __lowercase : Union[str, Any] = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) __lowercase : Tuple = prepare_mam_aaa_inputs_dict(model.config , __a , __a ) with torch.no_grad(): __lowercase : Optional[Any] = model(**__a )[0] __lowercase : Tuple = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , __a ) # change to expected output here __lowercase : Union[str, Any] = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=__a ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : List[str] = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(__a ) __lowercase : Tuple = MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" , src_lang="""fr""" , tgt_lang="""en""" ) __lowercase : Dict = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams __lowercase : Union[str, Any] = tokenizer(__a , padding=__a , return_tensors="""pt""" ) __lowercase : Dict = model.generate( input_ids=dct["""input_ids"""].to(__a ) , attention_mask=dct["""attention_mask"""].to(__a ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("""en""" ) , ) __lowercase : Any = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] __lowercase : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__a , skip_special_tokens=__a ) assert generated == expected_en
233
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
371
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase_ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase_ = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCamelCase_ = spec.loader.load_module() lowerCamelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCamelCase_ = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') lowerCamelCase_ = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = [] for config_class in list(CONFIG_MAPPING.values() ): UpperCamelCase__ = False # source code of `config_class` UpperCamelCase__ = inspect.getsource(__a ) UpperCamelCase__ = _re_checkpoint.findall(__a ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` UpperCamelCase__ , UpperCamelCase__ = checkpoint # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase__ = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: UpperCamelCase__ = True break UpperCamelCase__ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a ) if len(__a ) > 0: UpperCamelCase__ = """\n""".join(sorted(__a ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
178
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowerCAmelCase : str ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _a = 'src/diffusers' # Matches is_xxx_available() _a = re.compile(R'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla _a = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') _a = '\n{0} = None\n' _a = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' _a = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def __a ( __lowerCamelCase ): UpperCAmelCase_ : int = _re_backend.findall(__lowerCamelCase ) if len(__lowerCamelCase ) == 0: return None return "_and_".join(__lowerCamelCase ) def __a ( ): with open(os.path.join(__lowerCamelCase, "__init__.py" ), "r", encoding="utf-8", newline="\n" ) as f: UpperCAmelCase_ : Optional[int] = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Optional[int] = {} # Go through the end of the file while line_index < len(__lowerCamelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase_ : Union[str, Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase_ : List[str] = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCamelCase ) and len(lines[line_index] ) > 1: UpperCAmelCase_ : Union[str, Any] = lines[line_index] UpperCAmelCase_ : Optional[Any] = _re_single_line_import.search(__lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCamelCase ) > 0: UpperCAmelCase_ : Optional[int] = objects else: line_index += 1 return backend_specific_objects def __a ( __lowerCamelCase, __lowerCamelCase ): if name.isupper(): return DUMMY_CONSTANT.format(__lowerCamelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCamelCase, __lowerCamelCase ) else: return DUMMY_CLASS.format(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase=None ): if backend_specific_objects is None: UpperCAmelCase_ : Tuple = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase_ : str = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase_ : int = "[" + ", ".join(f"""\"{b}\"""" for b in backend.split("_and_" ) ) + "]" UpperCAmelCase_ : Dict = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCamelCase, __lowerCamelCase ) for o in objects] ) UpperCAmelCase_ : int = dummy_file return dummy_files def __a ( __lowerCamelCase=False ): UpperCAmelCase_ : Optional[Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase_ : Union[str, Any] = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase_ : List[str] = os.path.join(__lowerCamelCase, "utils" ) UpperCAmelCase_ : Optional[int] = { backend: os.path.join(__lowerCamelCase, f"""dummy_{short_names.get(__lowerCamelCase, __lowerCamelCase )}_objects.py""" ) for backend in dummy_files.keys() } UpperCAmelCase_ : Any = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCamelCase ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: UpperCAmelCase_ : Optional[int] = f.read() else: UpperCAmelCase_ : Any = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"""Updating diffusers.utils.dummy_{short_names.get(__lowerCamelCase, __lowerCamelCase )}_objects.py as the main """ "__init__ has new objects." ) with open(dummy_file_paths[backend], "w", encoding="utf-8", newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " f"""diffusers.utils.dummy_{short_names.get(__lowerCamelCase, __lowerCamelCase )}_objects.py. Run `make fix-copies` """ "to fix this." ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _a = parser.parse_args() check_dummies(args.fix_and_overwrite)
61
0
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _UpperCAmelCase ( a ,a ,unittest.TestCase ): '''simple docstring''' a__ =AutoencoderKL a__ ='''sample''' a__ =1e-2 @property def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : List[str] = 4 _UpperCAmelCase : List[Any] = 3 _UpperCAmelCase : int = (3_2, 3_2) _UpperCAmelCase : Any = floats_tensor((batch_size, num_channels) + sizes ).to(A ) return {"sample": image} @property def __lowerCAmelCase ( self ) -> int: return (3, 3_2, 3_2) @property def __lowerCAmelCase ( self ) -> Union[str, Any]: return (3, 3_2, 3_2) def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Any = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } _UpperCAmelCase : Dict = self.dummy_input return init_dict, inputs_dict def __lowerCAmelCase ( self ) -> Optional[Any]: pass def __lowerCAmelCase ( self ) -> Optional[Any]: pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def __lowerCAmelCase ( self ) -> Dict: # enable deterministic behavior for gradient checkpointing _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase : str = self.model_class(**A ) model.to(A ) assert not model.is_gradient_checkpointing and model.training _UpperCAmelCase : Tuple = model(**A ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _UpperCAmelCase : Tuple = torch.randn_like(A ) _UpperCAmelCase : Any = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _UpperCAmelCase : List[Any] = self.model_class(**A ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(A ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _UpperCAmelCase : List[Any] = model_a(**A ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _UpperCAmelCase : Optional[Any] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _UpperCAmelCase : Dict = dict(model.named_parameters() ) _UpperCAmelCase : List[str] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase , _UpperCAmelCase : Tuple = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=A ) self.assertIsNotNone(A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(A ) _UpperCAmelCase : Any = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : Optional[Any] = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) _UpperCAmelCase : Dict = model.to(A ) model.eval() if torch_device == "mps": _UpperCAmelCase : List[Any] = torch.manual_seed(0 ) else: _UpperCAmelCase : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) _UpperCAmelCase : Any = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _UpperCAmelCase : Tuple = image.to(A ) with torch.no_grad(): _UpperCAmelCase : Optional[Any] = model(A , sample_posterior=A , generator=A ).sample _UpperCAmelCase : Tuple = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _UpperCAmelCase : int = torch.tensor( [ -4.00_78E-01, -3.83_23E-04, -1.26_81E-01, -1.14_62E-01, 2.00_95E-01, 1.08_93E-01, -8.82_47E-02, -3.03_61E-01, -9.86_44E-03, ] ) elif torch_device == "cpu": _UpperCAmelCase : Tuple = torch.tensor( [-0.1_352, 0.0_878, 0.0_419, -0.0_818, -0.1_069, 0.0_688, -0.1_458, -0.4_446, -0.0_026] ) else: _UpperCAmelCase : List[Any] = torch.tensor( [-0.2_421, 0.4_642, 0.2_507, -0.0_438, 0.0_682, 0.3_160, -0.2_018, -0.0_727, 0.2_485] ) self.assertTrue(torch_all_close(A , A , rtol=1E-2 ) ) @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self , A , A ) -> Optional[Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(A ) for s in shape] )}.npy' def __lowerCAmelCase ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self , A=0 , A=(4, 3, 5_1_2, 5_1_2) , A=False ) -> List[str]: _UpperCAmelCase : List[str] = torch.floataa if fpaa else torch.floataa _UpperCAmelCase : str = torch.from_numpy(load_hf_numpy(self.get_file_format(A , A ) ) ).to(A ).to(A ) return image def __lowerCAmelCase ( self , A="CompVis/stable-diffusion-v1-4" , A=False ) -> List[str]: _UpperCAmelCase : str = '''fp16''' if fpaa else None _UpperCAmelCase : Optional[Any] = torch.floataa if fpaa else torch.floataa _UpperCAmelCase : Any = AutoencoderKL.from_pretrained( A , subfolder='''vae''' , torch_dtype=A , revision=A , ) model.to(A ).eval() return model def __lowerCAmelCase ( self , A=0 ) -> int: if torch_device == "mps": return torch.manual_seed(A ) return torch.Generator(device=A ).manual_seed(A ) @parameterized.expand( [ # fmt: off [3_3, [-0.1_603, 0.9_878, -0.0_495, -0.0_790, -0.2_709, 0.8_375, -0.2_060, -0.0_824], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [4_7, [-0.2_376, 0.1_168, 0.1_332, -0.4_840, -0.2_508, -0.0_791, -0.0_493, -0.4_089], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def __lowerCAmelCase ( self , A , A , A ) -> Any: _UpperCAmelCase : int = self.get_sd_vae_model() _UpperCAmelCase : List[str] = self.get_sd_image(A ) _UpperCAmelCase : Any = self.get_generator(A ) with torch.no_grad(): _UpperCAmelCase : Tuple = model(A , generator=A , sample_posterior=A ).sample assert sample.shape == image.shape _UpperCAmelCase : List[str] = sample[-1, -2:, -2:, :2].flatten().float().cpu() _UpperCAmelCase : Tuple = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(A , A , atol=3E-3 ) @parameterized.expand( [ # fmt: off [3_3, [-0.0_513, 0.0_289, 1.3_799, 0.2_166, -0.2_573, -0.0_871, 0.5_103, -0.0_999]], [4_7, [-0.4_128, -0.1_320, -0.3_704, 0.1_965, -0.4_116, -0.2_332, -0.3_340, 0.2_247]], # fmt: on ] ) @require_torch_gpu def __lowerCAmelCase ( self , A , A ) -> Dict: _UpperCAmelCase : Dict = self.get_sd_vae_model(fpaa=A ) _UpperCAmelCase : List[Any] = self.get_sd_image(A , fpaa=A ) _UpperCAmelCase : Dict = self.get_generator(A ) with torch.no_grad(): _UpperCAmelCase : int = model(A , generator=A , sample_posterior=A ).sample assert sample.shape == image.shape _UpperCAmelCase : Optional[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() _UpperCAmelCase : Union[str, Any] = torch.tensor(A ) assert torch_all_close(A , A , atol=1E-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.1_609, 0.9_866, -0.0_487, -0.0_777, -0.2_716, 0.8_368, -0.2_055, -0.0_814], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [4_7, [-0.2_377, 0.1_147, 0.1_333, -0.4_841, -0.2_506, -0.0_805, -0.0_491, -0.4_085], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def __lowerCAmelCase ( self , A , A , A ) -> List[Any]: _UpperCAmelCase : List[str] = self.get_sd_vae_model() _UpperCAmelCase : Union[str, Any] = self.get_sd_image(A ) with torch.no_grad(): _UpperCAmelCase : Optional[Any] = model(A ).sample assert sample.shape == image.shape _UpperCAmelCase : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() _UpperCAmelCase : Optional[Any] = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(A , A , atol=3E-3 ) @parameterized.expand( [ # fmt: off [1_3, [-0.2_051, -0.1_803, -0.2_311, -0.2_114, -0.3_292, -0.3_574, -0.2_953, -0.3_323]], [3_7, [-0.2_632, -0.2_625, -0.2_199, -0.2_741, -0.4_539, -0.4_990, -0.3_720, -0.4_925]], # fmt: on ] ) @require_torch_gpu def __lowerCAmelCase ( self , A , A ) -> Tuple: _UpperCAmelCase : str = self.get_sd_vae_model() _UpperCAmelCase : Dict = self.get_sd_image(A , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): _UpperCAmelCase : Tuple = model.decode(A ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] _UpperCAmelCase : int = sample[-1, -2:, :2, -2:].flatten().cpu() _UpperCAmelCase : Any = torch.tensor(A ) assert torch_all_close(A , A , atol=1E-3 ) @parameterized.expand( [ # fmt: off [2_7, [-0.0_369, 0.0_207, -0.0_776, -0.0_682, -0.1_747, -0.1_930, -0.1_465, -0.2_039]], [1_6, [-0.1_628, -0.2_134, -0.2_747, -0.2_642, -0.3_774, -0.4_404, -0.3_687, -0.4_277]], # fmt: on ] ) @require_torch_gpu def __lowerCAmelCase ( self , A , A ) -> List[str]: _UpperCAmelCase : Tuple = self.get_sd_vae_model(fpaa=A ) _UpperCAmelCase : int = self.get_sd_image(A , shape=(3, 4, 6_4, 6_4) , fpaa=A ) with torch.no_grad(): _UpperCAmelCase : Optional[Any] = model.decode(A ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] _UpperCAmelCase : List[str] = sample[-1, -2:, :2, -2:].flatten().float().cpu() _UpperCAmelCase : List[str] = torch.tensor(A ) assert torch_all_close(A , A , atol=5E-3 ) @parameterized.expand([(1_3,), (1_6,), (2_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def __lowerCAmelCase ( self , A ) -> Dict: _UpperCAmelCase : str = self.get_sd_vae_model(fpaa=A ) _UpperCAmelCase : Optional[int] = self.get_sd_image(A , shape=(3, 4, 6_4, 6_4) , fpaa=A ) with torch.no_grad(): _UpperCAmelCase : Tuple = model.decode(A ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model.decode(A ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(A , A , atol=1E-1 ) @parameterized.expand([(1_3,), (1_6,), (3_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def __lowerCAmelCase ( self , A ) -> Any: _UpperCAmelCase : List[Any] = self.get_sd_vae_model() _UpperCAmelCase : Union[str, Any] = self.get_sd_image(A , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): _UpperCAmelCase : Tuple = model.decode(A ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _UpperCAmelCase : int = model.decode(A ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(A , A , atol=1E-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.3_001, 0.0_918, -2.6_984, -3.9_720, -3.2_099, -5.0_353, 1.7_338, -0.2_065, 3.4_267]], [4_7, [-1.5_030, -4.3_871, -6.0_355, -9.1_157, -1.6_661, -2.7_853, 2.1_607, -5.0_823, 2.5_633]], # fmt: on ] ) def __lowerCAmelCase ( self , A , A ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = self.get_sd_vae_model() _UpperCAmelCase : Optional[int] = self.get_sd_image(A ) _UpperCAmelCase : Optional[int] = self.get_generator(A ) with torch.no_grad(): _UpperCAmelCase : int = model.encode(A ).latent_dist _UpperCAmelCase : List[str] = dist.sample(generator=A ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _UpperCAmelCase : Dict = sample[0, -1, -3:, -3:].flatten().cpu() _UpperCAmelCase : List[Any] = torch.tensor(A ) _UpperCAmelCase : Union[str, Any] = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(A , A , atol=A )
