code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase : List[str] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase : Tuple = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase ( _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = set() __UpperCAmelCase : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Dict = char __UpperCAmelCase : str = set(_UpperCamelCase ) return pairs class lowerCamelCase__ ( A ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Tuple="__start__" , UpperCamelCase : Any="__end__" , UpperCamelCase : List[Any]="__unk__" , UpperCamelCase : Dict="__null__" , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(unk_token=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , pad_token=UpperCamelCase , **UpperCamelCase ) with open(UpperCamelCase , encoding="""utf-8""" ) as vocab_handle: __UpperCAmelCase : List[str] = json.load(UpperCamelCase ) __UpperCAmelCase : List[Any] = {v: k for k, v in self.encoder.items()} with open(UpperCamelCase , encoding="""utf-8""" ) as merges_handle: __UpperCAmelCase : Optional[int] = merges_handle.read().split("""\n""" )[1:-1] __UpperCAmelCase : Optional[int] = [tuple(merge.split() ) for merge in merges] __UpperCAmelCase : Tuple = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __UpperCAmelCase : Optional[int] = {} @property def lowerCamelCase__ ( self : str ): '''simple docstring''' return len(self.encoder ) def lowerCamelCase__ ( self : str ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self : str , UpperCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = re.sub("""([.,!?()])""" , R""" \1""" , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = re.sub("""(')""" , R""" \1 """ , UpperCamelCase ) __UpperCAmelCase : List[str] = re.sub(R"""\s{2,}""" , """ """ , UpperCamelCase ) if "\n" in token: __UpperCAmelCase : Optional[Any] = token.replace("""\n""" , """ __newln__""" ) __UpperCAmelCase : Union[str, Any] = token.split(""" """ ) __UpperCAmelCase : List[Any] = [] for token in tokens: if not len(UpperCamelCase ): continue __UpperCAmelCase : str = token.lower() __UpperCAmelCase : str = tuple(UpperCamelCase ) __UpperCAmelCase : List[Any] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __UpperCAmelCase : Dict = get_pairs(UpperCamelCase ) if not pairs: words.append(UpperCamelCase ) continue while True: __UpperCAmelCase : int = min(UpperCamelCase , key=lambda UpperCamelCase : self.bpe_ranks.get(UpperCamelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase ,__UpperCAmelCase : int = bigram __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Dict = 0 while i < len(UpperCamelCase ): try: __UpperCAmelCase : Tuple = word.index(UpperCamelCase , UpperCamelCase ) new_word.extend(word[i:j] ) __UpperCAmelCase : Optional[Any] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Optional[int] = tuple(UpperCamelCase ) __UpperCAmelCase : int = new_word if len(UpperCamelCase ) == 1: break else: __UpperCAmelCase : Optional[int] = get_pairs(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = """@@ """.join(UpperCamelCase ) __UpperCAmelCase : List[str] = word[:-4] __UpperCAmelCase : List[Any] = word words.append(UpperCamelCase ) return " ".join(UpperCamelCase ) def lowerCamelCase__ ( self : str , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : List[Any] = re.findall(R"""\S+\n?""" , UpperCamelCase ) for token in words: split_tokens.extend(list(self.bpe(UpperCamelCase ).split(""" """ ) ) ) return split_tokens def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : List[str] = token.lower() return self.encoder.get(UpperCamelCase , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : int ): '''simple docstring''' return self.decoder.get(UpperCamelCase , self.unk_token ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : List[str] = """ """.join(UpperCamelCase ).replace("""@@ """ , """""" ).strip() return out_string def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Dict = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : List[Any] = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase , ensure_ascii=UpperCamelCase ) + """\n""" ) __UpperCAmelCase : Any = 0 with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(""" """.join(UpperCamelCase ) + """\n""" ) index += 1 return vocab_file, merge_file
115
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : int ) -> float: '''simple docstring''' if principal <= 0: raise Exception("""Principal borrowed must be > 0""" ) if rate_per_annum < 0: raise Exception("""Rate of interest must be >= 0""" ) if years_to_repay <= 0 or not isinstance(_UpperCamelCase , _UpperCamelCase ): raise Exception("""Years to repay must be an integer > 0""" ) # Yearly rate is divided by 12 to get monthly rate __UpperCAmelCase : List[Any] = rate_per_annum / 1_2 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __UpperCAmelCase : Optional[int] = years_to_repay * 1_2 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
115
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCamelCase_ = ["""gpt2"""] lowerCamelCase_ = """gpt2""" if is_tf_available(): class a_ ( tf.Module ): '''simple docstring''' def __init__( self , lowercase_ ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowerCAmelCase_ = tokenizer lowerCAmelCase_ = AutoConfig.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFGPTaLMHeadModel.from_config(lowercase_ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.tokenizer(lowercase_ ) lowerCAmelCase_ = tokenized['input_ids'].to_tensor() lowerCAmelCase_ = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowerCAmelCase_ = self.model(input_ids=lowercase_ , attention_mask=lowercase_ )['logits'] return outputs @require_tf @require_keras_nlp class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> int: '''simple docstring''' super().setUp() lowerCAmelCase_ = [GPTaTokenizer.from_pretrained(lowercase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowerCAmelCase_ = [TFGPTaTokenizer.from_pretrained(lowercase_ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCAmelCase_ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] lowerCAmelCase_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowercase ( self ) -> Tuple: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: lowerCAmelCase_ = tokenizer([test_inputs] , return_tensors='tf' ) lowerCAmelCase_ = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowerCAmelCase_ = python_outputs[key].numpy() lowerCAmelCase_ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowercase_ , tf.intaa ) == tf_outputs_values ) ) @slow def _lowercase ( self ) -> Any: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase_ = tf.function(lowercase_ ) for test_inputs in self.test_sentences: lowerCAmelCase_ = tf.constant(lowercase_ ) lowerCAmelCase_ = compiled_tokenizer(lowercase_ ) lowerCAmelCase_ = tf_tokenizer(lowercase_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowercase ( self ) -> int: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase_ = ModelToSave(tokenizer=lowercase_ ) lowerCAmelCase_ = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCAmelCase_ = model.serving(lowercase_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCAmelCase_ = Path(lowercase_ ) / 'saved.model' tf.saved_model.save(lowercase_ , lowercase_ , signatures={'serving_default': model.serving} ) lowerCAmelCase_ = tf.saved_model.load(lowercase_ ) lowerCAmelCase_ = loaded_model.signatures['serving_default'](lowercase_ )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _lowercase ( self ) -> List[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCAmelCase_ = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCAmelCase_ = tf_tokenizer(lowercase_ ) # Build model with some sample inputs lowerCAmelCase_ = tf_tokenizer.get_config() lowerCAmelCase_ = TFGPTaTokenizer.from_config(lowercase_ ) lowerCAmelCase_ = model_from_config(lowercase_ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run lowerCAmelCase_ = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: lowerCAmelCase_ = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCAmelCase_ = tf_tokenizer(lowercase_ , max_length=lowercase_ ) lowerCAmelCase_ = out['input_ids'].numpy().shape[1] assert out_length == max_length
350
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class a_ ( a_ ): '''simple docstring''' __a: str = ['''vqvae'''] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ , mel=lowercase_ , vqvae=lowercase_ ) def _lowercase ( self ) -> int: '''simple docstring''' return 5_0 if isinstance(self.scheduler , lowercase_ ) else 1_0_0_0 @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' lowerCAmelCase_ = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCAmelCase_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCAmelCase_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase_ , device=self.device , ) lowerCAmelCase_ = noise lowerCAmelCase_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase_ , lowercase_ ) lowerCAmelCase_ = self.mel.audio_slice_to_image(lowercase_ ) lowerCAmelCase_ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) lowerCAmelCase_ = (input_image / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCAmelCase_ = self.vqvae.encode(torch.unsqueeze(lowercase_ , 0 ) ).latent_dist.sample( generator=lowercase_ )[0] lowerCAmelCase_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , self.scheduler.timesteps[start_step - 1] ) lowerCAmelCase_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCAmelCase_ = int(mask_start_secs * pixels_per_second ) lowerCAmelCase_ = int(mask_end_secs * pixels_per_second ) lowerCAmelCase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase_ ): lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ , lowercase_ )['sample'] else: lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] if isinstance(self.scheduler , lowercase_ ): lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , eta=lowercase_ , generator=lowercase_ , )['prev_sample'] else: lowerCAmelCase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ , )['prev_sample'] if mask is not None: if mask_start > 0: lowerCAmelCase_ = mask[:, step, :, :mask_start] if mask_end > 0: lowerCAmelCase_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCAmelCase_ = 1 / self.vqvae.config.scaling_factor * images lowerCAmelCase_ = self.vqvae.decode(lowercase_ )['sample'] lowerCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowerCAmelCase_ = (images * 2_5_5).round().astype('uint8' ) lowerCAmelCase_ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase_ , mode='RGB' ).convert('L' ) for _ in images) ) lowerCAmelCase_ = [self.mel.image_to_audio(lowercase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase_ ) ) @torch.no_grad() def _lowercase ( self , lowercase_ , lowercase_ = 5_0 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , lowercase_ ) self.scheduler.set_timesteps(lowercase_ ) lowerCAmelCase_ = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) lowerCAmelCase_ = (sample / 2_5_5) * 2 - 1 lowerCAmelCase_ = torch.Tensor(lowercase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowerCAmelCase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCAmelCase_ = self.scheduler.alphas_cumprod[t] lowerCAmelCase_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCAmelCase_ = 1 - alpha_prod_t lowerCAmelCase_ = self.unet(lowercase_ , lowercase_ )['sample'] lowerCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCAmelCase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCAmelCase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _lowercase ( lowercase_ , lowercase_ , lowercase_ ) -> torch.Tensor: '''simple docstring''' lowerCAmelCase_ = acos(torch.dot(torch.flatten(lowercase_ ) , torch.flatten(lowercase_ ) ) / torch.norm(lowercase_ ) / torch.norm(lowercase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase_ ) + sin(alpha * theta ) * xa / sin(lowercase_ )
14
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
36
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _lowerCamelCase : Union[str, Any] = "\\n\n" _lowerCamelCase : List[str] = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" _lowerCamelCase : Dict = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def A ( self : Tuple ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def A ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int = 1_6 , UpperCamelCase__ : bool = True , UpperCamelCase__ : List[Any]=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCamelCase = 'cuda' else: UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCamelCase = AutoModelForCausalLM.from_pretrained(UpperCamelCase__ ) UpperCamelCase = model.to(UpperCamelCase__ ) UpperCamelCase = AutoTokenizer.from_pretrained(UpperCamelCase__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCamelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(UpperCamelCase__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCamelCase = model.config.max_length - 1 else: UpperCamelCase = model.config.max_length UpperCamelCase = tokenizer( UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors='pt' , return_attention_mask=UpperCamelCase__ , ).to(UpperCamelCase__ ) UpperCamelCase = encodings['input_ids'] UpperCamelCase = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCamelCase = [] UpperCamelCase = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ) ): UpperCamelCase = min(start_index + batch_size , len(UpperCamelCase__ ) ) UpperCamelCase = encoded_texts[start_index:end_index] UpperCamelCase = attn_masks[start_index:end_index] if add_start_token: UpperCamelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(UpperCamelCase__ ) UpperCamelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCamelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(UpperCamelCase__ ), attn_mask] , dim=1 ) UpperCamelCase = encoded_batch with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ).logits UpperCamelCase = out_logits[..., :-1, :].contiguous() UpperCamelCase = labels[..., 1:].contiguous() UpperCamelCase = attn_mask[..., 1:].contiguous() UpperCamelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , UpperCamelCase__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(UpperCamelCase__ )}
28
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __lowerCamelCase : """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any=13 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : List[str]=24 , SCREAMING_SNAKE_CASE : Union[str, Any]=16 , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Dict=32 , SCREAMING_SNAKE_CASE : List[Any]=5 , SCREAMING_SNAKE_CASE : List[str]=4 , SCREAMING_SNAKE_CASE : Optional[int]=37 , SCREAMING_SNAKE_CASE : Any="gelu" , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=10 , SCREAMING_SNAKE_CASE : Any=0.02 , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : List[str]=2 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , ): _A : Any = parent _A : str = batch_size _A : List[str] = patch_size _A : Union[str, Any] = max_length _A : Union[str, Any] = num_mel_bins _A : Optional[Any] = is_training _A : Any = use_labels _A : Optional[Any] = hidden_size _A : List[str] = num_hidden_layers _A : List[str] = num_attention_heads _A : Union[str, Any] = intermediate_size _A : str = hidden_act _A : Union[str, Any] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Optional[Any] = type_sequence_label_size _A : List[Any] = initializer_range _A : int = scope _A : Union[str, Any] = frequency_stride _A : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _A : List[str] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _A : List[Any] = (self.max_length - self.patch_size) // self.time_stride + 1 _A : Optional[int] = frequency_out_dimension * time_out_dimension _A : List[str] = num_patches + 2 def A ( self : str): _A : str = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins]) _A : int = None if self.use_labels: _A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : str = self.get_config() return config, input_values, labels def A ( self : Tuple): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any]): _A : int = ASTModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Dict = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A ( self : Tuple): _A : Any = self.prepare_config_and_inputs() ( _A ) : Optional[Any] = config_and_inputs _A : Dict = {'input_values': input_values} return config, inputs_dict @require_torch class __lowerCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" a = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) a = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) a = False a = False a = False a = False def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def A ( self : Tuple): _A : Optional[Any] = ASTModelTester(self) _A : List[str] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37) def A ( self : List[str]): self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds') def A ( self : List[str]): pass def A ( self : Optional[Any]): _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Any = model_class(SCREAMING_SNAKE_CASE) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear)) def A ( self : Optional[Any]): _A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : str = model_class(SCREAMING_SNAKE_CASE) _A : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[str] = [*signature.parameters.keys()] _A : Any = ['input_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE) def A ( self : str): _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) @slow def A ( self : Tuple): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Dict = ASTModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) def lowerCAmelCase__ ( ): _A : List[str] = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' ,filename='sample_audio.flac' ,repo_type='dataset' ) _A : Dict = torchaudio.load(lowerCamelCase ) return audio, sampling_rate @require_torch @require_torchaudio class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : Optional[Any]): return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593') if is_torchaudio_available() else None ) @slow def A ( self : Tuple): _A : Optional[Any] = self.default_feature_extractor _A : Tuple = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593').to(SCREAMING_SNAKE_CASE) _A : List[Any] = self.default_feature_extractor _A : Dict = prepare_audio() _A : int = audio.squeeze().numpy() _A : str = feature_extractor(SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , return_tensors='pt').to(SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): _A : Tuple = model(**SCREAMING_SNAKE_CASE) # verify the logits _A : Optional[Any] = torch.Size((1, 527)) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE) _A : Union[str, Any] = torch.tensor([-0.8760, -7.0042, -8.6602]).to(SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4))
358
'''simple docstring''' # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCamelCase ( a_ ): """simple docstring""" a = 42 a = None def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : Tuple=0.999 ,lowerCamelCase : int="cosine" ,): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase : str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _A : Tuple = [] for i in range(lowerCamelCase ): _A : Optional[Any] = i / num_diffusion_timesteps _A : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ) ,lowerCamelCase ) ) return torch.tensor(lowerCamelCase ,dtype=torch.floataa ) class __lowerCamelCase ( a_ , a_ ): """simple docstring""" a = 1 @register_to_config def __init__( self : Tuple , SCREAMING_SNAKE_CASE : int = 1000 , SCREAMING_SNAKE_CASE : float = 0.0001 , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : str = "linear" , SCREAMING_SNAKE_CASE : Optional[Union[np.ndarray, List[float]]] = None , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : str = "epsilon" , SCREAMING_SNAKE_CASE : float = 1.0 , **SCREAMING_SNAKE_CASE : List[str] , ): if kwargs.get('set_alpha_to_one' , SCREAMING_SNAKE_CASE) is not None: _A : Tuple = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one' , '1.0.0' , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE) _A : Tuple = kwargs['set_alpha_to_one'] if trained_betas is not None: _A : Any = torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.floataa) elif beta_schedule == "linear": _A : List[Any] = torch.linspace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A : List[str] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A : List[Any] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}') _A : Optional[int] = 1.0 - self.betas _A : Union[str, Any] = torch.cumprod(self.alphas , dim=0) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _A : Optional[int] = torch.tensor(0.0) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _A : Union[str, Any] = 1.0 # setable values _A : List[str] = None _A : Dict = torch.from_numpy(np.arange(0 , SCREAMING_SNAKE_CASE).copy().astype(np.intaa)) def A ( self : str , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : Optional[int] = None): return sample def A ( self : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, torch.device] = None): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.') _A : Optional[Any] = num_inference_steps _A : List[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A : List[str] = (np.arange(0 , SCREAMING_SNAKE_CASE) * step_ratio).round().copy().astype(np.intaa) _A : int = torch.from_numpy(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) self.timesteps += self.config.steps_offset def A ( self : List[Any] , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE : bool = True , ): # 1. get previous step value (=t+1) _A : Union[str, Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _A : List[str] = self.alphas_cumprod[timestep] _A : List[str] = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _A : List[str] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _A : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _A : List[Any] = model_output elif self.config.prediction_type == "sample": _A : List[Any] = model_output _A : Dict = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _A : List[str] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _A : Optional[int] = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ' `v_prediction`') # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _A : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A : Any = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE , pred_original_sample=SCREAMING_SNAKE_CASE) def __len__( self : List[Any]): return self.config.num_train_timesteps
227
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case : def __init__( self : int , A_ : str , A_ : Any=1_3 , A_ : Dict=3_0 , A_ : Tuple=2 , A_ : Tuple=3 , A_ : str=True , A_ : int=True , A_ : str=3_2 , A_ : Tuple=5 , A_ : Dict=4 , A_ : Tuple=3_7 , A_ : Any="gelu" , A_ : str=0.1 , A_ : Tuple=0.1 , A_ : Optional[int]=1_0 , A_ : List[Any]=0.02 , A_ : Optional[int]=3 , A_ : Optional[int]=0.6 , A_ : int=None , ): lowerCAmelCase_ : int = parent lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : Optional[int] = image_size lowerCAmelCase_ : List[str] = patch_size lowerCAmelCase_ : int = num_channels lowerCAmelCase_ : Tuple = is_training lowerCAmelCase_ : Optional[int] = use_labels lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : List[str] = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : Tuple = hidden_act lowerCAmelCase_ : str = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Tuple = initializer_range lowerCAmelCase_ : int = mask_ratio lowerCAmelCase_ : Optional[int] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCAmelCase_ : Union[str, Any] = (image_size // patch_size) ** 2 lowerCAmelCase_ : List[str] = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCAmelCase_ : Optional[Any] = None if self.use_labels: lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCAmelCase_ : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : List[str]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase__ ( self : int , A_ : Any , A_ : List[Any] , A_ : List[Any]): lowerCAmelCase_ : List[Any] = ViTMAEModel(config=UpperCamelCase_) model.to(UpperCamelCase_) model.eval() lowerCAmelCase_ : Tuple = model(UpperCamelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Tuple , A_ : Tuple , A_ : int): lowerCAmelCase_ : Optional[Any] = ViTMAEForPreTraining(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() lowerCAmelCase_ : Optional[Any] = model(UpperCamelCase_) lowerCAmelCase_ : str = (self.image_size // self.patch_size) ** 2 lowerCAmelCase_ : List[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images lowerCAmelCase_ : str = 1 lowerCAmelCase_ : Dict = ViTMAEForPreTraining(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() lowerCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) lowerCAmelCase_ : str = model(UpperCamelCase_) lowerCAmelCase_ : List[str] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : Tuple = self.prepare_config_and_inputs() lowerCAmelCase_ : int = config_and_inputs lowerCAmelCase_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __snake_case ( A__ ,A__ ,unittest.TestCase ): _a = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _a = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _a = False _a = False _a = False _a = False def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : Dict = ViTMAEModelTester(self) lowerCAmelCase_ : Optional[int] = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=3_7) def UpperCAmelCase__ ( self : Optional[Any]): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''') def UpperCAmelCase__ ( self : Optional[Any]): pass def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Tuple = model_class(UpperCamelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowerCAmelCase_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear)) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = model_class(UpperCamelCase_) lowerCAmelCase_ : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Tuple = [*signature.parameters.keys()] lowerCAmelCase_ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_) def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Dict , A_ : Optional[int] , A_ : List[str]): np.random.seed(2) lowerCAmelCase_ : Optional[int] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) lowerCAmelCase_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) lowerCAmelCase_ : int = torch.from_numpy(UpperCamelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCAmelCase_ : List[Any] = pt_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = model_class(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): lowerCAmelCase_ : List[str] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_)) lowerCAmelCase_ : Optional[Any] = outputs[0].cpu().numpy() lowerCAmelCase_ : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_) lowerCAmelCase_ : List[str] = model_class.from_pretrained(UpperCamelCase_) model.to(UpperCamelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): lowerCAmelCase_ : Any = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_)) # Make sure we don't have nans lowerCAmelCase_ : int = after_outputs[0].cpu().numpy() lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : List[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCamelCase_ , 1e-5) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''') def UpperCAmelCase__ ( self : Any): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''') def UpperCAmelCase__ ( self : Optional[Any]): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''') def UpperCAmelCase__ ( self : Dict): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''') def UpperCAmelCase__ ( self : Union[str, Any]): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase__ ( self : int): pass @slow def UpperCAmelCase__ ( self : str): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Any = ViTMAEModel.from_pretrained(UpperCamelCase_) self.assertIsNotNone(UpperCamelCase_) def UpperCamelCase( ): lowerCAmelCase_ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Dict): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''') if is_vision_available() else None @slow def UpperCAmelCase__ ( self : Dict): np.random.seed(2) lowerCAmelCase_ : Tuple = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''').to(UpperCamelCase_) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Dict = prepare_img() lowerCAmelCase_ : Tuple = image_processor(images=UpperCamelCase_ , return_tensors='''pt''').to(UpperCamelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCAmelCase_ : Optional[int] = ViTMAEConfig() lowerCAmelCase_ : List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) lowerCAmelCase_ : Optional[Any] = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): lowerCAmelCase_ : Dict = model(**UpperCamelCase_ , noise=torch.from_numpy(UpperCamelCase_).to(device=UpperCamelCase_)) # verify the logits lowerCAmelCase_ : str = torch.Size((1, 1_9_6, 7_6_8)) self.assertEqual(outputs.logits.shape , UpperCamelCase_) lowerCAmelCase_ : Dict = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCamelCase_) , atol=1e-4))
103
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class lowercase ( A__ ): """simple docstring""" _a = ComputeEnvironment.AMAZON_SAGEMAKER _a = True _a = 'ml.p3.2xlarge' _a = 'accelerate_sagemaker_execution_role' _a = 'hf-sm' _a = 'us-east-1' _a = 1 _a = 'accelerate-sagemaker-1' _a = '1.6' _a = '4.4' _a = 'train.py' _a = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] _a = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , UpperCamelCase_ ) assert isinstance(converted_args['''do_train'''] , UpperCamelCase_ ) assert isinstance(converted_args['''epochs'''] , UpperCamelCase_ ) assert isinstance(converted_args['''learning_rate'''] , UpperCamelCase_ ) assert isinstance(converted_args['''max_steps'''] , UpperCamelCase_ ) with pytest.raises(UpperCamelCase_ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
97
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str]=7 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Optional[int]=18 , _lowerCAmelCase : str=30 , _lowerCAmelCase : int=4_00 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]=None , ): __snake_case : Tuple = size if size is not None else {"""shortest_edge""": 20} __snake_case : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __snake_case : List[str] = parent __snake_case : Union[str, Any] = batch_size __snake_case : Dict = num_channels __snake_case : Dict = image_size __snake_case : Optional[Any] = min_resolution __snake_case : Tuple = max_resolution __snake_case : int = do_resize __snake_case : int = size __snake_case : List[str] = do_center_crop __snake_case : Any = crop_size def snake_case__ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): A : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def snake_case__ ( self : List[str] ): __snake_case : Optional[int] = MobileNetVaImageProcessingTester(self ) @property def snake_case__ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Any ): __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """crop_size""" ) ) def snake_case__ ( self : Any ): __snake_case : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __snake_case : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def snake_case__ ( self : Optional[int] ): pass def snake_case__ ( self : Optional[int] ): # Initialize image_processing __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input __snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __snake_case : Optional[Any] = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def snake_case__ ( self : int ): # Initialize image_processing __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __snake_case : int = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def snake_case__ ( self : Dict ): # Initialize image_processing __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __snake_case : Tuple = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
20
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase_ = { "bart": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), "bert": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-cased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-base-cased-finetuned-mrpc": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "dpr": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), "gpt2": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlnet": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm-roberta": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "transfo-xl": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "openai-gpt": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "roberta": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "layoutlm": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), "roberta-large-mnli": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "camembert": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "flaubert": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert-base-distilled-squad": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert-visual-feature-encoder": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "ctrl": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "albert": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "t5": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "electra": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "wav2vec2": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=True ): '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __snake_case , __snake_case , __snake_case , __snake_case : Any = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) __snake_case : Dict = config_class.from_json_file(__SCREAMING_SNAKE_CASE ) __snake_case : Tuple = True __snake_case : Union[str, Any] = True print(F'''Building TensorFlow model from configuration: {config}''' ) __snake_case : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __snake_case : Optional[Any] = cached_file( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __snake_case : List[Any] = load_pytorch_checkpoint_in_tfa_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if compare_with_pt_model: __snake_case : Tuple = tf_model(tf_model.dummy_inputs , training=__SCREAMING_SNAKE_CASE ) # build the network __snake_case : List[str] = torch.load(__SCREAMING_SNAKE_CASE , map_location="""cpu""" ) __snake_case : Any = pt_model_class.from_pretrained( pretrained_model_name_or_path=__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE , state_dict=__SCREAMING_SNAKE_CASE ) with torch.no_grad(): __snake_case : Union[str, Any] = pt_model(**pt_model.dummy_inputs ) __snake_case : Any = pto[0].numpy() __snake_case : Optional[int] = tfo[0].numpy() __snake_case : Optional[int] = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(__SCREAMING_SNAKE_CASE , save_format="""h5""" ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Any=False , ): '''simple docstring''' if args_model_type is None: __snake_case : Tuple = list(MODEL_CLASSES.keys() ) else: __snake_case : Union[str, Any] = [args_model_type] for j, model_type in enumerate(__SCREAMING_SNAKE_CASE , start=1 ): print("""=""" * 1_0_0 ) print(F''' Converting model type {j}/{len(__SCREAMING_SNAKE_CASE )}: {model_type}''' ) print("""=""" * 1_0_0 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __snake_case : int = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __snake_case : Union[str, Any] = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , start=1 ): print("""-""" * 1_0_0 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue __snake_case : List[Any] = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(__SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' ) print("""-""" * 1_0_0 ) if config_shortcut_name in aws_config_map: __snake_case : int = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: __snake_case : Dict = config_shortcut_name if model_shortcut_name in aws_model_maps: __snake_case : Union[str, Any] = cached_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: __snake_case : List[Any] = model_shortcut_name if os.path.isfile(__SCREAMING_SNAKE_CASE ): __snake_case : List[str] = """converted_model""" convert_pt_checkpoint_to_tf( model_type=__SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=__SCREAMING_SNAKE_CASE , config_file=__SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(__SCREAMING_SNAKE_CASE , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__SCREAMING_SNAKE_CASE , ) if remove_cached_files: os.remove(__SCREAMING_SNAKE_CASE ) os.remove(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file." ) parser.add_argument( "--model_type", default=None, type=str, help=( F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' "convert all the models from AWS." ), ) parser.add_argument( "--pytorch_checkpoint_path", default=None, type=str, help=( "Path to the PyTorch checkpoint path or shortcut name to download from AWS. " "If not given, will download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--config_file", default=None, type=str, help=( "The config json file corresponding to the pre-trained model. \n" "This specifies the model architecture. If not given and " "--pytorch_checkpoint_path is not given or is a shortcut name " "use the configuration associated to the shortcut name on the AWS" ), ) parser.add_argument( "--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions." ) parser.add_argument( "--use_cached_models", action="store_true", help="Use cached models if possible instead of updating to latest checkpoint versions.", ) parser.add_argument( "--remove_cached_files", action="store_true", help="Remove pytorch models after conversion (save memory when converting in batches).", ) parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.") lowercase_ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
20
1
import random class UpperCAmelCase : '''simple docstring''' @staticmethod def __magic_name__ ( lowerCAmelCase_ : str ): """simple docstring""" _A: Union[str, Any] = [ord(__lowercase ) for i in text] _A: str = [] _A: Optional[Any] = [] for i in plain: _A: str = random.randint(1 , 3_0_0 ) _A: List[str] = (i + k) * k cipher.append(__lowercase ) key.append(__lowercase ) return cipher, key @staticmethod def __magic_name__ ( lowerCAmelCase_ : list[int] , lowerCAmelCase_ : list[int] ): """simple docstring""" _A: List[str] = [] for i in range(len(__lowercase ) ): _A: Tuple = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(__lowercase ) ) return "".join(__lowercase ) if __name__ == "__main__": UpperCAmelCase__ : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
121
def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : Tuple = [1] for i in range(2 , __lowerCamelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : str = list(range(__lowerCamelCase ) ) # Find permutation while factorials: __UpperCAmelCase : Any = factorials.pop() __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = divmod(__lowerCamelCase , __lowerCamelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
114
0
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def a__ ( lowerCAmelCase__ ): return EnvironmentCommand() def a__ ( lowerCAmelCase__ ): return EnvironmentCommand(args.accelerate_config_file ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def lowercase__ ( _UpperCAmelCase : ArgumentParser ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = parser.add_parser("env" ) download_parser.set_defaults(func=_UpperCAmelCase ) download_parser.add_argument( "--accelerate-config_file" , default=_UpperCAmelCase , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self : str , _UpperCAmelCase : Optional[Any] , *_UpperCAmelCase : List[Any] ) -> None: '''simple docstring''' UpperCAmelCase_ = accelerate_config_file def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ = "not installed" if is_safetensors_available(): import safetensors UpperCAmelCase_ = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors UpperCAmelCase_ = F"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" UpperCAmelCase_ = "not installed" UpperCAmelCase_ = UpperCAmelCase_ = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file UpperCAmelCase_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_UpperCAmelCase ): UpperCAmelCase_ = load_config_from_file(self._accelerate_config_file ).to_dict() UpperCAmelCase_ = ( "\n".join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else F"""\t{accelerate_config}""" ) UpperCAmelCase_ = "not installed" UpperCAmelCase_ = "NA" if is_torch_available(): import torch UpperCAmelCase_ = torch.__version__ UpperCAmelCase_ = torch.cuda.is_available() UpperCAmelCase_ = "not installed" UpperCAmelCase_ = "NA" if is_tf_available(): import tensorflow as tf UpperCAmelCase_ = tf.__version__ try: # deprecated in v2.1 UpperCAmelCase_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool UpperCAmelCase_ = bool(tf.config.list_physical_devices("GPU" ) ) UpperCAmelCase_ = "not installed" UpperCAmelCase_ = "not installed" UpperCAmelCase_ = "not installed" UpperCAmelCase_ = "NA" if is_flax_available(): import flax import jax import jaxlib UpperCAmelCase_ = flax.__version__ UpperCAmelCase_ = jax.__version__ UpperCAmelCase_ = jaxlib.__version__ UpperCAmelCase_ = jax.lib.xla_bridge.get_backend().platform UpperCAmelCase_ = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": F"""{safetensors_version}""", "Accelerate version": F"""{accelerate_version}""", "Accelerate config": F"""{accelerate_config_str}""", "PyTorch version (GPU?)": F"""{pt_version} ({pt_cuda_available})""", "Tensorflow version (GPU?)": F"""{tf_version} ({tf_cuda_available})""", "Flax version (CPU?/GPU?/TPU?)": F"""{flax_version} ({jax_backend})""", "Jax version": F"""{jax_version}""", "JaxLib version": F"""{jaxlib_version}""", "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(_UpperCAmelCase ) ) return info @staticmethod def lowercase__ ( _UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
241
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar lowerCamelCase = TypeVar("""_T""") class lowercase__ ( Generic[_T] ): '''simple docstring''' def __init__( self : int , _UpperCAmelCase : Iterable[_T] | None = None ) -> None: '''simple docstring''' UpperCAmelCase_ = list(iterable or [] ) UpperCAmelCase_ = [] def __len__( self : Optional[int] ) -> int: '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__( self : Optional[Any] ) -> str: '''simple docstring''' return F"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : _T ) -> None: '''simple docstring''' self._stacka.append(_UpperCAmelCase ) def lowercase__ ( self : Dict ) -> _T: '''simple docstring''' UpperCAmelCase_ = self._stacka.pop UpperCAmelCase_ = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
241
1
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : str = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =XLNetTokenizer SCREAMING_SNAKE_CASE_ =XLNetTokenizerFast SCREAMING_SNAKE_CASE_ =True SCREAMING_SNAKE_CASE_ =True def __a ( self : List[str] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Any = XLNetTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = "<s>" UpperCAmelCase__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<eod>" ) self.assertEqual(len(snake_case__ ) , 1_0_0_6 ) def __a ( self : Tuple ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = XLNetTokenizer(snake_case__ , keep_accents=snake_case__ ) UpperCAmelCase__ : Tuple = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] ) UpperCAmelCase__ : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] ) UpperCAmelCase__ : List[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = XLNetTokenizer(snake_case__ , do_lower_case=snake_case__ ) UpperCAmelCase__ : Tuple = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["▁he", "ll", "o"] ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = XLNetTokenizer(snake_case__ , do_lower_case=snake_case__ ) UpperCAmelCase__ : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = XLNetTokenizer.from_pretrained("xlnet-base-cased" ) UpperCAmelCase__ : List[str] = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Optional[int] = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(snake_case__ ) UpperCAmelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def __a ( self : Optional[Any] ): '''simple docstring''' # fmt: off UpperCAmelCase__ : Tuple = {"input_ids": [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
298
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase__ : def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Dict = seq_length UpperCAmelCase__ : Union[str, Any] = act_dim UpperCAmelCase__ : Dict = state_dim UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : List[str] = max_length UpperCAmelCase__ : int = is_training def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase__ : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __a ( self : int ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase__ : Optional[int] = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ =() SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids SCREAMING_SNAKE_CASE_ =False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = DecisionTransformerModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : List[str] ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : str = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Optional[int] = model.config torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset() UpperCAmelCase__ : Optional[Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ ) UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase__ : Union[str, Any] = state UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = model( states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1] UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 ) UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase__ : Tuple = torch.cat( [timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
298
1
import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCAmelCase_ = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) __lowerCamelCase = self.transformer_dir shutil.copy( os.path.join(UpperCamelCase_ , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = """src/transformers""" shutil.rmtree(self.transformer_dir ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str]=None ): __lowerCamelCase = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: __lowerCamelCase = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result __lowerCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) __lowerCamelCase = black.format_str(UpperCamelCase_ , mode=UpperCamelCase_ ) __lowerCamelCase = os.path.join(self.transformer_dir , """new_code.py""" ) with open(UpperCamelCase_ , """w""" , newline="""\n""" ) as f: f.write(UpperCamelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCamelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCamelCase_ ) with open(UpperCamelCase_ , """r""" ) as f: self.assertTrue(f.read() , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , UpperCamelCase_ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , UpperCamelCase_ ) , ) # Copy consistency with a really long name __lowerCamelCase = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , F'{long_class_name}LMPredictionHead' , re.sub("""Bert""" , UpperCamelCase_ , UpperCamelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , UpperCamelCase_ , overwrite_result=re.sub("""Bert""" , """TestModel""" , UpperCamelCase_ ) , ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) __lowerCamelCase, __lowerCamelCase = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme["""format_model_list"""] ) self.assertFalse(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(UpperCamelCase_ ) __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowerCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowerCamelCase, __lowerCamelCase = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
12
import os from distutils.util import strtobool def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' for e in env_keys: SCREAMING_SNAKE_CASE = int(os.environ.get(_SCREAMING_SNAKE_CASE , -1 ) ) if val >= 0: return val return default def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = os.environ.get(_SCREAMING_SNAKE_CASE , str(_SCREAMING_SNAKE_CASE ) ) return strtobool(_SCREAMING_SNAKE_CASE ) == 1 # As its name indicates `strtobool` actually returns an int... def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="no" ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = os.environ.get(_SCREAMING_SNAKE_CASE , str(_SCREAMING_SNAKE_CASE ) ) return value
296
0
import unittest from knapsack import knapsack as k class UpperCamelCase ( unittest.TestCase ): def __A ( self ): A__ = 0 A__ = [0] A__ = [0] A__ = len(UpperCAmelCase__ ) self.assertEqual(k.knapsack(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , 0 ) A__ = [60] A__ = [10] A__ = len(UpperCAmelCase__ ) self.assertEqual(k.knapsack(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , 0 ) def __A ( self ): A__ = 3 A__ = [1, 2, 3] A__ = [3, 2, 1] A__ = len(UpperCAmelCase__ ) self.assertEqual(k.knapsack(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , 5 ) def __A ( self ): A__ = 50 A__ = [60, 100, 120] A__ = [10, 20, 30] A__ = len(UpperCAmelCase__ ) self.assertEqual(k.knapsack(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , 220 ) if __name__ == "__main__": unittest.main()
356
from __future__ import annotations from random import random class UpperCamelCase : def __init__( self , UpperCAmelCase__ = None ): A__ = value A__ = random() A__ = None A__ = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self ): A__ = str(self.value ) + " " A__ = str(self.left or "" ) A__ = str(self.right or "" ) return value + left + right def UpperCamelCase ( _A : Node | None , _A : int )-> tuple[Node | None, Node | None]: """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: A__ , A__ = split(root.left , _A ) return left, root else: A__ , A__ = split(root.right , _A ) return root, right def UpperCamelCase ( _A : Node | None , _A : Node | None )-> Node | None: """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: A__ = merge(left.right , _A ) return left else: A__ = merge(_A , right.left ) return right def UpperCamelCase ( _A : Node | None , _A : int )-> Node | None: """simple docstring""" A__ = Node(_A ) A__ , A__ = split(_A , _A ) return merge(merge(_A , _A ) , _A ) def UpperCamelCase ( _A : Node | None , _A : int )-> Node | None: """simple docstring""" A__ , A__ = split(_A , value - 1 ) A__ , A__ = split(_A , _A ) return merge(_A , _A ) def UpperCamelCase ( _A : Node | None )-> None: """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def UpperCamelCase ( _A : Node | None , _A : str )-> Node | None: """simple docstring""" for arg in args.split(): if arg[0] == "+": A__ = insert(_A , int(arg[1:] ) ) elif arg[0] == "-": A__ = erase(_A , int(arg[1:] ) ) else: print("Unknown command" ) return root def UpperCamelCase ( )-> None: """simple docstring""" A__ = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) A__ = input() while args != "q": A__ = interact_treap(_A , _A ) print(_A ) A__ = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
198
0