68
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _lowerCAmelCase :int = get_logger(__name__) class _UpperCAmelCase ( enum.Enum ): '''simple docstring''' a__ ='''all_checks''' a__ ='''basic_checks''' a__ ='''no_checks''' class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' def lowerCamelCase_ (UpperCamelCase__ : Optional[dict] , UpperCamelCase__ : dict , UpperCamelCase__ : Tuple=None ): if expected_checksums is None: logger.info('''Unable to verify checksums.''' ) return if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) _UpperCAmelCase : Optional[Any] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _UpperCAmelCase : str = ''' for ''' + verification_name if verification_name is not None else '''''' if len(UpperCamelCase__ ) > 0: raise NonMatchingChecksumError( F'Checksums didn\'t match{for_verification_name}:\n' F'{bad_urls}\n' '''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' ) logger.info('''All the checksums matched successfully''' + for_verification_name ) class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' class _UpperCAmelCase ( a ): '''simple docstring''' def lowerCamelCase_ (UpperCamelCase__ : Optional[dict] , UpperCamelCase__ : dict ): if expected_splits is None: logger.info('''Unable to verify splits sizes.''' ) return if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise ExpectedMoreSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise UnexpectedSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) _UpperCAmelCase : Dict = [ {'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(UpperCamelCase__ ) > 0: raise NonMatchingSplitsSizesError(str(UpperCamelCase__ ) ) logger.info('''All the splits matched successfully.''' ) def lowerCamelCase_ (UpperCamelCase__ : str , UpperCamelCase__ : bool = True ): if record_checksum: _UpperCAmelCase : Any = shaaaa() with open(UpperCamelCase__ , '''rb''' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B'''''' ): m.update(UpperCamelCase__ ) _UpperCAmelCase : int = m.hexdigest() else: _UpperCAmelCase : Union[str, Any] = None return {"num_bytes": os.path.getsize(UpperCamelCase__ ), "checksum": checksum} def lowerCamelCase_ (UpperCamelCase__ : List[str] ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
68
1
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP a__: Union[str, Any] = False try: a__: List[Any] = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase = None,__lowerCamelCase = [] ): A__ = 0 A__ = choices A__ = prompt if sys.platform == "win32": A__ = '''*''' else: A__ = '''➔ ''' def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = "" ): if sys.platform != "win32": writeColor(self.choices[index],32,__lowerCamelCase ) else: forceWrite(self.choices[index],__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): if index == self.position: forceWrite(f" {self.arrow_char} " ) self.write_choice(__lowerCamelCase ) else: forceWrite(f" {self.choices[index]}" ) reset_cursor() def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = 1 ): A__ = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__lowerCamelCase ) move_cursor(__lowerCamelCase,direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def UpperCamelCase ( self ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def UpperCamelCase ( self ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def UpperCamelCase ( self ): move_cursor(len(self.choices ) - self.position,'''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def UpperCamelCase ( self ): move_cursor(len(self.choices ) - self.position,'''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__lowerCamelCase )] for number in range(10 )] ) def UpperCamelCase ( self ): A__ = int(chr(self.current_selection ) ) A__ = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP,-movement ) elif self.position < index: self.move_direction(Direction.DOWN,__lowerCamelCase ) else: return else: return def UpperCamelCase ( self,__lowerCamelCase = 0 ): if self.prompt: linebreak() forceWrite(self.prompt,'''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''','''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''','''\n''' ) A__ = default_choice for i in range(len(self.choices ) ): self.print_choice(__lowerCamelCase ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position,'''UP''' ) with cursor.hide(): while True: if in_colab: try: A__ = int(builtins.input() ) except ValueError: A__ = default_choice else: A__ = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1,'''UP''' ) clear_line() self.write_choice(__lowerCamelCase,'''\n''' ) return choice
193
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) a__: List[Any] = logging.getLogger() def UpperCamelCase__( )->Union[str, Any]: A__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) A__ = parser.parse_args() return args.f class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def UpperCamelCase ( self ): A__ = logging.StreamHandler(sys.stdout ) logger.addHandler(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0,'''run_glue_deebert.py''' ) with patch.object(__lowerCamelCase,'''argv''',__lowerCamelCase ): A__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__lowerCamelCase,0.666 ) @slow @require_torch_non_multi_gpu def UpperCamelCase ( self ): A__ = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(__lowerCamelCase ) A__ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__lowerCamelCase ) A__ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__lowerCamelCase )
193
1
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) __SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) __SCREAMING_SNAKE_CASE : Optional[Any] = {'facebook/bart-base': BartForConditionalGeneration} __SCREAMING_SNAKE_CASE : int = {'facebook/bart-base': BartTokenizer} def _a ( ) -> Optional[int]: snake_case_ = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=_SCREAMING_SNAKE_CASE , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=_SCREAMING_SNAKE_CASE , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_SCREAMING_SNAKE_CASE , ) parser.add_argument( """--config_name""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=_SCREAMING_SNAKE_CASE , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""Where to store the final ONNX file.""" ) snake_case_ = parser.parse_args() return args def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="cpu" ) -> Union[str, Any]: snake_case_ = model_dict[model_name].from_pretrained(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) snake_case_ = tokenizer_dict[model_name].from_pretrained(_SCREAMING_SNAKE_CASE ) if model_name in ["facebook/bart-base"]: snake_case_ = 0 snake_case_ = None snake_case_ = 0 return huggingface_model, tokenizer def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: model.eval() snake_case_ = None snake_case_ = torch.jit.script(BARTBeamSearchGenerator(_SCREAMING_SNAKE_CASE ) ) with torch.no_grad(): snake_case_ = """My friends are cool but they eat too many carbs.""" snake_case_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors="""pt""" ).to(model.device ) snake_case_ = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , early_stopping=_SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _SCREAMING_SNAKE_CASE , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , _SCREAMING_SNAKE_CASE , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=_SCREAMING_SNAKE_CASE , ) logger.info("""Model exported to {}""".format(_SCREAMING_SNAKE_CASE ) ) snake_case_ = remove_dup_initializers(os.path.abspath(_SCREAMING_SNAKE_CASE ) ) logger.info("""Deduplicated and optimized model written to {}""".format(_SCREAMING_SNAKE_CASE ) ) snake_case_ = onnxruntime.InferenceSession(_SCREAMING_SNAKE_CASE ) snake_case_ = ort_sess.run( _SCREAMING_SNAKE_CASE , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(_SCREAMING_SNAKE_CASE ), """max_length""": np.array(_SCREAMING_SNAKE_CASE ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def _a ( ) -> Optional[int]: snake_case_ = parse_args() snake_case_ = 5 snake_case_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() snake_case_ = torch.device(args.device ) snake_case_ , snake_case_ = load_model_tokenizer(args.model_name_or_path , _SCREAMING_SNAKE_CASE ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(_SCREAMING_SNAKE_CASE ) if args.max_length: snake_case_ = args.max_length if args.num_beams: snake_case_ = args.num_beams if args.output_file_path: snake_case_ = args.output_file_path else: snake_case_ = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
233
"""simple docstring""" from collections import defaultdict from math import gcd def _a ( _SCREAMING_SNAKE_CASE = 1_500_000 ) -> int: snake_case_ = defaultdict(_SCREAMING_SNAKE_CASE ) snake_case_ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _SCREAMING_SNAKE_CASE , 2 ): if gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) > 1: continue snake_case_ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_SCREAMING_SNAKE_CASE , limit + 1 , _SCREAMING_SNAKE_CASE ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f"""{solution() = }""")
233
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : List[Any]=10 , UpperCAmelCase_ : Union[str, Any]=[10, 20, 30, 40] , UpperCAmelCase_ : Union[str, Any]=[1, 1, 2, 1] , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Dict="relu" , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Dict=None , ): lowerCAmelCase : str = parent lowerCAmelCase : str = batch_size lowerCAmelCase : Any = image_size lowerCAmelCase : Any = num_channels lowerCAmelCase : List[str] = embeddings_size lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Union[str, Any] = depths lowerCAmelCase : Dict = is_training lowerCAmelCase : str = use_labels lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Union[str, Any] = scope lowerCAmelCase : Dict = len(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : str = None if self.use_labels: lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : str = self.get_config() return config, pixel_values, labels def lowercase__ ( self : str ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): lowerCAmelCase : Any = TFResNetModel(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = model(UpperCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int ): lowerCAmelCase : Any = self.num_labels lowerCAmelCase : List[str] = TFResNetForImageClassification(UpperCAmelCase_ ) lowerCAmelCase : str = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = config_and_inputs lowerCAmelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : int = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase_ : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : Any = False lowerCAmelCase_ : Any = False lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : str = TFResNetModelTester(self ) lowerCAmelCase : int = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Optional[Any] ): return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def lowercase__ ( self : Union[str, Any] ): pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def lowercase__ ( self : Tuple ): pass def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = model_class(UpperCAmelCase_ ) lowerCAmelCase : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : str = [*signature.parameters.keys()] lowerCAmelCase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Any ): def check_hidden_states_output(UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : Optional[Any] = model_class(UpperCAmelCase_ ) lowerCAmelCase : Dict = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCAmelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Dict = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : List[str] = layer_type lowerCAmelCase : Any = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[str] = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Any ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFResNetModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Tuple ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : Optional[int] = self.default_image_processor lowerCAmelCase : int = prepare_img() lowerCAmelCase : str = image_processor(images=UpperCAmelCase_ , return_tensors='tf' ) # forward pass lowerCAmelCase : Tuple = model(**UpperCAmelCase_ ) # verify the logits lowerCAmelCase : List[str] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCAmelCase_ , atol=1E-4 ) )
138