'''simple docstring''' def __lowerCamelCase ( __snake_case : Dict, __snake_case : List[Any], __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str], __snake_case : List[str] ) -> List[Any]: """simple docstring""" if index == r: for j in range(__snake_case ): print(data[j], end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location A__ : List[str] =arr[i] combination_util(__snake_case, __snake_case, __snake_case, index + 1, __snake_case, i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case, i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __lowerCamelCase ( __snake_case : str, __snake_case : Union[str, Any], __snake_case : Union[str, Any] ) -> Any: """simple docstring""" A__ : Optional[Any] =[0] * r # Print all combination using temporary array 'data[]' combination_util(__snake_case, __snake_case, __snake_case, 0, __snake_case, 0 ) if __name__ == "__main__": # Driver code to check the function above __snake_case : Optional[Any] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
134
'''simple docstring''' from graphs.minimum_spanning_tree_kruskal import kruskal def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : int =9 A__ : int =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] A__ : Optional[Any] =kruskal(__snake_case, __snake_case ) A__ : List[str] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__snake_case ) == sorted(__snake_case )
134
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['DeiTFeatureExtractor'] __UpperCAmelCase = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , *__A , **__A ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A )
1
1
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = "EncodecFeatureExtractor" __lowerCamelCase : Any = ("T5Tokenizer", "T5TokenizerFast") def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__(lowerCamelCase__, lowerCamelCase__ ) A : Any = self.feature_extractor A : int = False def _lowerCAmelCase ( self, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__=True ): return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase__, language=lowerCamelCase__, no_timestamps=lowerCamelCase__ ) def __call__( self, *lowerCamelCase__, **lowerCamelCase__ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase__, **lowerCamelCase__ ) A : Union[str, Any] = kwargs.pop("""audio""", lowerCamelCase__ ) A : Any = kwargs.pop("""sampling_rate""", lowerCamelCase__ ) A : Any = kwargs.pop("""text""", lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: A : List[Any] = args[0] A : Any = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: A : Optional[int] = self.tokenizer(lowerCamelCase__, **lowerCamelCase__ ) if audio is not None: A : Tuple = self.feature_extractor(lowerCamelCase__, *lowerCamelCase__, sampling_rate=lowerCamelCase__, **lowerCamelCase__ ) if audio is None: return inputs elif text is None: return audio_inputs else: A : Optional[int] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: A : List[str] = audio_inputs["""padding_mask"""] return inputs def _lowerCAmelCase ( self, *lowerCamelCase__, **lowerCamelCase__ ): A : str = kwargs.pop("""audio""", lowerCamelCase__ ) A : Optional[int] = kwargs.pop("""padding_mask""", lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: A : Any = args[0] A : Optional[Any] = args[1:] if audio_values is not None: return self._decode_audio(lowerCamelCase__, padding_mask=lowerCamelCase__ ) else: return self.tokenizer.batch_decode(*lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, *lowerCamelCase__, **lowerCamelCase__ ): return self.tokenizer.decode(*lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): A : List[Any] = to_numpy(lowerCamelCase__ ) A , A , A : Union[str, Any] = audio_values.shape if padding_mask is None: return list(lowerCamelCase__ ) A : Dict = to_numpy(lowerCamelCase__ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) A : Any = seq_len - padding_mask.shape[-1] A : List[Any] = 1 - self.feature_extractor.padding_value A : Optional[int] = np.pad(lowerCamelCase__, ((0, 0), (0, difference)), """constant""", constant_values=lowerCamelCase__ ) A : Dict = audio_values.tolist() for i in range(lowerCamelCase__ ): A : Tuple = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] A : Optional[int] = sliced_audio.reshape(lowerCamelCase__, -1 ) return audio_values
116
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_:str = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Union[str, Any] = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Any = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_:Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
116
1
'''simple docstring''' from __future__ import annotations from random import random class A : def __init__( self , SCREAMING_SNAKE_CASE = None ) -> Tuple: """simple docstring""" A : Optional[Any] = value A : Any = random() A : Node | None = None A : Node | None = None def __repr__( self ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return F'\'{self.value}: {self.prior:.5}\'' else: return pformat( {F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 ) def __str__( self ) -> str: """simple docstring""" A : Optional[Any] = str(self.value ) + ''' ''' A : Union[str, Any] = str(self.left or '''''' ) A : Any = str(self.right or '''''' ) return value + left + right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: A, A : Any = split(root.left , snake_case__ ) return left, root else: A, A : Optional[int] = split(root.right , snake_case__ ) return root, right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: A : List[str] = merge(left.right , snake_case__ ) return left else: A : Tuple = merge(snake_case__ , right.left ) return right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = Node(snake_case__ ) A, A : Tuple = split(snake_case__ , snake_case__ ) return merge(merge(snake_case__ , snake_case__ ) , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A, A : Dict = split(snake_case__ , value - 1 ) A, A : Any = split(snake_case__ , snake_case__ ) return merge(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for arg in args.split(): if arg[0] == "+": A : int = insert(snake_case__ , int(arg[1:] ) ) elif arg[0] == "-": A : int = erase(snake_case__ , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def lowerCAmelCase_ ( ): '''simple docstring''' A : Union[str, Any] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) A : Optional[int] = input() while args != "q": A : str = interact_treap(snake_case__ , snake_case__ ) print(snake_case__ ) A : Union[str, Any] = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
311
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowercase : Any = 'src/transformers' lowercase : str = 'docs/source/en/tasks' def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' with open(snake_case__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: A : Union[str, Any] = f.readlines() # Find the start prompt. A : List[Any] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 A : List[str] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowercase : int = direct_transformers_import(TRANSFORMERS_PATH) lowercase : str = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowercase : Optional[int] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : int = TASK_GUIDE_TO_MODELS[task_guide] A : List[str] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) A : Union[str, Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def lowerCAmelCase_ ( snake_case__ , snake_case__=False ): '''simple docstring''' A, A, A, A : Optional[int] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) A : Optional[int] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' ''' to fix this.''' ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowercase : List[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
311
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCamelCase : Optional[Any] = "src/diffusers" lowerCamelCase : str = "." # This is to make sure the diffusers module imported is the one in the repo. lowerCamelCase : Optional[Any] = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCamelCase : List[Any] = spec.loader.load_module() def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) -> str: """simple docstring""" return line.startswith(_UpperCamelCase ) or len(_UpperCamelCase ) <= 1 or re.search(r'^\s*\)(\s*->.*:|:)\s*$' , _UpperCamelCase ) is not None def _lowerCAmelCase ( _UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =object_name.split('.' ) _SCREAMING_SNAKE_CASE =0 # First let's find the module where our object lives. _SCREAMING_SNAKE_CASE =parts[i] while i < len(_UpperCamelCase ) and not os.path.isfile(os.path.join(_UpperCamelCase , f"{module}.py" ) ): i += 1 if i < len(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =os.path.join(_UpperCamelCase , parts[i] ) if i >= len(_UpperCamelCase ): raise ValueError(f"`object_name` should begin with the name of a module of diffusers but got {object_name}." ) with open(os.path.join(_UpperCamelCase , f"{module}.py" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: _SCREAMING_SNAKE_CASE =f.readlines() # Now let's find the class / func in the code! _SCREAMING_SNAKE_CASE ='' _SCREAMING_SNAKE_CASE =0 for name in parts[i + 1 :]: while ( line_index < len(_UpperCamelCase ) and re.search(rf"^{indent}(class|def)\s+{name}(\(|\:)" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_UpperCamelCase ): raise ValueError(f" {object_name} does not match any function or class in {module}." ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _SCREAMING_SNAKE_CASE =line_index while line_index < len(_UpperCamelCase ) and _should_continue(lines[line_index] , _UpperCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE =lines[start_index:line_index] return "".join(_UpperCamelCase ) lowerCamelCase : Optional[int] = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") lowerCamelCase : Any = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") lowerCamelCase : Any = re.compile(r"<FILL\s+[^>]*>") def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =code.split('\n' ) _SCREAMING_SNAKE_CASE =0 while idx < len(_UpperCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_UpperCamelCase ): return re.search(r'^(\s*)\S' , lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =len(get_indent(_UpperCamelCase ) ) > 0 if has_indent: _SCREAMING_SNAKE_CASE =f"class Bla:\n{code}" _SCREAMING_SNAKE_CASE =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =style_docstrings_in_code(_UpperCamelCase ) return result[len('class Bla:\n' ) :] if has_indent else result def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : List[Any]=False ) -> Optional[Any]: """simple docstring""" with open(_UpperCamelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: _SCREAMING_SNAKE_CASE =f.readlines() _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =_re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =search.groups() _SCREAMING_SNAKE_CASE =find_code_in_diffusers(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =get_indent(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =line_index + 1 if indent == theoretical_indent else line_index + 2 _SCREAMING_SNAKE_CASE =theoretical_indent _SCREAMING_SNAKE_CASE =start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _SCREAMING_SNAKE_CASE =True while line_index < len(_UpperCamelCase ) and should_continue: line_index += 1 if line_index >= len(_UpperCamelCase ): break _SCREAMING_SNAKE_CASE =lines[line_index] _SCREAMING_SNAKE_CASE =_should_continue(_UpperCamelCase , _UpperCamelCase ) and re.search(f"^{indent}# End copy" , _UpperCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE =lines[start_index:line_index] _SCREAMING_SNAKE_CASE =''.join(_UpperCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies _SCREAMING_SNAKE_CASE =[line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(_UpperCamelCase ) is None] _SCREAMING_SNAKE_CASE ='\n'.join(_UpperCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(_UpperCamelCase ) > 0: _SCREAMING_SNAKE_CASE =replace_pattern.replace('with' , '' ).split(',' ) _SCREAMING_SNAKE_CASE =[_re_replace_pattern.search(_UpperCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =pattern.groups() _SCREAMING_SNAKE_CASE =re.sub(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if option.strip() == "all-casing": _SCREAMING_SNAKE_CASE =re.sub(obja.lower() , obja.lower() , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =re.sub(obja.upper() , obja.upper() , _UpperCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _SCREAMING_SNAKE_CASE =blackify(lines[start_index - 1] + theoretical_code ) _SCREAMING_SNAKE_CASE =theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _SCREAMING_SNAKE_CASE =lines[:start_index] + [theoretical_code] + lines[line_index:] _SCREAMING_SNAKE_CASE =start_index + 1 if overwrite and len(_UpperCamelCase ) > 0: # Warn the user a file has been modified. print(f"Detected changes, rewriting {filename}." ) with open(_UpperCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCamelCase ) return diffs def _lowerCAmelCase ( _UpperCamelCase : bool = False ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =glob.glob(os.path.join(_UpperCamelCase , '**/*.py' ) , recursive=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[] for filename in all_files: _SCREAMING_SNAKE_CASE =is_copy_consistent(_UpperCamelCase , _UpperCamelCase ) diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(_UpperCamelCase ) > 0: _SCREAMING_SNAKE_CASE ='\n'.join(_UpperCamelCase ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase : Optional[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
47
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } _UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': 512, } _UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[str] = LxmertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Dict: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCAmelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Any = getattr(__UpperCAmelCase , normalizer_state.pop("""type""" ) ) __UpperCAmelCase : Optional[Any] = do_lower_case __UpperCAmelCase : Optional[Any] = strip_accents __UpperCAmelCase : str = tokenize_chinese_chars __UpperCAmelCase : str = normalizer_class(**__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = do_lower_case def __A ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
254
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowerCamelCase : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""input_features""", """is_longer"""] def __init__( self : Any , UpperCamelCase__ : Any=6_4 , UpperCamelCase__ : Optional[int]=4_8_0_0_0 , UpperCamelCase__ : List[Any]=4_8_0 , UpperCamelCase__ : Tuple=1_0 , UpperCamelCase__ : Tuple=1_0_2_4 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : float = 0 , UpperCamelCase__ : float = 1_4_0_0_0 , UpperCamelCase__ : int = None , UpperCamelCase__ : str = "fusion" , UpperCamelCase__ : str = "repeatpad" , **UpperCamelCase__ : int , ): """simple docstring""" super().__init__( feature_size=UpperCamelCase__ , sampling_rate=UpperCamelCase__ , padding_value=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCamelCase = top_db UpperCamelCase = truncation UpperCamelCase = padding UpperCamelCase = fft_window_size UpperCamelCase = (fft_window_size >> 1) + 1 UpperCamelCase = hop_length UpperCamelCase = max_length_s UpperCamelCase = max_length_s * sampling_rate UpperCamelCase = sampling_rate UpperCamelCase = frequency_min UpperCamelCase = frequency_max UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase__ , min_frequency=UpperCamelCase__ , max_frequency=UpperCamelCase__ , sampling_rate=UpperCamelCase__ , norm=UpperCamelCase__ , mel_scale='htk' , ) UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase__ , min_frequency=UpperCamelCase__ , max_frequency=UpperCamelCase__ , sampling_rate=UpperCamelCase__ , norm='slaney' , mel_scale='slaney' , ) def A ( self : List[str] ): """simple docstring""" UpperCamelCase = copy.deepcopy(self.__dict__ ) UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def A ( self : List[str] , UpperCamelCase__ : np.array , UpperCamelCase__ : Optional[np.array] = None ): """simple docstring""" UpperCamelCase = spectrogram( UpperCamelCase__ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase__ , log_mel='dB' , ) return log_mel_spectrogram.T def A ( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ): """simple docstring""" UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase = [0] # randomly choose index for each part UpperCamelCase = np.random.choice(ranges[0] ) UpperCamelCase = np.random.choice(ranges[1] ) UpperCamelCase = np.random.choice(ranges[2] ) UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :] UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :] UpperCamelCase = torch.tensor(mel[None, None, :] ) UpperCamelCase = torch.nn.functional.interpolate( UpperCamelCase__ , size=[chunk_frames, 6_4] , mode='bilinear' , align_corners=UpperCamelCase__ ) UpperCamelCase = mel_shrink[0][0].numpy() UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def A ( self : List[str] , UpperCamelCase__ : np.array , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCamelCase = len(UpperCamelCase__ ) - max_length UpperCamelCase = np.random.randint(0 , overflow + 1 ) UpperCamelCase = waveform[idx : idx + max_length] UpperCamelCase = self._np_extract_fbank_features(UpperCamelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": UpperCamelCase = self._np_extract_fbank_features(UpperCamelCase__ , self.mel_filters ) UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) UpperCamelCase = False else: UpperCamelCase = self._random_mel_fusion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: UpperCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCamelCase = int(max_length / len(UpperCamelCase__ ) ) UpperCamelCase = np.stack(np.tile(UpperCamelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": UpperCamelCase = int(max_length / len(UpperCamelCase__ ) ) UpperCamelCase = np.stack(np.tile(UpperCamelCase__ , UpperCamelCase__ ) ) UpperCamelCase = np.pad(UpperCamelCase__ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": UpperCamelCase = self._np_extract_fbank_features(UpperCamelCase__ , self.mel_filters ) UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: UpperCamelCase = self._np_extract_fbank_features(UpperCamelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[str] , UpperCamelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase__ : str = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : Optional[Any] , ): """simple docstring""" UpperCamelCase = truncation if truncation is not None else self.truncation UpperCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) UpperCamelCase = isinstance(UpperCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase = is_batched_numpy or ( isinstance(UpperCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase = [np.asarray(UpperCamelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase__ , np.ndarray ): UpperCamelCase = np.asarray(UpperCamelCase__ , dtype=np.floataa ) elif isinstance(UpperCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase = [np.asarray(UpperCamelCase__ )] # convert to mel spectrogram, truncate and pad if needed. UpperCamelCase = [ self._get_input_mel(UpperCamelCase__ , max_length if max_length else self.nb_max_samples , UpperCamelCase__ , UpperCamelCase__ ) for waveform in raw_speech ] UpperCamelCase = [] UpperCamelCase = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase__ ) is_longer.append(UpperCamelCase__ ) if truncation == "fusion" and sum(UpperCamelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCamelCase = np.random.randint(0 , len(UpperCamelCase__ ) ) UpperCamelCase = True if isinstance(input_mel[0] , UpperCamelCase__ ): UpperCamelCase = [np.asarray(UpperCamelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool UpperCamelCase = [[longer] for longer in is_longer] UpperCamelCase = {'input_features': input_mel, 'is_longer': is_longer} UpperCamelCase = BatchFeature(UpperCamelCase__ ) if return_tensors is not None: UpperCamelCase = input_features.convert_to_tensors(UpperCamelCase__ ) return input_features
249
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Tuple = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["ConvNextFeatureExtractor"] _lowerCamelCase : Optional[Any] = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
249
1
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase__ : List[str] = open # noqa: we just need to have a builtin inside this module to test it properly
98
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _snake_case ( _snake_case : list[list[float]] ): lowerCAmelCase : str = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_snake_case ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase : int = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase : Optional[int] = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase, lowerCAmelCase : List[Any] = matrix[1][1], matrix[0][0] lowerCAmelCase, lowerCAmelCase : Union[str, Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_snake_case ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_snake_case ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase : int = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix lowerCAmelCase : Dict = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase : List[str] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase : Dict = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase : str = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase : Any = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase : Any = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase : Optional[int] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase : Optional[int] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase : Dict = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase : List[Any] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase : str = array(_snake_case ) for i in range(3 ): for j in range(3 ): lowerCAmelCase : Optional[Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase : Tuple = array(_snake_case ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_snake_case ) # Calculate the inverse of the matrix return [[float(d(_snake_case ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
60
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase =get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = ReformerTokenizer _lowerCamelCase = ReformerTokenizerFast _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = True def UpperCamelCase__ ( self ) -> Union[str, Any]: super().setUp() A = ReformerTokenizer(lowerCamelCase_ ,keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ) -> int: A = """<s>""" A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) ,lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Optional[int]: A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""j""" ) self.assertEqual(len(lowerCamelCase_ ) ,1_0_0_0 ) def UpperCamelCase__ ( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size ,1_0_0_0 ) def UpperCamelCase__ ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return A = self.get_tokenizer() A = self.get_rust_tokenizer() A = """I was born in 92000, and this is falsé.""" A = tokenizer.tokenize(lowerCamelCase_ ) A = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) A = tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) A = rust_tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) A = self.get_rust_tokenizer() A = tokenizer.encode(lowerCamelCase_ ) A = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_=1_5 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ ,**lowerCamelCase_ ) # Simple input A = """This is a simple input""" A = ["""This is a simple input 1""", """This is a simple input 2"""] A = ("""This is a simple input""", """This is a pair""") A = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(lowerCamelCase_ ,tokenizer_r.encode ,lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding="""max_length""" ) # Simple input self.assertRaises(lowerCamelCase_ ,tokenizer_r.encode_plus ,lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding="""max_length""" ) # Simple input self.assertRaises( lowerCamelCase_ ,tokenizer_r.batch_encode_plus ,lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding="""max_length""" ,) # Pair input self.assertRaises(lowerCamelCase_ ,tokenizer_r.encode ,lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding="""max_length""" ) # Pair input self.assertRaises(lowerCamelCase_ ,tokenizer_r.encode_plus ,lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding="""max_length""" ) # Pair input self.assertRaises( lowerCamelCase_ ,tokenizer_r.batch_encode_plus ,lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding="""max_length""" ,) def UpperCamelCase__ ( self ) -> Tuple: pass def UpperCamelCase__ ( self ) -> str: A = ReformerTokenizer(lowerCamelCase_ ,keep_accents=lowerCamelCase_ ) A = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] ,) A = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) A = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ ,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] ,) A = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) @cached_property def UpperCamelCase__ ( self ) -> int: return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def UpperCamelCase__ ( self ) -> Dict: A = """Hello World!""" A = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7] self.assertListEqual(lowerCamelCase_ ,self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def UpperCamelCase__ ( self ) -> List[str]: A = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) A = [ 1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 3_5, 2_8, 2_7_5, 3, 2_5_9, 2_9_7, 2_6_0, 8_4, 4, 3_5, 1_1_0, 4_4, 8, 2_5_9, 9_1, 2_6_8, 2_1, 1_1, 2_0_9, 2_7_4, 1_0_9, 2_6_6, 2_7_7, 1_1_7, 8_6, 9_3, 3_1_5, 2_5_8, 2_7_8, 2_5_8, 2_7_7, 2_5_8, 0, 2_5_8, 2_8_8, 2_5_8, 3_1_9, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 2_8_7, 2_5_8, 3_1_5, 2_5_8, 2_8_9, 2_5_8, 2_7_8, 9_9, 2_6_9, 2_6_6, 2_6_2, 8, 2_5_9, 2_4_1, 4, 2_1_7, 2_3_0, 2_6_8, 2_6_6, 5_5, 1_6_8, 1_0_6, 7_5, 1_9_3, 2_6_6, 2_2_3, 2_7, 4_9, 2_6, 2_8_2, 2_5, 2_6_4, 2_9_9, 1_9, 2_6, 0, 2_5_8, 2_7_7, 1_1_7, 8_6, 9_3, 1_7_6, 1_8_3, 2_7_0, 1_1, 2_6_2, 4_2, 6_1, 2_6_5, ] self.assertListEqual(lowerCamelCase_ ,self.big_tokenizer.encode(lowerCamelCase_ ) ) @require_torch @slow def UpperCamelCase__ ( self ) -> str: import torch from transformers import ReformerConfig, ReformerModel # Build sequence A = list(self.big_tokenizer.get_vocab().keys() )[:1_0] A = """ """.join(lowerCamelCase_ ) A = self.big_tokenizer.encode_plus(lowerCamelCase_ ,return_tensors="""pt""" ) A = self.big_tokenizer.batch_encode_plus([sequence, sequence] ,return_tensors="""pt""" ) A = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) A = encoded_sequence["""input_ids"""].shape A = ReformerModel(lowerCamelCase_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase_ ) model(**lowerCamelCase_ ) @slow def UpperCamelCase__ ( self ) -> Tuple: # fmt: off A = {"""input_ids""": [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 A = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ ,model_name="""google/reformer-crime-and-punishment""" ,revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" ,padding=lowerCamelCase_ ,sequences=lowerCamelCase_ ,)
350
"""simple docstring""" def _A ( ): """simple docstring""" return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] UpperCAmelCase =generate_large_matrix() UpperCAmelCase =( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _A ( _a : list[list[int]] ): """simple docstring""" assert all(row == sorted(_a , reverse=_a ) for row in grid ) assert all(list(_a ) == sorted(_a , reverse=_a ) for col in zip(*_a ) ) def _A ( _a : list[int] ): """simple docstring""" A = 0 A = len(_a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: A = (left + right) // 2 A = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: A = mid + 1 else: A = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_a ) def _A ( _a : list[list[int]] ): """simple docstring""" A = 0 A = len(grid[0] ) for i in range(len(_a ) ): A = find_negative_index(grid[i][:bound] ) total += bound return (len(_a ) * len(grid[0] )) - total def _A ( _a : list[list[int]] ): """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def _A ( _a : list[list[int]] ): """simple docstring""" A = 0 for row in grid: for i, number in enumerate(_a ): if number < 0: total += len(_a ) - i break return total def _A ( ): """simple docstring""" from timeit import timeit print("""Running benchmarks""" ) A = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): A = timeit(f'{func}(grid=grid)' , setup=_a , number=5_0_0 ) print(f'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
77
0
"""simple docstring""" import math def _snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(UpperCAmelCase_ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
335
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE_ : str = parse(importlib.metadata.version('torch')) def _snake_case ( UpperCAmelCase_ : Union[str, Version] , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) A__ = STR_OPERATION_TO_FUNC[operation] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): A__ = parse(importlib.metadata.version(UpperCAmelCase_ ) ) return operation(UpperCAmelCase_ , parse(UpperCAmelCase_ ) ) def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): return compare_versions(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
335
1
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) def _snake_case ( _snake_case : str ) -> Tuple: '''simple docstring''' _A = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _A = 1_28 elif "12-12" in model_name: _A = 12 _A = 12 elif "14-14" in model_name: _A = 14 _A = 14 elif "16-16" in model_name: _A = 16 _A = 16 else: raise ValueError('Model not supported' ) _A = 'huggingface/label-files' if "speech-commands" in model_name: _A = 35 _A = 'speech-commands-v2-id2label.json' else: _A = 5_27 _A = 'audioset-id2label.json' _A = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) ) _A = {int(_snake_case ): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} return config def _snake_case ( _snake_case : List[Any] ) -> Any: '''simple docstring''' if "module.v" in name: _A = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: _A = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: _A = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: _A = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: _A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: _A = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: _A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _A = name.replace('attn' , 'attention.self' ) if "norm1" in name: _A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _A = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _A = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: _A = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: _A = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _A = orig_state_dict.pop(_snake_case ) if "qkv" in key: _A = key.split('.' ) _A = int(key_split[3] ) _A = config.hidden_size if "weight" in key: _A = val[:dim, :] _A = val[dim : dim * 2, :] _A = val[-dim:, :] else: _A = val[:dim] _A = val[dim : dim * 2] _A = val[-dim:] else: _A = val return orig_state_dict def _snake_case ( _snake_case : Optional[Any] ) -> int: '''simple docstring''' _A = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) @torch.no_grad() def _snake_case ( _snake_case : Tuple , _snake_case : List[Any] , _snake_case : List[str]=False ) -> Any: '''simple docstring''' _A = get_audio_spectrogram_transformer_config(_snake_case ) _A = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict _A = model_name_to_url[model_name] _A = torch.hub.load_state_dict_from_url(_snake_case , map_location='cpu' ) # remove some keys remove_keys(_snake_case ) # rename some keys _A = convert_state_dict(_snake_case , _snake_case ) # load 🤗 model _A = ASTForAudioClassification(_snake_case ) model.eval() model.load_state_dict(_snake_case ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _A = -4.2677393 if 'speech-commands' not in model_name else -6.845978 _A = 4.5689974 if 'speech-commands' not in model_name else 5.5654526 _A = 10_24 if 'speech-commands' not in model_name else 1_28 _A = ASTFeatureExtractor(mean=_snake_case , std=_snake_case , max_length=_snake_case ) if "speech-commands" in model_name: _A = load_dataset('speech_commands' , 'v0.02' , split='validation' ) _A = dataset[0]['audio']['array'] else: _A = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) _A , _A = torchaudio.load(_snake_case ) _A = waveform.squeeze().numpy() _A = feature_extractor(_snake_case , sampling_rate=1_60_00 , return_tensors='pt' ) # forward pass _A = model(**_snake_case ) _A = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _A = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _A = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _A = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _A = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _A = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _A = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _A = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": _A = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , _snake_case , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(_snake_case ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
271
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : "DiagonalGaussianDistribution" class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[Any] = True @register_to_config def __init__( self : List[str] , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 3 , _UpperCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , _UpperCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , _UpperCAmelCase : Tuple[int] = (64,) , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = "silu" , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 32 , _UpperCAmelCase : int = 32 , _UpperCAmelCase : float = 0.1_8215 , ): super().__init__() # pass init params to Encoder _A = Encoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , down_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , act_fn=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , double_z=_UpperCAmelCase , ) # pass init params to Decoder _A = Decoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , up_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , act_fn=_UpperCAmelCase , ) _A = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _A = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , 1 ) _A = False _A = False # only relevant if vae tiling is enabled _A = self.config.sample_size _A = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _A = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _A = 0.25 def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple=False ): if isinstance(_UpperCAmelCase , (Encoder, Decoder) ): _A = value def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : bool = True ): _A = use_tiling def lowerCAmelCase_ ( self : Union[str, Any] ): self.enable_tiling(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _A = True def lowerCAmelCase_ ( self : str ): _A = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase_ ( self : str ): _A = {} def fn_recursive_add_processors(_UpperCAmelCase : str , _UpperCAmelCase : torch.nn.Module , _UpperCAmelCase : Dict[str, AttentionProcessor] ): if hasattr(_UpperCAmelCase , 'set_processor' ): _A = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _UpperCAmelCase , _UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return processors def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): _A = len(self.attn_processors.keys() ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_UpperCAmelCase )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_UpperCAmelCase : str , _UpperCAmelCase : torch.nn.Module , _UpperCAmelCase : int ): if hasattr(_UpperCAmelCase , 'set_processor' ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): module.set_processor(_UpperCAmelCase ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _UpperCAmelCase , _UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCAmelCase_ ( self : int , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_UpperCAmelCase , return_dict=_UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: _A = [self.encoder(_UpperCAmelCase ) for x_slice in x.split(1 )] _A = torch.cat(_UpperCAmelCase ) else: _A = self.encoder(_UpperCAmelCase ) _A = self.quant_conv(_UpperCAmelCase ) _A = DiagonalGaussianDistribution(_UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_UpperCAmelCase , return_dict=_UpperCAmelCase ) _A = self.post_quant_conv(_UpperCAmelCase ) _A = self.decoder(_UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase ) @apply_forward_hook def lowerCAmelCase_ ( self : str , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): if self.use_slicing and z.shape[0] > 1: _A = [self._decode(_UpperCAmelCase ).sample for z_slice in z.split(1 )] _A = torch.cat(_UpperCAmelCase ) else: _A = self._decode(_UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): _A = min(a.shape[2] , b.shape[2] , _UpperCAmelCase ) for y in range(_UpperCAmelCase ): _A = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] ): _A = min(a.shape[3] , b.shape[3] , _UpperCAmelCase ) for x in range(_UpperCAmelCase ): _A = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCAmelCase_ ( self : str , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): _A = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _A = int(self.tile_latent_min_size * self.tile_overlap_factor ) _A = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _A = [] for i in range(0 , x.shape[2] , _UpperCAmelCase ): _A = [] for j in range(0 , x.shape[3] , _UpperCAmelCase ): _A = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _A = self.encoder(_UpperCAmelCase ) _A = self.quant_conv(_UpperCAmelCase ) row.append(_UpperCAmelCase ) rows.append(_UpperCAmelCase ) _A = [] for i, row in enumerate(_UpperCAmelCase ): _A = [] for j, tile in enumerate(_UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A = self.blend_v(rows[i - 1][j] , _UpperCAmelCase , _UpperCAmelCase ) if j > 0: _A = self.blend_h(row[j - 1] , _UpperCAmelCase , _UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCAmelCase , dim=3 ) ) _A = torch.cat(_UpperCAmelCase , dim=2 ) _A = DiagonalGaussianDistribution(_UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): _A = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _A = int(self.tile_sample_min_size * self.tile_overlap_factor ) _A = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _A = [] for i in range(0 , z.shape[2] , _UpperCAmelCase ): _A = [] for j in range(0 , z.shape[3] , _UpperCAmelCase ): _A = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _A = self.post_quant_conv(_UpperCAmelCase ) _A = self.decoder(_UpperCAmelCase ) row.append(_UpperCAmelCase ) rows.append(_UpperCAmelCase ) _A = [] for i, row in enumerate(_UpperCAmelCase ): _A = [] for j, tile in enumerate(_UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A = self.blend_v(rows[i - 1][j] , _UpperCAmelCase , _UpperCAmelCase ) if j > 0: _A = self.blend_h(row[j - 1] , _UpperCAmelCase , _UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCAmelCase , dim=3 ) ) _A = torch.cat(_UpperCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[torch.Generator] = None , ): _A = sample _A = self.encode(_UpperCAmelCase ).latent_dist if sample_posterior: _A = posterior.sample(generator=_UpperCAmelCase ) else: _A = posterior.mode() _A = self.decode(_UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase )
271
1
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class __lowercase ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() __a : Union[str, Any] = nn.Linear(3 , 4 ) __a : Tuple = nn.BatchNormad(4 ) __a : Optional[int] = nn.Linear(4 , 5 ) def _lowerCamelCase ( self , _UpperCAmelCase ): return self.lineara(self.batchnorm(self.lineara(_UpperCAmelCase ) ) ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[Any] = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(_UpperCAmelCase , model.state_dict() ) __a : List[str] = os.path.join(_UpperCAmelCase , '''index.json''' ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: __a : str = os.path.join(_UpperCAmelCase , f"""{key}.dat""" ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # TODO: add tests on the fact weights are properly loaded def _lowerCamelCase ( self ): __a : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: __a : List[str] = torch.randn(2 , 3 , dtype=_UpperCAmelCase ) with TemporaryDirectory() as tmp_dir: __a : Optional[Any] = offload_weight(_UpperCAmelCase , '''weight''' , _UpperCAmelCase , {} ) __a : List[Any] = os.path.join(_UpperCAmelCase , '''weight.dat''' ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) self.assertDictEqual(_UpperCAmelCase , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(_UpperCAmelCase ).split('''.''' )[1]}} ) __a : Dict = load_offloaded_weight(_UpperCAmelCase , index['''weight'''] ) self.assertTrue(torch.equal(_UpperCAmelCase , _UpperCAmelCase ) ) def _lowerCamelCase ( self ): __a : Tuple = ModelForTest() __a : str = model.state_dict() __a : Optional[int] = {k: v for k, v in state_dict.items() if '''linear2''' not in k} __a : Dict = {k: v for k, v in state_dict.items() if '''linear2''' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = OffloadedWeightsLoader(state_dict=_UpperCAmelCase , save_folder=_UpperCAmelCase ) # Every key is there with the right value self.assertEqual(sorted(_UpperCAmelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_UpperCAmelCase , weight_map[key] ) ) __a : Optional[Any] = {k: v for k, v in state_dict.items() if '''weight''' in k} __a : Optional[int] = {k: v for k, v in state_dict.items() if '''weight''' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_UpperCAmelCase , _UpperCAmelCase ) __a : str = OffloadedWeightsLoader(state_dict=_UpperCAmelCase , save_folder=_UpperCAmelCase ) # Every key is there with the right value self.assertEqual(sorted(_UpperCAmelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_UpperCAmelCase , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(_UpperCAmelCase , _UpperCAmelCase ) # Duplicates are removed __a : Dict = OffloadedWeightsLoader(state_dict=_UpperCAmelCase , save_folder=_UpperCAmelCase ) # Every key is there with the right value self.assertEqual(sorted(_UpperCAmelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_UpperCAmelCase , weight_map[key] ) ) def _lowerCamelCase ( self ): __a : Optional[int] = {'''a.1''': 0, '''a.10''': 1, '''a.2''': 2} __a : Optional[int] = extract_submodules_state_dict(_UpperCAmelCase , ['''a.1''', '''a.2'''] ) self.assertDictEqual(_UpperCAmelCase , {'''a.1''': 0, '''a.2''': 2} ) __a : Optional[int] = {'''a.1.a''': 0, '''a.10.a''': 1, '''a.2.a''': 2} __a : Dict = extract_submodules_state_dict(_UpperCAmelCase , ['''a.1''', '''a.2'''] ) self.assertDictEqual(_UpperCAmelCase , {'''a.1.a''': 0, '''a.2.a''': 2} )
160
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer A = logging.get_logger(__name__) A = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} A = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } A = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = RobertaTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase , **_UpperCAmelCase , ) __a : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _UpperCAmelCase ) != add_prefix_space: __a : Tuple = getattr(_UpperCAmelCase , pre_tok_state.pop('''type''' ) ) __a : Dict = add_prefix_space __a : str = pre_tok_class(**_UpperCAmelCase ) __a : Optional[int] = add_prefix_space __a : str = '''post_processor''' __a : int = getattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) if tokenizer_component_instance: __a : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __a : Optional[Any] = tuple(state['''sep'''] ) if "cls" in state: __a : List[Any] = tuple(state['''cls'''] ) __a : Optional[Any] = False if state.get('''add_prefix_space''' , _UpperCAmelCase ) != add_prefix_space: __a : Any = add_prefix_space __a : List[Any] = True if state.get('''trim_offsets''' , _UpperCAmelCase ) != trim_offsets: __a : List[Any] = trim_offsets __a : List[str] = True if changes_to_apply: __a : Any = getattr(_UpperCAmelCase , state.pop('''type''' ) ) __a : Any = component_class(**_UpperCAmelCase ) setattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) @property def _lowerCamelCase ( self ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else value __a : Tuple = value def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __a : Tuple = kwargs.get('''is_split_into_words''' , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __a : str = kwargs.get('''is_split_into_words''' , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Optional[int] = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ): __a : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Dict = [self.sep_token_id] __a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
160
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py SCREAMING_SNAKE_CASE_:List[Any] = """src/diffusers""" SCREAMING_SNAKE_CASE_:Any = """.""" # This is to make sure the diffusers module imported is the one in the repo. SCREAMING_SNAKE_CASE_:Tuple = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) SCREAMING_SNAKE_CASE_:Dict = spec.loader.load_module() def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: """simple docstring""" return line.startswith(lowerCAmelCase__ ) or len(lowerCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , lowerCAmelCase__ ) is not None def __UpperCamelCase ( _lowerCAmelCase ) -> Any: """simple docstring""" A : Tuple = object_name.split(""".""" ) A : List[Any] = 0 # First let's find the module where our object lives. A : Tuple = parts[i] while i < len(lowerCAmelCase__ ) and not os.path.isfile(os.path.join(lowerCAmelCase__ , f'''{module}.py''' ) ): i += 1 if i < len(lowerCAmelCase__ ): A : List[str] = os.path.join(lowerCAmelCase__ , parts[i] ) if i >= len(lowerCAmelCase__ ): raise ValueError(f'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(lowerCAmelCase__ , f'''{module}.py''' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A : Tuple = f.readlines() # Now let's find the class / func in the code! A : Optional[Any] = """""" A : List[str] = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCAmelCase__ ) and re.search(Rf'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCAmelCase__ ): raise ValueError(f''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A : int = line_index while line_index < len(lowerCAmelCase__ ) and _should_continue(lines[line_index] , lowerCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A : Tuple = lines[start_index:line_index] return "".join(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_:Any = re.compile(R"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") SCREAMING_SNAKE_CASE_:Union[str, Any] = re.compile(R"""^\s*(\S+)->(\S+)(\s+.*|$)""") SCREAMING_SNAKE_CASE_:Tuple = re.compile(R"""<FILL\s+[^>]*>""") def __UpperCamelCase ( _lowerCAmelCase ) -> Any: """simple docstring""" A : int = code.split("""\n""" ) A : str = 0 while idx < len(lowerCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCAmelCase__ ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def __UpperCamelCase ( _lowerCAmelCase ) -> Optional[Any]: """simple docstring""" A : str = len(get_indent(lowerCAmelCase__ ) ) > 0 if has_indent: A : str = f'''class Bla:\n{code}''' A : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=lowerCAmelCase__ ) A : str = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__ ) A , A : str = style_docstrings_in_code(lowerCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase=False ) -> Union[str, Any]: """simple docstring""" with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A : str = f.readlines() A : Any = [] A : Union[str, Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCAmelCase__ ): A : List[str] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A , A , A : List[str] = search.groups() A : int = find_code_in_diffusers(lowerCAmelCase__ ) A : List[Any] = get_indent(lowerCAmelCase__ ) A : str = line_index + 1 if indent == theoretical_indent else line_index + 2 A : str = theoretical_indent A : Tuple = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A : Union[str, Any] = True while line_index < len(lowerCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(lowerCAmelCase__ ): break A : Tuple = lines[line_index] A : str = _should_continue(lowerCAmelCase__ , lowerCAmelCase__ ) and re.search(f'''^{indent}# End copy''' , lowerCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A : int = lines[start_index:line_index] A : Optional[int] = """""".join(lowerCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies A : Union[str, Any] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(lowerCAmelCase__ ) is None] A : Union[str, Any] = """\n""".join(lowerCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCAmelCase__ ) > 0: A : Union[str, Any] = replace_pattern.replace("""with""" , """""" ).split(""",""" ) A : Any = [_re_replace_pattern.search(lowerCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue A , A , A : Optional[Any] = pattern.groups() A : List[Any] = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if option.strip() == "all-casing": A : List[Any] = re.sub(obja.lower() , obja.lower() , lowerCAmelCase__ ) A : Dict = re.sub(obja.upper() , obja.upper() , lowerCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A : int = blackify(lines[start_index - 1] + theoretical_code ) A : Tuple = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A : List[str] = lines[:start_index] + [theoretical_code] + lines[line_index:] A : Dict = start_index + 1 if overwrite and len(lowerCAmelCase__ ) > 0: # Warn the user a file has been modified. print(f'''Detected changes, rewriting {filename}.''' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowerCAmelCase__ ) return diffs def __UpperCamelCase ( _lowerCAmelCase = False ) -> Union[str, Any]: """simple docstring""" A : Union[str, Any] = glob.glob(os.path.join(lowerCAmelCase__ , """**/*.py""" ) , recursive=lowerCAmelCase__ ) A : str = [] for filename in all_files: A : Dict = is_copy_consistent(lowerCAmelCase__ , lowerCAmelCase__ ) diffs += [f'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(lowerCAmelCase__ ) > 0: A : Optional[int] = """\n""".join(lowerCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") SCREAMING_SNAKE_CASE_:Optional[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
360