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A : def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Optional[int]=99 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Dict=37 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Dict=0 , ): lowerCAmelCase : Any = parent lowerCAmelCase : int = batch_size lowerCAmelCase : Optional[int] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Optional[Any] = use_input_mask lowerCAmelCase : Union[str, Any] = use_token_type_ids lowerCAmelCase : Any = use_labels lowerCAmelCase : Dict = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : str = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : str = type_sequence_label_size lowerCAmelCase : int = initializer_range lowerCAmelCase : Dict = num_labels lowerCAmelCase : List[Any] = num_choices lowerCAmelCase : Optional[Any] = scope lowerCAmelCase : Optional[Any] = projection_dim def lowercase__ ( self : Any ): lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : List[Any] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Any = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : str = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Dict = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) lowerCAmelCase : Tuple = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ): lowerCAmelCase : int = TFDPRContextEncoder(config=UpperCAmelCase_ ) lowerCAmelCase : Any = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : List[str] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : List[str] = TFDPRQuestionEncoder(config=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : int = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Any = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[int] = TFDPRReader(config=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowercase__ ( self : Any ): lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : List[Any] = config_and_inputs lowerCAmelCase : str = {'input_ids': input_ids} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : int = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCAmelCase_ : str = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : str = False lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = TFDPRModelTester(self ) lowerCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCAmelCase_ ) def lowercase__ ( self : Any ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCAmelCase_ ) def lowercase__ ( self : Dict ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCAmelCase_ ) @slow def lowercase__ ( self : List[Any] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : str = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Any = TFDPRQuestionEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Optional[int] = TFDPRReader.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) lowerCAmelCase : List[Any] = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCAmelCase : List[Any] = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
138
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): lowerCAmelCase = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) lowerCAmelCase = DetaConfig( backbone_config=_UpperCAmelCase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=_UpperCAmelCase , with_box_refine=_UpperCAmelCase , two_stage=_UpperCAmelCase , ) # set labels lowerCAmelCase = 'huggingface/label-files' if "o365" in model_name: lowerCAmelCase = 366 lowerCAmelCase = 'object365-id2label.json' else: lowerCAmelCase = 91 lowerCAmelCase = 'coco-detection-id2label.json' lowerCAmelCase = num_labels lowerCAmelCase = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase = idalabel lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple ): lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.0.body.layers.{i}.downsample.reduction.weight', F'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.weight', F'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.bias', F'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', F'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', F'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', F'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', F'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.weight', F'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.bias', F'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.weight', F'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.bias', F'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.weight', F'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', F'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', F'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', F'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', F'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', F'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', F'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.weight', F'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.weight', F'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.bias', F'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str ): lowerCAmelCase = dct.pop(_UpperCAmelCase ) lowerCAmelCase = val def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] ): lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCAmelCase = state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) lowerCAmelCase = state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase = in_proj_weight[:dim, :] lowerCAmelCase = in_proj_bias[: dim] lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] lowerCAmelCase = in_proj_weight[ -dim :, : ] lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Any ): # transformer decoder self-attention layers lowerCAmelCase = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention lowerCAmelCase = state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) lowerCAmelCase = state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase = in_proj_weight[:hidden_size, :] lowerCAmelCase = in_proj_bias[:hidden_size] lowerCAmelCase = in_proj_weight[ hidden_size : hidden_size * 2, : ] lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] lowerCAmelCase = in_proj_weight[-hidden_size:, :] lowerCAmelCase = in_proj_bias[-hidden_size:] def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Any ): lowerCAmelCase = get_deta_config(_UpperCAmelCase ) # load original state dict if model_name == "deta-swin-large": lowerCAmelCase = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": lowerCAmelCase = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F'Model name {model_name} not supported' ) lowerCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(_UpperCAmelCase , param.shape ) # rename keys lowerCAmelCase = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_swin_q_k_v(_UpperCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_UpperCAmelCase , _UpperCAmelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: lowerCAmelCase = state_dict.pop(_UpperCAmelCase ) lowerCAmelCase = val if "input_proj" in key: lowerCAmelCase = state_dict.pop(_UpperCAmelCase ) lowerCAmelCase = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: lowerCAmelCase = state_dict.pop(_UpperCAmelCase ) lowerCAmelCase = val # finally, create HuggingFace model and load state dict lowerCAmelCase = DetaForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(_UpperCAmelCase ) # load image processor lowerCAmelCase = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image lowerCAmelCase = prepare_img() lowerCAmelCase = processor(images=_UpperCAmelCase , return_tensors='pt' ) lowerCAmelCase = encoding['pixel_values'] lowerCAmelCase = model(pixel_values.to(_UpperCAmelCase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": lowerCAmelCase = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) lowerCAmelCase = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": lowerCAmelCase = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) lowerCAmelCase = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_UpperCAmelCase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_UpperCAmelCase ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F'jozhang97/{model_name}' ) processor.push_to_hub(F'jozhang97/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __UpperCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
354
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self , _snake_case , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_12 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(_snake_case )[0] lowerCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
309
0
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
167
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : Any = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
167
1
'''simple docstring''' import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class a__( __lowerCAmelCase , unittest.TestCase ): lowercase__ = BertTokenizer lowercase__ = BertTokenizerFast lowercase__ = True lowercase__ = True lowercase__ = filter_non_english def lowercase_ ( self : Any ): super().setUp() a : str = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] a : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self : Optional[int] , __snake_case : Dict ): a : Dict = 'UNwant\u00E9d,running' a : Dict = 'unwanted, running' return input_text, output_text def lowercase_ ( self : Any ): a : int = self.tokenizer_class(self.vocab_file ) a : int = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowerCAmelCase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [9, 6, 7, 12, 10, 11] ) def lowercase_ ( self : List[str] ): if not self.test_rust_tokenizer: return a : Any = self.get_tokenizer() a : Dict = self.get_rust_tokenizer() a : List[Any] = 'UNwant\u00E9d,running' a : List[str] = tokenizer.tokenize(lowerCAmelCase_ ) a : int = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) a : List[str] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) a : Optional[int] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) a : List[Any] = self.get_rust_tokenizer() a : Dict = tokenizer.encode(lowerCAmelCase_ ) a : Optional[Any] = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # With lower casing a : List[str] = self.get_tokenizer(do_lower_case=lowerCAmelCase_ ) a : str = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase_ ) a : Optional[int] = 'UNwant\u00E9d,running' a : Dict = tokenizer.tokenize(lowerCAmelCase_ ) a : List[str] = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) a : List[Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) a : Optional[Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) a : Tuple = self.get_rust_tokenizer() a : Optional[int] = tokenizer.encode(lowerCAmelCase_ ) a : Tuple = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase_ ( self : int ): a : Dict = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def lowercase_ ( self : str ): a : Dict = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowercase_ ( self : Optional[int] ): a : Dict = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def lowercase_ ( self : str ): a : List[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowercase_ ( self : Union[str, Any] ): a : Optional[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowercase_ ( self : Optional[int] ): a : Any = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowercase_ ( self : str ): a : List[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowercase_ ( self : int ): a : str = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowercase_ ( self : Dict ): a : Tuple = BasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def lowercase_ ( self : Tuple ): a : Dict = BasicTokenizer() a : Optional[int] = 'a\n\'ll !!to?\'d of, can\'t.' a : List[str] = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase_ ( self : List[Any] ): a : List[str] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] a : List[Any] = {} for i, token in enumerate(lowerCAmelCase_ ): a : str = i a : List[Any] = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def lowercase_ ( self : str ): self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def lowercase_ ( self : Tuple ): self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def lowercase_ ( self : List[Any] ): self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def lowercase_ ( self : Tuple ): a : Union[str, Any] = self.get_tokenizer() a : int = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def lowercase_ ( self : Dict ): a : int = self.tokenizer_class.from_pretrained('bert-base-uncased' ) a : Optional[int] = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase_ ) a : int = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase_ ) a : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) a : Tuple = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def lowercase_ ( self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a : str = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) a : Optional[int] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" a : str = tokenizer_r.encode_plus( lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , ) a : Optional[Any] = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase_ , 'do_lower_case' ) else False a : List[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def lowercase_ ( self : Any ): a : str = ['的', '人', '有'] a : Tuple = ''.join(lowerCAmelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a : Any = True a : List[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) a : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) a : str = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) a : Any = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) a : List[str] = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) a : Optional[int] = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) a : List[Any] = False a : int = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) a : Union[str, Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) a : Any = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) a : Optional[int] = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) a : Any = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) a : Any = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". a : Dict = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCAmelCase_ ) ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
365