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=14, lowerCamelCase__=7, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=False, lowerCamelCase__=True, lowerCamelCase__=99, lowerCamelCase__=32, lowerCamelCase__=4, lowerCamelCase__=4, lowerCamelCase__=4, lowerCamelCase__=37, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=0.02, ): A : List[str] = parent A : Any = batch_size A : Dict = seq_length A : Tuple = is_training A : Any = use_input_mask A : Any = use_token_type_ids A : Any = use_labels A : Optional[int] = vocab_size A : Dict = hidden_size A : Dict = rotary_dim A : Dict = num_hidden_layers A : Tuple = num_attention_heads A : Tuple = intermediate_size A : Union[str, Any] = hidden_act A : Dict = hidden_dropout_prob A : List[str] = attention_probs_dropout_prob A : Optional[int] = max_position_embeddings A : str = initializer_range A : Any = None A : Any = vocab_size - 1 A : int = vocab_size - 1 A : int = vocab_size - 1 def _lowerCAmelCase ( self ): A : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) A : Optional[int] = None if self.use_input_mask: A : Any = random_attention_mask([self.batch_size, self.seq_length] ) A : int = GPTJConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, use_cache=lowerCamelCase__, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, rotary_dim=self.rotary_dim, ) return (config, input_ids, input_mask) def _lowerCAmelCase ( self ): A : List[str] = self.prepare_config_and_inputs() A , A , A : List[str] = config_and_inputs A : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Optional[int] = 20 A : Tuple = model_class_name(lowerCamelCase__ ) A : Dict = model.init_cache(input_ids.shape[0], lowerCamelCase__ ) A : int = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="""i4""" ) A : Optional[int] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) A : List[Any] = model( input_ids[:, :-1], attention_mask=lowerCamelCase__, past_key_values=lowerCamelCase__, position_ids=lowerCamelCase__, ) A : List[Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="""i4""" ) A : Any = model( input_ids[:, -1:], attention_mask=lowerCamelCase__, past_key_values=outputs_cache.past_key_values, position_ids=lowerCamelCase__, ) A : Any = model(lowerCamelCase__ ) A : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=f'''Max diff is {diff}''' ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Any = 20 A : Any = model_class_name(lowerCamelCase__ ) A : Dict = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )], axis=-1, ) A : str = model.init_cache(input_ids.shape[0], lowerCamelCase__ ) A : Any = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) A : Optional[int] = model( input_ids[:, :-1], attention_mask=lowerCamelCase__, past_key_values=lowerCamelCase__, position_ids=lowerCamelCase__, ) A : str = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="""i4""" ) A : List[Any] = model( input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=lowerCamelCase__, position_ids=lowerCamelCase__, ) A : Union[str, Any] = model(lowerCamelCase__, attention_mask=lowerCamelCase__ ) A : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=f'''Max diff is {diff}''' ) @require_flax class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCamelCase : Optional[int] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _lowerCAmelCase ( self ): A : List[Any] = FlaxGPTJModelTester(self ) def _lowerCAmelCase ( self ): for model_class_name in self.all_model_classes: A , A , A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self ): for model_class_name in self.all_model_classes: A , A , A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) @tooslow def _lowerCAmelCase ( self ): A : int = GPTaTokenizer.from_pretrained("""gpt2""", pad_token="""<|endoftext|>""", padding_side="""left""" ) A : Optional[int] = tokenizer(["""Hello this is a long string""", """Hey"""], return_tensors="""np""", padding=lowerCamelCase__, truncation=lowerCamelCase__ ) A : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) A : str = False A : Optional[Any] = model.config.eos_token_id A : Union[str, Any] = jax.jit(model.generate ) A : str = jit_generate( inputs["""input_ids"""], attention_mask=inputs["""attention_mask"""], pad_token_id=tokenizer.pad_token_id ).sequences A : Optional[Any] = tokenizer.batch_decode(lowerCamelCase__, skip_special_tokens=lowerCamelCase__ ) A : Tuple = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) @is_pt_flax_cross_test def _lowerCAmelCase ( self ): A , A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs A : Any = self._prepare_for_class(lowerCamelCase__, lowerCamelCase__ ) A : Dict = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A : List[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning A : str = getattr(lowerCamelCase__, lowerCamelCase__ ) A , A : Optional[int] = pt_inputs["""input_ids"""].shape A : List[str] = np.random.randint(0, seq_length - 1, size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): A : List[Any] = 0 A : Tuple = 1 A : Optional[int] = 0 A : str = 1 A : Dict = pt_model_class(lowerCamelCase__ ).eval() A : int = model_class(lowerCamelCase__, dtype=jnp.floataa ) A : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), lowerCamelCase__ ) A : Dict = fx_state with torch.no_grad(): A : Optional[int] = pt_model(**lowerCamelCase__ ).to_tuple() A : str = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ), len(lowerCamelCase__ ), """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase__, lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) A : Union[str, Any] = model_class.from_pretrained(lowerCamelCase__, from_pt=lowerCamelCase__ ) A : Any = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ), len(lowerCamelCase__ ), """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(lowerCamelCase__, lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1], pt_output[:, -1].numpy(), 4e-2 ) @is_pt_flax_cross_test def _lowerCAmelCase ( self ): A , A : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs A : int = self._prepare_for_class(lowerCamelCase__, lowerCamelCase__ ) A : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning A : Dict = getattr(lowerCamelCase__, lowerCamelCase__ ) A : int = pt_model_class(lowerCamelCase__ ).eval() A : int = model_class(lowerCamelCase__, dtype=jnp.floataa ) A : List[str] = load_flax_weights_in_pytorch_model(lowerCamelCase__, fx_model.params ) A , A : Optional[int] = pt_inputs["""input_ids"""].shape A : Optional[int] = np.random.randint(0, seq_length - 1, size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): A : Tuple = 0 A : Tuple = 1 A : str = 0 A : int = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): A : List[str] = pt_model(**lowerCamelCase__ ).to_tuple() A : Optional[int] = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ), len(lowerCamelCase__ ), """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase__, lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) A : str = pt_model_class.from_pretrained(lowerCamelCase__, from_flax=lowerCamelCase__ ) with torch.no_grad(): A : str = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ), len(lowerCamelCase__ ), """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase__, lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2 ) @tooslow def _lowerCAmelCase ( self ): for model_class_name in self.all_model_classes: A : Union[str, Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) A : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
115
0
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[int] ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def _snake_case ( UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : int , UpperCamelCase : Optional[Any]=True ): model.train() UpperCAmelCase : str = model(UpperCamelCase ) UpperCAmelCase : Optional[int] = F.mse_loss(UpperCamelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase ) def _snake_case ( UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any]=False ): set_seed(42 ) UpperCAmelCase : Tuple = RegressionModel() UpperCAmelCase : List[Any] = deepcopy(UpperCamelCase ) UpperCAmelCase : Optional[Any] = RegressionDataset(length=80 ) UpperCAmelCase : Union[str, Any] = DataLoader(UpperCamelCase , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase : Union[str, Any] = AdamW(params=model.parameters() , lr=1e-3 ) UpperCAmelCase : List[str] = AdamW(params=ddp_model.parameters() , lr=1e-3 ) UpperCAmelCase : Tuple = LambdaLR(UpperCamelCase , lr_lambda=lambda UpperCamelCase : epoch**0.65 ) UpperCAmelCase : Tuple = LambdaLR(UpperCamelCase , lr_lambda=lambda UpperCamelCase : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = accelerator.prepare(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: UpperCAmelCase , UpperCAmelCase : int = accelerator.prepare(UpperCamelCase , UpperCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _snake_case ( UpperCamelCase : Tuple ): # Test when on a single CPU or GPU that the context manager does nothing UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = get_training_setup(UpperCamelCase ) # Use a single batch UpperCAmelCase , UpperCAmelCase : Optional[int] = next(iter(UpperCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : Optional[Any] = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase ): step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: # Sync grads step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase : List[str] = ddp_input[torch.randperm(len(UpperCamelCase ) )] def _snake_case ( UpperCamelCase : int ): # Test on distributed setup that context manager behaves properly UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = get_training_setup(UpperCamelCase ) # Use a single batch UpperCAmelCase , UpperCAmelCase : Any = next(iter(UpperCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : Any = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : int = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase ): step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: # Sync grads step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase : Optional[int] = ddp_input[torch.randperm(len(UpperCamelCase ) )] def _snake_case ( UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Any=False ): UpperCAmelCase : Union[str, Any] = Accelerator( split_batches=UpperCamelCase , dispatch_batches=UpperCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = get_training_setup(UpperCamelCase ) for iteration, batch in enumerate(UpperCamelCase ): UpperCAmelCase , UpperCAmelCase : Tuple = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : str = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : int = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase ): step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase : str = ddp_input[torch.randperm(len(UpperCamelCase ) )] GradientState._reset_state() def _snake_case ( UpperCamelCase : List[Any]=False , UpperCamelCase : List[Any]=False ): UpperCAmelCase : Optional[Any] = Accelerator( split_batches=UpperCamelCase , dispatch_batches=UpperCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = get_training_setup(UpperCamelCase , UpperCamelCase ) for iteration, batch in enumerate(UpperCamelCase ): UpperCAmelCase , UpperCAmelCase : Any = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : Any = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase ): step_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" UpperCAmelCase : List[str] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def _snake_case ( ): UpperCAmelCase : str = Accelerator() UpperCAmelCase : Any = RegressionDataset(length=80 ) UpperCAmelCase : Tuple = DataLoader(UpperCamelCase , batch_size=16 ) UpperCAmelCase : List[Any] = RegressionDataset(length=96 ) UpperCAmelCase : str = DataLoader(UpperCamelCase , batch_size=16 ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = accelerator.prepare(UpperCamelCase , UpperCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase ) if iteration < len(UpperCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase ) if batch_num < len(UpperCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _snake_case ( ): UpperCAmelCase : Dict = Accelerator() UpperCAmelCase : Optional[Any] = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(UpperCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(UpperCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(UpperCamelCase , UpperCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase , UpperCamelCase ) def _snake_case ( UpperCamelCase : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
109
"""simple docstring""" import functools from typing import Any def _snake_case ( lowercase__ , lowercase__ ): # Validation if not isinstance(lowercase__ , lowercase__ ) or len(lowercase__ ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(lowercase__ , lowercase__ ) or not all( isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie _lowerCamelCase : dict[str, Any] = {} _lowerCamelCase : List[Any] = 'WORD_KEEPER' for word in words: _lowerCamelCase : Dict = trie for c in word: if c not in trie_node: _lowerCamelCase : Any = {} _lowerCamelCase : str = trie_node[c] _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Dict = len(lowercase__ ) # Dynamic programming method @functools.cache def is_breakable(lowercase__ ) -> bool: if index == len_string: return True _lowerCamelCase : List[Any] = trie for i in range(lowercase__ , lowercase__ ): _lowerCamelCase : Any = trie_node.get(string[i] , lowercase__ ) if trie_node is None: return False if trie_node.get(lowercase__ , lowercase__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
96
0
'''simple docstring''' def _lowercase ( __A = "The quick brown fox jumps over the lazy dog" ,): '''simple docstring''' __UpperCamelCase = set() # Replace all the whitespace in our sentence __UpperCamelCase = input_str.replace(""" """ ,"""""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__A ) == 26 def _lowercase ( __A = "The quick brown fox jumps over the lazy dog" ,): '''simple docstring''' __UpperCamelCase = [False] * 26 for char in input_str: if char.islower(): __UpperCamelCase = True elif char.isupper(): __UpperCamelCase = True return all(__A ) def _lowercase ( __A = "The quick brown fox jumps over the lazy dog" ,): '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _lowercase ( ): '''simple docstring''' from timeit import timeit __UpperCamelCase = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" ,setup=__A ) ) print(timeit("""is_pangram_faster()""" ,setup=__A ) ) print(timeit("""is_pangram_fastest()""" ,setup=__A ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
243
'''simple docstring''' def _lowercase ( __A ): '''simple docstring''' if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
243
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer a__: Optional[int] = logging.get_logger(__name__) a__: int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__: Optional[Any] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } a__: List[str] = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } a__: Optional[Any] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BertTokenizer def __init__( self,__lowerCamelCase=None,__lowerCamelCase=None,__lowerCamelCase=True,__lowerCamelCase="[UNK]",__lowerCamelCase="[SEP]",__lowerCamelCase="[PAD]",__lowerCamelCase="[CLS]",__lowerCamelCase="[MASK]",__lowerCamelCase=True,__lowerCamelCase=None,**__lowerCamelCase,): super().__init__( __lowerCamelCase,tokenizer_file=__lowerCamelCase,do_lower_case=__lowerCamelCase,unk_token=__lowerCamelCase,sep_token=__lowerCamelCase,pad_token=__lowerCamelCase,cls_token=__lowerCamelCase,mask_token=__lowerCamelCase,tokenize_chinese_chars=__lowerCamelCase,strip_accents=__lowerCamelCase,**__lowerCamelCase,) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''',__lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''',__lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''',__lowerCamelCase ) != tokenize_chinese_chars ): A__ = getattr(__lowerCamelCase,normalizer_state.pop('''type''' ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**__lowerCamelCase ) A__ = do_lower_case def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None ): A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = self._tokenizer.model.save(__lowerCamelCase,name=__lowerCamelCase ) return tuple(__lowerCamelCase )
193
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__( UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : int )->int: # Initialise PyTorch model A__ = BertConfig.from_json_file(UpperCamelCase__ ) print(f"Building PyTorch model from configuration: {config}" ) A__ = BertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": a__: str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a__: Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
193
1
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __lowerCamelCase ( _lowercase ): """simple docstring""" def A ( self : Tuple): _A : str = tempfile.mkdtemp() _A : str = 8 # DPR tok _A : List[str] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _A : Tuple = os.path.join(self.tmpdirname , 'dpr_tokenizer') os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase) _A : Dict = os.path.join(__UpperCamelCase , DPR_VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) # BART tok _A : Optional[int] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _A : Optional[int] = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase)))) _A : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _A : Dict = {'unk_token': '<unk>'} _A : Dict = os.path.join(self.tmpdirname , 'bart_tokenizer') os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase) _A : int = os.path.join(__UpperCamelCase , BART_VOCAB_FILES_NAMES['vocab_file']) _A : Dict = os.path.join(__UpperCamelCase , BART_VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(__UpperCamelCase) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(__UpperCamelCase)) def A ( self : Union[str, Any]): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer')) def A ( self : Dict): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer')) def A ( self : Any): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer')) def A ( self : List[str]): shutil.rmtree(self.tmpdirname) def A ( self : Optional[int]): _A : Tuple = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)], }) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT) return dataset def A ( self : int): _A : Optional[int] = self.get_dummy_dataset() _A : Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('transformers.models.rag.retrieval_rag.load_dataset') as mock_load_dataset: _A : List[Any] = dataset _A : Union[str, Any] = RagRetriever( __UpperCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def A ( self : List[str] , SCREAMING_SNAKE_CASE : bool): _A : Tuple = self.get_dummy_dataset() _A : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , ) if from_disk: _A : Any = os.path.join(self.tmpdirname , 'dataset') _A : Any = os.path.join(self.tmpdirname , 'index.faiss') dataset.get_index('embeddings').save(os.path.join(self.tmpdirname , 'index.faiss')) dataset.drop_index('embeddings') dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset')) del dataset _A : Any = RagRetriever( __UpperCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: _A : str = RagRetriever( __UpperCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __UpperCamelCase) , ) return retriever def A ( self : Any): _A : str = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1), 2 * np.ones(self.retrieval_vector_size + 1)], }) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT) _A : Union[str, Any] = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index') dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr') pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb')) _A : Dict = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl') _A : int = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(__UpperCamelCase , open(__UpperCamelCase , 'wb')) _A : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , ) _A : int = RagRetriever( __UpperCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer()) return retriever def A ( self : Union[str, Any]): _A : Union[str, Any] = 1 _A : List[str] = self.get_dummy_canonical_hf_index_retriever() _A : Dict = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _A , _A , _A : int = retriever.retrieve(__UpperCamelCase , n_docs=__UpperCamelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCamelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ['embeddings', 'id', 'text', 'title']) self.assertEqual(len(doc_dicts[0]['id']) , __UpperCamelCase) self.assertEqual(doc_dicts[0]['id'][0] , '1') # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0') # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def A ( self : List[Any]): _A : List[Any] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset') as mock_load_dataset: _A : int = self.get_dummy_dataset() retriever.save_pretrained(__UpperCamelCase) _A : Tuple = RagRetriever.from_pretrained(__UpperCamelCase) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase) _A : Optional[int] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _A : Optional[int] = retriever.retrieve(__UpperCamelCase , n_docs=1) self.assertTrue(out is not None) def A ( self : Any): _A : Any = 1 _A : int = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCamelCase) _A : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _A , _A , _A : Optional[int] = retriever.retrieve(__UpperCamelCase , n_docs=__UpperCamelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCamelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ['embeddings', 'id', 'text', 'title']) self.assertEqual(len(doc_dicts[0]['id']) , __UpperCamelCase) self.assertEqual(doc_dicts[0]['id'][0] , '1') # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0') # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def A ( self : str): _A : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCamelCase) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCamelCase) _A : int = RagRetriever.from_pretrained(__UpperCamelCase) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase) _A : Any = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _A : Any = retriever.retrieve(__UpperCamelCase , n_docs=1) self.assertTrue(out is not None) def A ( self : Dict): _A : Optional[int] = 1 _A : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCamelCase) _A : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _A , _A , _A : Dict = retriever.retrieve(__UpperCamelCase , n_docs=__UpperCamelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCamelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ['embeddings', 'id', 'text', 'title']) self.assertEqual(len(doc_dicts[0]['id']) , __UpperCamelCase) self.assertEqual(doc_dicts[0]['id'][0] , '1') # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0') # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def A ( self : str): _A : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCamelCase) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCamelCase) _A : Union[str, Any] = RagRetriever.from_pretrained(__UpperCamelCase) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase) _A : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _A : Union[str, Any] = retriever.retrieve(__UpperCamelCase , n_docs=1) self.assertTrue(out is not None) def A ( self : Optional[Any]): _A : Optional[int] = 1 _A : Optional[int] = self.get_dummy_legacy_index_retriever() _A : Tuple = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _A , _A , _A : str = retriever.retrieve(__UpperCamelCase , n_docs=__UpperCamelCase) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(__UpperCamelCase) , 2) self.assertEqual(sorted(doc_dicts[0]) , ['text', 'title']) self.assertEqual(len(doc_dicts[0]['text']) , __UpperCamelCase) self.assertEqual(doc_dicts[0]['text'][0] , 'bar') # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] , 'foo') # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def A ( self : Dict): _A : Tuple = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCamelCase) _A : Union[str, Any] = RagRetriever.from_pretrained(__UpperCamelCase) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase) _A : Tuple = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _A : Optional[int] = retriever.retrieve(__UpperCamelCase , n_docs=1) self.assertTrue(out is not None) @require_torch @require_tokenizers @require_sentencepiece def A ( self : Optional[Any]): import torch _A : Dict = 1 _A : Any = self.get_dummy_canonical_hf_index_retriever() _A : str = [[5, 7], [10, 11]] _A : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _A : Optional[Any] = retriever(__UpperCamelCase , __UpperCamelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCamelCase) _A , _A , _A : Optional[int] = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase) self.assertIsInstance(__UpperCamelCase , np.ndarray) _A : int = retriever( __UpperCamelCase , __UpperCamelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCamelCase , return_tensors='pt' , ) _A , _A , _A , _A : Tuple = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(__UpperCamelCase , torch.Tensor) self.assertIsInstance(__UpperCamelCase , torch.Tensor) self.assertIsInstance(__UpperCamelCase , torch.Tensor) @require_torch @require_tokenizers @require_sentencepiece def A ( self : List[Any]): _A : Optional[Any] = self.get_dpr_ctx_encoder_tokenizer() _A : List[Any] = 1 _A : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCamelCase) retriever.set_ctx_encoder_tokenizer(__UpperCamelCase) _A : Tuple = [[5, 7], [10, 11]] _A : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) _A : Optional[Any] = retriever(__UpperCamelCase , __UpperCamelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCamelCase) self.assertEqual( len(__UpperCamelCase) , 6) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask')) , __UpperCamelCase) # check for doc token related keys in dictionary.
360
'''simple docstring''' from __future__ import annotations class __lowerCamelCase : """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple=None): _A : Any = data _A : Optional[Any] = None def __repr__( self : List[str]): _A : List[Any] = [] _A : Any = self while temp: string_rep.append(F'{temp.data}') _A : List[Any] = temp.next return "->".join(SCREAMING_SNAKE_CASE) def lowerCAmelCase__ ( lowerCamelCase : list ): if not elements_list: raise Exception('The Elements List is empty' ) _A : Union[str, Any] = Node(elements_list[0] ) for i in range(1 ,len(lowerCamelCase ) ): _A : Dict = Node(elements_list[i] ) _A : int = current.next return head def lowerCAmelCase__ ( lowerCamelCase : Node ): if head_node is not None and isinstance(lowerCamelCase ,lowerCamelCase ): print_reverse(head_node.next ) print(head_node.data ) def lowerCAmelCase__ ( ): from doctest import testmod testmod() _A : List[str] = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(lowerCamelCase ) print('Elements in Reverse:' ) print_reverse(lowerCamelCase ) if __name__ == "__main__": main()
227
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase__ : int =logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Tuple = ['''pixel_values'''] def __init__( self , _A = True , _A = None , _A = PILImageResampling.BICUBIC , _A = True , _A = None , _A = True , _A = 1 / 255 , _A = True , _A = None , _A = None , _A = True , **_A , ): '''simple docstring''' super().__init__(**_A ) __SCREAMING_SNAKE_CASE = size if size is not None else {'shortest_edge': 224} __SCREAMING_SNAKE_CASE = get_size_dict(_A , default_to_square=_A ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {'height': 224, 'width': 224} __SCREAMING_SNAKE_CASE = get_size_dict(_A , default_to_square=_A , param_name='crop_size' ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD __SCREAMING_SNAKE_CASE = do_convert_rgb def _A ( self , _A , _A , _A = PILImageResampling.BICUBIC , _A = None , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = get_resize_output_image_size(_A , size=size['shortest_edge'] , default_to_square=_A ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def _A ( self , _A , _A , _A = None , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def _A ( self , _A , _A , _A = None , **_A , ): '''simple docstring''' return rescale(_A , scale=_A , data_format=_A , **_A ) def _A ( self , _A , _A , _A , _A = None , **_A , ): '''simple docstring''' return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def _A ( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = ChannelDimension.FIRST , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(_A , param_name='size' , default_to_square=_A ) __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE = get_size_dict(_A , param_name='crop_size' , default_to_square=_A ) __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __SCREAMING_SNAKE_CASE = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __SCREAMING_SNAKE_CASE = [convert_to_rgb(_A ) for image in images] # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(_A ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(_A , _A ) for image in images] __SCREAMING_SNAKE_CASE = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
257
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Any =logging.get_logger(__name__) lowerCAmelCase__ : str ={ '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Dict = '''unispeech-sat''' def __init__( self , _A=32 , _A=768 , _A=12 , _A=12 , _A=3_072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=0.1 , _A=0.0 , _A=0.0 , _A=0.1 , _A=0.1 , _A=0.0_2 , _A=1e-5 , _A="group" , _A="gelu" , _A=(512, 512, 512, 512, 512, 512, 512) , _A=(5, 2, 2, 2, 2, 2, 2) , _A=(10, 3, 3, 3, 3, 2, 2) , _A=False , _A=128 , _A=16 , _A=False , _A=True , _A=0.0_5 , _A=10 , _A=2 , _A=0.0 , _A=10 , _A=0 , _A=320 , _A=2 , _A=0.1 , _A=100 , _A=256 , _A=256 , _A=0.1 , _A="mean" , _A=False , _A=False , _A=256 , _A=(512, 512, 512, 512, 1_500) , _A=(5, 3, 3, 1, 1) , _A=(1, 2, 3, 1, 1) , _A=512 , _A=0 , _A=1 , _A=2 , _A=504 , **_A , ): '''simple docstring''' super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = num_clusters __SCREAMING_SNAKE_CASE = do_stable_layer_norm __SCREAMING_SNAKE_CASE = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __SCREAMING_SNAKE_CASE = num_codevectors_per_group __SCREAMING_SNAKE_CASE = num_codevector_groups __SCREAMING_SNAKE_CASE = contrastive_logits_temperature __SCREAMING_SNAKE_CASE = feat_quantizer_dropout __SCREAMING_SNAKE_CASE = num_negatives __SCREAMING_SNAKE_CASE = codevector_dim __SCREAMING_SNAKE_CASE = proj_codevector_dim __SCREAMING_SNAKE_CASE = diversity_loss_weight # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = xvector_output_dim @property def _A ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
257
1
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> "list[int]": if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) __lowerCamelCase : List[str] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 __lowerCamelCase : Dict = 1 if upper_limit > 0: __lowerCamelCase : int = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowerCamelCase__ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: a =int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
113
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py a ="""src/transformers""" a ="""docs/source/en""" a =""".""" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: with open(lowerCamelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Any = f.readlines() # Find the start prompt. __lowerCamelCase : List[str] = 0 while not lines[start_index].startswith(lowerCamelCase__ ): start_index += 1 start_index += 1 __lowerCamelCase : int = start_index while not lines[end_index].startswith(lowerCamelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | a ="""Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. a =re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") a =re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. a =re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. a =direct_transformers_import(TRANSFORMERS_PATH) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[str]: __lowerCamelCase : int = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowerCamelCase__ ) return [m.group(0 ) for m in matches] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: __lowerCamelCase : int = 2 if text == '✅' or text == '❌' else len(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = (width - text_length) // 2 __lowerCamelCase : List[Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def SCREAMING_SNAKE_CASE__ ( ) -> str: __lowerCamelCase : Union[str, Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __lowerCamelCase : List[str] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __lowerCamelCase : Dict = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : List[str] = collections.defaultdict(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCamelCase__ ): __lowerCamelCase : List[Any] = None if attr_name.endswith('Tokenizer' ): __lowerCamelCase : Dict = slow_tokenizers __lowerCamelCase : List[Any] = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): __lowerCamelCase : Union[str, Any] = fast_tokenizers __lowerCamelCase : str = attr_name[:-1_3] elif _re_tf_models.match(lowerCamelCase__ ) is not None: __lowerCamelCase : List[str] = tf_models __lowerCamelCase : Optional[int] = _re_tf_models.match(lowerCamelCase__ ).groups()[0] elif _re_flax_models.match(lowerCamelCase__ ) is not None: __lowerCamelCase : List[Any] = flax_models __lowerCamelCase : Optional[Any] = _re_flax_models.match(lowerCamelCase__ ).groups()[0] elif _re_pt_models.match(lowerCamelCase__ ) is not None: __lowerCamelCase : Optional[int] = pt_models __lowerCamelCase : Any = _re_pt_models.match(lowerCamelCase__ ).groups()[0] if lookup_dict is not None: while len(lowerCamelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): __lowerCamelCase : List[Any] = True break # Try again after removing the last word in the name __lowerCamelCase : str = ''.join(camel_case_split(lowerCamelCase__ )[:-1] ) # Let's build that table! __lowerCamelCase : str = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __lowerCamelCase : Union[str, Any] = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __lowerCamelCase : List[Any] = [len(lowerCamelCase__ ) + 2 for c in columns] __lowerCamelCase : int = max([len(lowerCamelCase__ ) for name in model_names] ) + 2 # Build the table per se __lowerCamelCase : Union[str, Any] = '|' + '|'.join([_center_text(lowerCamelCase__ , lowerCamelCase__ ) for c, w in zip(lowerCamelCase__ , lowerCamelCase__ )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" __lowerCamelCase : List[str] = {True: '✅', False: '❌'} for name in model_names: __lowerCamelCase : Optional[int] = model_name_to_prefix[name] __lowerCamelCase : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCamelCase__ , lowerCamelCase__ ) for l, w in zip(lowerCamelCase__ , lowerCamelCase__ )] ) + "|\n" return table def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__=False ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = _find_text_in_file( filename=os.path.join(lowerCamelCase__ , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) __lowerCamelCase : List[Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCamelCase__ , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": a =argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a =parser.parse_args() check_model_table(args.fix_and_overwrite)
113
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __magic_name__ ( __a : bytes , __a : int ): '''simple docstring''' UpperCamelCase__ = f"{sampling_rate}" UpperCamelCase__ = """1""" UpperCamelCase__ = """f32le""" UpperCamelCase__ = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(__a , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCamelCase__ = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error UpperCamelCase__ = output_stream[0] UpperCamelCase__ = np.frombuffer(__a , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def __magic_name__ ( __a : int , __a : float , __a : str = "f32le" , ): '''simple docstring''' UpperCamelCase__ = f"{sampling_rate}" UpperCamelCase__ = """1""" if format_for_conversion == "s16le": UpperCamelCase__ = 2 elif format_for_conversion == "f32le": UpperCamelCase__ = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) UpperCamelCase__ = platform.system() if system == "Linux": UpperCamelCase__ = """alsa""" UpperCamelCase__ = """default""" elif system == "Darwin": UpperCamelCase__ = """avfoundation""" UpperCamelCase__ = """:0""" elif system == "Windows": UpperCamelCase__ = """dshow""" UpperCamelCase__ = """default""" UpperCamelCase__ = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] UpperCamelCase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCamelCase__ = _ffmpeg_stream(__a , __a ) for item in iterator: yield item def __magic_name__ ( __a : int , __a : float , __a : Optional[int] = None , __a : Optional[Union[Tuple[float, float], float]] = None , __a : str = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: UpperCamelCase__ = stream_chunk_s else: UpperCamelCase__ = chunk_length_s UpperCamelCase__ = ffmpeg_microphone(__a , __a , format_for_conversion=__a ) if format_for_conversion == "s16le": UpperCamelCase__ = np.intaa UpperCamelCase__ = 2 elif format_for_conversion == "f32le": UpperCamelCase__ = np.floataa UpperCamelCase__ = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) if stride_length_s is None: UpperCamelCase__ = chunk_length_s / 6 UpperCamelCase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a , (int, float) ): UpperCamelCase__ = [stride_length_s, stride_length_s] UpperCamelCase__ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCamelCase__ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCamelCase__ = datetime.datetime.now() UpperCamelCase__ = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a , __a , stride=(stride_left, stride_right) , stream=__a ): # Put everything back in numpy scale UpperCamelCase__ = np.frombuffer(item["""raw"""] , dtype=__a ) UpperCamelCase__ = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) UpperCamelCase__ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __magic_name__ ( __a : Any , __a : int , __a : Tuple[int, int] , __a : bool = False ): '''simple docstring''' UpperCamelCase__ = b"""""" UpperCamelCase__ , UpperCamelCase__ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) UpperCamelCase__ = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: UpperCamelCase__ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator UpperCamelCase__ = (_stride_left, stride_right) UpperCamelCase__ = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: UpperCamelCase__ = False yield item UpperCamelCase__ = stride_left UpperCamelCase__ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: UpperCamelCase__ = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: UpperCamelCase__ = False yield item def __magic_name__ ( __a : Optional[Any] , __a : int ): '''simple docstring''' UpperCamelCase__ = 2**24 # 16Mo try: with subprocess.Popen(__a , stdout=subprocess.PIPE , bufsize=__a ) as ffmpeg_process: while True: UpperCamelCase__ = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
244
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __magic_name__ ( __a : List[str] , __a : List[Any] , __a : int , __a : Optional[int]=None , __a : Union[str, Any]=None , __a : Union[str, Any]=None , __a : Union[str, Any]=None , __a : Tuple=None , ): '''simple docstring''' if attention_mask is None: UpperCamelCase__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase__ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__a ) if decoder_head_mask is None: UpperCamelCase__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__a ) if cross_attn_head_mask is None: UpperCamelCase__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=20 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = eos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = bos_token_id def UpperCAmelCase_ (self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = self.eos_token_id # Eos Token UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase__ = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase__ = self.get_config() UpperCamelCase__ = prepare_mam_aaa_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return config, inputs_dict def UpperCAmelCase_ (self ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = MaMaaaModel(config=SCREAMING_SNAKE_CASE_ ).get_decoder().to(SCREAMING_SNAKE_CASE_ ).eval() UpperCamelCase__ = inputs_dict["""input_ids"""] UpperCamelCase__ = inputs_dict["""attention_mask"""] UpperCamelCase__ = inputs_dict["""head_mask"""] # first forward pass UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )["""last_hidden_state"""] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ )[ """last_hidden_state""" ] # select random slice UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-2 ) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = MaMaaaModel(config=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = outputs.encoder_last_hidden_state UpperCamelCase__ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = model.get_encoder() encoder.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = MaMaaaEncoder.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = encoder(inputs_dict["""input_ids"""] , attention_mask=inputs_dict["""attention_mask"""] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = model.get_decoder() decoder.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = MaMaaaDecoder.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = decoder( input_ids=inputs_dict["""decoder_input_ids"""] , attention_mask=inputs_dict["""decoder_attention_mask"""] , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=inputs_dict["""attention_mask"""] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCAmelCase_ (self ): UpperCamelCase__ = MaMaaaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): self.config_tester.run_common_tests() def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertEqual(info["""missing_keys"""] , [] ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = copy.deepcopy(self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not self.is_encoder_decoder: UpperCamelCase__ = inputs["""input_ids"""] del inputs["input_ids"] else: UpperCamelCase__ = inputs["""input_ids"""] UpperCamelCase__ = inputs.get("""decoder_input_ids""" , SCREAMING_SNAKE_CASE_ ) del inputs["input_ids"] inputs.pop("""decoder_input_ids""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCamelCase__ = wte(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase__ = wte(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = wte(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): model(**SCREAMING_SNAKE_CASE_ )[0] def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ = input_dict["""input_ids"""] UpperCamelCase__ = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ).eval().to(SCREAMING_SNAKE_CASE_ ) if torch_device == "cuda": model.half() model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) model.generate(num_beams=4 , do_sample=SCREAMING_SNAKE_CASE_ , early_stopping=SCREAMING_SNAKE_CASE_ , num_return_sequences=3 ) def __magic_name__ ( __a : List[Any] ): '''simple docstring''' return torch.tensor(__a , dtype=torch.long , device=__a ) lowerCamelCase_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __A( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ (self ): return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ) def UpperCAmelCase_ (self ): UpperCamelCase__ = MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) UpperCamelCase__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) UpperCamelCase__ = prepare_mam_aaa_inputs_dict(model.config , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase__ = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) # change to expected output here UpperCamelCase__ = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(SCREAMING_SNAKE_CASE_ ) # change to intended input UpperCamelCase__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) UpperCamelCase__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) UpperCamelCase__ = prepare_mam_aaa_inputs_dict(model.config , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase__ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) # change to expected output here UpperCamelCase__ = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" , src_lang="""fr""" , tgt_lang="""en""" ) UpperCamelCase__ = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) UpperCamelCase__ = model.generate( input_ids=dct["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) , attention_mask=dct["""attention_mask"""].to(SCREAMING_SNAKE_CASE_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("""en""" ) , ) UpperCamelCase__ = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] UpperCamelCase__ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) assert generated == expected_en
244
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { '''nielsr/canine-s''': 20_48, } # Unicode defines 1,114,112 total “codepoints” UpperCAmelCase_ : int = 1_11_41_12 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : Optional[int] = 0Xe0_00 UpperCAmelCase_ : str = 0Xe0_01 UpperCAmelCase_ : int = 0Xe0_02 UpperCAmelCase_ : Optional[Any] = 0Xe0_03 UpperCAmelCase_ : int = 0Xe0_04 # Maps special codepoints to human-readable names. UpperCAmelCase_ : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. UpperCAmelCase_ : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , __lowerCamelCase : Dict=chr(__lowerCamelCase ) , __lowerCamelCase : Dict=chr(__lowerCamelCase ) , __lowerCamelCase : Tuple=chr(__lowerCamelCase ) , __lowerCamelCase : Tuple=chr(__lowerCamelCase ) , __lowerCamelCase : Optional[Any]=chr(__lowerCamelCase ) , __lowerCamelCase : Dict=chr(__lowerCamelCase ) , __lowerCamelCase : Tuple=False , __lowerCamelCase : List[Any]=2_048 , **__lowerCamelCase : str , ): UpperCamelCase :List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token UpperCamelCase :Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token UpperCamelCase :List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token UpperCamelCase :Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token UpperCamelCase :Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase :Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , model_max_length=__lowerCamelCase , **__lowerCamelCase , ) # Creates a mapping for looking up the IDs of special symbols. UpperCamelCase :Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): UpperCamelCase :int = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. UpperCamelCase :Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } UpperCamelCase :str = UNICODE_VOCAB_SIZE UpperCamelCase :Dict = len(self._special_codepoints ) @property def _A ( self : int ): return self._unicode_vocab_size def _A ( self : Tuple , __lowerCamelCase : str ): return list(__lowerCamelCase ) def _A ( self : Union[str, Any] , __lowerCamelCase : str ): try: return ord(__lowerCamelCase ) except TypeError: raise ValueError(F"""invalid token: '{token}'""" ) def _A ( self : List[str] , __lowerCamelCase : int ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__lowerCamelCase ) except TypeError: raise ValueError(F"""invalid id: {index}""" ) def _A ( self : Optional[Any] , __lowerCamelCase : int ): return "".join(__lowerCamelCase ) def _A ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): UpperCamelCase :List[Any] = [self.sep_token_id] UpperCamelCase :Optional[int] = [self.cls_token_id] UpperCamelCase :str = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _A ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) UpperCamelCase :int = [1] + ([0] * len(__lowerCamelCase )) + [1] if token_ids_a is not None: result += ([0] * len(__lowerCamelCase )) + [1] return result def _A ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): UpperCamelCase :Optional[int] = [self.sep_token_id] UpperCamelCase :Dict = [self.cls_token_id] UpperCamelCase :Optional[Any] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _A ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): return ()
62
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : int = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : List[Any] = """swinv2""" snake_case__ : Tuple = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Tuple , __lowerCamelCase : List[str]=224 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Tuple=96 , __lowerCamelCase : str=[2, 2, 6, 2] , __lowerCamelCase : Union[str, Any]=[3, 6, 12, 24] , __lowerCamelCase : int=7 , __lowerCamelCase : Dict=4.0 , __lowerCamelCase : Any=True , __lowerCamelCase : int=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : str=0.02 , __lowerCamelCase : List[Any]=1E-5 , __lowerCamelCase : List[Any]=32 , **__lowerCamelCase : Optional[Any] , ): super().__init__(**__lowerCamelCase ) UpperCamelCase :Optional[Any] = image_size UpperCamelCase :str = patch_size UpperCamelCase :Tuple = num_channels UpperCamelCase :Optional[int] = embed_dim UpperCamelCase :Optional[int] = depths UpperCamelCase :int = len(__lowerCamelCase ) UpperCamelCase :List[Any] = num_heads UpperCamelCase :Union[str, Any] = window_size UpperCamelCase :Any = mlp_ratio UpperCamelCase :Union[str, Any] = qkv_bias UpperCamelCase :List[Any] = hidden_dropout_prob UpperCamelCase :Any = attention_probs_dropout_prob UpperCamelCase :List[Any] = drop_path_rate UpperCamelCase :List[str] = hidden_act UpperCamelCase :Optional[int] = use_absolute_embeddings UpperCamelCase :Optional[int] = layer_norm_eps UpperCamelCase :str = initializer_range UpperCamelCase :List[str] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase :List[str] = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) ) UpperCamelCase :Dict = (0, 0, 0, 0)
62
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["speech"] def __init__( self : Tuple ,*lowercase_ : Tuple ,**lowercase_ : List[str] ): requires_backends(self ,['''speech'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["speech"] def __init__( self : Union[str, Any] ,*lowercase_ : List[str] ,**lowercase_ : Any ): requires_backends(self ,['''speech'''] )
106
"""simple docstring""" __A : Any = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
33
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[2, 2, 3, 2] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=["stage2", "stage3", "stage4"] , _SCREAMING_SNAKE_CASE=[2, 3, 4] , _SCREAMING_SNAKE_CASE=None , ): __lowerCAmelCase : Any = parent __lowerCAmelCase : Optional[int] = batch_size __lowerCAmelCase : Dict = image_size __lowerCAmelCase : Optional[Any] = num_channels __lowerCAmelCase : Tuple = num_stages __lowerCAmelCase : List[str] = hidden_sizes __lowerCAmelCase : int = depths __lowerCAmelCase : List[Any] = is_training __lowerCAmelCase : int = use_labels __lowerCAmelCase : Dict = intermediate_size __lowerCAmelCase : List[Any] = hidden_act __lowerCAmelCase : Optional[Any] = num_labels __lowerCAmelCase : int = initializer_range __lowerCAmelCase : str = out_features __lowerCAmelCase : Tuple = out_indices __lowerCAmelCase : Optional[int] = scope def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : List[Any] = None if self.use_labels: __lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = ConvNextVaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = ConvNextVaForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = ConvNextVaBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowerCAmelCase : Optional[Any] = None __lowerCAmelCase : List[Any] = ConvNextVaBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = config_and_inputs __lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = config_and_inputs __lowerCAmelCase : List[Any] = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : Any = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) A_ : str = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) A_ : List[str] = False A_ : Tuple = False A_ : List[Any] = False A_ : Tuple = False A_ : Tuple = False def __lowerCamelCase ( self ): __lowerCAmelCase : int = ConvNextVaModelTester(self ) __lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCamelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def __lowerCamelCase ( self ): pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def __lowerCamelCase ( self ): pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() __lowerCAmelCase : str = True if model_class.__name__ in [ *get_values(_SCREAMING_SNAKE_CASE ), *get_values(_SCREAMING_SNAKE_CASE ), ]: continue __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() __lowerCAmelCase : Tuple = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __lowerCamelCase ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Dict = True if ( model_class.__name__ in [*get_values(_SCREAMING_SNAKE_CASE ), *get_values(_SCREAMING_SNAKE_CASE )] or not model_class.supports_gradient_checkpointing ): continue __lowerCAmelCase : Dict = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() __lowerCAmelCase : Any = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] __lowerCAmelCase : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase : Dict = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : int = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase : Dict = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Union[str, Any] = ConvNextVaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (): __lowerCAmelCase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase): @cached_property def __lowerCamelCase ( self ): return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = self.default_image_processor __lowerCAmelCase : Dict = prepare_img() __lowerCAmelCase : str = preprocessor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits __lowerCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = torch.tensor([0.9996, 0.1966, -0.4386] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