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class a__: def __init__( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[int]=2 , __snake_case : Union[str, Any]=8 , __snake_case : List[str]=True , __snake_case : Dict=True , __snake_case : Optional[Any]=True , __snake_case : List[str]=True , __snake_case : Tuple=99 , __snake_case : int=16 , __snake_case : Optional[int]=5 , __snake_case : int=2 , __snake_case : Tuple=36 , __snake_case : Optional[Any]="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Tuple=5_12 , __snake_case : str=16 , __snake_case : str=2 , __snake_case : int=0.02 , __snake_case : Optional[int]=3 , __snake_case : List[Any]=4 , __snake_case : Any=None , ): a : int = parent a : Any = batch_size a : Optional[int] = seq_length a : List[str] = is_training a : Dict = use_input_mask a : Union[str, Any] = use_token_type_ids a : Tuple = use_labels a : Dict = vocab_size a : Optional[int] = hidden_size a : List[Any] = num_hidden_layers a : Optional[Any] = num_attention_heads a : str = intermediate_size a : Dict = hidden_act a : str = hidden_dropout_prob a : Tuple = attention_probs_dropout_prob a : Optional[Any] = max_position_embeddings a : Tuple = type_vocab_size a : int = type_sequence_label_size a : List[Any] = initializer_range a : List[str] = num_labels a : List[str] = num_choices a : Optional[Any] = scope def lowercase_ ( self : Union[str, Any] ): a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : Optional[Any] = None if self.use_input_mask: a : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a : Tuple = None if self.use_token_type_ids: a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a : str = None a : int = None a : Any = None if self.use_labels: a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : List[str] = ids_tensor([self.batch_size] , self.num_choices ) a : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : Union[str, Any] ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def lowercase_ ( self : List[str] ): a : List[Any] = self.get_config() a : Optional[Any] = 3_00 return config def lowercase_ ( self : Union[str, Any] ): ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Optional[Any] = self.prepare_config_and_inputs() a : Union[str, Any] = True a : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase_ ( self : int , __snake_case : int , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Any ): a : Dict = MraModel(config=__snake_case ) model.to(__snake_case ) model.eval() a : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) a : List[str] = model(__snake_case , token_type_ids=__snake_case ) a : Union[str, Any] = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : List[str] , __snake_case : Tuple , __snake_case : List[str] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : List[Any] , ): a : Optional[Any] = True a : Optional[int] = MraModel(__snake_case ) model.to(__snake_case ) model.eval() a : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) a : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , ) a : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Optional[Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Dict , __snake_case : Optional[Any] ): a : Union[str, Any] = MraForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() a : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Tuple , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : int ): a : Optional[int] = MraForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() a : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : Dict , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : str ): a : Tuple = self.num_labels a : Dict = MraForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() a : Any = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : int ): a : Tuple = self.num_labels a : Tuple = MraForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() a : List[Any] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : Any , __snake_case : Any , __snake_case : str , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Any , __snake_case : Any , __snake_case : str ): a : Optional[int] = self.num_choices a : int = MraForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() a : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : int = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self : Optional[Any] ): a : Union[str, Any] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) : Union[str, Any] = config_and_inputs a : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = () def lowercase_ ( self : Any ): a : Tuple = MraModelTester(self ) a : str = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowercase_ ( self : List[str] ): self.config_tester.run_common_tests() def lowercase_ ( self : List[str] ): a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase_ ( self : Any ): a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a : Dict = type self.model_tester.create_and_check_model(*__snake_case ) def lowercase_ ( self : List[Any] ): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def lowercase_ ( self : Optional[Any] ): a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def lowercase_ ( self : List[Any] ): a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def lowercase_ ( self : Tuple ): a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def lowercase_ ( self : Optional[Any] ): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def lowercase_ ( self : int ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = MraModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase_ ( self : Union[str, Any] ): return @require_torch class a__( unittest.TestCase ): @slow def lowercase_ ( self : Union[str, Any] ): a : Union[str, Any] = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) a : List[str] = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): a : Optional[int] = model(__snake_case )[0] a : Any = torch.Size((1, 2_56, 7_68) ) self.assertEqual(output.shape , __snake_case ) a : str = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def lowercase_ ( self : Optional[int] ): a : Dict = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) a : Optional[int] = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): a : Dict = model(__snake_case )[0] a : Union[str, Any] = 5_02_65 a : Dict = torch.Size((1, 2_56, vocab_size) ) self.assertEqual(output.shape , __snake_case ) a : Dict = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def lowercase_ ( self : Any ): a : Dict = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) a : Optional[int] = torch.arange(40_96 ).unsqueeze(0 ) with torch.no_grad(): a : Tuple = model(__snake_case )[0] a : List[Any] = 5_02_65 a : str = torch.Size((1, 40_96, vocab_size) ) self.assertEqual(output.shape , __snake_case ) a : int = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) )
96
0
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( lowerCAmelCase_ , unittest.TestCase ): _snake_case : Union[str, Any] = LayoutLMTokenizer _snake_case : List[str] = LayoutLMTokenizerFast _snake_case : int = True _snake_case : Tuple = True def lowerCAmelCase_ ( self : Optional[int] ): super().setUp() _UpperCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCAmelCase_ ( self : int , **__lowerCAmelCase : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = """UNwant\u00E9d,running""" _UpperCAmelCase = """unwanted, running""" return input_text, output_text def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__lowerCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase_ ( self : Tuple ): pass
289
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = get_failure_array(lowercase ) # 2) Step through text searching for pattern _UpperCAmelCase , _UpperCAmelCase = 0, 0 # index into text, pattern while i < len(lowercase ): if pattern[j] == text[i]: if j == (len(lowercase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _UpperCAmelCase = failure[j - 1] continue i += 1 return False def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [0] _UpperCAmelCase = 0 _UpperCAmelCase = 1 while j < len(lowercase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _UpperCAmelCase = failure[i - 1] continue j += 1 failure.append(lowercase ) return failure if __name__ == "__main__": # Test 1) UpperCAmelCase__ = """abc1abc12""" UpperCAmelCase__ = """alskfjaldsabc1abc1abc12k23adsfabcabc""" UpperCAmelCase__ = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCAmelCase__ = """ABABX""" UpperCAmelCase__ = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) UpperCAmelCase__ = """AAAB""" UpperCAmelCase__ = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) UpperCAmelCase__ = """abcdabcy""" UpperCAmelCase__ = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) UpperCAmelCase__ = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
289
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Any: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[List] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None __UpperCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
16
0
'''simple docstring''' import datasets from .evaluate import evaluate _SCREAMING_SNAKE_CASE = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" _SCREAMING_SNAKE_CASE = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" _SCREAMING_SNAKE_CASE = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} _lowerCAmelCase = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] _lowerCAmelCase = evaluate(dataset=_lowerCAmelCase , predictions=_lowerCAmelCase ) return score
158
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = [] for part_id in partition_order: _lowerCAmelCase = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(SCREAMING_SNAKE_CASE_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __a(): '''simple docstring''' _lowerCAmelCase = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase = spark.range(100 ).repartition(1 ) _lowerCAmelCase = Spark(SCREAMING_SNAKE_CASE_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __a(): '''simple docstring''' _lowerCAmelCase = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase = spark.range(10 ).repartition(2 ) _lowerCAmelCase = [1, 0] _lowerCAmelCase = _generate_iterable_examples(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Reverse the partitions. _lowerCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _lowerCAmelCase , _lowerCAmelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a(): '''simple docstring''' _lowerCAmelCase = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase = spark.range(10 ).repartition(1 ) _lowerCAmelCase = SparkExamplesIterable(SCREAMING_SNAKE_CASE_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __a(): '''simple docstring''' _lowerCAmelCase = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: _lowerCAmelCase = lambda SCREAMING_SNAKE_CASE_ : x.reverse() _lowerCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE_ , [2, 1, 0] ) _lowerCAmelCase = SparkExamplesIterable(SCREAMING_SNAKE_CASE_ ).shuffle_data_sources(SCREAMING_SNAKE_CASE_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase , _lowerCAmelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a(): '''simple docstring''' _lowerCAmelCase = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _lowerCAmelCase = SparkExamplesIterable(SCREAMING_SNAKE_CASE_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 _lowerCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase , _lowerCAmelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _lowerCAmelCase = SparkExamplesIterable(SCREAMING_SNAKE_CASE_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 _lowerCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase , _lowerCAmelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a(): '''simple docstring''' _lowerCAmelCase = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _lowerCAmelCase = spark.range(100 ).repartition(1 ) _lowerCAmelCase = Spark(SCREAMING_SNAKE_CASE_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
158
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowerCamelCase : Union[str, Any] = get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, "r", encoding="utf-8") as f: lowerCamelCase : int = json.load(f) @require_torch class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Union[str, Any] , A_ : Tuple ) -> Optional[int]: """simple docstring""" return FSMTTokenizer.from_pretrained(__lowerCamelCase ) def a__ ( self : Optional[Any] , A_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = FSMTForConditionalGeneration.from_pretrained(__lowerCamelCase ).to(__lowerCamelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def a__ ( self : Dict , A_ : Any , A_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = f"""facebook/wmt19-{pair}""" lowerCamelCase_ = self.get_tokenizer(__lowerCamelCase ) lowerCamelCase_ = self.get_model(__lowerCamelCase ) lowerCamelCase_ = bleu_data[pair]['''src'''] lowerCamelCase_ = bleu_data[pair]['''tgt'''] lowerCamelCase_ = tokenizer(__lowerCamelCase , return_tensors='pt' , truncation=__lowerCamelCase , padding='longest' ).to(__lowerCamelCase ) lowerCamelCase_ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCamelCase_ = tokenizer.batch_decode( __lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) lowerCamelCase_ = calculate_bleu(__lowerCamelCase , __lowerCamelCase ) print(__lowerCamelCase ) self.assertGreaterEqual(scores['bleu'] , __lowerCamelCase )
356
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase : dict , lowercase : str ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = set(lowercase ), [start] while stack: lowerCamelCase_ = stack.pop() explored.add(lowercase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowercase ) return explored lowerCamelCase : int = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
208
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def a__ ( snake_case ): """simple docstring""" # initialize config if "resnet-50" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: __SCREAMING_SNAKE_CASE : str = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) __SCREAMING_SNAKE_CASE : str = DetrConfig(use_timm_backbone=snake_case , backbone_config=snake_case ) # set label attributes __SCREAMING_SNAKE_CASE : Any = '''panoptic''' in model_name if is_panoptic: __SCREAMING_SNAKE_CASE : str = 250 else: __SCREAMING_SNAKE_CASE : Any = 91 __SCREAMING_SNAKE_CASE : int = '''huggingface/label-files''' __SCREAMING_SNAKE_CASE : Dict = '''coco-detection-id2label.json''' __SCREAMING_SNAKE_CASE : Any = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {int(snake_case ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Dict = idalabel __SCREAMING_SNAKE_CASE : List[str] = {v: k for k, v in idalabel.items()} return config, is_panoptic def a__ ( snake_case ): """simple docstring""" # here we list all keys to be renamed (original name on the left, our name on the right) __SCREAMING_SNAKE_CASE : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(snake_case ) __SCREAMING_SNAKE_CASE : Any = val def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = '''''' if is_panoptic: __SCREAMING_SNAKE_CASE : str = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight[:256, :] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias[:256] __SCREAMING_SNAKE_CASE : str = in_proj_weight[256:512, :] __SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[256:512] __SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[-256:, :] __SCREAMING_SNAKE_CASE : str = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[:256, :] __SCREAMING_SNAKE_CASE : List[str] = in_proj_bias[:256] __SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[256:512, :] __SCREAMING_SNAKE_CASE : List[str] = in_proj_bias[256:512] __SCREAMING_SNAKE_CASE : str = in_proj_weight[-256:, :] __SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __SCREAMING_SNAKE_CASE : Any = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight_cross_attn[:256, :] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias_cross_attn[:256] __SCREAMING_SNAKE_CASE : int = in_proj_weight_cross_attn[256:512, :] __SCREAMING_SNAKE_CASE : Any = in_proj_bias_cross_attn[256:512] __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight_cross_attn[-256:, :] __SCREAMING_SNAKE_CASE : int = in_proj_bias_cross_attn[-256:] def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def a__ ( snake_case , snake_case=None , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = get_detr_config(snake_case ) # load original model from torch hub __SCREAMING_SNAKE_CASE : Tuple = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(F'''Converting model {model_name}...''' ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=snake_case ).eval() __SCREAMING_SNAKE_CASE : int = detr.state_dict() # rename keys for src, dest in create_rename_keys(snake_case ): if is_panoptic: __SCREAMING_SNAKE_CASE : Any = '''detr.''' + src rename_key(snake_case , snake_case , snake_case ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case , is_panoptic=snake_case ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __SCREAMING_SNAKE_CASE : Any = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): __SCREAMING_SNAKE_CASE : str = state_dict.pop(snake_case ) __SCREAMING_SNAKE_CASE : str = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: __SCREAMING_SNAKE_CASE : Any = state_dict.pop(snake_case ) __SCREAMING_SNAKE_CASE : Any = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __SCREAMING_SNAKE_CASE : Any = state_dict.pop(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = val # finally, create HuggingFace model and load state dict __SCREAMING_SNAKE_CASE : Dict = DetrForSegmentation(snake_case ) if is_panoptic else DetrForObjectDetection(snake_case ) model.load_state_dict(snake_case ) model.eval() # verify our conversion on an image __SCREAMING_SNAKE_CASE : List[str] = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __SCREAMING_SNAKE_CASE : Dict = DetrImageProcessor(format=snake_case ) __SCREAMING_SNAKE_CASE : int = processor(images=prepare_img() , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : List[str] = encoding['''pixel_values'''] __SCREAMING_SNAKE_CASE : Optional[Any] = detr(snake_case ) __SCREAMING_SNAKE_CASE : int = model(snake_case ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(snake_case ).mkdir(exist_ok=snake_case ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") lowercase_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''luke''' def __init__( self : Any , _A : int=5_0267 , _A : str=50_0000 , _A : Dict=768 , _A : int=256 , _A : Tuple=12 , _A : Optional[Any]=12 , _A : Any=3072 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : Any=512 , _A : Tuple=2 , _A : int=0.02 , _A : Any=1e-12 , _A : Dict=True , _A : Optional[Any]=None , _A : List[str]=1 , _A : List[str]=0 , _A : Dict=2 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Any = entity_vocab_size __SCREAMING_SNAKE_CASE : int = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = entity_emb_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = type_vocab_size __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps __SCREAMING_SNAKE_CASE : int = use_entity_aware_attention __SCREAMING_SNAKE_CASE : Any = classifier_dropout
303
1
def a ( SCREAMING_SNAKE_CASE_ : int = 5_0 ): """simple docstring""" UpperCamelCase : List[str] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
364
def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase : Any = set() # Replace all the whitespace in our sentence UpperCamelCase : Union[str, Any] = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == 2_6 def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase : str = [False] * 2_6 for char in input_str: if char.islower(): UpperCamelCase : List[Any] = True elif char.isupper(): UpperCamelCase : List[Any] = True return all(SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def a ( ): """simple docstring""" from timeit import timeit UpperCamelCase : int = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
315
0
import argparse import collections import json import os import re import string import sys import numpy as np lowercase__ : Tuple = re.compile(R'''\b(a|an|the)\b''', re.UNICODE) lowercase__ : str = None def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: lowerCAmelCase = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=snake_case__ , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=snake_case__ , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> List[Any]: lowerCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Tuple: def remove_articles(snake_case__ ): return ARTICLES_REGEX.sub(''' ''' , snake_case__ ) def white_space_fix(snake_case__ ): return " ".join(text.split() ) def remove_punc(snake_case__ ): lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__ ) ) ) ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]: if not s: return [] return normalize_answer(snake_case__ ).split() def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> int: return int(normalize_answer(snake_case__ ) == normalize_answer(snake_case__ ) ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Optional[Any]: lowerCAmelCase = get_tokens(snake_case__ ) lowerCAmelCase = get_tokens(snake_case__ ) lowerCAmelCase = collections.Counter(snake_case__ ) & collections.Counter(snake_case__ ) lowerCAmelCase = sum(common.values() ) if len(snake_case__ ) == 0 or len(snake_case__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowerCAmelCase = 1.0 * num_same / len(snake_case__ ) lowerCAmelCase = 1.0 * num_same / len(snake_case__ ) lowerCAmelCase = (2 * precision * recall) / (precision + recall) return fa def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Union[str, Any]: lowerCAmelCase = {} lowerCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase = qa['''id'''] lowerCAmelCase = [t for t in qa['''answers''']['''text'''] if normalize_answer(snake_case__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase = [''''''] if qid not in preds: print(f"Missing prediction for {qid}" ) continue lowerCAmelCase = preds[qid] # Take max over all gold answers lowerCAmelCase = max(compute_exact(snake_case__ , snake_case__ ) for a in gold_answers ) lowerCAmelCase = max(compute_fa(snake_case__ , snake_case__ ) for a in gold_answers ) return exact_scores, fa_scores def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: lowerCAmelCase = {} for qid, s in scores.items(): lowerCAmelCase = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase = float(not qid_to_has_ans[qid] ) else: lowerCAmelCase = s return new_scores def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__=None ) -> Union[str, Any]: if not qid_list: lowerCAmelCase = len(snake_case__ ) return collections.OrderedDict( [ ('''exact''', 1_00.0 * sum(exact_scores.values() ) / total), ('''f1''', 1_00.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: lowerCAmelCase = len(snake_case__ ) return collections.OrderedDict( [ ('''exact''', 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: for k in new_eval: lowerCAmelCase = new_eval[k] def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Dict: plt.step(snake_case__ , snake_case__ , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(snake_case__ , snake_case__ , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(snake_case__ ) plt.savefig(snake_case__ ) plt.clf() def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ) -> Optional[Any]: lowerCAmelCase = sorted(snake_case__ , key=lambda snake_case__ : na_probs[k] ) lowerCAmelCase = 0.0 lowerCAmelCase = 1.0 lowerCAmelCase = 0.0 lowerCAmelCase = [1.0] lowerCAmelCase = [0.0] lowerCAmelCase = 0.0 for i, qid in enumerate(snake_case__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase = true_pos / float(i + 1 ) lowerCAmelCase = true_pos / float(snake_case__ ) if i == len(snake_case__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__ ) recalls.append(snake_case__ ) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return {"ap": 1_00.0 * avg_prec} def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Any: if out_image_dir and not os.path.exists(snake_case__ ): os.makedirs(snake_case__ ) lowerCAmelCase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowerCAmelCase = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) lowerCAmelCase = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) lowerCAmelCase = {k: float(snake_case__ ) for k, v in qid_to_has_ans.items()} lowerCAmelCase = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(snake_case__ , snake_case__ , '''pr_exact''' ) merge_eval(snake_case__ , snake_case__ , '''pr_f1''' ) merge_eval(snake_case__ , snake_case__ , '''pr_oracle''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: if not qid_list: return lowerCAmelCase = [na_probs[k] for k in qid_list] lowerCAmelCase = np.ones_like(snake_case__ ) / float(len(snake_case__ ) ) plt.hist(snake_case__ , weights=snake_case__ , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(f"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(snake_case__ , f"na_prob_hist_{name}.png" ) ) plt.clf() def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Dict: lowerCAmelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowerCAmelCase = num_no_ans lowerCAmelCase = cur_score lowerCAmelCase = 0.0 lowerCAmelCase = sorted(snake_case__ , key=lambda snake_case__ : na_probs[k] ) for i, qid in enumerate(snake_case__ ): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase = scores[qid] else: if preds[qid]: lowerCAmelCase = -1 else: lowerCAmelCase = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase = cur_score lowerCAmelCase = na_probs[qid] return 1_00.0 * best_score / len(snake_case__ ), best_thresh def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: lowerCAmelCase , lowerCAmelCase = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase , lowerCAmelCase = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase = best_exact lowerCAmelCase = exact_thresh lowerCAmelCase = best_fa lowerCAmelCase = fa_thresh def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: with open(OPTS.data_file ) as f: lowerCAmelCase = json.load(snake_case__ ) lowerCAmelCase = dataset_json['''data'''] with open(OPTS.pred_file ) as f: lowerCAmelCase = json.load(snake_case__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowerCAmelCase = json.load(snake_case__ ) else: lowerCAmelCase = {k: 0.0 for k in preds} lowerCAmelCase = make_qid_to_has_ans(snake_case__ ) # maps qid to True/False lowerCAmelCase = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase , lowerCAmelCase = get_raw_scores(snake_case__ , snake_case__ ) lowerCAmelCase = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh ) lowerCAmelCase = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh ) lowerCAmelCase = make_eval_dict(snake_case__ , snake_case__ ) if has_ans_qids: lowerCAmelCase = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__ ) merge_eval(snake_case__ , snake_case__ , '''HasAns''' ) if no_ans_qids: lowerCAmelCase = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__ ) merge_eval(snake_case__ , snake_case__ , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir ) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(snake_case__ , snake_case__ ) else: print(json.dumps(snake_case__ , indent=2 ) ) if __name__ == "__main__": lowercase__ : int = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
338
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = ["""image_processor""", """tokenizer"""] UpperCAmelCase_ : int = """OwlViTImageProcessor""" UpperCAmelCase_ : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Any: lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __SCREAMING_SNAKE_CASE , ) lowerCAmelCase = kwargs.pop('''feature_extractor''' ) lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="max_length" , __SCREAMING_SNAKE_CASE="np" , **__SCREAMING_SNAKE_CASE ) ->int: if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or (isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(text[0] , __SCREAMING_SNAKE_CASE )): lowerCAmelCase = [self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )] elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(text[0] , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = [] # Maximum number of queries across batch lowerCAmelCase = max([len(__SCREAMING_SNAKE_CASE ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__SCREAMING_SNAKE_CASE ) != max_num_queries: lowerCAmelCase = t + [''' '''] * (max_num_queries - len(__SCREAMING_SNAKE_CASE )) lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) encodings.append(__SCREAMING_SNAKE_CASE ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": lowerCAmelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowerCAmelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCAmelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowerCAmelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCAmelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) lowerCAmelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCAmelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) lowerCAmelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) lowerCAmelCase = BatchEncoding() lowerCAmelCase = input_ids lowerCAmelCase = attention_mask if query_images is not None: lowerCAmelCase = BatchEncoding() lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).pixel_values lowerCAmelCase = query_pixel_values if images is not None: lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text is not None and images is not None: lowerCAmelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCAmelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__SCREAMING_SNAKE_CASE ) , tensor_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Optional[int]: return self.image_processor.post_process(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Any: return self.image_processor.post_process_object_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Tuple: return self.image_processor.post_process_image_guided_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->str: return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]: return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE_ ( self ) ->int: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __SCREAMING_SNAKE_CASE , ) return self.image_processor