182
"""simple docstring""" lowerCamelCase__ = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
182
1
def a ( A__ : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
205
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def a ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ) -> Optional[int]: """simple docstring""" _lowercase =AutoTokenizer.from_pretrained(A__ ) _lowercase =load_dataset('glue' , 'mrpc' ) def tokenize_function(A__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) _lowercase =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowercase =datasets.map( A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(A__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _lowercase =DataLoader( tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) _lowercase =DataLoader( tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def a ( A__ : Optional[Any] , A__ : Optional[int] , A__ : List[str] , A__ : Dict ) -> Dict: """simple docstring""" model.eval() _lowercase =0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase =model(**A__ ) _lowercase =outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowercase , _lowercase =accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: _lowercase =predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowercase =references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) _lowercase =metric.compute() return eval_metric["accuracy"] def a ( A__ : str , A__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _lowercase =Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase =config['lr'] _lowercase =int(config['num_epochs'] ) _lowercase =int(config['seed'] ) _lowercase =int(config['batch_size'] ) _lowercase =args.model_name_or_path set_seed(A__ ) _lowercase , _lowercase =get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase =AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer _lowercase =( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowercase =optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: _lowercase =accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: _lowercase =1 _lowercase =(len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowercase =get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: _lowercase =DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over _lowercase =0 # We also need to keep track of the stating epoch so files are named properly _lowercase =0 _lowercase =evaluate.load('glue' , 'mrpc' ) _lowercase =num_epochs if args.partial_train_epoch is not None: _lowercase =args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _lowercase =args.resume_from_checkpoint.split('epoch_' )[1] _lowercase ='' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _lowercase =int(A__ ) + 1 _lowercase =evaluation_loop(A__ , A__ , A__ , A__ ) accelerator.print('resumed checkpoint performance:' , A__ ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , 'r' ) as f: _lowercase =json.load(A__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _lowercase ={} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): _lowercase =model(**A__ ) _lowercase =outputs.loss _lowercase =loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _lowercase =F'''epoch_{epoch}''' _lowercase =os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) _lowercase =evaluation_loop(A__ , A__ , A__ , A__ ) _lowercase =accuracy _lowercase =lr_scheduler.get_lr()[0] _lowercase =optimizer.param_groups[0]['lr'] _lowercase =epoch _lowercase =overall_step accelerator.print(F'''epoch {epoch}:''' , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , 'w' ) as f: json.dump(A__ , A__ ) def a ( ) -> Tuple: """simple docstring""" _lowercase =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=A__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=A__ , ) parser.add_argument( '--output_dir' , type=A__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=A__ , default=A__ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=A__ , default=A__ , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=A__ , default=2 , help='Number of train epochs.' , ) _lowercase =parser.parse_args() _lowercase ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
205
1
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
361
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
328
0
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _lowercase : '''simple docstring''' def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=50 , snake_case__=0.02 , snake_case__=True , snake_case__=None , ): '''simple docstring''' UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = initializer_range UpperCamelCase_ = use_labels UpperCamelCase_ = scope def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.get_config() return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self ): '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self ): '''simple docstring''' ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = self.prepare_config_and_inputs() UpperCamelCase_ = True UpperCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = BertGenerationEncoder(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ ) UpperCamelCase_ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = True UpperCamelCase_ = BertGenerationEncoder(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = BertGenerationDecoder(config=snake_case__ ).to(snake_case__ ).eval() # first forward pass UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) UpperCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )["hidden_states"][0] UpperCamelCase_ = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )["hidden_states"][0] # select random slice UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , *snake_case__ , ): '''simple docstring''' UpperCamelCase_ = BertGenerationDecoder(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase (a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase__ = (BertGenerationDecoder,) if is_torch_available() else () lowercase__ = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = BertGenerationEncoderTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = "bert" self.model_tester.create_and_check_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase_ = None self.model_tester.create_and_check_model_as_decoder( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*snake_case__ ) @slow def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) self.assertIsNotNone(snake_case__ ) @require_torch class _lowercase (unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) UpperCamelCase_ = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): UpperCamelCase_ = model(snake_case__ )[0] UpperCamelCase_ = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , snake_case__ ) UpperCamelCase_ = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) ) @require_torch class _lowercase (unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) UpperCamelCase_ = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): UpperCamelCase_ = model(snake_case__ )[0] UpperCamelCase_ = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape , snake_case__ ) UpperCamelCase_ = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) )
128
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase (a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = AltDiffusionPipeline lowercase__ = TEXT_TO_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCamelCase_ = CLIPTextModel(snake_case__ ) UpperCamelCase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCamelCase_ = 77 UpperCamelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowerCamelCase ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(snake_case__ ) else: UpperCamelCase_ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowerCamelCase ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(snake_case__ ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = self.get_dummy_inputs(snake_case__ ) UpperCamelCase_ = "A photo of an astronaut" UpperCamelCase_ = alt_pipe(**snake_case__ ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = PNDMScheduler(skip_prk_steps=snake_case__ ) torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(snake_case__ ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = self.get_dummy_inputs(snake_case__ ) UpperCamelCase_ = alt_pipe(**snake_case__ ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _lowercase (unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) UpperCamelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=snake_case__ , safety_checker=snake_case__ ) UpperCamelCase_ = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=snake_case__ , num_inference_steps=2 , output_type="numpy" ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
128
1
def a__ ( UpperCAmelCase : int ): UpperCAmelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def a__ ( UpperCAmelCase : int = 5_000 ): UpperCAmelCase : int = [(i * (3 * i - 1)) // 2 for i in range(1 , UpperCAmelCase )] for i, pentagonal_i in enumerate(UpperCAmelCase ): for j in range(UpperCAmelCase , len(UpperCAmelCase ) ): UpperCAmelCase : int = pentagonal_nums[j] UpperCAmelCase : List[Any] = pentagonal_i + pentagonal_j UpperCAmelCase : Optional[Any] = pentagonal_j - pentagonal_i if is_pentagonal(UpperCAmelCase ) and is_pentagonal(UpperCAmelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
350
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase : def __init__( self : Any, __A : List[Any], __A : Optional[Any]=2, __A : List[Any]=3_2, __A : Tuple=1_6, __A : int=3, __A : Any=True, __A : List[Any]=True, __A : List[Any]=3_2, __A : List[Any]=4, __A : Union[str, Any]=[0, 1, 2, 3], __A : List[Any]=4, __A : Optional[int]=3_7, __A : int="gelu", __A : Any=0.1, __A : Tuple=0.1, __A : Any=0.0_2, __A : List[str]=3, __A : int=[1, 3_8_4, 2_4, 2_4], __A : Any=True, __A : List[str]=None, ): UpperCAmelCase : List[str] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Tuple = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : str = num_channels UpperCAmelCase : Tuple = is_training UpperCAmelCase : Optional[Any] = use_labels UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : str = backbone_out_indices UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : Tuple = attention_probs_dropout_prob UpperCAmelCase : str = initializer_range UpperCAmelCase : Optional[int] = num_labels UpperCAmelCase : int = backbone_featmap_shape UpperCAmelCase : Union[str, Any] = scope UpperCAmelCase : int = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase : Any = (image_size // patch_size) ** 2 UpperCAmelCase : Optional[Any] = num_patches + 1 def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Dict ): UpperCAmelCase : List[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [9_6, 1_9_2, 3_8_4, 7_6_8], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, backbone_config=__A, backbone_featmap_shape=self.backbone_featmap_shape, ) def __magic_name__ ( self : Optional[Any], __A : List[Any], __A : Union[str, Any], __A : Tuple ): UpperCAmelCase : Optional[Any] = DPTModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : int = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Optional[int], __A : Any, __A : Dict, __A : Optional[int] ): UpperCAmelCase : Optional[Any] = self.num_labels UpperCAmelCase : List[Any] = DPTForDepthEstimation(__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size) ) def __magic_name__ ( self : Union[str, Any], __A : Dict, __A : List[Any], __A : Optional[int] ): UpperCAmelCase : Dict = self.num_labels UpperCAmelCase : Tuple = DPTForSemanticSegmentation(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A, labels=__A ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : str = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = config_and_inputs UpperCAmelCase : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCamelCase = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Tuple ): UpperCAmelCase : int = DPTModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __magic_name__ ( self : int ): pass def __magic_name__ ( self : List[Any] ): UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, nn.Linear ) ) def __magic_name__ ( self : Dict ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = model_class(__A ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] UpperCAmelCase : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : Any ): UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) def __magic_name__ ( self : Union[str, Any] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = True if model_class in get_values(__A ): continue UpperCAmelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.train() UpperCAmelCase : str = self._prepare_for_class(__A, __A, return_labels=__A ) UpperCAmelCase : Union[str, Any] = model(**__A ).loss loss.backward() def __magic_name__ ( self : Optional[int] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = False UpperCAmelCase : int = True if model_class in get_values(__A ) or not model_class.supports_gradient_checkpointing: continue UpperCAmelCase : Dict = model_class(__A ) model.to(__A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A, return_labels=__A ) UpperCAmelCase : Any = model(**__A ).loss loss.backward() def __magic_name__ ( self : Dict ): UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(config=__A ) # Skip the check for the backbone UpperCAmelCase : Dict = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCAmelCase : Optional[Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __magic_name__ ( self : Optional[int] ): pass @slow def __magic_name__ ( self : Optional[Any] ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCAmelCase : Optional[int] = DPTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __magic_name__ ( self : int ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = '''add''' with self.assertRaises(__A ): UpperCAmelCase : Dict = DPTForDepthEstimation(__A ) def a__ ( ) -> Tuple: UpperCAmelCase : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): def __magic_name__ ( self : Dict ): UpperCAmelCase : Dict = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) UpperCAmelCase : Tuple = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(__A ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : int = model(**__A ) UpperCAmelCase : int = outputs.predicted_depth # verify the predicted depth UpperCAmelCase : Tuple = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape, __A ) UpperCAmelCase : Dict = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0, __A, atol=1E-4 ) )
99
0
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class A ( __UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[Any] = VideoToVideoSDPipeline lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} lowerCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} lowerCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} lowerCamelCase : str = False # No `output_type`. lowerCamelCase : Any = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def A__ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) lowercase__ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase__ = CLIPTextModel(lowerCamelCase__ ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def A__ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> str: '''simple docstring''' lowercase__ = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith("""mps""" ): lowercase__ = torch.manual_seed(lowerCamelCase__ ) else: lowercase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowercase__ = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def A__ ( self ) -> Tuple: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = VideoToVideoSDPipeline(**lowerCamelCase__ ) lowercase__ = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = """np""" lowercase__ = sd_pipe(**lowerCamelCase__ ).frames lowercase__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) lowercase__ = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ ( self ) -> Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase__ , expected_max_diff=5e-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def A__ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> Any: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class A ( unittest.TestCase ): def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames lowercase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase__ = torch.randn((1, 10, 3, 1_024, 576) , generator=lowerCamelCase__ ) lowercase__ = video.to("""cuda""" ) lowercase__ = """Spiderman is surfing""" lowercase__ = pipe(lowerCamelCase__ , video=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=3 , output_type="""pt""" ).frames lowercase__ = np.array([-1.0_45_89_84, -1.1_27_92_97, -0.9_66_30_86, -0.91_50_39_06, -0.75_09_76_56] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
164
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
164
1
"""simple docstring""" # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def lowerCAmelCase (__UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ): """simple docstring""" __UpperCamelCase =multiprocessing.Manager() __UpperCamelCase =manager.list() __UpperCamelCase =multiprocessing.Process(target=__UpperCamelCase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : str ): """simple docstring""" with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil __UpperCamelCase =shutil.rmtree __UpperCamelCase =os.rmdir __UpperCamelCase =os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: __UpperCamelCase ={} with swallow_io(): with time_limit(__UpperCamelCase ): exec(__UpperCamelCase , __UpperCamelCase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F"""failed: {e}""" ) # Needed for cleaning up. __UpperCamelCase =rmtree __UpperCamelCase =rmdir __UpperCamelCase =chdir @contextlib.contextmanager def lowerCAmelCase (__UpperCamelCase : Dict ): """simple docstring""" def signal_handler(__UpperCamelCase : Tuple , __UpperCamelCase : List[Any] ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __UpperCamelCase ) signal.signal(signal.SIGALRM , __UpperCamelCase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =WriteOnlyStringIO() with contextlib.redirect_stdout(__UpperCamelCase ): with contextlib.redirect_stderr(__UpperCamelCase ): with redirect_stdin(__UpperCamelCase ): yield @contextlib.contextmanager def lowerCAmelCase (): """simple docstring""" with tempfile.TemporaryDirectory() as dirname: with chdir(__UpperCamelCase ): yield dirname class _lowercase ( __a ): """simple docstring""" pass class _lowercase ( io.StringIO ): """simple docstring""" def UpperCAmelCase_ ( self : Optional[int] , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' raise OSError def UpperCAmelCase_ ( self : str , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' raise OSError def UpperCAmelCase_ ( self : List[str] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : List[str] ) -> Any: '''simple docstring''' raise OSError def UpperCAmelCase_ ( self : str , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' return False class _lowercase ( contextlib._RedirectStream ): # type: ignore """simple docstring""" lowercase__ = '''stdin''' @contextlib.contextmanager def lowerCAmelCase (__UpperCamelCase : List[str] ): """simple docstring""" if root == ".": yield return __UpperCamelCase =os.getcwd() os.chdir(__UpperCamelCase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : Any=None ): """simple docstring""" if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins __UpperCamelCase =None __UpperCamelCase =None import os __UpperCamelCase ='''1''' __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None import shutil __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None import subprocess __UpperCamelCase =None # type: ignore __UpperCamelCase =None import sys __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None
85
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCAmelCase (__UpperCamelCase : int ): """simple docstring""" __UpperCamelCase =FileLock(str(tmpdir / '''foo.lock''' ) ) __UpperCamelCase =FileLock(str(tmpdir / '''foo.lock''' ) ) __UpperCamelCase =0.0_1 with locka.acquire(): with pytest.raises(__UpperCamelCase ): __UpperCamelCase =time.time() locka.acquire(__UpperCamelCase ) assert time.time() - _start > timeout def lowerCAmelCase (__UpperCamelCase : Union[str, Any] ): """simple docstring""" __UpperCamelCase ='''a''' * 1_0_0_0 + '''.lock''' __UpperCamelCase =FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(__UpperCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 __UpperCamelCase =FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__UpperCamelCase ): locka.acquire(0 )
85
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml snake_case_ = logging.get_logger(__name__) def lowerCamelCase__ ( snake_case_ : bool , snake_case_ : bool ) -> Optional[Any]: def run_func(snake_case_ : Union[str, Any] ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : str , **snake_case_ : Any ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : List[str] , **snake_case_ : Any ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> ["tf.Tensor"]: __snake_case = random.Random() __snake_case = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : TensorFlowBenchmarkArguments A_ : PretrainedConfig A_ : str = "TensorFlow" @property def a (self : str ): """simple docstring""" return tf.__version__ def a (self : Optional[int] , a__ : str , a__ : int , a__ : int ): """simple docstring""" __snake_case = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __snake_case = self._prepare_inference_func(a__ , a__ , a__ ) return self._measure_speed(_inference ) def a (self : Dict , a__ : str , a__ : int , a__ : int ): """simple docstring""" __snake_case = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __snake_case = self._prepare_train_func(a__ , a__ , a__ ) return self._measure_speed(_train ) def a (self : List[str] , a__ : str , a__ : int , a__ : int ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , a__ ) __snake_case = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __snake_case = self._prepare_inference_func(a__ , a__ , a__ ) return self._measure_memory(_inference ) def a (self : Tuple , a__ : str , a__ : int , a__ : int ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , a__ ) __snake_case = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __snake_case = self._prepare_train_func(a__ , a__ , a__ ) return self._measure_memory(_train ) def a (self : Union[str, Any] , a__ : str , a__ : int , a__ : int ): """simple docstring""" __snake_case = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) __snake_case = ( hasattr(a__ , '''architectures''' ) and isinstance(config.architectures , a__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __snake_case = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model __snake_case = __import__('''transformers''' , fromlist=[model_class] ) __snake_case = getattr(a__ , a__ ) __snake_case = model_cls(a__ ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: __snake_case = TF_MODEL_MAPPING[config.__class__](a__ ) # encoder-decoder has vocab size saved differently __snake_case = config.vocab_size if hasattr(a__ , '''vocab_size''' ) else config.encoder.vocab_size __snake_case = random_input_ids(a__ , a__ , a__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(a__ , decoder_input_ids=a__ , training=a__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(a__ , training=a__ ) __snake_case = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def a (self : Union[str, Any] , a__ : str , a__ : int , a__ : int ): """simple docstring""" __snake_case = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) __snake_case = ( hasattr(a__ , '''architectures''' ) and isinstance(config.architectures , a__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __snake_case = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model __snake_case = __import__('''transformers''' , fromlist=[model_class] ) __snake_case = getattr(a__ , a__ ) __snake_case = model_cls(a__ ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: __snake_case = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a__ ) # encoder-decoder has vocab size saved differently __snake_case = config.vocab_size if hasattr(a__ , '''vocab_size''' ) else config.encoder.vocab_size __snake_case = random_input_ids(a__ , a__ , a__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): __snake_case = model(a__ , decoder_input_ids=a__ , labels=a__ , training=a__ )[0] __snake_case = tf.gradients(a__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): __snake_case = model(a__ , labels=a__ , training=a__ )[0] __snake_case = tf.gradients(a__ , model.trainable_variables ) return gradients __snake_case = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def a (self : List[Any] , a__ : Dict ): """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(a__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __snake_case = timeit.repeat( a__ , repeat=self.args.repeat , number=10 , ) return min(a__ ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def a (self : Dict , a__ : Callable[[], None] ): """simple docstring""" logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) __snake_case = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) __snake_case = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() __snake_case = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __snake_case = nvml.nvmlDeviceGetMemoryInfo(a__ ) __snake_case = meminfo.used __snake_case = Memory(a__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) __snake_case = None else: __snake_case = measure_peak_memory_cpu(a__ ) __snake_case = Memory(a__ ) if isinstance(a__ , a__ ) else memory_bytes if self.args.trace_memory_line_by_line: __snake_case = stop_memory_tracing(a__ ) if memory is None: __snake_case = summary.total else: __snake_case = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
24
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a__ : str =logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =["input_features", "attention_mask"] def __init__( self : Union[str, Any] , __A : Optional[int]=8_0 , __A : Tuple=1_6_0_0_0 , __A : Optional[Any]=8_0 , __A : Any=0.0 , __A : Any=True , __A : List[str]=True , __A : str=True , **__A : List[Any] , ): super().__init__(feature_size=__A , sampling_rate=__A , padding_value=__A , **__A ) __UpperCamelCase = num_mel_bins __UpperCamelCase = do_ceptral_normalize __UpperCamelCase = normalize_means __UpperCamelCase = normalize_vars __UpperCamelCase = True def _lowerCamelCase ( self : Union[str, Any] , __A : np.ndarray , ): __UpperCamelCase = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers __UpperCamelCase = torch.from_numpy(__A ).unsqueeze(0 ) __UpperCamelCase = ta_kaldi.fbank(__A , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _lowerCamelCase ( __A : np.ndarray , __A : int , __A : Optional[bool] = True , __A : Optional[bool] = True , __A : float = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: __UpperCamelCase = x[:input_length].mean(axis=0 ) __UpperCamelCase = np.subtract(__A , __A ) if normalize_vars: __UpperCamelCase = x[:input_length].std(axis=0 ) __UpperCamelCase = np.divide(__A , __A ) if input_length < x.shape[0]: __UpperCamelCase = padding_value # make sure array is in float32 __UpperCamelCase = x.astype(np.floataa ) return x def _lowerCamelCase ( self : int , __A : List[np.ndarray] , __A : Optional[np.ndarray] = None ): __UpperCamelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__A , __A , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__A , __A ) ] def __call__( self : List[Any] , __A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __A : Union[bool, str, PaddingStrategy] = False , __A : Optional[int] = None , __A : bool = False , __A : Optional[int] = None , __A : Optional[Union[str, TensorType]] = None , __A : Optional[int] = None , __A : Optional[bool] = None , **__A : Dict , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __UpperCamelCase = isinstance(__A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __UpperCamelCase = is_batched_numpy or ( isinstance(__A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase = [np.asarray(__A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A , np.ndarray ): __UpperCamelCase = np.asarray(__A , dtype=np.floataa ) elif isinstance(__A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase = [raw_speech] # extract fbank features __UpperCamelCase = [self._extract_fbank_features(__A ) for waveform in raw_speech] # convert into correct format for padding __UpperCamelCase = BatchFeature({'input_features': features} ) __UpperCamelCase = self.pad( __A , padding=__A , max_length=__A , truncation=__A , pad_to_multiple_of=__A , return_attention_mask=__A , **__A , ) # make sure list is in array format __UpperCamelCase = padded_inputs.get('input_features' ) if isinstance(input_features[0] , __A ): __UpperCamelCase = [np.asarray(__A , dtype=np.floataa ) for feature in input_features] __UpperCamelCase = padded_inputs.get('attention_mask' ) if attention_mask is not None: __UpperCamelCase = [np.asarray(__A , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __UpperCamelCase = ( np.array(__A , dtype=np.intaa ) if self._get_padding_strategies(__A , max_length=__A ) is not PaddingStrategy.DO_NOT_PAD else None ) __UpperCamelCase = self.normalize( padded_inputs['input_features'] , attention_mask=__A ) if return_tensors is not None: __UpperCamelCase = padded_inputs.convert_to_tensors(__A ) return padded_inputs
53
0
"""simple docstring""" import collections import os import re from pathlib import Path UpperCAmelCase__ = """src/transformers""" # Matches is_xxx_available() UpperCAmelCase__ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase__ = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase__ = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase__ = re.compile(r"""^\s*try:""") # Catches a line with else: UpperCAmelCase__ = re.compile(r"""^\s*else:""") def __UpperCAmelCase ( lowercase ): """simple docstring""" if _re_test_backend.search(lowercase ) is None: return None _UpperCAmelCase = [b[0] for b in _re_backend.findall(lowercase )] backends.sort() return "_and_".join(lowercase ) def __UpperCAmelCase ( lowercase ): """simple docstring""" with open(lowercase ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = 0 while line_index < len(lowercase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase ): return None # First grab the objects without a specific backend in _import_structure _UpperCAmelCase = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: _UpperCAmelCase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase ): _UpperCAmelCase = _re_one_line_import_struct.search(lowercase ).groups()[0] _UpperCAmelCase = re.findall(R"""\[([^\]]+)\]""" ,lowercase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue _UpperCAmelCase = _re_import_struct_key_value.search(lowercase ) if single_line_import_search is not None: _UpperCAmelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowercase ) > 0] objects.extend(lowercase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 _UpperCAmelCase = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. _UpperCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): _UpperCAmelCase = lines[line_index] if _re_import_struct_add_one.search(lowercase ) is not None: objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase ) is not None: _UpperCAmelCase = _re_import_struct_add_many.search(lowercase ).groups()[0].split(""", """ ) _UpperCAmelCase = [obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_between_brackets.search(lowercase ) is not None: _UpperCAmelCase = _re_between_brackets.search(lowercase ).groups()[0].split(""", """ ) _UpperCAmelCase = [obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_quote_object.search(lowercase ) is not None: objects.append(_re_quote_object.search(lowercase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 _UpperCAmelCase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _UpperCAmelCase = [] while ( line_index < len(lowercase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 _UpperCAmelCase = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowercase ): # If the line is an if is_backend_available, we grab all objects associated. _UpperCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 _UpperCAmelCase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" def find_duplicates(lowercase ): return [k for k, v in collections.Counter(lowercase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _UpperCAmelCase = [] for key in import_dict_objects.keys(): _UpperCAmelCase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _UpperCAmelCase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _UpperCAmelCase = """base imports""" if key == """none""" else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = [] for root, _, files in os.walk(lowercase ): if "__init__.py" in files: _UpperCAmelCase = os.path.join(lowercase ,"""__init__.py""" ) _UpperCAmelCase = parse_init(lowercase ) if objects is not None: _UpperCAmelCase = analyze_results(*lowercase ) if len(lowercase ) > 0: _UpperCAmelCase = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(lowercase ) ) if len(lowercase ) > 0: raise ValueError("""\n\n""".join(lowercase ) ) def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = [] for path, directories, files in os.walk(lowercase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowercase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase ) / folder).glob("""*.py""" ) ) ) == 0: continue _UpperCAmelCase = str((Path(lowercase ) / folder).relative_to(lowercase ) ) _UpperCAmelCase = short_path.replace(os.path.sep ,""".""" ) submodules.append(lowercase ) for fname in files: if fname == "__init__.py": continue _UpperCAmelCase = str((Path(lowercase ) / fname).relative_to(lowercase ) ) _UpperCAmelCase = short_path.replace(""".py""" ,"""""" ).replace(os.path.sep ,""".""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowercase ) return submodules UpperCAmelCase__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def __UpperCAmelCase ( ): """simple docstring""" # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _UpperCAmelCase = direct_transformers_import(lowercase ) _UpperCAmelCase = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowercase ,"""__init__.py""" ) ,"""r""" ) as f: _UpperCAmelCase = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" ,lowercase ) ) ) _UpperCAmelCase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowercase ) > 0: _UpperCAmelCase = """\n""".join(f'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" f'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
30
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class a ( lowerCAmelCase_ ): _snake_case : int = 'van' def __init__( self : Any , __lowerCAmelCase : Tuple=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Tuple=[7, 3, 3, 3] , __lowerCAmelCase : Dict=[4, 2, 2, 2] , __lowerCAmelCase : Optional[Any]=[64, 128, 320, 512] , __lowerCAmelCase : Optional[int]=[3, 3, 12, 3] , __lowerCAmelCase : Dict=[8, 8, 4, 4] , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : List[str]=1e-6 , __lowerCAmelCase : Optional[int]=1e-2 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[str]=0.0 , **__lowerCAmelCase : Any , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = mlp_ratios _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = dropout_rate
30
1
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _a = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. _a = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _a = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _a = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _a = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _a = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase__(__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' ,__snake_case ) return [m.group(0 ) for m in matches] def lowerCAmelCase__() -> Tuple: '''simple docstring''' lowerCamelCase__ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCamelCase__ = { config.replace('''Config''' ,'''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. lowerCamelCase__ = collections.defaultdict(__snake_case ) lowerCamelCase__ = collections.defaultdict(__snake_case ) lowerCamelCase__ = collections.defaultdict(__snake_case ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__snake_case ): lowerCamelCase__ = None if _re_tf_models.match(__snake_case ) is not None: lowerCamelCase__ = tf_models lowerCamelCase__ = _re_tf_models.match(__snake_case ).groups()[0] elif _re_flax_models.match(__snake_case ) is not None: lowerCamelCase__ = flax_models lowerCamelCase__ = _re_flax_models.match(__snake_case ).groups()[0] elif _re_pt_models.match(__snake_case ) is not None: lowerCamelCase__ = pt_models lowerCamelCase__ = _re_pt_models.match(__snake_case ).groups()[0] if lookup_dict is not None: while len(__snake_case ) > 0: if attr_name in model_prefix_to_model_type: lowerCamelCase__ = True break # Try again after removing the last word in the name lowerCamelCase__ = ''''''.join(camel_case_split(__snake_case )[:-1] ) lowerCamelCase__ = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) lowerCamelCase__ = list(__snake_case ) all_models.sort() lowerCamelCase__ = {'''model_type''': all_models} lowerCamelCase__ = [pt_models[t] for t in all_models] lowerCamelCase__ = [tf_models[t] for t in all_models] lowerCamelCase__ = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure lowerCamelCase__ = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: lowerCamelCase__ = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: lowerCamelCase__ = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: lowerCamelCase__ = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. lowerCamelCase__ = '''AutoTokenizer''' lowerCamelCase__ = [processors[t] for t in all_models] return pd.DataFrame(__snake_case ) def lowerCAmelCase__(__snake_case ) -> Tuple: '''simple docstring''' lowerCamelCase__ = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: lowerCamelCase__ = [model_mapping, F'TF_{model_mapping}', F'FLAX_{model_mapping}'] lowerCamelCase__ = [auto_class, F'TF_{auto_class}', F'Flax_{auto_class}'] # Loop through all three frameworks for module, cls, mapping in zip(__snake_case ,__snake_case ,__snake_case ): # The type of pipeline may not exist in this framework if not hasattr(__snake_case ,__snake_case ): continue # First extract all model_names lowerCamelCase__ = [] for name in getattr(__snake_case ,__snake_case ).values(): if isinstance(__snake_case ,__snake_case ): model_names.append(__snake_case ) else: model_names.extend(list(__snake_case ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase__(__snake_case ,__snake_case ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = get_frameworks_table() lowerCamelCase__ = Dataset.from_pandas(__snake_case ) lowerCamelCase__ = hf_hub_download( '''huggingface/transformers-metadata''' ,'''pipeline_tags.json''' ,repo_type='''dataset''' ,token=__snake_case ) lowerCamelCase__ = Dataset.from_json(__snake_case ) lowerCamelCase__ = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(__snake_case ) ) } lowerCamelCase__ = update_pipeline_and_auto_class_table(__snake_case ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. lowerCamelCase__ = sorted(table.keys() ) lowerCamelCase__ = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) lowerCamelCase__ = Dataset.from_pandas(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__snake_case ,'''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(__snake_case ,'''pipeline_tags.json''' ) ) if commit_sha is not None: lowerCamelCase__ = ( F'Update with commit {commit_sha}\n\nSee: ' F'https://github.com/huggingface/transformers/commit/{commit_sha}' ) else: lowerCamelCase__ = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' ,folder_path=__snake_case ,repo_type='''dataset''' ,token=__snake_case ,commit_message=__snake_case ,) def lowerCAmelCase__() -> Dict: '''simple docstring''' lowerCamelCase__ = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} lowerCamelCase__ = transformers_module.pipelines.SUPPORTED_TASKS lowerCamelCase__ = [] for key in pipeline_tasks: if key not in in_table: lowerCamelCase__ = pipeline_tasks[key]['''pt'''] if isinstance(__snake_case ,(list, tuple) ): lowerCamelCase__ = model[0] lowerCamelCase__ = model.__name__ if model not in in_table.values(): missing.append(__snake_case ) if len(__snake_case ) > 0: lowerCamelCase__ = ''', '''.join(__snake_case ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F'`utils/update_metadata.py`: {msg}. Please add them!' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") _a = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
209
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case = 16000 ) -> Any: '''simple docstring''' lowerCamelCase__ = int(round(sample_rate * max_length ) ) if len(__snake_case ) <= sample_length: return wav lowerCamelCase__ = randint(0 ,len(__snake_case ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __A : '''simple docstring''' lowerCAmelCase_ = field(default=lowerCAmelCase , metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """A file containing the training audio paths and labels."""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """A file containing the validation audio paths and labels."""} ) lowerCAmelCase_ = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) lowerCAmelCase_ = field( default="""validation""" , metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) lowerCAmelCase_ = field( default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} , ) lowerCAmelCase_ = field( default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) lowerCAmelCase_ = field( default=20 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , ) @dataclass class __A : '''simple docstring''' lowerCAmelCase_ = field( default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""} ) lowerCAmelCase_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , __lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def lowerCAmelCase__() -> Optional[int]: '''simple docstring''' lowerCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' ,__snake_case ,__snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ = training_args.get_process_log_level() logger.setLevel(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowerCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. lowerCamelCase__ = DatasetDict() lowerCamelCase__ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.train_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCamelCase__ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.eval_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' '''Make sure to set `--label_column_name` to the correct text column - one of ''' F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowerCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path ,return_attention_mask=model_args.attention_mask ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowerCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name ,datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowerCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(__snake_case ): lowerCamelCase__ = [] for audio in batch[data_args.audio_column_name]: lowerCamelCase__ = random_subsample( audio['''array'''] ,max_length=data_args.max_length_seconds ,sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__snake_case ) lowerCamelCase__ = feature_extractor(__snake_case ,sampling_rate=feature_extractor.sampling_rate ) lowerCamelCase__ = {model_input_name: inputs.get(__snake_case )} lowerCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__snake_case ): lowerCamelCase__ = [audio['''array'''] for audio in batch[data_args.audio_column_name]] lowerCamelCase__ = feature_extractor(__snake_case ,sampling_rate=feature_extractor.sampling_rate ) lowerCamelCase__ = {model_input_name: inputs.get(__snake_case )} lowerCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowerCamelCase__ = raw_datasets['''train'''].features[data_args.label_column_name].names lowerCamelCase__ , lowerCamelCase__ = {}, {} for i, label in enumerate(__snake_case ): lowerCamelCase__ = str(__snake_case ) lowerCamelCase__ = label # Load the accuracy metric from the datasets package lowerCamelCase__ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__snake_case ): lowerCamelCase__ = np.argmax(eval_pred.predictions ,axis=1 ) return metric.compute(predictions=__snake_case ,references=eval_pred.label_ids ) lowerCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(__snake_case ) ,labelaid=__snake_case ,idalabel=__snake_case ,finetuning_task='''audio-classification''' ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=__snake_case ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase__ = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__snake_case ,output_all_columns=__snake_case ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase__ = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__snake_case ,output_all_columns=__snake_case ) # Initialize our trainer lowerCamelCase__ = Trainer( model=__snake_case ,args=__snake_case ,train_dataset=raw_datasets['''train'''] if training_args.do_train else None ,eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None ,compute_metrics=__snake_case ,tokenizer=__snake_case ,) # Training if training_args.do_train: lowerCamelCase__ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ = last_checkpoint lowerCamelCase__ = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() trainer.log_metrics('''train''' ,train_result.metrics ) trainer.save_metrics('''train''' ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase__ = trainer.evaluate() trainer.log_metrics('''eval''' ,__snake_case ) trainer.save_metrics('''eval''' ,__snake_case ) # Write model card and (optionally) push to hub lowerCamelCase__ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**__snake_case ) else: trainer.create_model_card(**__snake_case ) if __name__ == "__main__": main()
209
1
import os import pytest from transformers.dynamic_module_utils import get_imports _A = "\nimport os\n" _A = "\ndef foo():\n import os\n return False\n" _A = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" _A = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" _A = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" _A = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" _A = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" _A = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" _A = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" _A = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" _A = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" , UpperCAmelCase__ ) def lowercase_ ( A__ , A__ ) -> Union[str, Any]: """simple docstring""" snake_case = os.path.join(UpperCAmelCase__ , "test_file.py" ) with open(UpperCAmelCase__ , "w" ) as _tmp_file: _tmp_file.write(UpperCAmelCase__ ) snake_case = get_imports(UpperCAmelCase__ ) assert parsed_imports == ["os"]
371
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( A_ ): UpperCAmelCase__ : str = "realm" def __init__(self : Optional[int] , _A : Optional[Any]=3_0_5_2_2 , _A : Tuple=7_6_8 , _A : List[str]=1_2_8 , _A : Optional[Any]=1_2 , _A : Dict=1_2 , _A : Tuple=8 , _A : Dict=3_0_7_2 , _A : Union[str, Any]="gelu_new" , _A : Any=0.1 , _A : int=0.1 , _A : Union[str, Any]=5_1_2 , _A : List[str]=2 , _A : Any=0.02 , _A : int=1E-12 , _A : Tuple=2_5_6 , _A : Optional[Any]=1_0 , _A : Any=1E-3 , _A : int=5 , _A : int=3_2_0 , _A : Dict=1_3_3_5_3_7_1_8 , _A : Any=5_0_0_0 , _A : Union[str, Any]=1 , _A : Dict=0 , _A : int=2 , **_A : Union[str, Any] , ) -> Optional[Any]: super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) # Common config snake_case = vocab_size snake_case = max_position_embeddings snake_case = hidden_size snake_case = retriever_proj_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = num_candidates snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = initializer_range snake_case = type_vocab_size snake_case = layer_norm_eps # Reader config snake_case = span_hidden_size snake_case = max_span_width snake_case = reader_layer_norm_eps snake_case = reader_beam_size snake_case = reader_seq_len # Retrieval config snake_case = num_block_records snake_case = searcher_beam_size
137