338
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Any ): super().tearDown() gc.collect() def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) UpperCamelCase_: Any = """A painting of a squirrel eating a burger""" UpperCamelCase_: Union[str, Any] = jax.device_count() UpperCamelCase_: List[str] = num_samples * [prompt] UpperCamelCase_: Optional[Any] = sd_pipe.prepare_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_: List[str] = replicate(_SCREAMING_SNAKE_CASE ) UpperCamelCase_: Any = shard(_SCREAMING_SNAKE_CASE ) UpperCamelCase_: int = jax.random.PRNGKey(0 ) UpperCamelCase_: Tuple = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) UpperCamelCase_: Dict = sd_pipe(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_inference_steps=25 , jit=_SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) UpperCamelCase_: Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase_: int = images[0, 253:256, 253:256, -1] UpperCamelCase_: Any = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase_: str = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.4_5508, 0.4512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Optional[Any] = """stabilityai/stable-diffusion-2""" UpperCamelCase_: Dict = FlaxDPMSolverMultistepScheduler.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder="""scheduler""" ) UpperCamelCase_: Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( _SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , revision="""bf16""" , dtype=jnp.bfloataa , ) UpperCamelCase_: Optional[Any] = scheduler_params UpperCamelCase_: int = """A painting of a squirrel eating a burger""" UpperCamelCase_: Optional[Any] = jax.device_count() UpperCamelCase_: Optional[Any] = num_samples * [prompt] UpperCamelCase_: Any = sd_pipe.prepare_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_: Optional[int] = replicate(_SCREAMING_SNAKE_CASE ) UpperCamelCase_: Dict = shard(_SCREAMING_SNAKE_CASE ) UpperCamelCase_: int = jax.random.PRNGKey(0 ) UpperCamelCase_: Tuple = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) UpperCamelCase_: List[str] = sd_pipe(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_inference_steps=25 , jit=_SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) UpperCamelCase_: Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase_: Optional[Any] = images[0, 253:256, 253:256, -1] UpperCamelCase_: Any = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase_: List[Any] = jnp.array([0.4336, 0.4_2969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
360
def A__ ( lowerCamelCase , lowerCamelCase ) -> list: UpperCamelCase_: Optional[int] = word.split() def justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: Tuple = max_width - width UpperCamelCase_: Optional[Any] = len(lowerCamelCase ) if len(lowerCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCamelCase_: List[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCamelCase_: Optional[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCamelCase_: List[str] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCamelCase ): num_spaces_between_words_list[i] += 1 UpperCamelCase_: Dict = [] for i in range(lowerCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCamelCase ) UpperCamelCase_: Optional[int] = [] UpperCamelCase_: list[str] = [] UpperCamelCase_: List[str] = 0 for word in words: if width + len(lowerCamelCase ) + len(lowerCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCamelCase ) width += len(lowerCamelCase ) else: # justify the line and add it to result answer.append(justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) # reset new line and new width UpperCamelCase_, UpperCamelCase_: List[str] = [word], len(lowerCamelCase ) UpperCamelCase_: List[str] = max_width - width - len(lowerCamelCase ) answer.append(""" """.join(lowerCamelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
223
0
"""simple docstring""" a : str = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) a : Union[str, Any] = frozenset(['''prompt''', '''negative_prompt''']) a : str = frozenset([]) a : Tuple = frozenset(['''image''']) a : Tuple = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) a : Union[str, Any] = frozenset(['''image''']) a : Dict = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) a : Optional[int] = frozenset(['''prompt''', '''image''', '''negative_prompt''']) a : str = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) a : Union[str, Any] = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) a : List[Any] = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) a : Tuple = frozenset(['''image''', '''mask_image''']) a : Tuple = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) a : Optional[Any] = frozenset(['''example_image''', '''image''', '''mask_image''']) a : List[Any] = frozenset(['''class_labels''']) a : Any = frozenset(['''class_labels''']) a : Dict = frozenset(['''batch_size''']) a : Union[str, Any] = frozenset([]) a : Dict = frozenset(['''batch_size''']) a : List[Any] = frozenset([]) a : Optional[int] = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) a : int = frozenset(['''prompt''', '''negative_prompt''']) a : List[str] = frozenset(['''input_tokens''']) a : Any = frozenset(['''input_tokens'''])
105
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a : List[str] = logging.get_logger(__name__) a : List[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a : str = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } a : Tuple = {'''allegro/herbert-base-cased''': 514} a : Optional[int] = {} class __UpperCamelCase ( a__ ): lowerCamelCase : str =VOCAB_FILES_NAMES lowerCamelCase : Dict =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Dict =PRETRAINED_INIT_CONFIGURATION lowerCamelCase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] =HerbertTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__="</s>" , **lowerCAmelCase__ , ) -> Optional[int]: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: a : Optional[Any] = [self.cls_token_id] a : Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: a : Dict = [self.sep_token_id] a : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: a : List[str] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
105
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor _a= random.Random() def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=1.0 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[Any]=None ) -> List[str]: '''simple docstring''' if rng is None: __snake_case : Union[str, Any] = global_rng __snake_case : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCamelCase ( unittest.TestCase ): def __init__(self : Any , _A : str , _A : Any=7 , _A : List[str]=4_00 , _A : Any=20_00 , _A : Optional[Any]=24 , _A : Dict=24 , _A : Optional[Any]=0.0 , _A : int=1_60_00 , _A : Tuple=True , _A : str=True , ) -> Optional[int]: __snake_case : Tuple = parent __snake_case : Any = batch_size __snake_case : List[str] = min_seq_length __snake_case : Dict = max_seq_length __snake_case : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case : Tuple = feature_size __snake_case : List[str] = num_mel_bins __snake_case : Optional[int] = padding_value __snake_case : Any = sampling_rate __snake_case : Optional[Any] = return_attention_mask __snake_case : List[Any] = do_normalize def _lowercase (self : List[str]) -> Dict: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase (self : Union[str, Any] , _A : Union[str, Any]=False , _A : List[str]=False) -> Union[str, Any]: def _flatten(_A : Optional[int]): return list(itertools.chain(*lowercase_)) if equal_length: __snake_case : str = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size __snake_case : Optional[Any] = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: __snake_case : Dict = [np.asarray(lowercase_) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase ( lowercase__ , unittest.TestCase ): UpperCAmelCase : List[Any] = SpeechaTextFeatureExtractor if is_speech_available() else None def _lowercase (self : Any) -> int: __snake_case : str = SpeechaTextFeatureExtractionTester(self) def _lowercase (self : Any , _A : Optional[Any]) -> Dict: self.assertTrue(np.all(np.mean(lowercase_ , axis=0) < 1E-3)) self.assertTrue(np.all(np.abs(np.var(lowercase_ , axis=0) - 1) < 1E-3)) def _lowercase (self : Any) -> Tuple: __snake_case : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 __snake_case : int = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] __snake_case : List[str] = [np.asarray(lowercase_) for speech_input in speech_inputs] # Test feature size __snake_case : int = feature_extractor(lowercase_ , padding=lowercase_ , return_tensors='np').input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size) # Test not batched input __snake_case : int = feature_extractor(speech_inputs[0] , return_tensors='np').input_features __snake_case : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors='np').input_features self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3)) # Test batched __snake_case : Dict = feature_extractor(lowercase_ , return_tensors='np').input_features __snake_case : Tuple = feature_extractor(lowercase_ , return_tensors='np').input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3)) # Test 2-D numpy arrays are batched. __snake_case : List[Any] = [floats_list((1, x))[0] for x in (8_00, 8_00, 8_00)] __snake_case : Tuple = np.asarray(lowercase_) __snake_case : int = feature_extractor(lowercase_ , return_tensors='np').input_features __snake_case : str = feature_extractor(lowercase_ , return_tensors='np').input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3)) def _lowercase (self : Union[str, Any]) -> List[Any]: __snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __snake_case : Dict = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] __snake_case : int = ["longest", "max_length", "do_not_pad"] __snake_case : Optional[Any] = [None, 16, None] for max_length, padding in zip(lowercase_ , lowercase_): __snake_case : Dict = feature_extractor( lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_attention_mask=lowercase_) __snake_case : Any = inputs.input_features __snake_case : List[Any] = inputs.attention_mask __snake_case : Dict = [np.sum(lowercase_) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def _lowercase (self : int) -> Dict: __snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __snake_case : Union[str, Any] = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] __snake_case : Union[str, Any] = ["longest", "max_length", "do_not_pad"] __snake_case : Optional[Any] = [None, 16, None] for max_length, padding in zip(lowercase_ , lowercase_): __snake_case : Optional[Any] = feature_extractor( lowercase_ , max_length=lowercase_ , padding=lowercase_ , return_tensors='np' , return_attention_mask=lowercase_) __snake_case : Optional[int] = inputs.input_features __snake_case : Union[str, Any] = inputs.attention_mask __snake_case : Union[str, Any] = [np.sum(lowercase_) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def _lowercase (self : Optional[int]) -> Dict: __snake_case : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __snake_case : Any = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] __snake_case : List[Any] = feature_extractor( lowercase_ , padding='max_length' , max_length=4 , truncation=lowercase_ , return_tensors='np' , return_attention_mask=lowercase_ , ) __snake_case : Dict = inputs.input_features __snake_case : Optional[int] = inputs.attention_mask __snake_case : int = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1]) self._check_zero_mean_unit_variance(input_features[2]) def _lowercase (self : List[Any]) -> Dict: __snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __snake_case : Optional[int] = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] __snake_case : Dict = feature_extractor( lowercase_ , padding='longest' , max_length=4 , truncation=lowercase_ , return_tensors='np' , return_attention_mask=lowercase_ , ) __snake_case : Tuple = inputs.input_features __snake_case : int = inputs.attention_mask __snake_case : List[Any] = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24)) __snake_case : Tuple = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] __snake_case : Dict = feature_extractor( lowercase_ , padding='longest' , max_length=16 , truncation=lowercase_ , return_tensors='np' , return_attention_mask=lowercase_ , ) __snake_case : Dict = inputs.input_features __snake_case : int = inputs.attention_mask __snake_case : Any = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24)) def _lowercase (self : Dict) -> int: import torch __snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __snake_case : Union[str, Any] = np.random.rand(1_00 , 32).astype(np.floataa) __snake_case : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __snake_case : Optional[int] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_features.dtype == np.floataa) __snake_case : Dict = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_features.dtype == torch.floataa) def _lowercase (self : Any , _A : str) -> int: from datasets import load_dataset __snake_case : Any = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation') # automatic decoding with librispeech __snake_case : int = ds.sort('id').select(range(lowercase_))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _lowercase (self : List[str]) -> Optional[Any]: __snake_case : List[Any] = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ]) # fmt: on __snake_case : List[Any] = self._load_datasamples(1) __snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __snake_case : Optional[int] = feature_extractor(lowercase_ , return_tensors='pt').input_features self.assertEquals(input_features.shape , (1, 5_84, 24)) self.assertTrue(np.allclose(input_features[0, 0, :30] , lowercase_ , atol=1E-4))
351