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class A__ : """simple docstring""" def __init__( self , lowercase = None) -> Dict: '''simple docstring''' if components is None: a__ : int = [] a__ : Any = list(lowerCAmelCase_) def __len__( self) -> Union[str, Any]: '''simple docstring''' return len(self.__components) def __str__( self) -> Dict: '''simple docstring''' return "(" + ",".join(map(lowerCAmelCase_ , self.__components)) + ")" def __add__( self , lowercase) -> Dict: '''simple docstring''' a__ : Any = len(self) if size == len(lowerCAmelCase_): a__ : Union[str, Any] = [self.__components[i] + other.component(lowerCAmelCase_) for i in range(lowerCAmelCase_)] return Vector(lowerCAmelCase_) else: raise Exception('must have the same size') def __sub__( self , lowercase) -> Any: '''simple docstring''' a__ : Optional[int] = len(self) if size == len(lowerCAmelCase_): a__ : Optional[Any] = [self.__components[i] - other.component(lowerCAmelCase_) for i in range(lowerCAmelCase_)] return Vector(lowerCAmelCase_) else: # error case raise Exception('must have the same size') @overload def __mul__( self , lowercase) -> List[str]: '''simple docstring''' ... @overload def __mul__( self , lowercase) -> Optional[Any]: '''simple docstring''' ... def __mul__( self , lowercase) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , (float, int)): a__ : int = [c * other for c in self.__components] return Vector(lowerCAmelCase_) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and len(self) == len(lowerCAmelCase_): a__ : Optional[Any] = len(self) a__ : str = [self.__components[i] * other.component(lowerCAmelCase_) for i in range(lowerCAmelCase_)] return sum(lowerCAmelCase_) else: # error case raise Exception('invalid operand!') def __lowercase ( self) -> Optional[Any]: '''simple docstring''' return Vector(self.__components) def __lowercase ( self , lowercase) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_) and -len(self.__components) <= i < len(self.__components): return self.__components[i] else: raise Exception('index out of range') def __lowercase ( self , lowercase , lowercase) -> Dict: '''simple docstring''' assert -len(self.__components) <= pos < len(self.__components) a__ : Any = value def __lowercase ( self) -> str: '''simple docstring''' if len(self.__components) == 0: raise Exception('Vector is empty') a__ : Optional[int] = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase_)) def __lowercase ( self , lowercase , lowercase = False) -> Dict: '''simple docstring''' a__ : Any = self * other a__ : str = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den)) else: return math.acos(num / den) def A_ ( A__ ) -> Vector: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) return Vector([0] * dimension ) def A_ ( A__ , A__ ) -> Vector: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (isinstance(__lowerCAmelCase , __lowerCAmelCase )) a__ : str = [0] * dimension a__ : Optional[Any] = 1 return Vector(__lowerCAmelCase ) def A_ ( A__ , A__ , A__ ) -> Vector: assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ) and (isinstance(__lowerCAmelCase , (int, float) )) ) return x * scalar + y def A_ ( A__ , A__ , A__ ) -> Vector: random.seed(__lowerCAmelCase ) a__ : int = [random.randint(__lowerCAmelCase , __lowerCAmelCase ) for _ in range(__lowerCAmelCase )] return Vector(__lowerCAmelCase ) class A__ : """simple docstring""" def __init__( self , lowercase , lowercase , lowercase) -> int: '''simple docstring''' a__ : Any = matrix a__ : List[str] = w a__ : Any = h def __str__( self) -> Tuple: '''simple docstring''' a__ : Any = '' for i in range(self.__height): ans += "|" for j in range(self.__width): if j < self.__width - 1: ans += str(self.__matrix[i][j]) + "," else: ans += str(self.__matrix[i][j]) + "|\n" return ans def __add__( self , lowercase) -> Optional[int]: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): a__ : str = [] for i in range(self.__height): a__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase_ , lowerCAmelCase_) for j in range(self.__width) ] matrix.append(lowerCAmelCase_) return Matrix(lowerCAmelCase_ , self.__width , self.__height) else: raise Exception('matrix must have the same dimension!') def __sub__( self , lowercase) -> List[Any]: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): a__ : str = [] for i in range(self.__height): a__ : Tuple = [ self.__matrix[i][j] - other.component(lowerCAmelCase_ , lowerCAmelCase_) for j in range(self.__width) ] matrix.append(lowerCAmelCase_) return Matrix(lowerCAmelCase_ , self.__width , self.__height) else: raise Exception('matrices must have the same dimension!') @overload def __mul__( self , lowercase) -> Tuple: '''simple docstring''' ... @overload def __mul__( self , lowercase) -> Union[str, Any]: '''simple docstring''' ... def __mul__( self , lowercase) -> str: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_): # matrix-vector if len(lowerCAmelCase_) == self.__width: a__ : Optional[int] = zero_vector(self.__height) for i in range(self.__height): a__ : str = [ self.__matrix[i][j] * other.component(lowerCAmelCase_) for j in range(self.__width) ] ans.change_component(lowerCAmelCase_ , sum(lowerCAmelCase_)) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!') elif isinstance(lowerCAmelCase_ , (int, float)): # matrix-scalar a__ : Union[str, Any] = [ [self.__matrix[i][j] * other for j in range(self.__width)] for i in range(self.__height) ] return Matrix(lowerCAmelCase_ , self.__width , self.__height) return None def __lowercase ( self) -> Tuple: '''simple docstring''' return self.__height def __lowercase ( self) -> Tuple: '''simple docstring''' return self.__width def __lowercase ( self , lowercase , lowercase) -> int: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds') def __lowercase ( self , lowercase , lowercase , lowercase) -> Tuple: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: a__ : List[str] = value else: raise Exception('change_component: indices out of bounds') def __lowercase ( self , lowercase , lowercase) -> List[Any]: '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square') a__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase_)): a__ : Union[str, Any] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase_ , self.__width - 1 , self.__height - 1).determinant() def __lowercase ( self , lowercase , lowercase) -> int: '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square') if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase_ , lowerCAmelCase_) else: raise Exception('Indices out of bounds') def __lowercase ( self) -> Tuple: '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square') if self.__height < 1: raise Exception('Matrix has no element') elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: a__ : Optional[int] = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase_) for y in range(self.__width) ] return sum(lowerCAmelCase_) def A_ ( A__ ) -> Matrix: a__ : Optional[int] = [[0] * n for _ in range(__lowerCAmelCase )] return Matrix(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A_ ( A__ , A__ , A__ , A__ ) -> Matrix: random.seed(__lowerCAmelCase ) a__ : List[str] = [ [random.randint(__lowerCAmelCase , __lowerCAmelCase ) for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase ) ] return Matrix(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
99
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase : Union[str, Any] = TypeVar("T") UpperCAmelCase : Dict = Union[List[T], Tuple[T, ...]] UpperCAmelCase : int = Union[T, List[T], Dict[str, T]] UpperCAmelCase : Tuple = Union[str, bytes, os.PathLike]
136
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params __snake_case =[ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a_ ( lowerCamelCase : List[str] ): for pegasus_name, hf_name in PATTERNS: lowerCAmelCase = k.replace(lowerCamelCase , lowerCamelCase ) return k def a_ ( lowerCamelCase : dict , lowerCamelCase : dict ): lowerCAmelCase = DEFAULTS.copy() cfg_kwargs.update(lowerCamelCase ) lowerCAmelCase = PegasusConfig(**lowerCamelCase ) lowerCAmelCase = PegasusForConditionalGeneration(lowerCamelCase ) lowerCAmelCase = torch_model.model.state_dict() lowerCAmelCase = {} for k, v in tf_weights.items(): lowerCAmelCase = rename_state_dict_key(lowerCamelCase ) if new_k not in sd: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: lowerCAmelCase = v.T lowerCAmelCase = torch.tensor(lowerCamelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected lowerCAmelCase = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) lowerCAmelCase = mapping['shared.weight'] lowerCAmelCase = mapping['shared.weight'] lowerCAmelCase = {k: torch.zeros_like(lowerCamelCase ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**lowerCamelCase ) lowerCAmelCase , lowerCAmelCase = torch_model.model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) lowerCAmelCase = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def a_ ( lowerCamelCase : int="./ckpt/aeslc/model.ckpt-32000" ): lowerCAmelCase = tf.train.list_variables(lowerCamelCase ) lowerCAmelCase = {} lowerCAmelCase = ['Adafactor', 'global_step'] for name, shape in tqdm(lowerCamelCase , desc='converting tf checkpoint to dict' ): lowerCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue lowerCAmelCase = tf.train.load_variable(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = array return tf_weights def a_ ( lowerCamelCase : str , lowerCamelCase : str ): # save tokenizer first lowerCAmelCase = Path(lowerCamelCase ).parent.name lowerCAmelCase = task_specific_params[f'''summarization_{dataset}''']['max_position_embeddings'] lowerCAmelCase = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=lowerCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(lowerCamelCase ) # convert model lowerCAmelCase = get_tf_weights_as_numpy(lowerCamelCase ) lowerCAmelCase = task_specific_params[f'''summarization_{dataset}'''] if dataset == "large": lowerCAmelCase = task_specific_params lowerCAmelCase = convert_pegasus(lowerCamelCase , lowerCamelCase ) torch_model.save_pretrained(lowerCamelCase ) lowerCAmelCase = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(lowerCamelCase , Path(lowerCamelCase ) / 'pytorch_model.bin' ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") __snake_case =parser.parse_args() if args.save_dir is None: __snake_case =Path(args.tf_ckpt_path).parent.name __snake_case =os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
55
'''simple docstring''' from __future__ import annotations def a_ ( lowerCamelCase : list[float] , lowerCamelCase : list[float] ): lowerCAmelCase = sorted(numsa + numsa ) lowerCAmelCase , lowerCAmelCase = divmod(len(lowerCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __snake_case =[float(x) for x in input("""Enter the elements of first array: """).split()] __snake_case =[float(x) for x in input("""Enter the elements of second array: """).split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
55
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = """▁""" lowercase_ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } lowercase_ = { """google/pegasus-xsum""": 512, } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = PegasusTokenizer UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , A=None , A=None , A="<pad>" , A="</s>" , A="<unk>" , A="<mask_2>" , A="<mask_1>" , A=None , A=103 , **A , ) -> List[Any]: _SCREAMING_SNAKE_CASE = offset if additional_special_tokens is not None: if not isinstance(A , A ): raise TypeError( f'additional_special_tokens should be of type {type(A )}, but is' f' {type(A )}' ) _SCREAMING_SNAKE_CASE = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(A ) , self.offset - 1 ) ] if len(set(A ) ) != len(A ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) _SCREAMING_SNAKE_CASE = additional_special_tokens_extended else: _SCREAMING_SNAKE_CASE = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] super().__init__( A , tokenizer_file=A , pad_token=A , eos_token=A , unk_token=A , mask_token=A , mask_token_sent=A , offset=A , additional_special_tokens=A , **A , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def snake_case_( self , A ) -> Any: _SCREAMING_SNAKE_CASE = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}' ) return [1 if x in all_special_ids else 0 for x in seq] def snake_case_( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(A ) elif token_ids_a is None: return self._special_token_mask(A ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def snake_case_( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def snake_case_( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _SCREAMING_SNAKE_CASE = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
58
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
100
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/biogpt""": """https://huggingface.co/microsoft/biogpt/resolve/main/config.json""", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'biogpt' def __init__( self , __a=4_23_84 , __a=10_24 , __a=24 , __a=16 , __a=40_96 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10_24 , __a=0.02 , __a=1e-12 , __a=True , __a=True , __a=0.0 , __a=0.0 , __a=1 , __a=0 , __a=2 , **__a , ) -> Dict: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = scale_embedding _UpperCamelCase = use_cache _UpperCamelCase = layerdrop _UpperCamelCase = activation_dropout super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a)
100
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _UpperCamelCase ( UpperCamelCase__ ): def __init__( self :Optional[Any] , lowerCamelCase :Optional[Any] , lowerCamelCase :Optional[Any] ) -> Dict: UpperCAmelCase__ = params UpperCAmelCase__ = np.array(lowerCAmelCase__ ) UpperCAmelCase__ = np.array([len(lowerCAmelCase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self :List[Any] , lowerCamelCase :List[Any] ) -> str: return (self.token_ids[index], self.lengths[index]) def __len__( self :Dict ) -> int: return len(self.lengths ) def UpperCAmelCase_ ( self :List[Any] ) -> Any: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCAmelCase_ ( self :List[str] ) -> List[str]: UpperCAmelCase__ = self.params.max_model_input_size UpperCAmelCase__ = self.lengths > max_len logger.info(f'''Splitting {sum(lowerCAmelCase__ )} too long sequences.''' ) def divide_chunks(lowerCamelCase :Dict , lowerCamelCase :str ): return [l[i : i + n] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )] UpperCAmelCase__ = [] UpperCAmelCase__ = [] if self.params.mlm: UpperCAmelCase__ = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: UpperCAmelCase__ = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: UpperCAmelCase__ = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: UpperCAmelCase__ = np.insert(lowerCAmelCase__ , 0 , lowerCAmelCase__ ) if sub_s[-1] != sep_id: UpperCAmelCase__ = np.insert(lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowerCAmelCase__ ) new_tok_ids.extend(lowerCAmelCase__ ) new_lengths.extend([len(lowerCAmelCase__ ) for l in sub_seqs] ) UpperCAmelCase__ = np.array(lowerCAmelCase__ ) UpperCAmelCase__ = np.array(lowerCAmelCase__ ) def UpperCAmelCase_ ( self :str ) -> Optional[int]: UpperCAmelCase__ = len(self ) UpperCAmelCase__ = self.lengths > 11 UpperCAmelCase__ = self.token_ids[indices] UpperCAmelCase__ = self.lengths[indices] UpperCAmelCase__ = len(self ) logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def UpperCAmelCase_ ( self :List[str] ) -> List[Any]: if "unk_token" not in self.params.special_tok_ids: return else: UpperCAmelCase__ = self.params.special_tok_ids["unk_token"] UpperCAmelCase__ = len(self ) UpperCAmelCase__ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) UpperCAmelCase__ = (unk_occs / self.lengths) < 0.5 UpperCAmelCase__ = self.token_ids[indices] UpperCAmelCase__ = self.lengths[indices] UpperCAmelCase__ = len(self ) logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def UpperCAmelCase_ ( self :Union[str, Any] ) -> Tuple: if not self.params.is_master: return logger.info(f'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :Optional[int] ) -> List[Any]: UpperCAmelCase__ = [t[0] for t in batch] UpperCAmelCase__ = [t[1] for t in batch] assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) # Max for paddings UpperCAmelCase__ = max(lowerCAmelCase__ ) # Pad token ids if self.params.mlm: UpperCAmelCase__ = self.params.special_tok_ids["pad_token"] else: UpperCAmelCase__ = self.params.special_tok_ids["unk_token"] UpperCAmelCase__ = [list(t.astype(lowerCAmelCase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowerCAmelCase__ )) for t in token_ids] assert len(tk_ ) == len(lowerCAmelCase__ ) assert all(len(lowerCAmelCase__ ) == max_seq_len_ for t in tk_ ) UpperCAmelCase__ = torch.tensor(tk_ ) # (bs, max_seq_len_) UpperCAmelCase__ = torch.tensor(lowerCAmelCase__ ) # (bs) return tk_t, lg_t
169
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Any =tempfile.mkdtemp() # fmt: off a__ : List[Any] =["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a__ : str =dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) a__ : List[Any] =["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] a__ : Optional[int] ={"unk_token": "<unk>"} a__ : Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : Tuple =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) a__ : Optional[Any] ={ "do_resize": True, "size": 2_0, "do_center_crop": True, "crop_size": 1_8, "do_normalize": True, "image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], "image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } a__ : Dict =os.path.join(self.tmpdirname , lowerCAmelCase__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowercase ( self , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowercase ( self , **lowerCAmelCase__ ) -> Any: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Optional[Any] =[np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] a__ : List[Any] =[Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Union[str, Any] =self.get_tokenizer() a__ : int =self.get_rust_tokenizer() a__ : List[str] =self.get_image_processor() a__ : Dict =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) a__ : Optional[Any] =CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase__ ) a__ : Tuple =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) a__ : Dict =CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase__ ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : List[str] =CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a__ : str =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) a__ : int =self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) a__ : Optional[Any] =CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : str =self.get_image_processor() a__ : Optional[int] =self.get_tokenizer() a__ : Dict =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : str =self.prepare_image_inputs() a__ : Any =image_processor(lowerCAmelCase__ , return_tensors="np" ) a__ : Optional[int] =processor(images=lowerCAmelCase__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] =self.get_image_processor() a__ : List[Any] =self.get_tokenizer() a__ : Optional[int] =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Union[str, Any] ="lower newer" a__ : List[str] =processor(text=lowerCAmelCase__ ) a__ : str =tokenizer(lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Any =self.get_image_processor() a__ : Dict =self.get_tokenizer() a__ : Union[str, Any] =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Dict ="lower newer" a__ : int =self.prepare_image_inputs() a__ : Any =processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def _lowercase ( self ) -> str: '''simple docstring''' a__ : Union[str, Any] =self.get_image_processor() a__ : Optional[Any] =self.get_tokenizer() a__ : str =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : int =self.prepare_image_inputs() a__ : Union[str, Any] =self.prepare_image_inputs() a__ : Tuple =processor(images=lowerCAmelCase__ , visual_prompt=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "conditional_pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[int] =self.get_image_processor() a__ : Any =self.get_tokenizer() a__ : Tuple =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Dict =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ : Optional[Any] =processor.batch_decode(lowerCAmelCase__ ) a__ : Dict =tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
95
0
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowerCAmelCase_( *lowercase_ : Tuple , lowercase_ : Tuple = None , lowercase_ : Tuple=True , lowercase_ : List[str]=2 ) -> List[Any]: from .. import __version__ _lowerCamelCase = take_from _lowerCamelCase = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'""" F""" version {__version__} is >= {version_name}""" ) _lowerCamelCase = None if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE__ ),) _lowerCamelCase = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): values += (getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ),) _lowerCamelCase = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _lowerCamelCase = F"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _lowerCamelCase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , SCREAMING_SNAKE_CASE__ , stacklevel=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: _lowerCamelCase = inspect.getouterframes(inspect.currentframe() )[1] _lowerCamelCase = call_frame.filename _lowerCamelCase = call_frame.lineno _lowerCamelCase = call_frame.function _lowerCamelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return elif len(SCREAMING_SNAKE_CASE__ ) == 1: return values[0] return values
366
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=3 , lowerCamelCase__=3_2 , lowerCamelCase__=3 , lowerCamelCase__=1_0 , lowerCamelCase__=[1_0, 2_0, 3_0, 4_0] , lowerCamelCase__=[1, 1, 2, 1] , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=3 , lowerCamelCase__=None , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = num_channels _lowerCamelCase = embeddings_size _lowerCamelCase = hidden_sizes _lowerCamelCase = depths _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_act _lowerCamelCase = num_labels _lowerCamelCase = scope _lowerCamelCase = len(lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = self.get_config() return config, pixel_values def snake_case__ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = FlaxRegNetModel(config=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = FlaxRegNetForImageClassification(config=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class lowerCamelCase_( A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowercase__ : List[Any] = False lowercase__ : Tuple = False lowercase__ : Union[str, Any] = False def snake_case__ ( self ): _lowerCamelCase = FlaxRegNetModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def snake_case__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self ): return def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def snake_case__ ( self ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def snake_case__ ( self ): pass def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(lowerCamelCase__ ) _lowerCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def snake_case__ ( self ): def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = model_class(lowerCamelCase__ ) _lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) _lowerCamelCase = model_class(lowerCamelCase__ ) @jax.jit def model_jitted(lowerCamelCase__ , **lowerCamelCase__ ): return model(pixel_values=lowerCamelCase__ , **lowerCamelCase__ ) with self.subTest('''JIT Enabled''' ): _lowerCamelCase = model_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _lowerCamelCase = model_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_( ) -> Optional[Any]: _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self ): return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def snake_case__ ( self ): _lowerCamelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='''np''' ) _lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits _lowerCamelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _lowerCamelCase = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
73
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class _lowerCamelCase( _a ): lowercase_ : Tuple = """xlm-roberta""" def __init__( self, lowerCamelCase=3_05_22, lowerCamelCase=7_68, lowerCamelCase=12, lowerCamelCase=12, lowerCamelCase=30_72, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=1E-12, lowerCamelCase=1, lowerCamelCase=0, lowerCamelCase=2, lowerCamelCase="absolute", lowerCamelCase=True, lowerCamelCase=None, **lowerCamelCase, ) -> Any: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase) _lowercase : int = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Any = num_attention_heads _lowercase : Any = hidden_act _lowercase : List[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Any = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Optional[int] = type_vocab_size _lowercase : Optional[Any] = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Tuple = position_embedding_type _lowercase : str = use_cache _lowercase : Optional[int] = classifier_dropout class _lowerCamelCase( _a ): @property def UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _lowercase : Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
21
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) @add_end_docstrings(_a ) class _lowerCamelCase( _a ): def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) requires_backends(self, 'vision') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def UpperCamelCase ( self, lowerCamelCase=None) -> int: """simple docstring""" _lowercase : Dict = {} if top_k is not None: _lowercase : List[str] = top_k return {}, {}, postprocess_params def __call__( self, lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" return super().__call__(lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = load_image(lowerCamelCase) _lowercase : List[str] = self.image_processor(images=lowerCamelCase, return_tensors=self.framework) return model_inputs def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.model(**lowerCamelCase) return model_outputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=5) -> Dict: """simple docstring""" if top_k > self.model.config.num_labels: _lowercase : List[Any] = self.model.config.num_labels if self.framework == "pt": _lowercase : int = model_outputs.logits.softmax(-1)[0] _lowercase , _lowercase : Union[str, Any] = probs.topk(lowerCamelCase) elif self.framework == "tf": _lowercase : int = stable_softmax(model_outputs.logits, axis=-1)[0] _lowercase : List[Any] = tf.math.top_k(lowerCamelCase, k=lowerCamelCase) _lowercase , _lowercase : Any = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''') _lowercase : str = scores.tolist() _lowercase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase, lowerCamelCase)]
21
1
import warnings from ..trainer import Trainer from ..utils import logging _UpperCAmelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase ( __UpperCamelCase ): def __init__( self : Optional[int] , UpperCAmelCase : str=None , **UpperCAmelCase : Tuple ) -> List[str]: warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.' , UpperCAmelCase , ) super().__init__(args=UpperCAmelCase , **UpperCAmelCase )
45
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : int = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
1
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class _snake_case : lowerCAmelCase_ : torch.Tensor # [batch_size x 3] lowerCAmelCase_ : torch.Tensor # [batch_size x 3] lowerCAmelCase_ : torch.Tensor # [batch_size x 3] lowerCAmelCase_ : torch.Tensor # [batch_size x 3] lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : float lowerCAmelCase_ : float lowerCAmelCase_ : Tuple[int] def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowerCAmelCase__ ( self ) -> torch.Tensor: '''simple docstring''' snake_case_ = torch.arange(self.height * self.width ) snake_case_ = torch.stack( [ pixel_indices % self.width, torch.div(a__ , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ , *snake_case_ = self.shape snake_case_ = int(np.prod(a__ ) ) snake_case_ = self.get_image_coords() snake_case_ = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) snake_case_ = self.get_camera_rays(a__ ) snake_case_ = rays.view(a__ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowerCAmelCase__ ( self , a__ ) -> torch.Tensor: '''simple docstring''' snake_case_ , *snake_case_ , snake_case_ = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] snake_case_ = coords.view(a__ , -1 , 2 ) snake_case_ = self.resolution() snake_case_ = self.fov() snake_case_ = (flat.float() / (res - 1)) * 2 - 1 snake_case_ = fracs * torch.tan(fov / 2 ) snake_case_ = fracs.view(a__ , -1 , 2 ) snake_case_ = ( self.z.view(a__ , 1 , 3 ) + self.x.view(a__ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(a__ , 1 , 3 ) * fracs[:, :, 1:] ) snake_case_ = directions / directions.norm(dim=-1 , keepdim=a__ ) snake_case_ = torch.stack( [ torch.broadcast_to(self.origin.view(a__ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(a__ , *a__ , 2 , 3 ) def lowerCAmelCase__ ( self , a__ , a__ ) -> "DifferentiableProjectiveCamera": '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=a__ , height=a__ , x_fov=self.x_fov , y_fov=self.y_fov , ) def UpperCamelCase_( snake_case : int ): '''simple docstring''' snake_case_ = [] snake_case_ = [] snake_case_ = [] snake_case_ = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): snake_case_ = np.array([np.sin(snake_case ), np.cos(snake_case ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) snake_case_ = -z * 4 snake_case_ = np.array([np.cos(snake_case ), -np.sin(snake_case ), 0.0] ) snake_case_ = np.cross(snake_case , snake_case ) origins.append(snake_case ) xs.append(snake_case ) ys.append(snake_case ) zs.append(snake_case ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case , axis=0 ) ).float() , x=torch.from_numpy(np.stack(snake_case , axis=0 ) ).float() , y=torch.from_numpy(np.stack(snake_case , axis=0 ) ).float() , z=torch.from_numpy(np.stack(snake_case , axis=0 ) ).float() , width=snake_case , height=snake_case , x_fov=0.7 , y_fov=0.7 , shape=(1, len(snake_case )) , )
85
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ["CLIPFeatureExtractor"] _SCREAMING_SNAKE_CASE : Dict = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
1
"""simple docstring""" from queue import PriorityQueue from typing import Any import numpy as np def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): for nxt, d in graph[v]: if nxt in visited_forward: continue _lowercase : Any = cst_fwd.get(__UpperCAmelCase , np.inf ) _lowercase : Optional[int] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _lowercase : Optional[int] = new_cost_f _lowercase : str = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _lowercase : List[Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : int = -1 _lowercase : Tuple = set() _lowercase : Dict = set() _lowercase : int = {source: 0} _lowercase : Optional[int] = {destination: 0} _lowercase : List[Any] = {source: None} _lowercase : List[str] = {destination: None} _lowercase : PriorityQueue[Any] = PriorityQueue() _lowercase : PriorityQueue[Any] = PriorityQueue() _lowercase : List[str] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _lowercase : Optional[int] = queue_forward.get() visited_forward.add(__UpperCAmelCase ) _lowercase : Union[str, Any] = queue_backward.get() visited_backward.add(__UpperCAmelCase ) _lowercase : Tuple = pass_and_relaxation( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) _lowercase : Union[str, Any] = pass_and_relaxation( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _lowercase : Optional[int] = shortest_distance return shortest_path_distance UpperCAmelCase: List[Any] = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } UpperCAmelCase: Tuple = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class a_ ( __A ): """simple docstring""" def __init__( self : int ,snake_case : List[str] ,snake_case : int=13 ,snake_case : Union[str, Any]=7 ,snake_case : Union[str, Any]=True ,snake_case : Tuple=True ,snake_case : List[Any]=False ,snake_case : Any=True ,snake_case : List[Any]=99 ,snake_case : Tuple=32 ,snake_case : Union[str, Any]=5 ,snake_case : List[Any]=4 ,snake_case : Any=37 ,snake_case : Union[str, Any]="gelu" ,snake_case : Optional[int]=0.1 ,snake_case : List[str]=0.1 ,snake_case : Optional[int]=512 ,snake_case : Tuple=16 ,snake_case : Optional[Any]=2 ,snake_case : Optional[int]=0.02 ,snake_case : List[str]=3 ,snake_case : int=4 ,snake_case : Dict=None ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_input_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =num_choices SCREAMING_SNAKE_CASE =scope def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_input_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : List[str] ): return DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Dict ,snake_case : Any ,snake_case : Dict ,snake_case : int ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =DistilBertModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE =model(_lowerCamelCase ,_lowerCamelCase ) SCREAMING_SNAKE_CASE =model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Tuple ,snake_case : str ,snake_case : str ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : List[str] ): SCREAMING_SNAKE_CASE =DistilBertForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE =model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Dict ,snake_case : str ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[Any] ,snake_case : int ,snake_case : List[str] ): SCREAMING_SNAKE_CASE =DistilBertForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE =model( _lowerCamelCase ,attention_mask=_lowerCamelCase ,start_positions=_lowerCamelCase ,end_positions=_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Any ,snake_case : Tuple ,snake_case : Union[str, Any] ,snake_case : str ,snake_case : List[Any] ,snake_case : Optional[int] ,snake_case : int ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =DistilBertForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE =model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : List[str] ,snake_case : str ,snake_case : Dict ,snake_case : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : int ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =DistilBertForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE =model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : List[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Optional[int] ,snake_case : int ,snake_case : Optional[Any] ,snake_case : List[Any] ): SCREAMING_SNAKE_CASE =self.num_choices SCREAMING_SNAKE_CASE =DistilBertForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =model( _lowerCamelCase ,attention_mask=_lowerCamelCase ,labels=_lowerCamelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() (SCREAMING_SNAKE_CASE) =config_and_inputs SCREAMING_SNAKE_CASE ={"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a_ ( __A , __A , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = True def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =DistilBertModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=_lowerCamelCase ,dim=37 ) def _lowerCAmelCase ( self : int ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowerCamelCase ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowerCamelCase ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowerCamelCase ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowerCamelCase ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowerCamelCase ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowerCamelCase ) @slow def _lowerCAmelCase ( self : Optional[Any] ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =DistilBertModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @slow @require_torch_gpu def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =model_class(config=_lowerCamelCase ) SCREAMING_SNAKE_CASE =self._prepare_for_class(_lowerCamelCase ,_lowerCamelCase ) SCREAMING_SNAKE_CASE =torch.jit.trace( _lowerCamelCase ,(inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowerCamelCase ,os.path.join(_lowerCamelCase ,'traced_model.pt' ) ) SCREAMING_SNAKE_CASE =torch.jit.load(os.path.join(_lowerCamelCase ,'traced_model.pt' ) ,map_location=_lowerCamelCase ) loaded(inputs_dict['input_ids'].to(_lowerCamelCase ) ,inputs_dict['attention_mask'].to(_lowerCamelCase ) ) @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =DistilBertModel.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE =model(_lowerCamelCase ,attention_mask=_lowerCamelCase )[0] SCREAMING_SNAKE_CASE =torch.Size((1, 11, 768) ) self.assertEqual(output.shape ,_lowerCamelCase ) SCREAMING_SNAKE_CASE =torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,_lowerCamelCase ,atol=1e-4 ) )
334
'''simple docstring''' def UpperCAmelCase ( a_ = 1_0_0 ) -> int: """simple docstring""" A_ : Dict = n * (n + 1) * (2 * n + 1) / 6 A_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'{solution() = }')
344
0
"""simple docstring""" import numpy as np def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : str = int(np.ceil((x_end - xa) / h ) ) lowerCAmelCase_ : Optional[Any] = np.zeros((n + 1,) ) lowerCAmelCase_ : Dict = ya lowerCAmelCase_ : Optional[int] = xa for k in range(lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = f(lowerCAmelCase__ , y[k] ) lowerCAmelCase_ : Optional[Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowerCAmelCase_ : List[Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowerCAmelCase_ : List[Any] = f(x + h , y[k] + h * ka ) lowerCAmelCase_ : List[str] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowercase__ : Optional[int] = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowercase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
289
1
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase : Union[str, Any] ='''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCAmelCase_ ( __lowerCamelCase : Optional[Any] ,__lowerCamelCase : Any=None ): require_version(deps[pkg] ,__lowerCamelCase )
223
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( _lowerCAmelCase , unittest.TestCase ): __A = RobertaTokenizer __A = RobertaTokenizerFast __A = True __A = {"cls_token": "<s>"} def lowercase__ ( self : Dict ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ :List[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase_ :List[Any] = dict(zip(lowercase , range(len(lowercase ) ) ) ) lowercase_ :Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase_ :Union[str, Any] = {"unk_token": "<unk>"} lowercase_ :Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase_ :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase ) ) def lowercase__ ( self : str , **lowercase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def lowercase__ ( self : int , **lowercase : int ): """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def lowercase__ ( self : Optional[int] , lowercase : List[Any] ): """simple docstring""" lowercase_ :List[str] = "lower newer" lowercase_ :Any = "lower newer" return input_text, output_text def lowercase__ ( self : int ): """simple docstring""" lowercase_ :List[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase_ :Dict = "lower newer" lowercase_ :Dict = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowercase_ :int = tokenizer.tokenize(lowercase ) # , add_prefix_space=True) self.assertListEqual(lowercase , lowercase ) lowercase_ :Optional[Any] = tokens + [tokenizer.unk_token] lowercase_ :Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Dict = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :Optional[Any] = self.tokenizer_class.from_pretrained("roberta-base" ) lowercase_ :Any = tokenizer.encode("sequence builders" , add_special_tokens=lowercase ) lowercase_ :str = tokenizer.encode("multi-sequence build" , add_special_tokens=lowercase ) lowercase_ :int = tokenizer.encode( "sequence builders" , add_special_tokens=lowercase , add_prefix_space=lowercase ) lowercase_ :Optional[int] = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=lowercase , add_prefix_space=lowercase ) lowercase_ :str = tokenizer.build_inputs_with_special_tokens(lowercase ) lowercase_ :Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Optional[int] = self.get_tokenizer() lowercase_ :str = "Encode this sequence." lowercase_ :Tuple = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments lowercase_ :List[str] = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) lowercase_ :List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase , lowercase ) lowercase_ :List[str] = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) lowercase_ :List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase , lowercase ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) lowercase_ :List[str] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) lowercase_ :Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase , lowercase ) # Testing spaces after special tokens lowercase_ :Union[str, Any] = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase )} ) # mask token has a left space lowercase_ :Any = tokenizer.convert_tokens_to_ids(lowercase ) lowercase_ :Tuple = "Encode <mask> sequence" lowercase_ :int = "Encode <mask>sequence" lowercase_ :str = tokenizer.encode(lowercase ) lowercase_ :Any = encoded.index(lowercase ) lowercase_ :Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase , lowercase ) lowercase_ :str = tokenizer.encode(lowercase ) lowercase_ :int = encoded.index(lowercase ) lowercase_ :Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase , lowercase ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" pass def lowercase__ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase_ :List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) lowercase_ :Dict = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) lowercase_ :str = "A, <mask> AllenNLP sentence." lowercase_ :Tuple = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) lowercase_ :str = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowercase_ :Any = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase_ :Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowercase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def lowercase__ ( self : Dict ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase_ :List[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :int = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase_ :Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , lowercase ) self.assertEqual(post_processor_state["add_prefix_space"] , lowercase ) self.assertEqual(post_processor_state["trim_offsets"] , lowercase ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase_ :Tuple = "hello" # `hello` is a token in the vocabulary of `pretrained_name` lowercase_ :Optional[Any] = F'{text_of_1_token} {text_of_1_token}' lowercase_ :int = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :Optional[int] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :Dict = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :List[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :Any = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :Optional[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :List[str] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :List[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :Dict = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase_ :Optional[Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :Optional[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ) + 1, 1 + len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :Dict = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :Optional[int] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :Dict = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , )
223
1
"""simple docstring""" def _A ( _a : List[Any] , _a : List[str] ): """simple docstring""" if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) A = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowerCamelCase ) ) return round(_lowerCamelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''OwlViTImageProcessor''' _lowerCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,**lowerCamelCase_ ) -> Tuple: A = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,lowerCamelCase_ ,) A = kwargs.pop("""feature_extractor""" ) A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase_ ,lowerCamelCase_ ) def __call__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_="max_length" ,lowerCamelCase_="np" ,**lowerCamelCase_ ) -> Optional[Any]: if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or (isinstance(lowerCamelCase_ ,lowerCamelCase_ ) and not isinstance(text[0] ,lowerCamelCase_ )): A = [self.tokenizer(lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ )] elif isinstance(lowerCamelCase_ ,lowerCamelCase_ ) and isinstance(text[0] ,lowerCamelCase_ ): A = [] # Maximum number of queries across batch A = max([len(lowerCamelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase_ ) != max_num_queries: A = t + [""" """] * (max_num_queries - len(lowerCamelCase_ )) A = self.tokenizer(lowerCamelCase_ ,padding=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) encodings.append(lowerCamelCase_ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": A = np.concatenate([encoding["""input_ids"""] for encoding in encodings] ,axis=0 ) A = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] ,axis=0 ) A = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A = torch.cat([encoding["""input_ids"""] for encoding in encodings] ,dim=0 ) A = torch.cat([encoding["""attention_mask"""] for encoding in encodings] ,dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A = tf.stack([encoding["""input_ids"""] for encoding in encodings] ,axis=0 ) A = tf.stack([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) A = BatchEncoding() A = input_ids A = attention_mask if query_images is not None: A = BatchEncoding() A = self.image_processor( lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ).pixel_values A = query_pixel_values if images is not None: A = self.image_processor(lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) if text is not None and images is not None: A = image_features.pixel_values return encoding elif query_images is not None and images is not None: A = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) ,tensor_type=lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> int: return self.image_processor.post_process(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[Any]: return self.image_processor.post_process_object_detection(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[Any]: return self.image_processor.post_process_image_guided_detection(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> List[str]: return self.tokenizer.batch_decode(*lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> List[str]: return self.tokenizer.decode(*lowerCamelCase_ ,**lowerCamelCase_ ) @property def UpperCamelCase__ ( self ) -> Union[str, Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,lowerCamelCase_ ,) return self.image_processor_class @property def UpperCamelCase__ ( self ) -> Union[str, Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,lowerCamelCase_ ,) return self.image_processor
77
0
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[str] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _SCREAMING_SNAKE_CASE : Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _snake_case : lowerCAmelCase_ : str = field( default=lowercase_ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase_ )} ) lowerCAmelCase_ : str = field( default=lowercase_ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) lowerCAmelCase_ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCAmelCase_ : int = field( default=128 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) lowerCAmelCase_ : int = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) lowerCAmelCase_ : int = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) lowerCAmelCase_ : bool = field( default=lowercase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCAmelCase_ : bool = field( default=lowercase_ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) lowerCAmelCase_ : float = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowerCAmelCase_ : int = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowerCAmelCase_ : int = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) lowerCAmelCase_ : int = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class _snake_case ( lowercase_ ): lowerCAmelCase_ : int = "train" lowerCAmelCase_ : Tuple = "dev" class _snake_case ( lowercase_ ): lowerCAmelCase_ : SquadDataTrainingArguments lowerCAmelCase_ : List[SquadFeatures] lowerCAmelCase_ : Split lowerCAmelCase_ : bool def __init__( self , a__ , a__ , a__ = None , a__ = Split.train , a__ = False , a__ = None , a__ = "pt" , ) -> Any: '''simple docstring''' snake_case_ = args snake_case_ = is_language_sensitive snake_case_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(a__ , a__ ): try: snake_case_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) snake_case_ = mode # Load data features from cache or dataset file snake_case_ = "v2" if args.version_2_with_negative else "v1" snake_case_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case_ = cached_features_file + ".lock" with FileLock(a__ ): if os.path.exists(a__ ) and not args.overwrite_cache: snake_case_ = time.time() snake_case_ = torch.load(a__ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case_ = self.old_features["features"] snake_case_ = self.old_features.get("dataset" , a__ ) snake_case_ = self.old_features.get("examples" , a__ ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: snake_case_ = self.processor.get_dev_examples(args.data_dir ) else: snake_case_ = self.processor.get_train_examples(args.data_dir ) snake_case_ , snake_case_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=a__ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=a__ , ) snake_case_ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , a__ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> str: '''simple docstring''' return len(self.features ) def __getitem__( self , a__ ) -> Dict[str, torch.Tensor]: '''simple docstring''' snake_case_ = self.features[i] snake_case_ = torch.tensor(feature.input_ids , dtype=torch.long ) snake_case_ = torch.tensor(feature.attention_mask , dtype=torch.long ) snake_case_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) snake_case_ = torch.tensor(feature.cls_index , dtype=torch.long ) snake_case_ = torch.tensor(feature.p_mask , dtype=torch.float ) snake_case_ = torch.tensor(feature.is_impossible , dtype=torch.float ) snake_case_ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case_ = torch.tensor(feature.start_position , dtype=torch.long ) snake_case_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
85