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase ( lowercase ): UpperCAmelCase : Optional[int] = """new-model""" if is_tf_available(): class UpperCamelCase ( lowercase ): UpperCAmelCase : List[str] = NewModelConfig @require_tf class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase (self : List[str]) -> Dict: __snake_case : Any = 'bert-base-cased' __snake_case : Optional[Any] = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : Union[str, Any] = TFAutoModel.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow def _lowercase (self : List[Any]) -> str: __snake_case : Optional[int] = 'bert-base-cased' __snake_case : List[Any] = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow def _lowercase (self : Any) -> List[str]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : List[str] = TFAutoModelForCausalLM.from_pretrained(_A) __snake_case , __snake_case : List[str] = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow def _lowercase (self : Tuple) -> Dict: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Union[str, Any] = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow def _lowercase (self : Union[str, Any]) -> Optional[int]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Union[str, Any] = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : Optional[Any] = TFAutoModelForMaskedLM.from_pretrained(_A) __snake_case , __snake_case : Optional[int] = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow def _lowercase (self : str) -> Union[str, Any]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Dict = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : str = TFAutoModelForSeqaSeqLM.from_pretrained(_A) __snake_case , __snake_case : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow def _lowercase (self : str) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __snake_case : Tuple = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : Tuple = TFAutoModelForSequenceClassification.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow def _lowercase (self : Optional[Any]) -> Optional[int]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __snake_case : List[str] = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : Any = TFAutoModelForQuestionAnswering.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) @slow @require_tensorflow_probability def _lowercase (self : List[Any]) -> List[str]: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __snake_case : Optional[Any] = AutoConfig.from_pretrained(_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) __snake_case : int = TFAutoModelForTableQuestionAnswering.from_pretrained(_A) __snake_case , __snake_case : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A) self.assertIsNotNone(_A) self.assertIsInstance(_A , _A) def _lowercase (self : Optional[Any]) -> Optional[Any]: __snake_case : Optional[int] = TFAutoModelWithLMHead.from_pretrained(_A) self.assertIsInstance(_A , _A) self.assertEqual(model.num_parameters() , 1_44_10) self.assertEqual(model.num_parameters(only_trainable=_A) , 1_44_10) def _lowercase (self : Any) -> List[str]: __snake_case : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A) self.assertIsInstance(_A , _A) self.assertEqual(model.num_parameters() , 1_44_10) self.assertEqual(model.num_parameters(only_trainable=_A) , 1_44_10) def _lowercase (self : Optional[Any]) -> str: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __snake_case : Optional[Any] = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny') self.assertIsInstance(_A , _A) __snake_case : int = copy.deepcopy(model.config) __snake_case : int = ['FunnelBaseModel'] __snake_case : int = TFAutoModel.from_config(_A) self.assertIsInstance(_A , _A) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A) __snake_case : List[Any] = TFAutoModel.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : List[Any]) -> int: try: AutoConfig.register('new-model' , _A) __snake_case : int = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__): # Wrong config class will raise an error with self.assertRaises(_A): auto_class.register(_A , _A) auto_class.register(_A , _A) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A): auto_class.register(_A , _A) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case : Union[str, Any] = BertModelTester(self).get_config() __snake_case : Optional[int] = NewModelConfig(**tiny_config.to_dict()) __snake_case : List[str] = auto_class.from_config(_A) self.assertIsInstance(_A , _A) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A) __snake_case : Tuple = auto_class.from_pretrained(_A) self.assertIsInstance(_A , _A) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _lowercase (self : Optional[int]) -> Union[str, Any]: with self.assertRaisesRegex( _A , 'bert-base is not a local folder and is not a valid model identifier'): __snake_case : Any = TFAutoModel.from_pretrained('bert-base') def _lowercase (self : str) -> str: with self.assertRaisesRegex( _A , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __snake_case : Optional[Any] = TFAutoModel.from_pretrained(_A , revision='aaaaaa') def _lowercase (self : int) -> Any: with self.assertRaisesRegex( _A , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): __snake_case : List[str] = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model') def _lowercase (self : Optional[Any]) -> Any: with self.assertRaisesRegex(_A , 'Use `from_pt=True` to load this model'): __snake_case : List[str] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only') def _lowercase (self : str) -> Any: # Make sure we have cached the model. __snake_case : str = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert') with RequestCounter() as counter: __snake_case : List[str] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0) # With a sharded checkpoint __snake_case : Optional[int] = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded') with RequestCounter() as counter: __snake_case : Any = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
95
0
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return int(input_a == input_a == 0 ) def __lowerCamelCase ( ): """simple docstring""" print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
130
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowercase__ : List[Any] = 6 lowercase__ : List[str] = 128 lowercase__ : Optional[Any] = (2, 2, 18, 2) lowercase__ : Optional[int] = (4, 8, 16, 32) elif "large" in model_name: lowercase__ : Optional[Any] = 12 lowercase__ : List[str] = 192 lowercase__ : int = (2, 2, 18, 2) lowercase__ : Optional[int] = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) lowercase__ : str = window_size lowercase__ : Union[str, Any] = embed_dim lowercase__ : List[str] = depths lowercase__ : Any = num_heads return config def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if "encoder.mask_token" in name: lowercase__ : Any = name.replace("encoder.mask_token" , "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: lowercase__ : Tuple = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: lowercase__ : Dict = name.replace("encoder.patch_embed.norm" , "embeddings.norm" ) if "attn.proj" in name: lowercase__ : Union[str, Any] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowercase__ : List[Any] = name.replace("attn" , "attention.self" ) if "norm1" in name: lowercase__ : Any = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowercase__ : Optional[int] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowercase__ : Dict = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowercase__ : List[str] = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": lowercase__ : str = "layernorm.weight" if name == "encoder.norm.bias": lowercase__ : List[Any] = "layernorm.bias" if "decoder" in name: pass else: lowercase__ : List[str] = "swin." + name return name def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ : Optional[int] = orig_state_dict.pop(lowerCamelCase__ ) if "attn_mask" in key: pass elif "qkv" in key: lowercase__ : Dict = key.split("." ) lowercase__ : Tuple = int(key_split[2] ) lowercase__ : Optional[int] = int(key_split[4] ) lowercase__ : Optional[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ : List[Any] = val[:dim, :] lowercase__ : Optional[Any] = val[ dim : dim * 2, : ] lowercase__ : Any = val[-dim:, :] else: lowercase__ : int = val[ :dim ] lowercase__ : str = val[ dim : dim * 2 ] lowercase__ : str = val[ -dim: ] else: lowercase__ : int = val return orig_state_dict def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[Any] = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] lowercase__ : Optional[Any] = get_swin_config(lowerCamelCase__ ) lowercase__ : Any = SwinForMaskedImageModeling(lowerCamelCase__ ) model.eval() lowercase__ : List[str] = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) lowercase__ : int = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = ViTImageProcessor(size={"height": 192, "width": 192} ) lowercase__ : Union[str, Any] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) lowercase__ : List[Any] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ) with torch.no_grad(): lowercase__ : Union[str, Any] = model(**lowerCamelCase__ ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(F"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(F"""microsoft/{model_name}""" ) image_processor.push_to_hub(F"""microsoft/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCAmelCase__ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
130
1
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device A : Union[str, Any] = False class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): __lowerCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowerCAmelCase = "A painting of a squirrel eating a burger " __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=__a , generator=__a , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__a ) __lowerCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained(__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowerCAmelCase = generator.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=__a , generator=__a , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def snake_case ( self ): __lowerCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowerCAmelCase = "A painting of a squirrel eating a burger " __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=__a , generator=__a , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __lowerCAmelCase = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCAmelCase = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
370
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [False] * len(_UpperCamelCase ) __lowerCAmelCase = [] queue.append(_UpperCamelCase ) __lowerCAmelCase = True while queue: __lowerCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_UpperCamelCase ) __lowerCAmelCase = True __lowerCAmelCase = u return visited[t] def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [-1] * (len(_UpperCamelCase )) __lowerCAmelCase = 0 while bfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = float("Inf" ) __lowerCAmelCase = sink while s != source: # Find the minimum value in select path __lowerCAmelCase = min(_UpperCamelCase , graph[parent[s]][s] ) __lowerCAmelCase = parent[s] max_flow += path_flow __lowerCAmelCase = sink while v != source: __lowerCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowerCAmelCase = parent[v] return max_flow A : Optional[Any] = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] A , A : Optional[Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
259
0
"""simple docstring""" def snake_case_ ( A_ : Tuple, A_ : Tuple, A_ : Any, A_ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : int = [False] * len(A_ ) _lowerCamelCase : Union[str, Any] = [] queue.append(A_ ) _lowerCamelCase : str = True while queue: _lowerCamelCase : List[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A_ ) _lowerCamelCase : int = True _lowerCamelCase : Union[str, Any] = u return visited[t] def snake_case_ ( A_ : Union[str, Any], A_ : str, A_ : int ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [-1] * (len(A_ )) _lowerCamelCase : Optional[Any] = 0 while bfs(A_, A_, A_, A_ ): _lowerCamelCase : Optional[Any] = float('''Inf''' ) _lowerCamelCase : Union[str, Any] = sink while s != source: # Find the minimum value in select path _lowerCamelCase : Union[str, Any] = min(A_, graph[parent[s]][s] ) _lowerCamelCase : List[str] = parent[s] max_flow += path_flow _lowerCamelCase : List[str] = sink while v != source: _lowerCamelCase : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCamelCase : Optional[Any] = parent[v] return max_flow lowerCAmelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase__ , lowerCAmelCase__ = 0, 5 print(ford_fulkerson(graph, source, sink))
72
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : list[float] ): """simple docstring""" _snake_case : int = 0.00 _snake_case : int = 0 for resistor in resistors: if resistor <= 0: _snake_case : Dict = F"Resistor at index {index} has a negative or zero value!" raise ValueError(snake_case__ ) first_sum += 1 / float(snake_case__ ) index += 1 return 1 / first_sum def UpperCAmelCase__ (snake_case__ : list[float] ): """simple docstring""" _snake_case : Union[str, Any] = 0.00 _snake_case : Any = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _snake_case : Any = F"Resistor at index {index} has a negative value!" raise ValueError(snake_case__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
64
0
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def _a ( _lowercase : float , _lowercase : float , _lowercase : float ): '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(_lowercase , 2 ) - pow(_lowercase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_lowercase , 2 ) - pow(_lowercase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_lowercase , 2 ) + pow(_lowercase , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
240