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger() @dataclass class UpperCAmelCase : A__ : nn.Module A__ : List[nn.Module] = field(default_factory=A_ ) A__ : list = field(default_factory=A_ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Tensor , snake_case__ : Tensor ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = len(list(m.modules() ) ) == 1 or isinstance(snake_case__ , nn.Convad ) or isinstance(snake_case__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case__ ) def __call__(self : List[Any] , snake_case__ : Tensor ) -> List[Any]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case__ ) [x.remove() for x in self.handles] return self @property def _SCREAMING_SNAKE_CASE (self : int ) -> Optional[int]: '''simple docstring''' return list(filter(lambda snake_case__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCAmelCase : A__ : nn.Module A__ : nn.Module A__ : int = 1 A__ : List = field(default_factory=A_ ) A__ : List = field(default_factory=A_ ) A__ : bool = True def __call__(self : List[Any] , snake_case__ : Tensor ) -> Any: '''simple docstring''' snake_case : str = Tracker(self.dest )(snake_case__ ).parametrized snake_case : Optional[int] = Tracker(self.src )(snake_case__ ).parametrized snake_case : List[str] = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.src_skip , snake_case__ ) ) snake_case : Optional[Any] = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.dest_skip , snake_case__ ) ) if len(snake_case__ ) != len(snake_case__ ) and self.raise_if_mismatch: raise Exception( f"""Numbers of operations are different. Source module has {len(snake_case__ )} operations while""" f""" destination module has {len(snake_case__ )}.""" ) for dest_m, src_m in zip(snake_case__ , snake_case__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) class UpperCAmelCase ( nn.Module ): def __init__(self : Tuple , snake_case__ : nn.Module ) -> Optional[Any]: '''simple docstring''' super().__init__() snake_case : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), f"""Unexpected layer name {k}""" snake_case : Union[str, Any] = len(snake_case__ ) + 1 feature_blocks.append((f"""res{block_index}""", v) ) snake_case : Optional[Any] = nn.ModuleDict(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Tensor ) -> Dict: '''simple docstring''' return get_trunk_forward_outputs( snake_case__ , out_feat_keys=snake_case__ , feature_blocks=self._feature_blocks , ) class UpperCAmelCase ( A_ ): def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : str ) -> str: '''simple docstring''' snake_case : List[Any] = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__(self : Optional[int] , snake_case__ : str ) -> Callable[[], Tuple[nn.Module, Dict]]: '''simple docstring''' if x not in self: snake_case : Dict = self.convert_name_to_timm(snake_case__ ) snake_case : Union[str, Any] = partial(lambda: (timm.create_model(snake_case__ , pretrained=snake_case__ ).eval(), None) ) else: snake_case : List[str] = super().__getitem__(snake_case__ ) return val class UpperCAmelCase ( A_ ): def __getitem__(self : Dict , snake_case__ : str ) -> Callable[[], nn.Module]: '''simple docstring''' if "seer" in x and "in1k" not in x: snake_case : str = RegNetModel else: snake_case : Optional[Any] = RegNetForImageClassification return val def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Tuple[str, str]] ): for from_key, to_key in keys: snake_case : str = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""" ) return to_state_dict def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Callable[[], nn.Module] , __lowerCamelCase : Callable[[], nn.Module] , __lowerCamelCase : RegNetConfig , __lowerCamelCase : Path , __lowerCamelCase : bool = True , ): print(f"""Converting {name}...""" ) with torch.no_grad(): snake_case , snake_case : int = from_model_func() snake_case : str = our_model_func(__lowerCamelCase ).eval() snake_case : int = ModuleTransfer(src=__lowerCamelCase , dest=__lowerCamelCase , raise_if_mismatch=__lowerCamelCase ) snake_case : Dict = torch.randn((1, 3, 224, 224) ) module_transfer(__lowerCamelCase ) if from_state_dict is not None: snake_case : str = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: snake_case : Tuple = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] snake_case : Optional[Any] = manually_copy_vissl_head(__lowerCamelCase , our_model.state_dict() , __lowerCamelCase ) our_model.load_state_dict(__lowerCamelCase ) snake_case : Any = our_model(__lowerCamelCase , output_hidden_states=__lowerCamelCase ) snake_case : Union[str, Any] = ( our_outputs.logits if isinstance(__lowerCamelCase , __lowerCamelCase ) else our_outputs.last_hidden_state ) snake_case : Union[str, Any] = from_model(__lowerCamelCase ) snake_case : Dict = from_output[-1] if type(__lowerCamelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: snake_case : Any = our_outputs.hidden_states[-1] assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=__lowerCamelCase , ) snake_case : List[str] = 224 if "seer" not in name else 384 # we can use the convnext one snake_case : int = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=__lowerCamelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=__lowerCamelCase , ) print(f"""Pushed {name}""" ) def UpperCamelCase ( __lowerCamelCase : Path , __lowerCamelCase : str = None , __lowerCamelCase : bool = True ): snake_case : Union[str, Any] = "imagenet-1k-id2label.json" snake_case : List[str] = 1000 snake_case : List[str] = (1, num_labels) snake_case : Any = "huggingface/label-files" snake_case : List[str] = num_labels snake_case : Optional[Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) ) , "r" ) ) snake_case : List[Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} snake_case : str = idalabel snake_case : List[Any] = {v: k for k, v in idalabel.items()} snake_case : Dict = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) snake_case : Optional[Any] = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), } snake_case : Union[str, Any] = NameToOurModelFuncMap() snake_case : str = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__lowerCamelCase : str , __lowerCamelCase : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: snake_case : List[Any] = torch.hub.load_state_dict_from_url(__lowerCamelCase , model_dir=str(__lowerCamelCase ) , map_location="cpu" ) snake_case : Dict = model_func() # check if we have a head, if yes add it snake_case : str = files["classy_state_dict"]["base_model"]["model"] snake_case : Dict = model_state_dict["trunk"] model.load_state_dict(__lowerCamelCase ) return model.eval(), model_state_dict["heads"] # pretrained snake_case : List[Any] = partial( __lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case : Optional[int] = partial( __lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case : List[str] = partial( __lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) snake_case : Tuple = partial( __lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned snake_case : List[Any] = partial( __lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case : Tuple = partial( __lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case : str = partial( __lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) snake_case : Dict = partial( __lowerCamelCase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( __lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __lowerCamelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) return config, expected_shape if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
59
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
359
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" if "resnet-50" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) a_ = DetrConfig(use_timm_backbone=UpperCAmelCase , backbone_config=UpperCAmelCase ) # set label attributes a_ = "panoptic" in model_name if is_panoptic: a_ = 250 else: a_ = 91 a_ = "huggingface/label-files" a_ = "coco-detection-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase ( UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = state_dict.pop(UpperCAmelCase ) a_ = val def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->Optional[Any]: """simple docstring""" a_ = "" if is_panoptic: a_ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention a_ = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a_ = in_proj_weight_cross_attn[:256, :] a_ = in_proj_bias_cross_attn[:256] a_ = in_proj_weight_cross_attn[256:512, :] a_ = in_proj_bias_cross_attn[256:512] a_ = in_proj_weight_cross_attn[-256:, :] a_ = in_proj_bias_cross_attn[-256:] def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) ->List[str]: """simple docstring""" a_ , a_ = get_detr_config(UpperCAmelCase ) # load original model from torch hub a_ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F'''Converting model {model_name}...''' ) a_ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=UpperCAmelCase ).eval() a_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCAmelCase ): if is_panoptic: a_ = "detr." + src rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase , is_panoptic=UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a_ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: a_ = state_dict.pop(UpperCAmelCase ) a_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val # finally, create HuggingFace model and load state dict a_ = DetrForSegmentation(UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() # verify our conversion on an image a_ = "coco_panoptic" if is_panoptic else "coco_detection" a_ = DetrImageProcessor(format=UpperCAmelCase ) a_ = processor(images=prepare_img() , return_tensors="pt" ) a_ = encoding["pixel_values"] a_ = detr(UpperCAmelCase ) a_ = model(UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') UpperCamelCase_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
0
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def UpperCamelCase ( ): '''simple docstring''' print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f'| 0 | 0 | {nor_gate(0 , 0 )} |' ) print(f'| 0 | 1 | {nor_gate(0 , 1 )} |' ) print(f'| 1 | 0 | {nor_gate(1 , 0 )} |' ) print(f'| 1 | 1 | {nor_gate(1 , 1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
101
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = KandinskyVaaImgaImgPipeline lowerCAmelCase_ = ["image_embeds", "negative_image_embeds", "image"] lowerCAmelCase_ = [ "image_embeds", "negative_image_embeds", "image", ] lowerCAmelCase_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCAmelCase_ = False @property def __a ( self : Union[str, Any] ): """simple docstring""" return 32 @property def __a ( self : Union[str, Any] ): """simple docstring""" return 32 @property def __a ( self : Optional[Any] ): """simple docstring""" return self.time_input_dim @property def __a ( self : Optional[int] ): """simple docstring""" return self.time_input_dim * 4 @property def __a ( self : List[str] ): """simple docstring""" return 1_00 @property def __a ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } SCREAMING_SNAKE_CASE__ = UNetaDConditionModel(**_lowercase ) return model @property def __a ( self : str ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dummy_unet SCREAMING_SNAKE_CASE__ = self.dummy_movq SCREAMING_SNAKE_CASE__ = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } SCREAMING_SNAKE_CASE__ = DDIMScheduler(**_lowercase ) SCREAMING_SNAKE_CASE__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __a ( self : Optional[Any] , _lowercase : Any , _lowercase : Tuple=0 ): """simple docstring""" SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) # create init_image SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(_lowercase ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(_lowercase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) SCREAMING_SNAKE_CASE__ = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """cpu""" SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**_lowercase ) SCREAMING_SNAKE_CASE__ = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ = pipe(**self.get_dummy_inputs(_lowercase ) ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) SCREAMING_SNAKE_CASE__ = """A red cartoon frog, 4k""" SCREAMING_SNAKE_CASE__ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) SCREAMING_SNAKE_CASE__ = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() SCREAMING_SNAKE_CASE__ = pipeline( image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
219
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __lowerCAmelCase = None __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCAmelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } __lowerCAmelCase = { '''camembert-base''': 512, } __lowerCAmelCase = '''▁''' class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : List[Any] = ['input_ids', 'attention_mask'] lowerCAmelCase : Tuple = CamembertTokenizer def __init__( self : Tuple ,_UpperCAmelCase : Tuple=None ,_UpperCAmelCase : int=None ,_UpperCAmelCase : str="<s>" ,_UpperCAmelCase : Optional[int]="</s>" ,_UpperCAmelCase : Dict="</s>" ,_UpperCAmelCase : str="<s>" ,_UpperCAmelCase : List[Any]="<unk>" ,_UpperCAmelCase : Optional[Any]="<pad>" ,_UpperCAmelCase : int="<mask>" ,_UpperCAmelCase : Union[str, Any]=["<s>NOTUSED", "</s>NOTUSED"] ,**_UpperCAmelCase : Optional[Any] ,): # Mask token behave like a normal word, i.e. include the space before it _a : Tuple = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase ,tokenizer_file=_UpperCAmelCase ,bos_token=_UpperCAmelCase ,eos_token=_UpperCAmelCase ,sep_token=_UpperCAmelCase ,cls_token=_UpperCAmelCase ,unk_token=_UpperCAmelCase ,pad_token=_UpperCAmelCase ,mask_token=_UpperCAmelCase ,additional_special_tokens=_UpperCAmelCase ,**_UpperCAmelCase ,) _a : Tuple = vocab_file _a : List[str] = False if not self.vocab_file else True def __lowercase ( self : List[Any] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : str = [self.cls_token_id] _a : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowercase ( self : Any ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ): _a : Dict = [self.sep_token_id] _a : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self : Tuple ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Tuple = os.path.join( _UpperCAmelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file ,_UpperCAmelCase ) return (out_vocab_file,)
364
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __magic_name__ : lowerCAmelCase : str = field( metadata={'help': 'The output directory where the model will be written.'} , ) lowerCAmelCase : str = field( metadata={ 'help': ( 'The encoder model checkpoint for weights initialization.' 'Don\'t set if you want to train an encoder model from scratch.' ) } , ) lowerCAmelCase : str = field( metadata={ 'help': ( 'The decoder model checkpoint for weights initialization.' 'Don\'t set if you want to train a decoder model from scratch.' ) } , ) lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained encoder config name or path if not the same as encoder_model_name'} ) lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained decoder config name or path if not the same as decoder_model_name'} ) def __lowerCamelCase ( ) -> Union[str, Any]: _a : Any = HfArgumentParser((ModelArguments,) ) ((_a) , ) : Dict = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: _a : Optional[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: _a : Optional[Any] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: _a : List[str] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: _a : Optional[int] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed _a : List[Any] = True _a : int = True _a : Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowerCAmelCase_ , decoder_config=lowerCAmelCase_ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens _a : List[str] = decoder_config.decoder_start_token_id _a : Optional[int] = decoder_config.pad_token_id if decoder_start_token_id is None: _a : Tuple = decoder_config.bos_token_id if pad_token_id is None: _a : List[Any] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work _a : Any = decoder_config.eos_token_id _a : Tuple = decoder_start_token_id _a : Any = pad_token_id _a : Dict = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) _a : Dict = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) _a : int = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
107
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: str = ["pixel_values"] def __init__( self : Dict , _A : bool = True , _A : Optional[Dict[str, int]] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Tuple , ) -> None: """simple docstring""" super().__init__(**_A ) snake_case_ : Any = size if size is not None else {'shortest_edge': 256} snake_case_ : Union[str, Any] = get_size_dict(_A , default_to_square=_A ) snake_case_ : Any = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case_ : int = get_size_dict(_A ) snake_case_ : int = do_resize snake_case_ : List[Any] = size snake_case_ : List[str] = resample snake_case_ : List[Any] = do_center_crop snake_case_ : int = crop_size snake_case_ : List[Any] = do_rescale snake_case_ : List[str] = rescale_factor snake_case_ : Any = do_normalize snake_case_ : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: """simple docstring""" snake_case_ : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) snake_case_ : Optional[Any] = get_resize_output_image_size(_A , size=size['shortest_edge'] , default_to_square=_A ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: """simple docstring""" snake_case_ : Dict = get_size_dict(_A ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : np.ndarray , _A : float , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any ) -> np.ndarray: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Dict , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Any , _A : ImageInput , _A : Optional[bool] = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : Optional[bool] = None , _A : Optional[float] = None , _A : Optional[bool] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_A : Dict , ) -> int: """simple docstring""" snake_case_ : Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case_ : Dict = size if size is not None else self.size snake_case_ : str = get_size_dict(_A , default_to_square=_A ) snake_case_ : Optional[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : List[str] = crop_size if crop_size is not None else self.crop_size snake_case_ : Optional[Any] = get_size_dict(_A ) snake_case_ : int = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Any = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : int = image_mean if image_mean is not None else self.image_mean snake_case_ : Tuple = image_std if image_std is not None else self.image_std snake_case_ : str = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case_ : List[str] = [to_numpy_array(_A ) for image in images] if do_resize: snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: snake_case_ : Dict = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: snake_case_ : List[Any] = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images] snake_case_ : Optional[Any] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
327
import sys _SCREAMING_SNAKE_CASE = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE__ ( __a = N ): snake_case_ : Optional[Any] = -sys.maxsize - 1 for i in range(len(__a ) - 12 ): snake_case_ : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case_ : int = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
327
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ : Optional[Any] = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : int = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Optional[int] = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Optional[int] = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : List[Any] = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
69
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def _snake_case ( UpperCAmelCase_ : int="ro" , UpperCAmelCase_ : Optional[int]="en" , UpperCAmelCase_ : List[Any]="wmt16" , UpperCAmelCase_ : str=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) A__ = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) A__ = datasets.load_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) if save_dir is None: A__ = F"""{dataset}-{pair}""" A__ = Path(UpperCAmelCase_ ) save_dir.mkdir(exist_ok=UpperCAmelCase_ ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets A__ = """val""" if split == """validation""" else split A__ = save_dir.joinpath(F"""{fn}.source""" ) A__ = save_dir.joinpath(F"""{fn}.target""" ) A__ = src_path.open("""w+""" ) A__ = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): A__ = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
69
1
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: # Base Case if curr_ind == len(_UpperCAmelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_UpperCAmelCase ) ): if valid_connection(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Insert current vertex into path as next transition lowerCamelCase__ : List[Any] = next_ver # Validate created path if util_hamilton_cycle(_UpperCAmelCase , _UpperCAmelCase , curr_ind + 1 ): return True # Backtrack lowerCamelCase__ : List[str] = -1 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase = 0 ) -> list[int]: lowerCamelCase__ : Any = [-1] * (len(_UpperCAmelCase ) + 1) # initialize start and end of path with starting index lowerCamelCase__ : Optional[Any] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_UpperCAmelCase , _UpperCAmelCase , 1 ) else []
50
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCAmelCase : Union[str, Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __lowercase ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase : int = 1_0_0_0_0 UpperCamelCase : Optional[List[str]] = None UpperCamelCase : Optional[datasets.Features] = None class __lowercase ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase : Optional[Any] = ParquetConfig def __A ( self ) -> Tuple: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __A ( self , A ) -> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowerCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A , (str, list, tuple) ): lowerCamelCase = data_files if isinstance(A , A ): lowerCamelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase = [dl_manager.iter_files(A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowerCamelCase = [] for split_name, files in data_files.items(): if isinstance(A , A ): lowerCamelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase = [dl_manager.iter_files(A ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(A ): with open(A , """rb""" ) as f: lowerCamelCase = datasets.Features.from_arrow_schema(pq.read_schema(A ) ) break splits.append(datasets.SplitGenerator(name=A , gen_kwargs={"""files""": files} ) ) return splits def __A ( self , A ) -> pa.Table: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCamelCase = table_cast(A , self.info.features.arrow_schema ) return pa_table def __A ( self , A ) -> Any: '''simple docstring''' lowerCamelCase = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(A ) ): with open(A , """rb""" ) as f: lowerCamelCase = pq.ParquetFile(A ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowerCamelCase = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'{file_idx}_{batch_idx}', self._cast_table(A ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(A )}: {e}' ) raise
252
0
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowercase_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowercase_ = typing.Union[np.floataa, int, float] # noqa: UP007 def lowercase ( lowerCAmelCase__ : Vector , lowerCAmelCase__ : Vector ) -> VectorOut: return np.sqrt(np.sum((np.asarray(_A ) - np.asarray(_A )) ** 2 ) ) def lowercase ( lowerCAmelCase__ : Vector , lowerCAmelCase__ : Vector ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(_A , _A ) ) ** (1 / 2) if __name__ == "__main__": def lowercase ( ) -> None: from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10000 , globals=globals() , ) ) benchmark()
354
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_a ): super().__init__(**_a ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , _a , **_a ): return super().__call__(_a , **_a ) def __UpperCAmelCase ( self , **_a ): __a = {} if "candidate_labels" in kwargs: __a = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __a = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ): if isinstance(_a , _a ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(_a ).content else: with open(_a , '''rb''' ) as f: __a = f.read() if isinstance(_a , _a ): __a = ffmpeg_read(_a , self.feature_extractor.sampling_rate ) if not isinstance(_a , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) __a = candidate_labels __a = [hypothesis_template.format(_a ) for x in candidate_labels] __a = self.tokenizer(_a , return_tensors=self.framework , padding=_a ) __a = [text_inputs] return inputs def __UpperCAmelCase ( self , _a ): __a = model_inputs.pop('''candidate_labels''' ) __a = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _a ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**_a , **_a ) __a = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def __UpperCAmelCase ( self , _a ): __a = model_outputs.pop('''candidate_labels''' ) __a = model_outputs['''logits'''][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) __a = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] ) ] return result
11
0
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A : Optional[int] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") A : Tuple = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A : List[str] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A : Optional[int] = sorted(arg_to_scheduler.keys()) A : Optional[Any] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class _lowercase ( pl.LightningModule): """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : argparse.Namespace , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Dict="base" , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__lowerCamelCase ) lowerCamelCase__ : Dict = 0 lowerCamelCase__ : Optional[int] = Path(self.hparams.output_dir ) lowerCamelCase__ : Any = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: lowerCamelCase__ : Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=__lowerCamelCase , **__lowerCamelCase , ) else: lowerCamelCase__ : str = config lowerCamelCase__ : Dict = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , __lowerCamelCase , __lowerCamelCase ): assert hasattr(self.config , __lowerCamelCase ), f"model config doesn't have a `{p}` attribute" setattr(self.config , __lowerCamelCase , getattr(self.hparams , __lowerCamelCase ) ) if tokenizer is None: lowerCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__lowerCamelCase , ) else: lowerCamelCase__ : Tuple = tokenizer lowerCamelCase__ : Dict = MODEL_MODES[mode] if model is None: lowerCamelCase__ : List[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__lowerCamelCase , ) else: lowerCamelCase__ : Any = model def lowerCAmelCase ( self : List[Any] , *__lowerCamelCase : List[str] , **__lowerCamelCase : List[str] ): '''simple docstring''' lowerCamelCase__ : Any = self.model_type.from_pretrained(*__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = arg_to_scheduler[self.hparams.lr_scheduler] lowerCamelCase__ : Tuple = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) lowerCamelCase__ : Union[str, Any] = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : str = self.model lowerCamelCase__ : Optional[int] = ["bias", "LayerNorm.weight"] lowerCamelCase__ : str = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: lowerCamelCase__ : Tuple = Adafactor( __lowerCamelCase , lr=self.hparams.learning_rate , scale_parameter=__lowerCamelCase , relative_step=__lowerCamelCase ) else: lowerCamelCase__ : Optional[Any] = AdamW( __lowerCamelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) lowerCamelCase__ : Optional[int] = optimizer lowerCamelCase__ : Union[str, Any] = self.get_lr_scheduler() return [optimizer], [scheduler] def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] ): '''simple docstring''' return self.validation_step(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Tuple ): '''simple docstring''' return self.validation_end(__lowerCamelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores lowerCamelCase__ : Tuple = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Any ): '''simple docstring''' if stage == "test": lowerCamelCase__ : Tuple = len(self.test_dataloader().dataset ) else: lowerCamelCase__ : str = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = len(self.train_dataloader().dataset ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : bool = False ): '''simple docstring''' raise NotImplementedError("You must implement this for your task" ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.train_loader def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=__lowerCamelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=__lowerCamelCase ) def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( __lowerCamelCase , list(filter(__lowerCamelCase , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Dict[str, Any] ): '''simple docstring''' lowerCamelCase__ : Dict = self.output_dir.joinpath("best_tfmr" ) lowerCamelCase__ : Any = self.step_count self.model.save_pretrained(__lowerCamelCase ) self.tokenizer.save_pretrained(__lowerCamelCase ) @staticmethod def lowerCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): '''simple docstring''' parser.add_argument( "--model_name_or_path" , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=__lowerCamelCase , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=__lowerCamelCase , type=__lowerCamelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(__lowerCamelCase ).parent / "test_run" / "cache" ) , type=__lowerCamelCase , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=__lowerCamelCase , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=__lowerCamelCase , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=__lowerCamelCase , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=__lowerCamelCase , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5E-5 , type=__lowerCamelCase , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=__lowerCamelCase , metavar=__lowerCamelCase , type=__lowerCamelCase , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=__lowerCamelCase , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=__lowerCamelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=__lowerCamelCase , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=__lowerCamelCase , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=__lowerCamelCase ) parser.add_argument("--train_batch_size" , default=32 , type=__lowerCamelCase ) parser.add_argument("--eval_batch_size" , default=32 , type=__lowerCamelCase ) parser.add_argument("--adafactor" , action="store_true" ) class _lowercase ( pl.Callback): """simple docstring""" def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowercase ( pl.Callback): """simple docstring""" def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__lowerCamelCase ) class _lowercase ( pl.Callback): """simple docstring""" def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : str = trainer.lr_schedulers[0]["scheduler"] lowerCamelCase__ : Optional[Any] = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__lowerCamelCase ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : pl.Trainer , __lowerCamelCase : pl.LightningModule ): '''simple docstring''' rank_zero_info("***** Validation results *****" ) lowerCamelCase__ : Tuple = trainer.callback_metrics # Log results for key in sorted(__lowerCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(__lowerCamelCase , str(metrics[key] ) ) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : pl.Trainer , __lowerCamelCase : pl.LightningModule ): '''simple docstring''' rank_zero_info("***** Test results *****" ) lowerCamelCase__ : Tuple = trainer.callback_metrics # Log and save results to file lowerCamelCase__ : Dict = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(__lowerCamelCase , "w" ) as writer: for key in sorted(__lowerCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(__lowerCamelCase , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(__lowerCamelCase , str(metrics[key] ) ) ) def lowercase_ ( _A : int , _A : Optional[Any] ): """simple docstring""" parser.add_argument( "--output_dir" , default=str(Path(_a ).parent / "test_run" / "model_checkpoints" ) , type=_a , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=_a , default="O2" , help=( "For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=_a ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=_a , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=_a , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=_a , default=42 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(_a ).parent / "test_run" / "dummy-train-data" ) , type=_a , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def lowercase_ ( _A : BaseTransformer , _A : argparse.Namespace , _A : List[Any]=None , _A : Tuple=True , _A : int=[] , _A : Any=None , _A : int=None , **_A : Optional[Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model lowerCamelCase__ : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_a ) # add custom checkpoints if checkpoint_callback is None: lowerCamelCase__ : Dict = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_a ) if logging_callback is None: lowerCamelCase__ : int = LoggingCallback() lowerCamelCase__ : List[Any] = {} if args.fpaa: lowerCamelCase__ : Union[str, Any] = 16 if args.gpus > 1: lowerCamelCase__ : Tuple = "auto" lowerCamelCase__ : List[str] = "ddp" lowerCamelCase__ : Any = args.accumulate_grad_batches lowerCamelCase__ : Any = None lowerCamelCase__ : List[str] = "auto" lowerCamelCase__ : Any = pl.Trainer.from_argparse_args( _a , weights_summary=_a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_a , val_check_interval=1 , num_sanity_val_steps=2 , **_a , ) if args.do_train: trainer.fit(_a ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
184
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A ='pt' elif is_tf_available(): A ='tf' else: A ='jax' class _a ( __a , unittest.TestCase ): __a : Optional[Any] = PerceiverTokenizer __a : str = False def A ( self : Union[str, Any] ): '''simple docstring''' super().setUp() UpperCAmelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : Optional[int] ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def A ( self : Union[str, Any] , **lowercase : int ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : Tuple , lowercase : str , lowercase : List[str]=False , lowercase : Union[str, Any]=20 , lowercase : Union[str, Any]=5 ): '''simple docstring''' UpperCAmelCase = [] for i in range(len(lowercase ) ): try: UpperCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase = list(filter(lambda lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowercase ) ) UpperCAmelCase = list(filter(lambda lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase ) , lowercase ) ) if max_length is not None and len(lowercase ) > max_length: UpperCAmelCase = toks[:max_length] if min_length is not None and len(lowercase ) < min_length and len(lowercase ) > 0: while len(lowercase ) < min_length: UpperCAmelCase = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase = [t[0] for t in toks] # Ensure consistency UpperCAmelCase = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) if " " not in output_txt and len(lowercase ) > 1: UpperCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase ) ) if with_prefix_space: UpperCAmelCase = ''' ''' + output_txt UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) return output_txt, output_ids def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = '''Unicode €.''' UpperCAmelCase = tokenizer(lowercase ) UpperCAmelCase = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , lowercase ) # decoding UpperCAmelCase = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '''[CLS]Unicode €.[SEP]''' ) UpperCAmelCase = tokenizer('''e è é ê ë''' ) UpperCAmelCase = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , lowercase ) # decoding UpperCAmelCase = tokenizer.decode(lowercase ) self.assertEqual(lowercase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off UpperCAmelCase = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) self.assertIsInstance(lowercase , lowercase ) if FRAMEWORK != "jax": UpperCAmelCase = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors=lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowercase ) self.assertIn('''attention_mask''' , lowercase ) self.assertNotIn('''decoder_input_ids''' , lowercase ) self.assertNotIn('''decoder_attention_mask''' , lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer UpperCAmelCase = [ '''Summary of the text.''', '''Another summary.''', ] UpperCAmelCase = tokenizer( text_target=lowercase , max_length=32 , padding='''max_length''' , truncation=lowercase , return_tensors=lowercase ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) UpperCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) UpperCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) UpperCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase = json.load(lowercase ) with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase = json.load(lowercase ) UpperCAmelCase = [f"<extra_id_{i}>" for i in range(125 )] UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase = tokenizer_class.from_pretrained( lowercase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowercase )] UpperCAmelCase = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def A ( self : Union[str, Any] ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' pass def A ( self : Dict ): '''simple docstring''' pass def A ( self : str ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers(fast=lowercase , do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase ) self.assertIsInstance(lowercase , lowercase )
34
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) a = AutoTokenizer.from_pretrained('''google/mt5-small''' ) a = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids a = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids a = model(input_ids.to(__UpperCAmelCase ) , labels=labels.to(__UpperCAmelCase ) ).loss a = -(labels.shape[-1] * loss.item()) a = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
370
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() a = BlipImageProcessor() a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) a = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) a = InstructBlipProcessor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def __lowerCAmelCase ( self : int , **__UpperCAmelCase : str ) ->List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def __lowerCAmelCase ( self : Optional[Any] , **__UpperCAmelCase : Any ) ->Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).qformer_tokenizer def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" a = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) a = qformer_tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = self.get_qformer_tokenizer() a = InstructBlipProcessor( tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase , qformer_tokenizer=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
26
0
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa A_ : Union[str, Any] = logging.getLogger(__name__) class lowerCamelCase (A__ ): lowerCamelCase__ : Optional[Any] = 'summarization' lowerCamelCase__ : int = ['loss'] lowerCamelCase__ : Dict = ROUGE_KEYS lowerCamelCase__ : Union[str, Any] = 'rouge2' def __init__( self : int , __UpperCAmelCase : int , **__UpperCAmelCase : Optional[int] ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE__ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(__UpperCAmelCase , num_labels=__UpperCAmelCase , mode=self.mode , **__UpperCAmelCase ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE__ = Path(self.output_dir ) / """metrics.json""" SCREAMING_SNAKE_CASE__ = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = defaultdict(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.config.model_type SCREAMING_SNAKE_CASE__ = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size SCREAMING_SNAKE_CASE__ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE__ = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } SCREAMING_SNAKE_CASE__ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE__ = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F"""target_lens: {self.target_lens}""" assert self.target_lens["train"] <= self.target_lens["test"], F"""target_lens: {self.target_lens}""" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE__ = get_git_info()["""repo_sha"""] SCREAMING_SNAKE_CASE__ = hparams.num_workers SCREAMING_SNAKE_CASE__ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE__ = self.decoder_start_token_id SCREAMING_SNAKE_CASE__ = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE__ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE__ = self.model.config.max_length SCREAMING_SNAKE_CASE__ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Dict[str, torch.Tensor] ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE__ = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(__UpperCAmelCase , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) SCREAMING_SNAKE_CASE__ = True return readable_batch def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Dict ) -> Optional[Any]: return self.model(__UpperCAmelCase , **__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : List[int] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.tokenizer.batch_decode( __UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) return lmap(str.strip , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : dict ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch["""input_ids"""], batch["""attention_mask"""] SCREAMING_SNAKE_CASE__ = batch["""labels"""] if isinstance(self.model , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = self.model._shift_right(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ = shift_tokens_right(__UpperCAmelCase , __UpperCAmelCase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE__ = decoder_input_ids self.save_readable_batch(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self(__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , use_cache=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE__ = nn.CrossEntropyLoss(ignore_index=__UpperCAmelCase ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE__ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ = nn.functional.log_softmax(__UpperCAmelCase , dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = label_smoothed_nll_loss( __UpperCAmelCase , __UpperCAmelCase , self.hparams.label_smoothing , ignore_index=__UpperCAmelCase ) return (loss,) @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.tokenizer.pad_token_id def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = self._step(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = dict(zip(self.loss_names , __UpperCAmelCase ) ) # tokens per batch SCREAMING_SNAKE_CASE__ = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() SCREAMING_SNAKE_CASE__ = batch["""input_ids"""].shape[0] SCREAMING_SNAKE_CASE__ = batch["""input_ids"""].eq(self.pad ).sum() SCREAMING_SNAKE_CASE__ = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ) -> Dict: return self._generative_step(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE__ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE__ = losses["""loss"""] SCREAMING_SNAKE_CASE__ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } SCREAMING_SNAKE_CASE__ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ).type_as(__UpperCAmelCase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = {F"""{prefix}_avg_{k}""": x for k, x in losses.items()} SCREAMING_SNAKE_CASE__ = self.step_count self.metrics[prefix].append(__UpperCAmelCase ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE__ = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F"""{prefix}_loss""": loss, F"""{prefix}_{self.val_metric}""": metric_tensor, } def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) -> Dict: return calculate_rouge(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : dict ) -> dict: SCREAMING_SNAKE_CASE__ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE__ = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=__UpperCAmelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE__ = (time.time() - ta) / batch["""input_ids"""].shape[0] SCREAMING_SNAKE_CASE__ = self.ids_to_clean_text(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.ids_to_clean_text(batch["""labels"""] ) SCREAMING_SNAKE_CASE__ = self._step(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = dict(zip(self.loss_names , __UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ = self.calc_generative_metrics(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = np.mean(lmap(__UpperCAmelCase , __UpperCAmelCase ) ) base_metrics.update(gen_time=__UpperCAmelCase , gen_len=__UpperCAmelCase , preds=__UpperCAmelCase , target=__UpperCAmelCase , **__UpperCAmelCase ) return base_metrics def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str ) -> Optional[int]: return self._generative_step(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : int ) -> Any: return self.validation_epoch_end(__UpperCAmelCase , prefix="""test""" ) def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : str ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE__ = self.n_obs[type_path] SCREAMING_SNAKE_CASE__ = self.target_lens[type_path] SCREAMING_SNAKE_CASE__ = self.dataset_class( self.tokenizer , type_path=__UpperCAmelCase , n_obs=__UpperCAmelCase , max_target_length=__UpperCAmelCase , **self.dataset_kwargs , ) return dataset def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : bool = False ) -> DataLoader: SCREAMING_SNAKE_CASE__ = self.get_dataset(__UpperCAmelCase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE__ = dataset.make_sortish_sampler(__UpperCAmelCase , distributed=self.hparams.gpus > 1 ) return DataLoader( __UpperCAmelCase , batch_size=__UpperCAmelCase , collate_fn=dataset.collate_fn , shuffle=__UpperCAmelCase , num_workers=self.num_workers , sampler=__UpperCAmelCase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE__ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __UpperCAmelCase , batch_sampler=__UpperCAmelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __UpperCAmelCase , batch_size=__UpperCAmelCase , collate_fn=dataset.collate_fn , shuffle=__UpperCAmelCase , num_workers=self.num_workers , sampler=__UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : int ) -> DataLoader: SCREAMING_SNAKE_CASE__ = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) return dataloader def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DataLoader: return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def SCREAMING_SNAKE_CASE ( self : int ) -> DataLoader: return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def SCREAMING_SNAKE_CASE ( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ) -> int: BaseTransformer.add_model_specific_args(__UpperCAmelCase , __UpperCAmelCase ) add_generic_args(__UpperCAmelCase , __UpperCAmelCase ) parser.add_argument( """--max_source_length""" , default=1_0_2_4 , type=__UpperCAmelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=5_6 , type=__UpperCAmelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=1_4_2 , type=__UpperCAmelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=1_4_2 , type=__UpperCAmelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=__UpperCAmelCase ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=__UpperCAmelCase ) parser.add_argument("""--max_tokens_per_batch""" , type=__UpperCAmelCase , default=__UpperCAmelCase ) parser.add_argument("""--logger_name""" , type=__UpperCAmelCase , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=__UpperCAmelCase , default=-1 , required=__UpperCAmelCase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=__UpperCAmelCase , default=5_0_0 , required=__UpperCAmelCase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=__UpperCAmelCase , default=-1 , required=__UpperCAmelCase , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=__UpperCAmelCase , default="""summarization""" , required=__UpperCAmelCase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=__UpperCAmelCase , default=0.0 , required=__UpperCAmelCase ) parser.add_argument("""--src_lang""" , type=__UpperCAmelCase , default="""""" , required=__UpperCAmelCase ) parser.add_argument("""--tgt_lang""" , type=__UpperCAmelCase , default="""""" , required=__UpperCAmelCase ) parser.add_argument("""--eval_beams""" , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase ) parser.add_argument( """--val_metric""" , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=__UpperCAmelCase , default=__UpperCAmelCase , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=__UpperCAmelCase , default=1 , required=__UpperCAmelCase , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=__UpperCAmelCase , default=-1 , required=__UpperCAmelCase , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class lowerCamelCase (A__ ): lowerCamelCase__ : Tuple = 'translation' lowerCamelCase__ : List[Any] = ['loss'] lowerCamelCase__ : Dict = ['bleu'] lowerCamelCase__ : List[Any] = 'bleu' def __init__( self : Any , __UpperCAmelCase : Tuple , **__UpperCAmelCase : int ) -> Any: super().__init__(__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = hparams.src_lang SCREAMING_SNAKE_CASE__ = hparams.tgt_lang def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ) -> dict: return calculate_bleu(__UpperCAmelCase , __UpperCAmelCase ) def A ( snake_case__ , snake_case__=None ): '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=snake_case__ ) check_output_dir(snake_case__ , expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE__ = SummarizationModule(snake_case__ ) else: SCREAMING_SNAKE_CASE__ = TranslationModule(snake_case__ ) SCREAMING_SNAKE_CASE__ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): SCREAMING_SNAKE_CASE__ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE__ = os.environ.get("""WANDB_PROJECT""" , snake_case__ ) SCREAMING_SNAKE_CASE__ = WandbLogger(name=model.output_dir.name , project=snake_case__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE__ = WandbLogger(name=model.output_dir.name , project=f"""hf_{dataset}""" ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE__ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = args.val_metric == """loss""" SCREAMING_SNAKE_CASE__ = generic_train( snake_case__ , snake_case__ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , snake_case__ ) , early_stopping_callback=snake_case__ , logger=snake_case__ , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model SCREAMING_SNAKE_CASE__ = """""" SCREAMING_SNAKE_CASE__ = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=snake_case__ ) ) if checkpoints: SCREAMING_SNAKE_CASE__ = checkpoints[-1] SCREAMING_SNAKE_CASE__ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() A_ : List[Any] = pl.Trainer.add_argparse_args(parser) A_ : Any = SummarizationModule.add_model_specific_args(parser, os.getcwd()) A_ : Optional[Any] = parser.parse_args() main(args)
165
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : int ) -> int: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=__UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions if self.add_downsample: SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=True ) -> Any: SCREAMING_SNAKE_CASE__ = () for resnet, attn in zip(self.resnets , self.attentions ): SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE__ = self.downsamplers_a(__UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=__UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets if self.add_downsample: SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any]=True ) -> List[Any]: SCREAMING_SNAKE_CASE__ = () for resnet in self.resnets: SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE__ = self.downsamplers_a(__UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions if self.add_upsample: SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any=True ) -> Union[str, Any]: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) if self.add_upsample: SCREAMING_SNAKE_CASE__ = self.upsamplers_a(__UpperCAmelCase ) return hidden_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets if self.add_upsample: SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str]=True ) -> Dict: for resnet in self.resnets: # pop res hidden states SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) if self.add_upsample: SCREAMING_SNAKE_CASE__ = self.upsamplers_a(__UpperCAmelCase ) return hidden_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: # there is always at least one resnet SCREAMING_SNAKE_CASE__ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] SCREAMING_SNAKE_CASE__ = [] for _ in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions def __call__( self : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : List[str]=True ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.resnets[0](__UpperCAmelCase , __UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): SCREAMING_SNAKE_CASE__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) return hidden_states