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a : """simple docstring""" def __init__( self : Any , snake_case : Any , snake_case : Optional[int]=13 , snake_case : List[str]=7 , snake_case : List[str]=True , snake_case : List[Any]=True , snake_case : int=True , snake_case : Tuple=True , snake_case : int=99 , snake_case : Any=16 , snake_case : Dict=36 , snake_case : Any=6 , snake_case : Dict=6 , snake_case : Dict=6 , snake_case : int=37 , snake_case : int="gelu" , snake_case : str=0.1 , snake_case : Any=0.1 , snake_case : Dict=512 , snake_case : List[Any]=16 , snake_case : Any=2 , snake_case : Any=0.02 , snake_case : Optional[int]=3 , snake_case : List[Any]=4 , snake_case : List[str]=None , ) -> Union[str, Any]: __UpperCAmelCase : str = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : int = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : List[str] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Optional[int] = embedding_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : List[Any] = num_hidden_groups __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : Dict = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : Union[str, Any] = scope def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : int = None if self.use_input_mask: __UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Dict = None if self.use_token_type_ids: __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : int = None __UpperCAmelCase : List[str] = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCamelCase__ ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : int ) -> Optional[int]: __UpperCAmelCase : List[Any] = AlbertModel(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Tuple = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) __UpperCAmelCase : List[str] = model(snake_case , token_type_ids=snake_case ) __UpperCAmelCase : str = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self : List[str] , snake_case : str , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Dict , snake_case : Optional[int] ) -> Optional[int]: __UpperCAmelCase : str = AlbertForPreTraining(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Union[str, Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , sentence_order_label=snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCamelCase__ ( self : Dict , snake_case : Union[str, Any] , snake_case : Dict , snake_case : Any , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Any , snake_case : Tuple ) -> Union[str, Any]: __UpperCAmelCase : Dict = AlbertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , snake_case : Tuple , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Tuple ) -> int: __UpperCAmelCase : Optional[Any] = AlbertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Optional[Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Tuple , snake_case : List[str] , snake_case : Dict , snake_case : Optional[int] , snake_case : Dict , snake_case : int , snake_case : Optional[int] , snake_case : Optional[Any] ) -> Any: __UpperCAmelCase : Optional[int] = self.num_labels __UpperCAmelCase : Any = AlbertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Tuple , snake_case : Tuple , snake_case : List[Any] , snake_case : Optional[int] , snake_case : str , snake_case : Dict , snake_case : Union[str, Any] , snake_case : List[str] ) -> int: __UpperCAmelCase : Optional[int] = self.num_labels __UpperCAmelCase : Optional[int] = AlbertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Tuple , snake_case : Tuple , snake_case : List[Any] , snake_case : Dict , snake_case : int , snake_case : List[Any] , snake_case : List[Any] , snake_case : Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[int] = self.num_choices __UpperCAmelCase : List[Any] = AlbertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( _a , _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Any = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Any = True def lowerCamelCase__ ( self : Optional[int] , snake_case : Any , snake_case : Dict , snake_case : Tuple=False ) -> Optional[Any]: __UpperCAmelCase : Any = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class in get_values(snake_case ): __UpperCAmelCase : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case ) __UpperCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def lowerCamelCase__ ( self : Dict ) -> int: __UpperCAmelCase : List[Any] = AlbertModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Any ) -> Any: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> str: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def lowerCamelCase__ ( self : List[str] ) -> Tuple: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def lowerCamelCase__ ( self : str ) -> Any: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Tuple = type self.model_tester.create_and_check_model(*snake_case ) @slow def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = AlbertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase : Optional[int] = AlbertModel.from_pretrained('''albert-base-v2''' ) __UpperCAmelCase : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCAmelCase : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(snake_case , attention_mask=snake_case )[0] __UpperCAmelCase : Any = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , snake_case ) __UpperCAmelCase : int = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case , atol=1E-4 ) )
240
1
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def UpperCAmelCase_ ( ) -> Any: '''simple docstring''' _UpperCAmelCase = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } _UpperCAmelCase = Dataset.from_dict(__lowercase ) return dataset class A_ ( lowerCAmelCase_ ): def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = get_dataset() _UpperCAmelCase = make_duplicate_clusters(snake_case_ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def lowercase ( self : int ): _UpperCAmelCase = get_dataset() _UpperCAmelCase , _UpperCAmelCase = deduplicate_dataset(snake_case_ ) self.assertEqual(len(snake_case_ ) , 2 ) print(snake_case_ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , snake_case_ )
22
from jiwer import compute_measures import datasets lowerCamelCase : str = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' lowerCamelCase : int = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' lowerCamelCase : str = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def UpperCAmelCase ( self , A=None , A=None , A=False ) -> List[Any]: if concatenate_texts: return compute_measures(A , A )["wer"] else: snake_case : Any = 0 snake_case : Any = 0 for prediction, reference in zip(A , A ): snake_case : Tuple = compute_measures(A , A ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
124
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _snake_case = sum([np.prod(p.size() ) for p in model_parameters] ) return params __lowerCAmelCase = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if metric == "rouge2": _snake_case = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": _snake_case = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": _snake_case = """{val_avg_em:.4f}-{step_count}""" elif metric == "loss": _snake_case = """{val_avg_loss:.4f}-{step_count}""" else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" """ function.""" ) _snake_case = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=f"""val_{metric}""" , mode="""max""" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return EarlyStopping( monitor=f"""val_{metric}""" , mode="""min""" if """loss""" in metric else """max""" , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class _lowerCAmelCase ( pl.Callback ): '''simple docstring''' def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _snake_case = {f"""lr_group_{i}""": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(UpperCAmelCase ) @rank_zero_only def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True ) -> None: logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _snake_case = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results _snake_case = Path(pl_module.hparams.output_dir ) if type_path == "test": _snake_case = od / """test_results.txt""" _snake_case = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _snake_case = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" _snake_case = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=UpperCAmelCase ) generations_file.parent.mkdir(exist_ok=UpperCAmelCase ) with open(UpperCAmelCase , """a+""" ) as writer: for key in sorted(UpperCAmelCase ): if key in ["log", "progress_bar", "preds"]: continue _snake_case = metrics[key] if isinstance(UpperCAmelCase , torch.Tensor ): _snake_case = val.item() _snake_case = f"""{key}: {val:.6f}\n""" writer.write(UpperCAmelCase ) if not save_generations: return if "preds" in metrics: _snake_case = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(UpperCAmelCase ) @rank_zero_only def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: try: _snake_case = pl_module.model.model.num_parameters() except AttributeError: _snake_case = pl_module.model.num_parameters() _snake_case = count_trainable_parameters(UpperCAmelCase ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Dict: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(UpperCAmelCase , UpperCAmelCase , """test""" ) @rank_zero_only def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
361
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(_SCREAMING_SNAKE_CASE , max_perimeter + 1 ): _snake_case = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(_SCREAMING_SNAKE_CASE ): _snake_case = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 1000 ): _snake_case = pythagorean_triple(_SCREAMING_SNAKE_CASE ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
270
0
def SCREAMING_SNAKE_CASE ( ) -> List[Any]: lowerCamelCase__ : Dict = [] lowerCamelCase__ : List[Any] = 1 while len(_UpperCAmelCase ) < 1e6: constant.append(str(_UpperCAmelCase ) ) i += 1 lowerCamelCase__ : Optional[Any] = ''.join(_UpperCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
50
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class _lowerCamelCase ( a_ ): _lowerCamelCase :Optional[Any] = "levit" def __init__( self : List[Any] , UpperCamelCase : List[str]=2_24 , UpperCamelCase : Any=3 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Union[str, Any]=2 , UpperCamelCase : Any=1 , UpperCamelCase : int=16 , UpperCamelCase : List[str]=[1_28, 2_56, 3_84] , UpperCamelCase : Optional[Any]=[4, 8, 12] , UpperCamelCase : Optional[int]=[4, 4, 4] , UpperCamelCase : str=[16, 16, 16] , UpperCamelCase : Tuple=0 , UpperCamelCase : List[str]=[2, 2, 2] , UpperCamelCase : Optional[int]=[2, 2, 2] , UpperCamelCase : Optional[int]=0.02 , **UpperCamelCase : Dict , ) -> Optional[Any]: """simple docstring""" super().__init__(**UpperCamelCase ) lowerCAmelCase__ : int = image_size lowerCAmelCase__ : Any = num_channels lowerCAmelCase__ : int = kernel_size lowerCAmelCase__ : Any = stride lowerCAmelCase__ : List[str] = padding lowerCAmelCase__ : Tuple = hidden_sizes lowerCAmelCase__ : str = num_attention_heads lowerCAmelCase__ : List[Any] = depths lowerCAmelCase__ : List[str] = key_dim lowerCAmelCase__ : List[str] = drop_path_rate lowerCAmelCase__ : List[Any] = patch_size lowerCAmelCase__ : Dict = attention_ratio lowerCAmelCase__ : Tuple = mlp_ratio lowerCAmelCase__ : Any = initializer_range lowerCAmelCase__ : Dict = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _lowerCamelCase ( a_ ): _lowerCamelCase :Tuple = version.parse("1.11" ) @property def _lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowerCAmelCase ( self : List[str] ) -> float: """simple docstring""" return 1E-4
242
0
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule __SCREAMING_SNAKE_CASE : Optional[Any] = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
233
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: List[Any] = CycleDiffusionPipeline __lowercase: int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } __lowercase: str = PipelineTesterMixin.required_optional_params - {"""latents"""} __lowercase: Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""}) __lowercase: Any = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowercase: Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) snake_case_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1_000 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) snake_case_ = CLIPTextModel(UpperCAmelCase_ ) snake_case_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str]=0 ) ->str: """simple docstring""" snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) snake_case_ = image / 2 + 0.5 if str(UpperCAmelCase_ ).startswith("""mps""" ): snake_case_ = torch.manual_seed(UpperCAmelCase_ ) else: snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) snake_case_ = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = CycleDiffusionPipeline(**UpperCAmelCase_ ) snake_case_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = self.get_dummy_inputs(UpperCAmelCase_ ) snake_case_ = pipe(**UpperCAmelCase_ ) snake_case_ = output.images snake_case_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) snake_case_ = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" snake_case_ = self.get_dummy_components() for name, module in components.items(): if hasattr(UpperCAmelCase_ , """half""" ): snake_case_ = module.half() snake_case_ = CycleDiffusionPipeline(**UpperCAmelCase_ ) snake_case_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = self.get_dummy_inputs(UpperCAmelCase_ ) snake_case_ = pipe(**UpperCAmelCase_ ) snake_case_ = output.images snake_case_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) snake_case_ = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" snake_case_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) snake_case_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) snake_case_ = init_image.resize((512, 512) ) snake_case_ = """CompVis/stable-diffusion-v1-4""" snake_case_ = DDIMScheduler.from_pretrained(UpperCAmelCase_ , subfolder="""scheduler""" ) snake_case_ = CycleDiffusionPipeline.from_pretrained( UpperCAmelCase_ , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() snake_case_ = """A black colored car""" snake_case_ = """A blue colored car""" snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=UpperCAmelCase_ , source_prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase_ , output_type="""np""" , ) snake_case_ = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) snake_case_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) snake_case_ = init_image.resize((512, 512) ) snake_case_ = """CompVis/stable-diffusion-v1-4""" snake_case_ = DDIMScheduler.from_pretrained(UpperCAmelCase_ , subfolder="""scheduler""" ) snake_case_ = CycleDiffusionPipeline.from_pretrained(UpperCAmelCase_ , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() snake_case_ = """A black colored car""" snake_case_ = """A blue colored car""" snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=UpperCAmelCase_ , source_prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase_ , output_type="""np""" , ) snake_case_ = output.images assert np.abs(image - expected_image ).max() < 2E-2
233
1