165
1
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
204
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): def __a ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = (32, 32) SCREAMING_SNAKE_CASE__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowercase ) return image @property def __a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_lowercase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def __a ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(_lowercase ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE__ = DDPMScheduler() SCREAMING_SNAKE_CASE__ = DDIMScheduler(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ = self.dummy_vae SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline( unet=_lowercase , low_res_scheduler=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , max_noise_level=3_50 , ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.Generator(device=_lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=_lowercase , generator=_lowercase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = torch.Generator(device=_lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=_lowercase , generator=_lowercase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=_lowercase , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) SCREAMING_SNAKE_CASE__ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE__ = DDPMScheduler() SCREAMING_SNAKE_CASE__ = DDIMScheduler(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ = self.dummy_vae SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline( unet=_lowercase , low_res_scheduler=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , max_noise_level=3_50 , ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images assert image.shape[0] == 2 SCREAMING_SNAKE_CASE__ = torch.Generator(device=_lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=_lowercase , generator=_lowercase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE__ = DDPMScheduler() SCREAMING_SNAKE_CASE__ = DDIMScheduler(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ = self.dummy_vae SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 SCREAMING_SNAKE_CASE__ = unet.half() SCREAMING_SNAKE_CASE__ = text_encoder.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline( unet=_lowercase , low_res_scheduler=_lowercase , scheduler=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , max_noise_level=3_50 , ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type="""np""" , ).images SCREAMING_SNAKE_CASE__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) SCREAMING_SNAKE_CASE__ = """stabilityai/stable-diffusion-x4-upscaler""" SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline.from_pretrained(_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = """a cat sitting on a park bench""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=_lowercase , image=_lowercase , generator=_lowercase , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) SCREAMING_SNAKE_CASE__ = """stabilityai/stable-diffusion-x4-upscaler""" SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline.from_pretrained( _lowercase , torch_dtype=torch.floataa , ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = """a cat sitting on a park bench""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=_lowercase , image=_lowercase , generator=_lowercase , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __a ( self : Any ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) SCREAMING_SNAKE_CASE__ = """stabilityai/stable-diffusion-x4-upscaler""" SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline.from_pretrained( _lowercase , torch_dtype=torch.floataa , ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = """a cat sitting on a park bench""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=_lowercase , image=_lowercase , generator=_lowercase , num_inference_steps=5 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
204
1
from __future__ import annotations def UpperCAmelCase__ ( lowerCamelCase ): if not nums: return 0 lowercase :Union[str, Any] = nums[0] lowercase :Union[str, Any] = 0 for num in nums[1:]: lowercase , lowercase :Any = ( max_excluding + num, max(lowerCamelCase, lowerCamelCase ), ) return max(lowerCamelCase, lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
236
import numpy # List of input, output pairs _UpperCAmelCase : List[str] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _UpperCAmelCase : Optional[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) _UpperCAmelCase : Tuple = [2, 4, 1, 5] _UpperCAmelCase : Union[str, Any] = len(train_data) _UpperCAmelCase : Dict = 0.0_0_9 def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase="train" ): return calculate_hypothesis_value(lowerCamelCase, lowerCamelCase ) - output( lowerCamelCase, lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase ): lowercase :str = 0 for i in range(len(lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase=m ): lowercase :Union[str, Any] = 0 for i in range(lowerCamelCase ): if index == -1: summation_value += _error(lowerCamelCase ) else: summation_value += _error(lowerCamelCase ) * train_data[i][0][index] return summation_value def UpperCAmelCase__ ( lowerCamelCase ): lowercase :int = summation_of_cost_derivative(lowerCamelCase, lowerCamelCase ) / m return cost_derivative_value def UpperCAmelCase__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowercase :str = 0.000_002 lowercase :Tuple = 0 lowercase :Optional[int] = 0 while True: j += 1 lowercase :Union[str, Any] = [0, 0, 0, 0] for i in range(0, len(lowerCamelCase ) ): lowercase :Dict = get_cost_derivative(i - 1 ) lowercase :Optional[Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCamelCase, lowerCamelCase, atol=lowerCamelCase, rtol=lowerCamelCase, ): break lowercase :Union[str, Any] = temp_parameter_vector print(("Number of iterations:", j) ) def UpperCAmelCase__ ( ): for i in range(len(lowerCamelCase ) ): print(("Actual output value:", output(lowerCamelCase, "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(lowerCamelCase, "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
236
1
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets a : int = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ a : List[str] = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ a : Optional[int] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] , ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(snake_case__ , snake_case__ , sample_weight=snake_case__ ) ), }
150
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 a : List[str] = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase_ ( cls ): '''simple docstring''' lowercase__ : Union[str, Any]= TOKEN HfFolder.save_token(snake_case__ ) @classmethod def UpperCAmelCase_ ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) lowercase__ : List[Any]= BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) lowercase__ : int= BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[int]= BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) lowercase__ : Optional[Any]= BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) lowercase__ : Any= BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def UpperCAmelCase_ ( self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowercase__ : Union[str, Any]= CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) lowercase__ : List[str]= AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Dict= GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase__ : str= c.n_embd + 1 # int lowercase__ : Tuple= c.resid_pdrop + 1.0 # float lowercase__ : Union[str, Any]= not c.scale_attn_weights # bool lowercase__ : Optional[Any]= c.summary_type + "foo" # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= PretrainedConfig() lowercase__ : List[str]= [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) lowercase__ : Tuple= [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F''' {', '.join(snake_case__ )}.''' ) def UpperCAmelCase_ ( self ): '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__ : Optional[int]= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) lowercase__ : Optional[Any]= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' # A mock response for an HTTP head request to emulate server down lowercase__ : str= mock.Mock() lowercase__ : Optional[Any]= 500 lowercase__ : Any= {} lowercase__ : Tuple= HTTPError lowercase__ : List[Any]= {} # Download this model to make sure it's in the cache. lowercase__ : Any= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: lowercase__ : Any= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase_ ( self ): '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 lowercase__ : Optional[Any]= BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : int= AutoConfig.from_pretrained("bert-base-cased" ) lowercase__ : Optional[int]= ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) lowercase__ : List[Any]= 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase__ : int= AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase__ : Optional[int]= ["config.42.0.0.json"] lowercase__ : int= 768 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) lowercase__ : Optional[Any]= AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCAmelCase_ ( self ): '''simple docstring''' # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowercase__ : Optional[Any]= "hf-internal-testing/test-two-configs" import transformers as new_transformers lowercase__ : Optional[Any]= "v4.0.0" lowercase__, lowercase__ : str= new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase__ : Dict= "v3.0.0" lowercase__ : Tuple= old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 768 )
150
1
"""simple docstring""" def _lowerCAmelCase ( lowercase_ , lowercase_ = " " ): UpperCAmelCase = [] UpperCAmelCase = 0 for index, char in enumerate(lowercase_ ): if char == separator: split_words.append(string[last_index:index] ) UpperCAmelCase = index + 1 elif index + 1 == len(lowercase_ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
78
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = list(range(len(lowercase_ ) ) ) UpperCAmelCase = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) UpperCAmelCase = 0 UpperCAmelCase = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: UpperCAmelCase = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
78
1
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase = logging.getLogger(__name__) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) __UpperCamelCase = parser.parse_args() logger.info(f'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: __UpperCamelCase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') __UpperCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) __UpperCamelCase = [0] * args.vocab_size for k, v in counter.items(): __UpperCamelCase = v logger.info(f'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
357
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
0
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=30 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=10 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=0.6 , lowerCamelCase=None , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = is_training __a = use_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = type_sequence_label_size __a = initializer_range __a = mask_ratio __a = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __a = (image_size // patch_size) ** 2 __a = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def a__ ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = self.get_config() return config, pixel_values, labels def a__ ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = ViTMAEModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase ) __a = (self.image_size // self.patch_size) ** 2 __a = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __a = 1 __a = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(lowerCamelCase ) __a = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def a__ ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( snake_case_, snake_case_, unittest.TestCase ): _snake_case : List[Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _snake_case : Optional[Any] = {"""feature-extraction""": ViTMAEModel} if is_torch_available() else {} _snake_case : Any = False _snake_case : Optional[int] = False _snake_case : Tuple = False _snake_case : Optional[Any] = False def a__ ( self ): __a = ViTMAEModelTester(self ) __a = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def a__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def a__ ( self ): pass def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(lowerCamelCase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # make masks reproducible np.random.seed(2 ) __a = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __a = torch.from_numpy(lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __a = pt_noise super().check_pt_tf_models(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __a = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __a = outputs[0].cpu().numpy() __a = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) __a = model_class.from_pretrained(lowerCamelCase ) model.to(lowerCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __a = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) # Make sure we don't have nans __a = after_outputs[0].cpu().numpy() __a = 0 __a = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def a__ ( self ): pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def a__ ( self ): pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def a__ ( self ): pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def a__ ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def a__ ( self ): pass @slow def a__ ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = ViTMAEModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _lowerCamelCase( ): __a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def a__ ( self ): return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def a__ ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) __a = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(lowerCamelCase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __a = ViTMAEConfig() __a = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __a = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __a = model(**lowerCamelCase , noise=torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) ) # verify the logits __a = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __a = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase ) , atol=1E-4 ) )
261
"""simple docstring""" import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase( a , a , a , a="attention" ): __a = params[F"{prefix}/layers_{i}/{layer_name}/key/kernel"] __a = params[F"{prefix}/layers_{i}/{layer_name}/out/kernel"] __a = params[F"{prefix}/layers_{i}/{layer_name}/query/kernel"] __a = params[F"{prefix}/layers_{i}/{layer_name}/value/kernel"] return k, o, q, v def _lowerCamelCase( a , a , a , a=False ): if split_mlp_wi: __a = params[F"{prefix}/layers_{i}/mlp/wi_0/kernel"] __a = params[F"{prefix}/layers_{i}/mlp/wi_1/kernel"] __a = (wi_a, wi_a) else: __a = params[F"{prefix}/layers_{i}/mlp/wi/kernel"] __a = params[F"{prefix}/layers_{i}/mlp/wo/kernel"] return wi, wo def _lowerCamelCase( a , a , a , a ): return params[F"{prefix}/layers_{i}/{layer_name}/scale"] def _lowerCamelCase( a , *, a , a ): __a = traverse_util.flatten_dict(variables["target"] ) __a = {"/".join(a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __a = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:" , a ) __a = collections.OrderedDict() # Shared embeddings. __a = old["token_embedder/embedding"] # Encoder. for i in range(a ): # Block i, layer 0 (Self Attention). __a = tax_layer_norm_lookup(a , a , "encoder" , "pre_attention_layer_norm" ) __a , __a , __a , __a = tax_attention_lookup(a , a , "encoder" , "attention" ) __a = layer_norm __a = k.T __a = o.T __a = q.T __a = v.T # Block i, layer 1 (MLP). __a = tax_layer_norm_lookup(a , a , "encoder" , "pre_mlp_layer_norm" ) __a , __a = tax_mlp_lookup(a , a , "encoder" , a ) __a = layer_norm if split_mlp_wi: __a = wi[0].T __a = wi[1].T else: __a = wi.T __a = wo.T __a = old[ "encoder/relpos_bias/rel_embedding" ].T __a = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(a ): # Block i, layer 0 (Self Attention). __a = tax_layer_norm_lookup(a , a , "decoder" , "pre_self_attention_layer_norm" ) __a , __a , __a , __a = tax_attention_lookup(a , a , "decoder" , "self_attention" ) __a = layer_norm __a = k.T __a = o.T __a = q.T __a = v.T # Block i, layer 1 (Cross Attention). __a = tax_layer_norm_lookup(a , a , "decoder" , "pre_cross_attention_layer_norm" ) __a , __a , __a , __a = tax_attention_lookup(a , a , "decoder" , "encoder_decoder_attention" ) __a = layer_norm __a = k.T __a = o.T __a = q.T __a = v.T # Block i, layer 2 (MLP). __a = tax_layer_norm_lookup(a , a , "decoder" , "pre_mlp_layer_norm" ) __a , __a = tax_mlp_lookup(a , a , "decoder" , a ) __a = layer_norm if split_mlp_wi: __a = wi[0].T __a = wi[1].T else: __a = wi.T __a = wo.T __a = old["decoder/decoder_norm/scale"] __a = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __a = old["decoder/logits_dense/kernel"].T return new def _lowerCamelCase( a , a ): __a = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __a = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __a = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) __a = state_dict["shared.weight"] return state_dict def _lowerCamelCase( a , a , a , a ): __a = checkpoints.load_tax_checkpoint(a ) __a = convert_tax_to_pytorch(a , num_layers=config.num_layers , is_encoder_only=a ) __a = make_state_dict(a , a ) model.load_state_dict(a , strict=a ) def _lowerCamelCase( a , a , a , a = False ): __a = TaConfig.from_json_file(a ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __a = TaEncoderModel(a ) else: __a = TaForConditionalGeneration(a ) # Load weights from tf checkpoint load_tax_weights_in_ta(a , a , a , a ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(a ) # Verify that we can load the checkpoint. model.from_pretrained(a ) print("Done" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Tuple = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) SCREAMING_SNAKE_CASE__:Tuple = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
261
1
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def lowercase__ ( __UpperCamelCase )-> Tuple: # getting number of pixels in the image UpperCamelCase ,UpperCamelCase = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): UpperCamelCase = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = imread('image_data/lena.jpg', 1) # convert to its negative SCREAMING_SNAKE_CASE__ = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
368
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'vocab_file': 'spm_char.model'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } SCREAMING_SNAKE_CASE__ = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class a_ ( lowerCamelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def A__ ( self ) -> Tuple: """simple docstring""" return self.sp_model.get_piece_size() def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase = [1] if token_ids_a is None: return ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones return ([0] * len(_SCREAMING_SNAKE_CASE )) + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , """wb""" ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
183
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int]=1_3 , UpperCAmelCase__ : Optional[Any]=3 , UpperCAmelCase__ : Optional[Any]=2_2_4 , UpperCAmelCase__ : Optional[Any]=3_0 , UpperCAmelCase__ : Any=4_0_0 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Optional[int]=[0.5, 0.5, 0.5] , ) -> int: lowerCAmelCase = size if size is not None else {'height': 1_8, 'width': 1_8} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_normalize lowerCAmelCase = image_mean lowerCAmelCase = image_std def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Dict = ViTImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self : List[str] ) -> List[Any]: lowerCAmelCase = EfficientFormerImageProcessorTester(self ) @property def __UpperCAmelCase ( self : List[Any] ) -> str: return self.image_proc_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : List[Any] ) -> Tuple: lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'image_std' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , 'size' ) ) def __UpperCAmelCase ( self : int ) -> Optional[int]: pass def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: # Initialize image_processor lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input lowerCAmelCase = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched lowerCAmelCase = image_processor(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def __UpperCAmelCase ( self : str ) -> Tuple: # Initialize image_processor lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input lowerCAmelCase = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched lowerCAmelCase = image_processor(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def __UpperCAmelCase ( self : List[Any] ) -> int: # Initialize image_processor lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched lowerCAmelCase = image_processor(UpperCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , )
4
"""simple docstring""" import requests UpperCAmelCase__ = """""" # <-- Put your OpenWeatherMap appid here! UpperCAmelCase__ = """https://api.openweathermap.org/data/2.5/""" def __UpperCAmelCase ( lowercase = "Chicago" ,lowercase = APPID ): """simple docstring""" return requests.get(URL_BASE + """weather""" ,params=locals() ).json() def __UpperCAmelCase ( lowercase = "Kolkata, India" ,lowercase = APPID ): """simple docstring""" return requests.get(URL_BASE + """forecast""" ,params=locals() ).json() def __UpperCAmelCase ( lowercase = 55.68 ,lowercase = 12.57 ,lowercase = APPID ): """simple docstring""" return requests.get(URL_BASE + """onecall""" ,params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: UpperCAmelCase__ = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
289
0
from __future__ import annotations from collections.abc import Generator def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = {} lowerCamelCase = 2 while True: lowerCamelCase = factor_map.pop(lowerCamelCase_ , lowerCamelCase_ ) if factor: lowerCamelCase = factor + prime while x in factor_map: x += factor lowerCamelCase = factor else: lowerCamelCase = prime yield prime prime += 1 def __lowerCamelCase ( lowerCamelCase__ : List[Any] = 1E10 ): '''simple docstring''' lowerCamelCase = sieve() lowerCamelCase = 1 while True: lowerCamelCase = next(lowerCamelCase_ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowerCamelCase_ ) n += 2 if __name__ == "__main__": print(solution())
367
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __lowercase : """simple docstring""" UpperCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCamelCase : Optional[str] = field( default=a_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCamelCase : Optional[str] = field( default=a_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCamelCase : Optional[str] = field( default=a_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCamelCase : bool = field( default=a_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) UpperCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) UpperCamelCase : bool = field( default=a_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __lowercase : """simple docstring""" UpperCamelCase : Optional[str] = field(default=a_ , metadata={"help": "The input training data file (a text file)."} ) UpperCamelCase : Optional[str] = field( default=a_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) UpperCamelCase : bool = field( default=a_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) UpperCamelCase : Optional[int] = field( default=a_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) UpperCamelCase : Optional[int] = field( default=a_ , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase : bool = field( default=a_ , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) UpperCamelCase : Optional[int] = field( default=a_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) UpperCamelCase : Optional[int] = field( default=a_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def __A ( self ) -> Any: '''simple docstring''' if self.train_file is not None: lowerCamelCase = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowercase : """simple docstring""" UpperCamelCase : PreTrainedTokenizerBase UpperCamelCase : Union[bool, str, PaddingStrategy] = True UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[int] = None def __call__( self , A ) -> Dict: '''simple docstring''' lowerCamelCase = """label""" if """label""" in features[0].keys() else """labels""" lowerCamelCase = [feature.pop(A ) for feature in features] lowerCamelCase = len(A ) lowerCamelCase = len(features[0]["""input_ids"""] ) lowerCamelCase = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] lowerCamelCase = list(chain(*A ) ) lowerCamelCase = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten lowerCamelCase = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase = torch.tensor(A , dtype=torch.intaa ) return batch def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase , lowerCamelCase , lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase , lowerCamelCase , lowerCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase__ , lowerCamelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) datasets.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase = {} if data_args.train_file is not None: lowerCamelCase = data_args.train_file if data_args.validation_file is not None: lowerCamelCase = data_args.validation_file lowerCamelCase = data_args.train_file.split(""".""" )[-1] lowerCamelCase = load_dataset( lowerCamelCase__ , data_files=lowerCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase = [f'ending{i}' for i in range(4 )] lowerCamelCase = """sent1""" lowerCamelCase = """sent2""" if data_args.max_seq_length is None: lowerCamelCase = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) lowerCamelCase = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) lowerCamelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase__ : int ): lowerCamelCase = [[context] * 4 for context in examples[context_name]] lowerCamelCase = examples[question_header_name] lowerCamelCase = [ [f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(lowerCamelCase__ ) ] # Flatten out lowerCamelCase = list(chain(*lowerCamelCase__ ) ) lowerCamelCase = list(chain(*lowerCamelCase__ ) ) # Tokenize lowerCamelCase = tokenizer( lowerCamelCase__ , lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) lowerCamelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: lowerCamelCase = min(len(lowerCamelCase__ ) , data_args.max_train_samples ) lowerCamelCase = train_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): lowerCamelCase = train_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) lowerCamelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: lowerCamelCase = min(len(lowerCamelCase__ ) , data_args.max_eval_samples ) lowerCamelCase = eval_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): lowerCamelCase = eval_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase__ : Optional[int] ): lowerCamelCase , lowerCamelCase = eval_predictions lowerCamelCase = np.argmax(lowerCamelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , compute_metrics=lowerCamelCase__ , ) # Training if training_args.do_train: lowerCamelCase = None if training_args.resume_from_checkpoint is not None: lowerCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase = last_checkpoint lowerCamelCase = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase = train_result.metrics lowerCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) lowerCamelCase = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("""train""" , lowerCamelCase__ ) trainer.save_metrics("""train""" , lowerCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCamelCase = trainer.evaluate() lowerCamelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ ) lowerCamelCase = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("""eval""" , lowerCamelCase__ ) trainer.save_metrics("""eval""" , lowerCamelCase__ ) lowerCamelCase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
66
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->str: '''simple docstring''' return " ".join( "".join(word[::-1] ) if len(_lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
105
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : list , __lowerCamelCase : int = 0 ) -> list: _snake_case = length or len(__lowerCamelCase ) _snake_case = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _snake_case , _snake_case = list_data[i + 1], list_data[i] _snake_case = True return list_data if not swapped else bubble_sort(__lowerCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
288
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowercase_ = parser.parse_args() if args.model_type == "bert": lowercase_ = BertForMaskedLM.from_pretrained(args.model_name) lowercase_ = 'bert' else: raise ValueError('args.model_type should be "bert".') lowercase_ = model.state_dict() lowercase_ = {} for w in ["word_embeddings", "position_embeddings"]: lowercase_ = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowercase_ = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] lowercase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowercase_ = state_dict['cls.predictions.decoder.weight'] lowercase_ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowercase_ = state_dict[F"""cls.predictions.transform.dense.{w}"""] lowercase_ = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
369
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = 0 __lowerCamelCase : Tuple = len(SCREAMING_SNAKE_CASE__ ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) <= 1: return arr, 0 __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) // 2 __lowerCamelCase : Union[str, Any] = arr[0:mid] __lowerCamelCase : List[Any] = arr[mid:] __lowerCamelCase , __lowerCamelCase : Any = count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : List[str] = count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : Dict = _count_cross_inversions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : List[str] = inversion_p + inversions_q + cross_inversions return c, num_inversions def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[int] = [] __lowerCamelCase : List[Any] = 0 while i < len(SCREAMING_SNAKE_CASE__ ) and j < len(SCREAMING_SNAKE_CASE__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def UpperCamelCase__ ( ): __lowerCamelCase : Optional[int] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCamelCase : Optional[Any] = count_inversions_bf(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCamelCase : Optional[Any] = count_inversions_bf(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : int = count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE__ ) # an empty list should also have zero inversions __lowerCamelCase : List[str] = [] __lowerCamelCase : Dict = count_inversions_bf(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
194
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() _lowerCAmelCase : int = [] def parse_line(_lowerCamelCase ): for line in fp: if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : List[str] = line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(_lowerCamelCase ) > 0: _lowerCAmelCase : Any = "\n".join(_lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F": {x}: " in warning for x in targets ): selected_warnings.add(_lowerCamelCase ) buffer.clear() continue else: _lowerCAmelCase : Tuple = line.strip() buffer.append(_lowerCamelCase ) if from_gh: for filename in os.listdir(_lowerCamelCase ): _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) if not os.path.isdir(_lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(_lowerCamelCase ) as fp: parse_line(_lowerCamelCase ) else: try: with zipfile.ZipFile(_lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(_lowerCamelCase ) as fp: parse_line(_lowerCamelCase ) except Exception: logger.warning( F"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = set() _lowerCAmelCase : List[str] = [os.path.join(_lowerCamelCase , _lowerCamelCase ) for p in os.listdir(_lowerCamelCase ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_lowerCamelCase , _lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def A ( _lowerCamelCase ): '''simple docstring''' return values.split("," ) _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") # optional parameters parser.add_argument( "--targets", default="DeprecationWarning,UserWarning,FutureWarning", type=list_str, help="Comma-separated list of target warning(s) which we want to extract.", ) parser.add_argument( "--from_gh", action="store_true", help="If running from a GitHub action workflow and collecting warnings from its artifacts.", ) _snake_case = parser.parse_args() _snake_case = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("=" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _snake_case = extract_warnings(args.output_dir, args.targets) _snake_case = sorted(selected_warnings) with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
36
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , a , ) class UpperCAmelCase_ ( a): lowerCamelCase__ = RobertaConfig lowerCamelCase__ = 'roberta' def __init__( self, __a): '''simple docstring''' super().__init__(__a) _lowerCAmelCase : Optional[Any] = RobertaEmbeddings(__a) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , a , ) class UpperCAmelCase_ ( a): lowerCamelCase__ = RobertaConfig lowerCamelCase__ = 'roberta' def __init__( self, __a): '''simple docstring''' super().__init__(__a) _lowerCAmelCase : Optional[int] = config.num_labels _lowerCAmelCase : Optional[int] = config.num_hidden_layers _lowerCAmelCase : Optional[int] = DeeRobertaModel(__a) _lowerCAmelCase : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob) _lowerCAmelCase : List[str] = nn.Linear(config.hidden_size, self.config.num_labels) @add_start_docstrings_to_model_forward(__a) def snake_case__ ( self, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=None, __a=-1, __a=False, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.num_layers try: _lowerCAmelCase : List[Any] = self.roberta( __a, attention_mask=__a, token_type_ids=__a, position_ids=__a, head_mask=__a, inputs_embeds=__a, ) _lowerCAmelCase : List[Any] = outputs[1] _lowerCAmelCase : Dict = self.dropout(__a) _lowerCAmelCase : Dict = self.classifier(__a) _lowerCAmelCase : Optional[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCAmelCase : Tuple = e.message _lowerCAmelCase : Union[str, Any] = e.exit_layer _lowerCAmelCase : List[Any] = outputs[0] if not self.training: _lowerCAmelCase : int = entropy(__a) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : str = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCAmelCase : Optional[Any] = MSELoss() _lowerCAmelCase : int = loss_fct(logits.view(-1), labels.view(-1)) else: _lowerCAmelCase : Optional[Any] = CrossEntropyLoss() _lowerCAmelCase : Optional[Any] = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) # work with highway exits _lowerCAmelCase : Optional[int] = [] for highway_exit in outputs[-1]: _lowerCAmelCase : Any = highway_exit[0] if not self.training: highway_logits_all.append(__a) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression _lowerCAmelCase : List[str] = MSELoss() _lowerCAmelCase : List[Any] = loss_fct(highway_logits.view(-1), labels.view(-1)) else: _lowerCAmelCase : Dict = CrossEntropyLoss() _lowerCAmelCase : Optional[Any] = loss_fct(highway_logits.view(-1, self.num_labels), labels.view(-1)) highway_losses.append(__a) if train_highway: _lowerCAmelCase : int = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: _lowerCAmelCase : Any = (loss,) + outputs if not self.training: _lowerCAmelCase : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCAmelCase : Optional[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
36
1
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCAmelCase = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' _lowerCAmelCase = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' _lowerCAmelCase = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage="""https://github.com/krishnap25/mauve""" ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Value("""string""" ,id="""sequence""" ), } ) ,codebase_urls=["""https://github.com/krishnap25/mauve"""] ,reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase="auto" ,__UpperCAmelCase=-1 ,__UpperCAmelCase=0.9 ,__UpperCAmelCase=5 ,__UpperCAmelCase=500 ,__UpperCAmelCase="gpt2-large" ,__UpperCAmelCase=-1 ,__UpperCAmelCase=1024 ,__UpperCAmelCase=25 ,__UpperCAmelCase=5 ,__UpperCAmelCase=True ,__UpperCAmelCase=25 ,) -> List[Any]: lowerCAmelCase__ : Optional[int] = compute_mauve( p_text=__UpperCAmelCase ,q_text=__UpperCAmelCase ,p_features=__UpperCAmelCase ,q_features=__UpperCAmelCase ,p_tokens=__UpperCAmelCase ,q_tokens=__UpperCAmelCase ,num_buckets=__UpperCAmelCase ,pca_max_data=__UpperCAmelCase ,kmeans_explained_var=__UpperCAmelCase ,kmeans_num_redo=__UpperCAmelCase ,kmeans_max_iter=__UpperCAmelCase ,featurize_model_name=__UpperCAmelCase ,device_id=__UpperCAmelCase ,max_text_length=__UpperCAmelCase ,divergence_curve_discretization_size=__UpperCAmelCase ,mauve_scaling_factor=__UpperCAmelCase ,verbose=__UpperCAmelCase ,seed=__UpperCAmelCase ,) return out
184
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 1000 ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = -1 lowerCAmelCase__ : Optional[Any] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c lowerCAmelCase__ : Optional[Any] = (n * n - 2 * a * n) // (2 * n - 2 * a) lowerCAmelCase__ : Tuple = n - a - b if c * c == (a * a + b * b): lowerCAmelCase__ : int = a * b * c if candidate >= product: lowerCAmelCase__ : Any = candidate return product if __name__ == "__main__": print(F"""{solution() = }""")
184
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''pegasus''' lowerCamelCase_ = ['''past_key_values'''] lowerCamelCase_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowercase=5_0_2_6_5 , lowercase=1_0_2_4 , lowercase=1_2 , lowercase=4_0_9_6 , lowercase=1_6 , lowercase=1_2 , lowercase=4_0_9_6 , lowercase=1_6 , lowercase=0.0 , lowercase=0.0 , lowercase=True , lowercase=True , lowercase="gelu" , lowercase=1_0_2_4 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=0 , lowercase=False , lowercase=0 , lowercase=1 , lowercase=1 , **lowercase , ): """simple docstring""" A_ : Optional[int] = vocab_size A_ : Optional[Any] = max_position_embeddings A_ : Tuple = d_model A_ : Union[str, Any] = encoder_ffn_dim A_ : Any = encoder_layers A_ : int = encoder_attention_heads A_ : Optional[Any] = decoder_ffn_dim A_ : Dict = decoder_layers A_ : Optional[Any] = decoder_attention_heads A_ : Optional[int] = dropout A_ : Optional[Any] = attention_dropout A_ : List[Any] = activation_dropout A_ : Dict = activation_function A_ : Union[str, Any] = init_std A_ : str = encoder_layerdrop A_ : Optional[int] = decoder_layerdrop A_ : List[Any] = use_cache A_ : str = encoder_layers A_ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return self.encoder_attention_heads @property def lowerCAmelCase_ ( self ): """simple docstring""" return self.d_model
140
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _UpperCAmelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) _UpperCAmelCase = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) _UpperCAmelCase = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions _UpperCAmelCase = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(64, 64) ) _UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image) _UpperCAmelCase = np.expand_dims(test_image, axis=0) _UpperCAmelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _UpperCAmelCase = """Normal""" if result[0][0] == 1: _UpperCAmelCase = """Abnormality detected"""
140
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase: List[str] = Lock() def a( A , A , A , A , A , A , A ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowercase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() a = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left a = min(lowercase__ , lowercase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowercase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() a = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right a = max(lowercase__ , lowercase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowercase__ ) def a( A ) -> Optional[Any]: """simple docstring""" a = [] a = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop a = Pipe() a = Pipe() process_array_.append( Process( target=lowercase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) a = temp_rs a = temp_rr for i in range(1 , len(lowercase__ ) - 1 ): a = Pipe() a = Pipe() process_array_.append( Process( target=lowercase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) a = temp_rs a = temp_rr process_array_.append( Process( target=lowercase__ , args=( len(lowercase__ ) - 1, arr[len(lowercase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowercase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowercase__ ) ): a = result_pipe[p][0].recv() process_array_[p].join() return arr def a( ) -> Union[str, Any]: """simple docstring""" a = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*lowercase__ ) a = odd_even_transposition(lowercase__ ) print("Sorted List\n" ) print(*lowercase__ ) if __name__ == "__main__": main()
351
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _lowercase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __A = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __A = False __A = False def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ): """simple docstring""" a = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=99 , lowerCamelCase_=32 , lowerCamelCase_=32 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=512 , lowerCamelCase_=16 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=None , ): """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope a = embedding_size def UpperCamelCase_ (self ): """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = TFMobileBertModel(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) a = [input_ids, input_mask] a = model(lowerCamelCase_ ) a = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = TFMobileBertForMaskedLM(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = TFMobileBertForNextSentencePrediction(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = TFMobileBertForPreTraining(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.num_labels a = TFMobileBertForSequenceClassification(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.num_choices a = TFMobileBertForMultipleChoice(config=lowerCamelCase_ ) a = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) a = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) a = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) a = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = self.num_labels a = TFMobileBertForTokenClassification(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = TFMobileBertForQuestionAnswering(config=lowerCamelCase_ ) a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ (self ): """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def UpperCamelCase_ (self ): """simple docstring""" a = TFMobileBertModelTest.TFMobileBertModelTester(self ) a = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def UpperCamelCase_ (self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) @slow def UpperCamelCase_ (self ): """simple docstring""" for model_name in ["google/mobilebert-uncased"]: a = TFMobileBertModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_tf class _lowercase ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase_ (self ): """simple docstring""" a = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) a = tf.constant([[0, 1, 2, 3, 4, 5]] ) a = model(lowerCamelCase_ )[0] a = [1, 6, 30522] self.assertEqual(output.shape , lowerCamelCase_ ) a = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
71
0
A__ : int = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) A__ : List[Any] = frozenset(['prompt', 'negative_prompt']) A__ : Tuple = frozenset([]) A__ : Union[str, Any] = frozenset(['image']) A__ : Tuple = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) A__ : str = frozenset(['image']) A__ : Optional[int] = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) A__ : Union[str, Any] = frozenset(['prompt', 'image', 'negative_prompt']) A__ : Dict = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) A__ : Any = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) A__ : Dict = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) A__ : Any = frozenset(['image', 'mask_image']) A__ : Optional[int] = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) A__ : Dict = frozenset(['example_image', 'image', 'mask_image']) A__ : Union[str, Any] = frozenset(['class_labels']) A__ : Dict = frozenset(['class_labels']) A__ : Any = frozenset(['batch_size']) A__ : Union[str, Any] = frozenset([]) A__ : Any = frozenset(['batch_size']) A__ : Optional[Any] = frozenset([]) A__ : int = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) A__ : Union[str, Any] = frozenset(['prompt', 'negative_prompt']) A__ : str = frozenset(['input_tokens']) A__ : Any = frozenset(['input_tokens'])
207
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') lowercase__ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(lowerCamelCase_ ): os.makedirs(lowerCamelCase_ ) lowercase__ = model.state_dict() def to_tf_var_name(lowerCamelCase_ ): for patt, repl in iter(lowerCamelCase_ ): lowercase__ = name.replace(lowerCamelCase_ , lowerCamelCase_ ) return F"""bert/{name}""" def create_tf_var(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): lowercase__ = tf.dtypes.as_dtype(tensor.dtype ) lowercase__ = tf.get_variable(dtype=lowerCamelCase_ , shape=tensor.shape , name=lowerCamelCase_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCamelCase_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase__ = to_tf_var_name(lowerCamelCase_ ) lowercase__ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase__ = torch_tensor.T lowercase__ = create_tf_var(tensor=lowerCamelCase_ , name=lowerCamelCase_ , session=lowerCamelCase_ ) tf.keras.backend.set_value(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = session.run(lowerCamelCase_ ) print(F"""Successfully created {tf_name}: {np.allclose(lowerCamelCase_ , lowerCamelCase_ )}""" ) lowercase__ = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def a ( lowerCamelCase_=None ): '''simple docstring''' lowercase__ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''Directory in which to save tensorflow model''' ) lowercase__ = parser.parse_args(lowerCamelCase_ ) lowercase__ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCamelCase_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
207
1
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _SCREAMING_SNAKE_CASE = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Tuple: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ) -> int: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "bias" in name: snake_case = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case = """weight""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int ) -> Optional[int]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Union[str, Any]=True ) -> Tuple: if config_path is not None: snake_case = UniSpeechSatConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = UniSpeechSatConfig() snake_case = """""" if is_finetuned: snake_case = UniSpeechSatForCTC(__lowerCAmelCase ) else: snake_case = UniSpeechSatForPreTraining(__lowerCAmelCase ) snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]: if config_path is not None: snake_case = HubertConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = HubertForCTC(__lowerCAmelCase ) else: snake_case = HubertModel(__lowerCAmelCase ) if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
1
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Tuple , *a__ : Union[str, Any] , a__ : Tuple=None , a__ : Optional[int]=None , **a__ : int ): """simple docstring""" super().__init__(*a__ , **a__ ) __snake_case = eval_examples __snake_case = post_process_function def a (self : int , a__ : int=None , a__ : Union[str, Any]=None , a__ : Optional[Any]=None , a__ : str = "eval" ): """simple docstring""" __snake_case = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case = self.get_eval_dataloader(a__ ) __snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __snake_case = time.time() try: __snake_case = eval_loop( a__ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a__ , metric_key_prefix=a__ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( a__ , a__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case = self.post_process_function(a__ , a__ , output.predictions ) __snake_case = self.compute_metrics(a__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __snake_case = metrics.pop(a__ ) metrics.update(output.metrics ) else: __snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(a__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , a__ ) return metrics def a (self : str , a__ : List[Any] , a__ : int , a__ : List[str]=None , a__ : str = "test" ): """simple docstring""" __snake_case = self.get_test_dataloader(a__ ) # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __snake_case = time.time() try: __snake_case = eval_loop( a__ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a__ , metric_key_prefix=a__ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( a__ , a__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case = self.post_process_function(a__ , a__ , output.predictions , '''predict''' ) __snake_case = self.compute_metrics(a__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __snake_case = metrics.pop(a__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a__ )
24
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): _lowercase: Optional[datasets.Features] = None class UpperCAmelCase ( datasets.ArrowBasedBuilder ): _lowercase: Tuple = PandasConfig def lowercase__ ( self : Optional[Any] ) -> str: return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : List[str] , __snake_case : Dict ) -> int: if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) _lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__snake_case , (str, list, tuple) ): _lowerCAmelCase = data_files if isinstance(__snake_case , __snake_case ): _lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase = [dl_manager.iter_files(__snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(__snake_case , __snake_case ): _lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase = [dl_manager.iter_files(__snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=__snake_case , gen_kwargs={"""files""": files} ) ) return splits def lowercase__ ( self : List[Any] , __snake_case : pa.Table ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase = table_cast(__snake_case , self.config.features.arrow_schema ) return pa_table def lowercase__ ( self : Dict , __snake_case : Optional[Any] ) -> Any: for i, file in enumerate(itertools.chain.from_iterable(__snake_case ) ): with open(__snake_case , """rb""" ) as f: _lowerCAmelCase = pa.Table.from_pandas(pd.read_pickle(__snake_case ) ) yield i, self._cast_table(__snake_case )
70
0
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = len(lowerCAmelCase__ ) + 1 UpperCAmelCase_ = len(lowerCAmelCase__ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase_ = [[0 for i in range(lowerCAmelCase__ )] for j in range(lowerCAmelCase__ )] # since string of zero length match pattern of zero length UpperCAmelCase_ = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , lowerCAmelCase__ ): UpperCAmelCase_ = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , lowerCAmelCase__ ): UpperCAmelCase_ = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , lowerCAmelCase__ ): for j in range(1 , lowerCAmelCase__ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase_ = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase_ = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase_ = dp[i - 1][j] else: UpperCAmelCase_ = 0 else: UpperCAmelCase_ = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") lowerCamelCase = """aab""" lowerCamelCase = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"{input_string} matches the given pattern {pattern}") else: print(F"{input_string} does not match with the given pattern {pattern}")
353
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva lowerCamelCase = """""" lowerCamelCase = """""" lowerCamelCase = """""" lowerCamelCase = 1 # (0 is vertical, 1 is horizontal) def a__ ( ): UpperCAmelCase_ , UpperCAmelCase_ = get_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) print("Processing..." ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = update_image_and_anno(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for index, image in enumerate(lowerCAmelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase_ = random_chars(32 ) UpperCAmelCase_ = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] UpperCAmelCase_ = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , lowerCAmelCase__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(lowerCAmelCase__ )} with {file_name}""" ) UpperCAmelCase_ = [] for anno in new_annos[index]: UpperCAmelCase_ = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(lowerCAmelCase__ ) with open(f"""/{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] for label_file in glob.glob(os.path.join(lowerCAmelCase__ , "*.txt" ) ): UpperCAmelCase_ = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(lowerCAmelCase__ ) as in_file: UpperCAmelCase_ = in_file.readlines() UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , f"""{label_name}.jpg""" ) UpperCAmelCase_ = [] for obj_list in obj_lists: UpperCAmelCase_ = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(lowerCAmelCase__ ) labels.append(lowerCAmelCase__ ) return img_paths, labels def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for idx in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = [] UpperCAmelCase_ = img_list[idx] path_list.append(lowerCAmelCase__ ) UpperCAmelCase_ = anno_list[idx] UpperCAmelCase_ = cva.imread(lowerCAmelCase__ ) if flip_type == 1: UpperCAmelCase_ = cva.flip(lowerCAmelCase__ , lowerCAmelCase__ ) for bbox in img_annos: UpperCAmelCase_ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCAmelCase_ = cva.flip(lowerCAmelCase__ , lowerCAmelCase__ ) for bbox in img_annos: UpperCAmelCase_ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(lowerCAmelCase__ ) new_imgs_list.append(lowerCAmelCase__ ) return new_imgs_list, new_annos_lists, path_list def a__ ( lowerCAmelCase__ = 32 ): assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase_ = ascii_lowercase + digits return "".join(random.choice(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
241
0
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a__ : Optional[int] =logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] =["pixel_values"] def __init__( self : Optional[Any] , __A : bool = True , __A : Union[int, float] = 1 / 2_5_5 , __A : bool = True , __A : int = 8 , **__A : Dict , ): super().__init__(**__A ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def _lowerCamelCase ( self : str , __A : np.ndarray , __A : float , __A : Optional[Union[str, ChannelDimension]] = None , **__A : List[str] ): return rescale(__A , scale=__A , data_format=__A , **__A ) def _lowerCamelCase ( self : Tuple , __A : np.ndarray , __A : int , __A : Optional[Union[str, ChannelDimension]] = None ): __UpperCamelCase , __UpperCamelCase = get_image_size(__A ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__A , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__A ) def _lowerCamelCase ( self : Optional[int] , __A : ImageInput , __A : Optional[bool] = None , __A : Optional[float] = None , __A : Optional[bool] = None , __A : Optional[int] = None , __A : Optional[Union[str, TensorType]] = None , __A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__A : str , ): __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__A ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__A , scale=__A ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__A , size=__A ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__A , __A ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__A , tensor_type=__A )
53
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __A = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ) -> Tuple: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.feature_extractor __lowerCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: __lowerCamelCase = 'weight' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ) -> int: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = full_name.split('adaptor.' )[-1] __lowerCamelCase = name.split('.' ) if items[1].isdigit(): __lowerCamelCase = int(items[1] ) else: __lowerCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" __lowerCamelCase = value logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" __lowerCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" __lowerCamelCase = value logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" __lowerCamelCase = value logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" __lowerCamelCase = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" __lowerCamelCase = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> Tuple: """simple docstring""" __lowerCamelCase , __lowerCamelCase = emb.weight.shape __lowerCamelCase = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) __lowerCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , ) -> str: """simple docstring""" __lowerCamelCase = WavaVecaConfig.from_pretrained( UpperCamelCase__ , add_adapter=UpperCamelCase__ , adapter_stride=UpperCamelCase__ , adapter_kernel_size=UpperCamelCase__ , use_auth_token=UpperCamelCase__ , output_hidden_size=UpperCamelCase__ , ) __lowerCamelCase = MBartConfig.from_pretrained(UpperCamelCase__ ) # load model __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } , ) __lowerCamelCase = model[0].eval() # load feature extractor __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase__ , use_auth_token=UpperCamelCase__ ) # set weights for wav2vec2 encoder __lowerCamelCase = WavaVecaModel(UpperCamelCase__ ) recursively_load_weights_wavaveca(model.encoder , UpperCamelCase__ ) # load decoder weights __lowerCamelCase = MBartForCausalLM(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase__ ) logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __lowerCamelCase = SpeechEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) __lowerCamelCase = False __lowerCamelCase = MBartaaTokenizer(UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = hf_wavavec.config.to_dict() __lowerCamelCase = tokenizer.pad_token_id __lowerCamelCase = tokenizer.bos_token_id __lowerCamelCase = tokenizer.eos_token_id __lowerCamelCase = 'mbart50' __lowerCamelCase = 'wav2vec2' __lowerCamelCase = tokenizer.eos_token_id __lowerCamelCase = 25_0004 __lowerCamelCase = tokenizer.eos_token_id __lowerCamelCase = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase__ ) hf_wavavec.save_pretrained(UpperCamelCase__ ) feature_extractor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=10_24, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=25_00_04, type=int, help="`decoder_start_token_id` of model config") __A = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
90
0
"""simple docstring""" from collections import deque def A_ ( _lowerCAmelCase : Any ): """simple docstring""" _a = len(_lowerCAmelCase ) _a = deque() _a = [False for _ in range(_lowerCAmelCase )] _a = [-1 for _ in range(_lowerCAmelCase )] _a = index_of[:] def strong_connect(_lowerCAmelCase : Optional[int], _lowerCAmelCase : List[str], _lowerCAmelCase : Optional[Any] ): _a = index # the number when this node is seen _a = index # lowest rank node reachable from here index += 1 stack.append(_lowerCAmelCase ) _a = True for w in g[v]: if index_of[w] == -1: _a = strong_connect(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) _a = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: _a = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: _a = [] _a = stack.pop() _a = False component.append(_lowerCAmelCase ) while w != v: _a = stack.pop() _a = False component.append(_lowerCAmelCase ) components.append(_lowerCAmelCase ) return index _a = [] for v in range(_lowerCAmelCase ): if index_of[v] == -1: strong_connect(_lowerCAmelCase, 0, _lowerCAmelCase ) return components def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _a = [[] for _ in range(_lowerCAmelCase )] for u, v in edges: g[u].append(_lowerCAmelCase ) return g if __name__ == "__main__": # Test __snake_case = 7 __snake_case = [0, 0, 1, 2, 3, 3, 4, 4, 6] __snake_case = [1, 3, 2, 0, 1, 4, 5, 6, 5] __snake_case = [(u, v) for u, v in zip(source, target)] __snake_case = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
361
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : List[str]=None, _lowerCAmelCase : Optional[Any]=None, _lowerCAmelCase : Union[str, Any]=None ): """simple docstring""" _a = True while ask_again: _a = input(_lowerCAmelCase ) try: if default is not None and len(_lowerCAmelCase ) == 0: return default return convert_value(_lowerCAmelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : Optional[Any]=[], _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Dict=0 ): """simple docstring""" _a = BulletMenu(_lowerCAmelCase, _lowerCAmelCase ) _a = menu.run(default_choice=_lowerCAmelCase ) return convert_value(_lowerCAmelCase ) if convert_value is not None else result def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a = int(_lowerCAmelCase ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _a = int(_lowerCAmelCase ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _a = int(_lowerCAmelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _a = int(_lowerCAmelCase ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _a = int(_lowerCAmelCase ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def A_ ( _lowerCAmelCase : Any ): """simple docstring""" return {"yes": True, "no": False}[value.lower()] class __lowerCamelCase ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: _a = super()._format_usage(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _a = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
153
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) A_ : Optional[Any] = AutoTokenizer.from_pretrained('google/mt5-small' ) A_ : Tuple = tokenizer('Hello there' , return_tensors='tf' ).input_ids A_ : Optional[int] = tokenizer('Hi I am' , return_tensors='tf' ).input_ids A_ : Union[str, Any] = model(lowercase , labels=lowercase ).loss A_ : str = -tf.math.reduce_mean(lowercase ).numpy() A_ : List[Any] = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
140
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput _UpperCAmelCase = """scheduler_config.json""" class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = 1 lowerCamelCase_ = 2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = 5 lowerCamelCase_ = 6 lowerCamelCase_ = 7 lowerCamelCase_ = 8 lowerCamelCase_ = 9 lowerCamelCase_ = 1_0 lowerCamelCase_ = 1_1 lowerCamelCase_ = 1_2 lowerCamelCase_ = 1_3 lowerCamelCase_ = 1_4 @dataclass class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = 42 class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = SCHEDULER_CONFIG_NAME lowerCamelCase_ = [] lowerCamelCase_ = True @classmethod def lowerCAmelCase_ ( cls , lowercase = None , lowercase = None , lowercase=False , **lowercase , ): """simple docstring""" A_ , A_ , A_ : int = cls.load_config( pretrained_model_name_or_path=lowercase , subfolder=lowercase , return_unused_kwargs=lowercase , return_commit_hash=lowercase , **lowercase , ) return cls.from_config(lowercase , return_unused_kwargs=lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase = False , **lowercase ): """simple docstring""" self.save_config(save_directory=lowercase , push_to_hub=lowercase , **lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return self._get_compatibles() @classmethod def lowerCAmelCase_ ( cls ): """simple docstring""" A_ : Optional[Any] = list(set([cls.__name__] + cls._compatibles ) ) A_ : Any = importlib.import_module(__name__.split('.' )[0] ) A_ : Tuple = [ getattr(lowercase , lowercase ) for c in compatible_classes_str if hasattr(lowercase , lowercase ) ] return compatible_classes
140
1
def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) SCREAMING_SNAKE_CASE__ : Optional[int] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ : Any = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] SCREAMING_SNAKE_CASE__ : int = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
364
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _lowerCamelCase : Tuple = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _lowerCamelCase : Optional[Any] = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def _a ( SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=SCREAMING_SNAKE_CASE__ )[0] @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.data to implement this functionality." ) def _a ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]: '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: SCREAMING_SNAKE_CASE__ : int = _readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_51: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) SCREAMING_SNAKE_CASE__ : Dict = _readaa(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = _readaa(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = _readaa(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = bytestream.read(rows * cols * num_images ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) SCREAMING_SNAKE_CASE__ : Optional[int] = data.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) return data @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.one_hot on tensors." ) def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = labels_dense.shape[0] SCREAMING_SNAKE_CASE__ : List[str] = numpy.arange(SCREAMING_SNAKE_CASE__ ) * num_classes SCREAMING_SNAKE_CASE__ : Dict = numpy.zeros((num_labels, num_classes) ) SCREAMING_SNAKE_CASE__ : Tuple = 1 return labels_one_hot @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.data to implement this functionality." ) def _a ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=10 ) -> Optional[int]: '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: SCREAMING_SNAKE_CASE__ : List[str] = _readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_49: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) SCREAMING_SNAKE_CASE__ : Tuple = _readaa(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = bytestream.read(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return labels class lowerCamelCase : """simple docstring""" @deprecated( _UpperCAmelCase, "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models.", ) def __init__( self : int, _UpperCAmelCase : List[Any], _UpperCAmelCase : int, _UpperCAmelCase : List[str]=False, _UpperCAmelCase : Tuple=False, _UpperCAmelCase : Union[str, Any]=dtypes.floataa, _UpperCAmelCase : Optional[Any]=True, _UpperCAmelCase : Optional[int]=None, ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = random_seed.get_seed(_UpperCAmelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) SCREAMING_SNAKE_CASE__ : Tuple = dtypes.as_dtype(_UpperCAmelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: SCREAMING_SNAKE_CASE__ : str = 1_0_0_0_0 SCREAMING_SNAKE_CASE__ : str = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' SCREAMING_SNAKE_CASE__ : List[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE__ : List[Any] = images.reshape( images.shape[0], images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE__ : Any = images.astype(numpy.floataa ) SCREAMING_SNAKE_CASE__ : Optional[Any] = numpy.multiply(_UpperCAmelCase, 1.0 / 255.0 ) SCREAMING_SNAKE_CASE__ : List[str] = images SCREAMING_SNAKE_CASE__ : str = labels SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 @property def A_ ( self : List[Any] ) -> int: """simple docstring""" return self._images @property def A_ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self._labels @property def A_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self._num_examples @property def A_ ( self : List[Any] ) -> Tuple: """simple docstring""" return self._epochs_completed def A_ ( self : List[str], _UpperCAmelCase : List[str], _UpperCAmelCase : List[Any]=False, _UpperCAmelCase : str=True ) -> Any: """simple docstring""" if fake_data: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [1] * 7_8_4 SCREAMING_SNAKE_CASE__ : Dict = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_UpperCAmelCase )], [fake_label for _ in range(_UpperCAmelCase )], ) SCREAMING_SNAKE_CASE__ : str = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE__ : List[str] = numpy.arange(self._num_examples ) numpy.random.shuffle(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = self.images[perma] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE__ : Dict = self._num_examples - start SCREAMING_SNAKE_CASE__ : List[str] = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE__ : Optional[Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE__ : Optional[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = self.images[perm] SCREAMING_SNAKE_CASE__ : Optional[int] = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : List[str] = batch_size - rest_num_examples SCREAMING_SNAKE_CASE__ : Dict = self._index_in_epoch SCREAMING_SNAKE_CASE__ : Optional[Any] = self._images[start:end] SCREAMING_SNAKE_CASE__ : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part), axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part), axis=0 ), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE__ : Tuple = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(SCREAMING_SNAKE_CASE__ , "Please write your own downloading logic." ) def _a ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: '''simple docstring''' if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): gfile.MakeDirs(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): urllib.request.urlretrieve(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # noqa: S310 with gfile.GFile(SCREAMING_SNAKE_CASE__ ) as f: SCREAMING_SNAKE_CASE__ : Any = f.size() print("Successfully downloaded" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "bytes." ) return filepath @deprecated( SCREAMING_SNAKE_CASE__ , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def _a ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : List[Any]=dtypes.floataa , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Dict=50_00 , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[int]=DEFAULT_SOURCE_URL , ) -> Any: '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , seed=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = fake() SCREAMING_SNAKE_CASE__ : List[str] = fake() SCREAMING_SNAKE_CASE__ : Any = fake() return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ ) if not source_url: # empty string check SCREAMING_SNAKE_CASE__ : str = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE__ : Dict = "train-images-idx3-ubyte.gz" SCREAMING_SNAKE_CASE__ : Optional[Any] = "train-labels-idx1-ubyte.gz" SCREAMING_SNAKE_CASE__ : Optional[Any] = "t10k-images-idx3-ubyte.gz" SCREAMING_SNAKE_CASE__ : str = "t10k-labels-idx1-ubyte.gz" SCREAMING_SNAKE_CASE__ : List[Any] = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: SCREAMING_SNAKE_CASE__ : Dict = _extract_images(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: SCREAMING_SNAKE_CASE__ : List[Any] = _extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: SCREAMING_SNAKE_CASE__ : List[str] = _extract_images(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: SCREAMING_SNAKE_CASE__ : Any = _extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) if not 0 <= validation_size <= len(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = ( "Validation size should be between 0 and " f'''{len(SCREAMING_SNAKE_CASE__ )}. Received: {validation_size}.''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = train_images[:validation_size] SCREAMING_SNAKE_CASE__ : str = train_labels[:validation_size] SCREAMING_SNAKE_CASE__ : Any = train_images[validation_size:] SCREAMING_SNAKE_CASE__ : List[Any] = train_labels[validation_size:] SCREAMING_SNAKE_CASE__ : Any = {"dtype": dtype, "reshape": reshape, "seed": seed} SCREAMING_SNAKE_CASE__ : Tuple = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ )
191
0
print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
26
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ = None def __init__( self :Dict , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :Any=None , lowerCamelCase_ :int=None , lowerCamelCase_ :List[str]="<unk>" , lowerCamelCase_ :List[Any]="<s>" , lowerCamelCase_ :str="</s>" , lowerCamelCase_ :Union[str, Any]="<pad>" , lowerCamelCase_ :Union[str, Any]=False , lowerCamelCase_ :Dict=False , **lowerCamelCase_ :List[Any] , ): """simple docstring""" super().__init__( lowerCamelCase_ , lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , unk_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCamelCase__ : List[str] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase_ ) != add_prefix_space: lowerCamelCase__ : str =getattr(lowerCamelCase_ , pre_tok_state.pop('type' ) ) lowerCamelCase__ : List[Any] =add_prefix_space lowerCamelCase__ : Optional[Any] =pre_tok_class(**lowerCamelCase_ ) lowerCamelCase__ : Any =add_prefix_space def UpperCAmelCase__ ( self :Optional[int] , *lowerCamelCase_ :List[str] , **lowerCamelCase_ :Optional[Any] ): """simple docstring""" lowerCamelCase__ : List[Any] =kwargs.get('is_split_into_words' , lowerCamelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._batch_encode_plus(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :int , *lowerCamelCase_ :Optional[Any] , **lowerCamelCase_ :Any ): """simple docstring""" lowerCamelCase__ : Optional[Any] =kwargs.get('is_split_into_words' , lowerCamelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ' pretokenized inputs.' ) return super()._encode_plus(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ): """simple docstring""" lowerCamelCase__ : Optional[Any] =self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ ) def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :"Conversation" ): """simple docstring""" lowerCamelCase__ : Optional[int] =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) + [self.eos_token_id] ) if len(lowerCamelCase_ ) > self.model_max_length: lowerCamelCase__ : List[str] =input_ids[-self.model_max_length :] return input_ids
126
0
def __magic_name__ ( __lowerCAmelCase : list[int] ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) __lowerCamelCase = sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
339
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered") def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
339
1
'''simple docstring''' import requests from bsa import BeautifulSoup def snake_case_ (_a : str = "https://www.worldometers.info/coronavirus" ): UpperCAmelCase = BeautifulSoup(requests.get(_a ).text , '''html.parser''' ) UpperCAmelCase = soup.findAll('''h1''' ) UpperCAmelCase = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(_a , _a )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
34
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True ): """simple docstring""" model.train() A__ = model(UpperCamelCase__ ) A__ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__=False ): """simple docstring""" set_seed(42 ) A__ = RegressionModel() A__ = deepcopy(UpperCamelCase__ ) A__ = RegressionDataset(length=80 ) A__ = DataLoader(UpperCamelCase__ , batch_size=16 ) model.to(accelerator.device ) if sched: A__ = AdamW(params=model.parameters() , lr=1E-3 ) A__ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) A__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) A__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 ) # Make a copy of `model` if sched: A__ , A__ , A__ , A__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: A__ , A__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ , A__ , A__ = get_training_setup(UpperCamelCase__ ) # Use a single batch A__ , A__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A__ , A__ = accelerator.gather((ddp_input, ddp_target) ) A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) A__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ , A__ , A__ = get_training_setup(UpperCamelCase__ ) # Use a single batch A__ , A__ = next(iter(UpperCamelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A__ , A__ = accelerator.gather((ddp_input, ddp_target) ) A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: # Sync grads step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) A__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] def UpperCAmelCase ( UpperCamelCase__=False , UpperCamelCase__=False ): """simple docstring""" A__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly A__ , A__ , A__ = get_training_setup(UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): A__ , A__ = batch.values() # Gather the distributed inputs and targs for the base model A__ , A__ = accelerator.gather((ddp_input, ddp_target) ) A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) A__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )] GradientState._reset_state() def UpperCAmelCase ( UpperCamelCase__=False , UpperCamelCase__=False ): """simple docstring""" A__ = Accelerator( split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly A__ , A__ , A__ , A__ , A__ , A__ , A__ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ ) for iteration, batch in enumerate(UpperCamelCase__ ): A__ , A__ = batch.values() # Gather the distributed inputs and targs for the base model A__ , A__ = accelerator.gather((ddp_input, ddp_target) ) A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase__ ): step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' A__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def UpperCAmelCase ( ): """simple docstring""" A__ = Accelerator() A__ = RegressionDataset(length=80 ) A__ = DataLoader(UpperCamelCase__ , batch_size=16 ) A__ = RegressionDataset(length=96 ) A__ = DataLoader(UpperCamelCase__ , batch_size=16 ) A__ , A__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if iteration < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ ) if batch_num < len(UpperCamelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def UpperCAmelCase ( ): """simple docstring""" A__ = Accelerator() A__ = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(UpperCamelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(UpperCamelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" main() if __name__ == "__main__": main()
221
0
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ ) -> float: if not nums: raise ValueError('''List is empty''' ) return sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
299
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = XLMRobertaTokenizer lowerCAmelCase__ = XLMRobertaTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowercase_ ( self : Dict ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Union[str, Any] = XLMRobertaTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = '''<pad>''' UpperCAmelCase__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_A ) , 1_002 ) def lowercase_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = XLMRobertaTokenizer(_A , keep_accents=_A ) UpperCAmelCase__ : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowercase_ ( self : str ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : List[str] = tempfile.mkdtemp() UpperCAmelCase__ : Any = tokenizer_r.save_pretrained(_A ) UpperCAmelCase__ : Tuple = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCAmelCase__ : Optional[int] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Any = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Dict = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : List[str] = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : List[str] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : List[str] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Dict = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : str = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Union[str, Any] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @cached_property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def lowercase_ ( self : Any ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_A , f.name ) UpperCAmelCase__ : int = XLMRobertaTokenizer(f.name , keep_accents=_A ) UpperCAmelCase__ : str = pickle.dumps(_A ) pickle.loads(_A ) def lowercase_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase__ : Dict = '''I was born in 92000, and this is falsé.''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) UpperCAmelCase__ : List[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : int = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Any = self.get_rust_tokenizer() UpperCAmelCase__ : List[Any] = tokenizer.encode(_A ) UpperCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = '''Hello World!''' UpperCAmelCase__ : Tuple = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase__ : Any = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = {'''input_ids''': [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
299
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Union[str, Any] = 'fnet' def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=4 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-1_2 , __UpperCAmelCase=False , __UpperCAmelCase=512 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) _a = vocab_size _a = max_position_embeddings _a = hidden_size _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = initializer_range _a = type_vocab_size _a = layer_norm_eps _a = use_tpu_fourier_optimizations _a = tpu_short_seq_length
320
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __snake_case = logging.getLogger(__name__) def _A ( SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Any=16 , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : int = 2 ): def get_dataset(SCREAMING_SNAKE_CASE__ : List[Any] ): UpperCamelCase :Union[str, Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(SCREAMING_SNAKE_CASE__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCamelCase :str = get_dataset(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = get_dataset(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) UpperCamelCase :Any = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def _A ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any=None ): UpperCamelCase :Dict = [] for epoch in range(SCREAMING_SNAKE_CASE__ ): # Train quickly model.train() for batch in dataloader: UpperCamelCase , UpperCamelCase :Optional[Any] = batch UpperCamelCase :int = model(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self ) -> str: super().__init__() UpperCamelCase :Optional[int] = nn.Parameter(torch.randn(1 ) ) UpperCamelCase :int = nn.Parameter(torch.randn(1 ) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> int: return x * self.a + self.b class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :Optional[Any] = DummyModel() UpperCamelCase :List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :Tuple = dummy_dataloaders() UpperCamelCase :Tuple = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline UpperCamelCase :Dict = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Union[str, Any] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def UpperCAmelCase ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :List[str] = DummyModel() UpperCamelCase :Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :Dict = dummy_dataloaders() # Train baseline UpperCamelCase :Dict = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :int = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial UpperCamelCase :int = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Optional[Any] = model.a.item(), model.b.item() UpperCamelCase :Optional[int] = optimizer.state_dict() UpperCamelCase :Optional[int] = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Dict = model.a.item(), model.b.item() UpperCamelCase :Optional[Any] = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase :Any = DummyModel() UpperCamelCase :List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :List[Any] = dummy_dataloaders() UpperCamelCase :List[str] = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Tuple = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Tuple = model.a.item(), model.b.item() UpperCamelCase :Tuple = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything UpperCamelCase :Optional[int] = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Union[str, Any] = model.a.item(), model.b.item() UpperCamelCase :Optional[Any] = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :List[Any] = DummyModel() UpperCamelCase :Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :int = dummy_dataloaders() UpperCamelCase :int = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline UpperCamelCase :Union[str, Any] = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Optional[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((UpperCamelCase) , (UpperCamelCase)) :List[str] = model.a.item(), model.b.item() UpperCamelCase :Dict = optimizer.state_dict() UpperCamelCase :Any = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Optional[int] = model.a.item(), model.b.item() UpperCamelCase :Any = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase :Union[str, Any] = DummyModel() UpperCamelCase :List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :Tuple = dummy_dataloaders() UpperCamelCase :Optional[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :List[str] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((UpperCamelCase) , (UpperCamelCase)) :Dict = model.a.item(), model.b.item() UpperCamelCase :Dict = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Optional[Any] = model.a.item(), model.b.item() UpperCamelCase :str = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :List[Any] = torch.tensor([1, 2, 3] ) UpperCamelCase :Any = torch.tensor([2, 3, 4] ) UpperCamelCase :Optional[Any] = DummyModel() UpperCamelCase :Optional[Any] = torch.optim.Adam(net.parameters() ) UpperCamelCase :Optional[Any] = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :List[Any] = DummyModel() UpperCamelCase :List[str] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase :Any = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.99 ) UpperCamelCase , UpperCamelCase :Any = dummy_dataloaders() UpperCamelCase :Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline UpperCamelCase :str = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Tuple = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() UpperCamelCase :int = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def UpperCAmelCase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :Optional[Any] = DummyModel() UpperCamelCase :int = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline UpperCamelCase :Tuple = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def UpperCAmelCase ( self ) -> int: UpperCamelCase :int = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": __snake_case = """/tmp/accelerate/state_checkpointing""" __snake_case = DummyModel() __snake_case = torch.optim.Adam(params=model.parameters(), lr=1E-3) __snake_case = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __snake_case , __snake_case = dummy_dataloaders() __snake_case = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __snake_case = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __snake_case , __snake_case = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __snake_case = group["""params"""][0].device break assert param_device.type == accelerator.device.type __snake_case = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: __snake_case = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: __snake_case = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
259
0
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def _A ( lowerCAmelCase_ : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) lowerCAmelCase__ = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$" , lowerCAmelCase_ ) if matches: lowerCAmelCase__ = float(matches[1] ) lowerCAmelCase__ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". lowerCAmelCase__ = 1001 lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = "huggingface/label-files" lowerCAmelCase__ = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ = {int(lowerCAmelCase_ ) + 1: v for k, v in idalabel.items()} lowerCAmelCase__ = "background" lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} return config def _A ( ): """simple docstring""" lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any]=False ): """simple docstring""" lowerCAmelCase__ = get_mobilenet_va_config(lowerCAmelCase_ ) # Load 🤗 model lowerCAmelCase__ = MobileNetVaForImageClassification(lowerCAmelCase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor lowerCAmelCase__ = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) lowerCAmelCase__ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCAmelCase__ = model(**lowerCAmelCase_ ) lowerCAmelCase__ = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": lowerCAmelCase__ = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": lowerCAmelCase__ = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: lowerCAmelCase__ = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print("Pushing to the hub..." ) lowerCAmelCase__ = "google/" + model_name image_processor.push_to_hub(lowerCAmelCase_ ) model.push_to_hub(lowerCAmelCase_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
221
import random def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : List[str] ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = [], [], [] for element in data: if element < pivot: less.append(lowerCAmelCase_ ) elif element > pivot: greater.append(lowerCAmelCase_ ) else: equal.append(lowerCAmelCase_ ) return less, equal, greater def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int ): """simple docstring""" if index >= len(lowerCAmelCase_ ) or index < 0: return None lowerCAmelCase__ = items[random.randint(0 , len(lowerCAmelCase_ ) - 1 )] lowerCAmelCase__ = 0 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _partition(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = len(lowerCAmelCase_ ) lowerCAmelCase__ = len(lowerCAmelCase_ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(lowerCAmelCase_ , lowerCAmelCase_ ) # must be in larger else: return quick_select(lowerCAmelCase_ , index - (m + count) )
221
1
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowercase : List[str] = logging.get_logger(__name__) lowercase : str = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } lowercase : List[str] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' for attribute in key.split('''.''' ): A : List[str] = getattr(snake_case__ , snake_case__ ) if weight_type is not None: A : Optional[Any] = getattr(snake_case__ , snake_case__ ).shape else: A : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": A : List[str] = value elif weight_type == "weight_g": A : Tuple = value elif weight_type == "weight_v": A : int = value elif weight_type == "bias": A : int = value else: A : List[str] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = [] A : int = fairseq_model.state_dict() A : List[str] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): A : Optional[int] = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == '''group''' , ) A : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): A : Optional[Any] = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue A : List[Any] = True if "*" in mapped_key: A : List[Any] = name.split(snake_case__ )[0].split('''.''' )[-2] A : Any = mapped_key.replace('''*''' , snake_case__ ) if "weight_g" in name: A : str = '''weight_g''' elif "weight_v" in name: A : Dict = '''weight_v''' elif "bias" in name: A : Union[str, Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj A : Optional[Any] = '''weight''' else: A : Any = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(F'Unused weights: {unused_weights}' ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : int = full_name.split('''conv_layers.''' )[-1] A : Any = name.split('''.''' ) A : Dict = int(items[0] ) A : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A : Any = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A : str = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) A : List[Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) A : List[str] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(snake_case__ ) @torch.no_grad() def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=True ): '''simple docstring''' if config_path is not None: A : List[str] = UniSpeechSatConfig.from_pretrained(snake_case__ ) else: A : Optional[int] = UniSpeechSatConfig() A : int = '''''' if is_finetuned: A : List[str] = UniSpeechSatForCTC(snake_case__ ) else: A : int = UniSpeechSatForPreTraining(snake_case__ ) A, A, A : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) A : List[str] = model[0].eval() recursively_load_weights(snake_case__ , snake_case__ ) hf_wavavec.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowercase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : str = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class A ( __snake_case ): __magic_name__ = '''bert''' def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Optional[int] = vocab_size A : Optional[Any] = hidden_size A : List[Any] = num_hidden_layers A : List[str] = num_attention_heads A : Dict = hidden_act A : Optional[Any] = intermediate_size A : List[Any] = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : Optional[Any] = max_position_embeddings A : List[str] = type_vocab_size A : Dict = initializer_range A : str = layer_norm_eps A : int = position_embedding_type A : Dict = use_cache A : str = classifier_dropout class A ( __snake_case ): @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": A : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
3
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __A( a , unittest.TestCase ): snake_case_ = TextToVideoSDPipeline snake_case_ = TEXT_TO_IMAGE_PARAMS snake_case_ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. snake_case_ = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) __a = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_snake_case ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=0 ) -> int: '''simple docstring''' if str(_snake_case ).startswith('''mps''' ): __a = torch.manual_seed(_snake_case ) else: __a = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = TextToVideoSDPipeline(**_snake_case ) __a = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) __a = self.get_dummy_inputs(_snake_case ) __a = '''np''' __a = sd_pipe(**_snake_case ).frames __a = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __a = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_snake_case , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_snake_case , expected_max_diff=1E-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __a = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __a = pipe.to('''cuda''' ) __a = '''Spiderman is surfing''' __a = torch.Generator(device='''cpu''' ).manual_seed(0 ) __a = pipe(_snake_case , generator=_snake_case , num_inference_steps=25 , output_type='''pt''' ).frames __a = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __a = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __a = pipe.to('''cuda''' ) __a = '''Spiderman is surfing''' __a = torch.Generator(device='''cpu''' ).manual_seed(0 ) __a = pipe(_snake_case , generator=_snake_case , num_inference_steps=2 , output_type='''pt''' ).frames __a = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
33
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A : str = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) A : int = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCAmelCase ( ) -> Tuple: __a = '''https://pypi.org/pypi/diffusers/json''' __a = json.loads(request.urlopen(a__ ).read() )['''releases'''].keys() return sorted(a__ , key=lambda a__ : version.Version(a__ ) ) def __lowerCAmelCase ( ) -> List[Any]: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(a__ ) os.makedirs(a__ , exist_ok=a__ ) __a = Path(a__ ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def __lowerCAmelCase ( a__ ) -> Dict: init_hf_modules() __a = Path(a__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(a__ , exist_ok=a__ ) __a = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def __lowerCAmelCase ( a__ ) -> Dict: with open(a__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.read() # Imports of the form `import .xxx` __a = re.findall('''^\s*import\s+\.(\S+)\s*$''' , a__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , a__ , flags=re.MULTILINE ) # Unique-ify return list(set(a__ ) ) def __lowerCAmelCase ( a__ ) -> Any: __a = False __a = [module_file] __a = [] # Let's recurse through all relative imports while not no_change: __a = [] for f in files_to_check: new_imports.extend(get_relative_imports(a__ ) ) __a = Path(a__ ).parent __a = [str(module_path / m ) for m in new_imports] __a = [f for f in new_import_files if f not in all_relative_imports] __a = [F"""{f}.py""" for f in new_import_files] __a = len(a__ ) == 0 all_relative_imports.extend(a__ ) return all_relative_imports def __lowerCAmelCase ( a__ ) -> str: with open(a__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.read() # Imports of the form `import xxx` __a = re.findall('''^\s*import\s+(\S+)\s*$''' , a__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , a__ , flags=re.MULTILINE ) # Only keep the top-level module __a = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all __a = list(set(a__ ) ) __a = [] for imp in imports: try: importlib.import_module(a__ ) except ImportError: missing_packages.append(a__ ) if len(a__ ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' F"""{', '.join(a__ )}. Run `pip install {' '.join(a__ )}`""" ) return get_relative_imports(a__ ) def __lowerCAmelCase ( a__ , a__ ) -> Dict: __a = module_path.replace(os.path.sep , '''.''' ) __a = importlib.import_module(a__ ) if class_name is None: return find_pipeline_class(a__ ) return getattr(a__ , a__ ) def __lowerCAmelCase ( a__ ) -> Optional[Any]: from ..pipelines import DiffusionPipeline __a = dict(inspect.getmembers(a__ , inspect.isclass ) ) __a = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , a__ ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" F""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" F""" {loaded_module}.""" ) __a = cls return pipeline_class def __lowerCAmelCase ( a__ , a__ , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , ) -> Tuple: __a = str(a__ ) __a = os.path.join(a__ , a__ ) if os.path.isfile(a__ ): __a = module_file_or_url __a = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: __a = get_diffusers_versions() # cut ".dev0" __a = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: __a = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(F"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: __a = F"""v{revision}""" elif revision == "main": __a = revision else: raise ValueError( F"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" F""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub __a = COMMUNITY_PIPELINES_URL.format(revision=a__ , pipeline=a__ ) try: __a = cached_download( a__ , cache_dir=a__ , force_download=a__ , proxies=a__ , resume_download=a__ , local_files_only=a__ , use_auth_token=a__ , ) __a = '''git''' __a = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached __a = hf_hub_download( a__ , a__ , cache_dir=a__ , force_download=a__ , proxies=a__ , resume_download=a__ , local_files_only=a__ , use_auth_token=a__ , ) __a = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment __a = check_imports(a__ ) # Now we move the module inside our cached dynamic modules. __a = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(a__ ) __a = Path(a__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(a__ , submodule_path / module_file ) for module_needed in modules_needed: __a = F"""{module_needed}.py""" shutil.copy(os.path.join(a__ , a__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(a__ , a__ ): __a = use_auth_token elif use_auth_token is True: __a = HfFolder.get_token() else: __a = None __a = model_info(a__ , revision=a__ , token=a__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __a = submodule_path / commit_hash __a = full_submodule + os.path.sep + commit_hash create_dynamic_module(a__ ) if not (submodule_path / module_file).exists(): shutil.copy(a__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( a__ , F"""{module_needed}.py""" , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) return os.path.join(a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ = None , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , **a__ , ) -> Tuple: __a = get_cached_module_file( a__ , a__ , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) return get_class_in_module(a__ , final_module.replace('''.py''' , '''''' ) )
33
1